WO2024048028A1 - Combustion facility - Google Patents

Combustion facility Download PDF

Info

Publication number
WO2024048028A1
WO2024048028A1 PCT/JP2023/022894 JP2023022894W WO2024048028A1 WO 2024048028 A1 WO2024048028 A1 WO 2024048028A1 JP 2023022894 W JP2023022894 W JP 2023022894W WO 2024048028 A1 WO2024048028 A1 WO 2024048028A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
combustion
furnace
burner
oxygen concentration
Prior art date
Application number
PCT/JP2023/022894
Other languages
French (fr)
Japanese (ja)
Inventor
幸嗣 作部屋
智樹 片山
徳勝 北村
公勇 谷山
Original Assignee
中外炉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外炉工業株式会社 filed Critical 中外炉工業株式会社
Publication of WO2024048028A1 publication Critical patent/WO2024048028A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Definitions

  • the present invention adjusts the ratio of fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe to a burner, and supplies the burner to a furnace for combustion.
  • the present invention relates to a combustion equipment that blows out air and fuel for combustion. Especially when the amount of air entering the furnace changes due to a change in the amount of combustion in the burner, and the oxygen concentration inside the furnace changes, or when cooling air is introduced around the outer circumference of the fuel supply nozzle that supplies fuel.
  • a furnace provided with a plurality of burners provided with an air guide pipe and a combustion air supply nozzle that supplies combustion air around the outer periphery of the cooling air guide pipe, the number of burners whose combustion is stopped.
  • the air ratio control system This method is characterized in that the ratio of combustion air and fuel supplied to the furnace is quickly adjusted so that the air ratio in the furnace reaches a predetermined value, thereby allowing stable combustion.
  • Patent Document 1 when fuel and combustion air are ejected from the burner into the furnace and the fuel and combustion air are combusted in the furnace at a predetermined air ratio, in Patent Document 1, the ratio of the fuel and the combustion air is set in advance.
  • a burner flow rate coefficient N set as a value, a fuel flow rate preset for the combustion amount of the burner, a combustion air flow rate determined from this fuel flow rate and a preset air ratio, and fuel supply.
  • the measured value of the supply pressure P0 is applied to a predetermined formula (A) showing the relationship between the fluid supply pressure P0 on the primary side of the flow rate regulating valve provided in the fuel supply system and the combustion air supply system.
  • Patent Document 2 at least a measurement value of the opening degree of a fuel control valve with a known relationship between the flow coefficient and the opening degree, and a measurement value of the opening degree of a combustion air control valve with a known relationship between the flow coefficient and the opening degree. measured values of the supply temperature and supply pressure of the fuel supplied to the burner with a known flow coefficient, the measured values of the supply temperature and supply pressure of the combustion air supplied to the burner, and the measured value of the furnace temperature.
  • the burner control device determines the combustion amount of the burner from the deviation between the measured value of the furnace temperature and the set value, and Calculating the opening degrees of the fuel control valve and the combustion air control valve corresponding to the fuel flow rate and combustion air flow rate that maintain the combustion amount of the burner by a compound throttling calculation so as to maintain a preset combustion air ratio; Adjust the openings of each of the control valves so that the measured openings of the fuel control valve and combustion air control valve match the calculated openings of the fuel control valve and combustion air control valve obtained by the composite throttling calculation.
  • the burner control device When controlling the flow rate of fuel and combustion air, the burner control device constantly updates each measurement value to the latest measurement value and stores it for a predetermined time, and any of the measurement values is If the permissible range for the set value is exceeded, the update of the measured value will be stopped after a predetermined period of time has passed from the time when the permissible range has been exceeded, and at the time the update of the measured value is stopped, the above value stored in the burner control device will be updated.
  • the cause of exceeding the permissible range is determined from each of the above measured values measured before the permissible range was exceeded and each of the above measured values measured after the above permissible range was exceeded, and the measured value of the above fuel supply pressure is suddenly changed.
  • the air ratio when operating combustion equipment is adjusted to an appropriate value that can reduce CO, soot, and NOx in the combustion exhaust gas.
  • the amount of air entering the furnace decreases as the furnace pressure increases, and increases as the furnace pressure decreases.
  • the present invention adjusts the ratio of fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe to a burner, and supplies the burner to a furnace for combustion.
  • the object of the present invention is to solve the above-mentioned problems in a combustion equipment that blows out air and fuel for combustion.
  • the present invention is applicable to combustion equipment as described above, when the amount of air entering the furnace changes due to a change in the amount of combustion in the burner, and the oxygen concentration inside the furnace changes, or when the amount of fuel supplied is
  • a plurality of burners are provided with a cooling air guide pipe for guiding cooling air around the outer periphery of the supply nozzle, and combustion air supply nozzles for supplying combustion air around the outer periphery of the cooling air guide pipe.
  • the air ratio control system quickly adjusts the ratio of combustion air and fuel supplied to the burner so that the air ratio in the furnace reaches a predetermined value to ensure stable combustion. The challenge is to do so.
  • the ratio of the fuel supplied through the fuel supply pipe and the combustion air supplied through the air supply pipe is adjusted by an air ratio control system.
  • combustion equipment in which combustion air and fuel are supplied to a burner and are injected into the furnace from the burner for combustion, changes in the oxygen concentration in the furnace due to changes in the amount of air entering the furnace.
  • the oxygen concentration in the furnace detected by the oxygen concentration sensor is outputted from the output control device to the air ratio control system, and the oxygen concentration in the furnace detected by the oxygen concentration sensor is outputted from the output control device to the air ratio control system.
  • the air ratio control system adjusts the ratio of combustion air and fuel supplied to the burner, and when the fuel and combustion air are combusted in the furnace, the combustion in the burner is adjusted. Due to the increase in the amount of combustion exhaust gas in the furnace, the pressure inside the furnace increases, and the amount of air entering the furnace decreases, reducing the amount of oxygen in the furnace detected by the oxygen concentration sensor mentioned above. If the concentration decreases, the air ratio control system adjusts the ratio of combustion air and fuel supplied to the burner to increase the air ratio in the burner while increasing the combustion rate in the burner.
  • the air ratio control system adjusts the ratio of combustion air to fuel supplied to the burner to reduce the air ratio within the burner.
  • the oxygen concentration sensor detects the change in the oxygen concentration in the furnace due to the change in the amount of air entering the furnace as described above, and the The output control device outputs the oxygen concentration in the air to the air ratio control system, and the air ratio control system adjusts the ratio of combustion air and fuel to be supplied to the burner. Since the combustion air is combusted in the furnace, even if the amount of air entering the furnace changes, the combustion air and fuel in the furnace quickly reach a predetermined air ratio, resulting in stable combustion. Be able to do it.
  • the air ratio increases.
  • a control system adjusts the ratio of combustion air and fuel supplied to the burner to increase the air ratio within the burner, while increasing the amount of air entering the furnace to increase the air ratio within the burner.
  • the air ratio control system adjusts the ratio of combustion air and fuel supplied to the burner to reduce the air in the burner. We are trying to reduce the ratio.
  • the air ratio control system controls the ratio of combustion air to fuel supplied to the burner. While increasing the air ratio in the burner, the amount of combustion gas in the burner decreases, reducing the amount of combustion exhaust gas in the furnace and lowering the pressure in the furnace.
  • the air ratio control system changes the ratio between the combustion air supplied to the burner and the fuel. The proportions are adjusted to reduce the air ratio within the burner. In this way, even if the combustion amount in the burner changes, the air ratio in the furnace quickly reaches a predetermined value, and stable combustion can be performed.
  • the furnace is provided with a plurality of burners, and each burner is provided with a cooling air guide pipe that guides cooling air around the outer periphery of a fuel supply nozzle that supplies fuel.
  • a combustion air supply nozzle for supplying combustion air is provided on the outer periphery of the cooling air guide tube, the number of burners whose combustion is stopped is increased, and the cooling air in the burners whose combustion is stopped is increased.
  • Adjusting the ratio of combustion air and fuel supplied to the burners in which combustion is taking place reduces the air ratio in the burners where combustion is taking place, while reducing the number of burners in which combustion is shut off and reducing combustion. If the amount of cooling air that enters the furnace from the cooling air guide pipe in the stopped burner decreases and the oxygen concentration in the furnace detected by the oxygen concentration sensor decreases, the A ratio control system adjusts the ratio of combustion air and fuel supplied to the burner in which combustion is occurring to increase the air ratio within the burner in which combustion is occurring. In this way, even if the number of burners whose combustion is stopped changes and the amount of cooling air that enters the furnace from the cooling air guide tube changes, the air ratio in the furnace will quickly reach the specified level. By adjusting the value so that stable combustion can be performed.
  • the oxygen concentration sensor detects the change in the oxygen concentration in the furnace due to the change in the amount of air entering the furnace as described above.
  • the detected oxygen concentration in the furnace is output from the output control device to the air ratio control system, and the air ratio control system supplies the air to the burner based on the oxygen concentration in the furnace detected by the oxygen concentration sensor. Since the ratio of combustion air to fuel is adjusted, even if the amount of air entering the furnace changes, the above-mentioned
  • the air ratio control system appropriately adjusts the ratio of combustion air and fuel supplied to the burner so that the air ratio in the furnace quickly reaches a predetermined value, allowing stable combustion.
  • the value of the oxygen concentration in the furnace and the value of the air ratio in the furnace are in a proportional relationship, by measuring the oxygen concentration in the furnace, it is possible to calculate the air ratio in the furnace from that value. can.
  • the amount of combustion is adjusted by the flow rate of fuel and combustion air, and the air ratio is mainly adjusted by the flow rate of combustion air.
  • FIG. 2 is a schematic explanatory diagram showing a configuration for adjusting the ratio of combustion air to be supplied and fuel gas as fuel.
  • (A) is such that the amount of combustion in the burner increases, the amount of air entering the furnace decreases, and the oxygen concentration in the furnace detected by the oxygen concentration sensor decreases.
  • (B) is a schematic explanatory diagram showing a state in which the ratio of combustion air and fuel gas supplied to the burner is adjusted to increase the air ratio in the burner when the combustion amount in the burner decreases.
  • FIG. 3 is a schematic explanatory diagram showing a state in which the air ratio in the interior of the vehicle is decreased.
  • (A) is a change in the combustion amount, a change in the furnace pressure, and a change in the amount of air entering the furnace when the combustion amount in the burner is increased.
  • a timing diagram showing changes in the oxygen concentration in the furnace and changes in the air ratio in the burner.
  • (B) shows the change in the combustion amount and the change in the pressure in the furnace when the combustion amount in the burner is decreased.
  • FIG. 4 is a timing diagram showing changes in the amount of air entering the furnace, changes in the oxygen concentration in the furnace, and changes in the air ratio in the burner.
  • a cooling air guide pipe that guides cooling air is provided on the outer periphery of the fuel gas supply nozzle that supplies fuel gas
  • a cooling air guide pipe that guides cooling air is provided on the outer periphery of the cooling air guide pipe.
  • FIG. 2 is a schematic explanatory diagram showing a state in which a furnace is provided with a plurality of burners each provided with a combustion air supply nozzle that supplies air, and combustion is performed in all the burners.
  • FIG. 7 is a schematic explanatory diagram showing a state in which combustion in some burners provided in the furnace is stopped in the combustion equipment according to the second embodiment.
  • the change in combustion amount when changing from the state shown in FIG. 4 in which combustion occurs in all burners to the state shown in FIG. 5 in which combustion in some burners is stopped. the timing showing changes in the pressure inside the furnace, changes in the amount of cooling air entering the furnace from the cooling air guide pipe, changes in the oxygen concentration inside the furnace, and changes in the air ratio inside the burner. It is a diagram.
  • the combustion amount is changed from the state shown in FIG. 5 in which combustion is stopped in some burners to the state shown in FIG. 4 in which combustion is performed in all burners.
  • Changes in the pressure inside the furnace, changes in the amount of cooling air that enters the furnace from the cooling air guide tube, changes in the oxygen concentration in the furnace, and changes in the air ratio in the burner are shown.
  • combustion equipment according to an embodiment of the present invention will be specifically described based on the accompanying drawings. Note that the combustion equipment according to the present invention is not limited to that shown in the embodiments below, and can be implemented with appropriate modifications within the scope of the gist of the invention.
  • the fuel gas G is supplied to the burner 20 through the fuel supply pipe 30 as described above, and the combustion air Air is supplied through the air supply pipe 40.
  • the air ratio control system 50 adjusts the flow rate adjustment valve 31 provided in the pipe 30 and the flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the ratio of the fuel gas G and combustion air Air supplied to the burner 20.
  • the combustion amount in the burner 20 and the air ratio ⁇ A in the burner 20 are adjusted to predetermined values, and the fuel gas G and combustion air Air are ejected from the burner 20 into the furnace 10 for combustion. There is.
  • an oxygen concentration sensor 51 that detects the oxygen concentration in the furnace 10 is provided, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52.
  • the air ratio control system 50 converts the oxygen concentration in the furnace 10 into the air ratio provided in the fuel supply pipe 30.
  • the flow rate adjustment valve 31 and the flow rate adjustment valve 41 provided in the air supply pipe 40 are adjusted to control the ratio of the fuel gas G and combustion air Air supplied to the burner 20, and the amount of combustion in the burner 20 and the amount of combustion in the burner 20 are controlled.
  • the air ratio ⁇ A in the air is adjusted. Note that the amount of combustion in the burner 20 is adjusted by the flow rates of the fuel gas G and the combustion air Air, and the air ratio ⁇ A in the burner 20 is mainly adjusted by the flow rate of the combustion air Air.
  • the amount of combustion air Air and fuel gas G supplied to the burner 20 is increased to When the amount of combustion is increased, the amount of combustion exhaust gas in the furnace 10 increases, and the pressure in the furnace 10 (furnace pressure) increases, causing damage to the gap between the furnace 10 and the door 12 and the wall surface of the furnace 10.
  • the amount of intruding air Air' that enters into the furnace 10 from the outside through gaps such as joints and cracks in 13 decreases, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 increases. will start to decrease.
  • the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 decreases in this way, the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52.
  • the air ratio control system 50 adjusts the flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the air ratio in the burner 20.
  • ⁇ B more than the original air ratio ⁇ A ( ⁇ B> ⁇ A)
  • the oxygen concentration in the furnace 10 is returned to the original oxygen concentration, and the air ratio in the furnace 10 is restored to its original value.
  • the amount of combustion air Air and fuel gas G supplied to the burner 20 is reduced to reduce combustion in the burner 20.
  • the amount of combustion exhaust gas in the furnace 10 is reduced, the pressure in the furnace 10 (furnace pressure) is lowered, and the gap between the furnace 10 and the door 12 and the wall surface 13 of the furnace 10 are reduced.
  • the amount of intruding air Air' that enters the furnace 10 from the outside through gaps such as seams and cracks increases, and the oxygen concentration inside the furnace 10 detected by the oxygen concentration sensor 51 increases. It becomes like this.
  • the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 increases in this way, the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52.
  • the air ratio control system 50 adjusts the flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the air ratio in the burner 20.
  • ⁇ C ⁇ A By decreasing ⁇ C from the original air ratio ⁇ A ( ⁇ C ⁇ A), the oxygen concentration in the furnace 10 is returned to the original oxygen concentration, and the air ratio in the furnace 10 is restored to its original value.
  • the fuel gas G is guided to the fuel gas supply nozzle 21 through the fuel supply pipe 30, and the cooling air Air is guided to the outer periphery of the fuel gas supply nozzle 21 through the cooling air guide pipe 22. ”, and the combustion air Air guided to the combustion air supply nozzle 23 through the air supply pipe 40 is ejected into the furnace 10 for combustion.
  • an air ratio control system 50 is provided corresponding to each burner 20, and a flow rate adjustment valve 31 is provided in the fuel supply pipe 30 that guides the fuel gas G to each burner 20.
  • a flow rate regulating valve 41 is provided in each air supply pipe 40 that guides the combustion air Air.
  • an oxygen concentration sensor 51 that detects the oxygen concentration in the furnace 10 is provided, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52.
  • each air ratio control system 50 controls the flow rate adjustment valve provided in the fuel supply pipe 30 corresponding to each burner 20. 31 and a flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the ratio of the fuel gas G and combustion air Air supplied to the burners 20, thereby adjusting the combustion amount in each burner 20 and the amount of combustion in each burner 20.
  • the air ratio .mu.D within 20 is adjusted.
  • the combustion amount in each burner 20 is adjusted by the flow rate of the fuel gas G and the combustion air Air, and the air ratio ⁇ D in each burner 20 is mainly adjusted by the flow rate of the combustion air Air.
  • each air ratio control system 50 fuel is supplied to each burner 20 by each air ratio control system 50 based on the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51.
  • the flow rate adjustment valve 31 provided in the pipe 30 and the flow rate adjustment valve 41 provided in the air supply pipe 40 are controlled to adjust the amount of combustion air Air and fuel gas G supplied to each burner 20.
  • the amount of combustion in the burner 20 and the air ratio ⁇ D in each burner 20 are adjusted to perform combustion.
  • the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is applied to each burner 20 that is continuing combustion by the output control device 52.
  • the flow rate adjustment provided in the air supply pipe 40 in each burner 20 that continues combustion is outputted to each air ratio control system 50 in and converted into the air ratio in the furnace 10 by each air ratio control system 50.
  • the valve 41 By adjusting the valve 41, the air ratio ⁇ E in each burner 20 that continues combustion, as shown in FIGS. 5 and 6, is decreased from the air ratio ⁇ D in the burner 20 shown in FIG. ⁇ D> ⁇ E), the oxygen concentration within the furnace 10 is returned to the original oxygen concentration, and the air ratio within the furnace 10 is returned to its original value.
  • the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is transmitted to each air ratio control system in each burner 20 by the output control device 52. 50 and converted to the air ratio in the furnace 10, the flow rate adjustment valve 41 provided in the air supply pipe 40 of each burner 20 is adjusted by each air ratio control system 50, and the flow rate adjustment valve 41 provided in the air supply pipe 40 of each burner 20 is adjusted.
  • the air ratio ⁇ D in each burner 20 is increased from the original air ratio ⁇ E in the burner 20 performing the combustion shown in FIG. 5 ( ⁇ E ⁇ D), and the oxygen concentration in the furnace 10 is increased.
  • the original oxygen concentration is restored, and the air ratio in the furnace 10 is restored to its original value.
  • the air ratio control system 50 controls the fuel gas G supplied to the burner 20 through the fuel supply pipe 30 and the combustion gas G supplied to the burner 20 through the air supply pipe 40.
  • the air ratio control system 50 controls the fuel supply.
  • the lower limit value of the air ratio ⁇ in the burner 20 is set, and the lower limit value of the air ratio ⁇ in the burner 20 is set. It is preferable that the air ratio ⁇ in 20 does not become less than the lower limit value.
  • the fuel gas G is used as the fuel, but the fuel is not limited to the gaseous fuel gas G, and liquid fuel can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Gas Burners (AREA)

Abstract

In the present invention, the proportion of a fuel gas G and combustion air Air supplied to a burner 20 is adjusted by an air ratio control system 50. When the fuel gas and the combustion air are sprayed into a furnace 10 from the burner and caused to combust, a change in the oxygen concentration within the furnace that is caused by a change in the air entering the furnace is detected by an oxygen concentration sensor 51. The oxygen concentration within the furnace, as detected by the oxygen concentration sensor, is outputted from an output control device to the air ratio control system. The proportion of the combustion air and the fuel supplied to the burner is adjusted by the air ratio control system.

Description

燃焼設備combustion equipment
 本発明は、燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気との割合を、空気比制御システムにより調整してバーナーに供給し、このバーナーから炉内に燃焼用空気と燃料とを噴出させて燃焼させるようにした燃焼設備に関するものである。特に、バーナーにおける燃焼量の変化によって炉内に侵入する空気の量が変化して、炉内の酸素濃度が変化した場合や、燃料を供給する燃料供給ノズルの外周に冷却用空気を導く冷却用空気案内管が設けられると共に、前記の冷却用空気案内管の外周に燃焼用空気を供給する燃焼用空気供給ノズルが設けられたバーナーが複数設けられた炉において、燃焼が停止されるバーナーの数が変化して、停止されたバーナーの冷却用空気案内管から炉内に導かれる冷却用空気の量が変化して、炉内の酸素濃度が変化した場合等においても、空気比制御システムによりバーナーに供給する燃焼用空気と燃料との割合を速やかに調整し、炉内における空気比が所定の値になるようにして安定して燃焼できるようにした点に特徴を有するものである。 The present invention adjusts the ratio of fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe to a burner, and supplies the burner to a furnace for combustion. The present invention relates to a combustion equipment that blows out air and fuel for combustion. Especially when the amount of air entering the furnace changes due to a change in the amount of combustion in the burner, and the oxygen concentration inside the furnace changes, or when cooling air is introduced around the outer circumference of the fuel supply nozzle that supplies fuel. In a furnace provided with a plurality of burners provided with an air guide pipe and a combustion air supply nozzle that supplies combustion air around the outer periphery of the cooling air guide pipe, the number of burners whose combustion is stopped. Even if the amount of cooling air guided into the furnace from the cooling air guide pipe of the stopped burner changes due to a change in the oxygen concentration in the furnace, the air ratio control system This method is characterized in that the ratio of combustion air and fuel supplied to the furnace is quickly adjusted so that the air ratio in the furnace reaches a predetermined value, thereby allowing stable combustion.
 従来から、燃焼設備においては、燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気とを、所定の割合にしてバーナーに供給し、このバーナーから炉内に燃料と燃焼用空気とを噴出させて燃焼させるようにしている。 Conventionally, in combustion equipment, fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe are supplied to a burner at a predetermined ratio, and from this burner the fuel and combustion air are supplied into the furnace. The combustion air is ejected for combustion.
 ここで、バーナーから炉内に燃料と燃焼用空気とを噴出させ、炉内において燃料と燃焼用空気とが、所定の空気比になるようにして燃焼させるにあたり、特許文献1においては、予め固定値として設定されたバーナーの流量係数Nと、前記バーナーの燃焼量に対して予め設定された燃料流量並びにこの燃料流量と予め設定された空気比とから求められる燃焼用空気の流量と、燃料供給系及び燃焼用空気供給系に設けた流量調整弁の一次側における流体の供給圧力P0との関係を示す所定の式(A)に前記供給圧力P0の実測値を適用して前記燃料供給系及び燃焼用空気供給系に設けた流量調整弁の流量係数Vをそれぞれ演算するとともに、予め前記流量調整弁の弁開度S’と流量係数V’との関係を実測しておき、この実測した流量係数V’と前記演算により求めた流量係数Vとを比較して偏差を求め、この偏差が零となるように弁開度を調整することで空気比を一定に保持したまま燃焼量を制御するようにしたものが示されている。 Here, when fuel and combustion air are ejected from the burner into the furnace and the fuel and combustion air are combusted in the furnace at a predetermined air ratio, in Patent Document 1, the ratio of the fuel and the combustion air is set in advance. A burner flow rate coefficient N set as a value, a fuel flow rate preset for the combustion amount of the burner, a combustion air flow rate determined from this fuel flow rate and a preset air ratio, and fuel supply. The measured value of the supply pressure P0 is applied to a predetermined formula (A) showing the relationship between the fluid supply pressure P0 on the primary side of the flow rate regulating valve provided in the fuel supply system and the combustion air supply system. In addition to calculating the flow rate coefficient V of each flow rate regulating valve provided in the combustion air supply system, the relationship between the valve opening degree S' and the flow rate coefficient V' of the flow rate regulating valve is actually measured in advance, and this actually measured flow rate is The deviation is obtained by comparing the coefficient V' with the flow rate coefficient V obtained by the above calculation, and the combustion amount is controlled while keeping the air ratio constant by adjusting the valve opening so that this deviation becomes zero. This is shown here.
 また、特許文献2においては、少なくとも、流量係数と開度の関係が既知の燃料制御弁の開度の測定値と、流量係数と開度の関係が既知の燃焼空気制御弁の開度の測定値と、流量係数が既知のバーナーに供給される燃料の供給温度及び供給圧力の測定値と、上記バーナーに供給される燃焼空気の供給温度及び供給圧力の測定値と、炉内温度の測定値と、炉内圧力の測定値とをバーナー制御装置に入力し、上記バーナー制御装置が、上記炉内温度の測定値と設定値との偏差から上記バーナーの燃焼量を決定し、上記決定されたバーナーの燃焼量を維持する燃料流量と燃焼空気流量に対応する上記燃料制御弁及び上記燃焼空気制御弁の開度を、予め設定された燃焼空気比を維持するように複合絞り演算により演算し、上記燃料制御弁及び燃焼空気制御弁の開度の測定値が上記複合絞り演算により求めた燃料制御弁及び燃焼空気制御弁の開度の演算値と一致するよう上記各制御弁の開度を調整して燃料及び燃焼空気の流量を制御する際、上記バーナー制御装置において上記各測定値を常時最新の測定値に更新しながら所定時間分保存するとともに、上記測定値のいずれかが上記各測定項目の設定値に対する許容範囲を越えた場合、この許容範囲を越えた時点から所定時間経過したのち測定値の更新を停止し、測定値の更新を停止した時点でバーナー制御装置に保存されている上記許容範囲を越える前に測定した上記それぞれの測定値と上記許容範囲を越えた後に測定した上記それぞれの測定値とから許容範囲を越えた原因を判断し、上記燃料の供給圧力の測定値が急低下して上記許容範囲を超えたが上記炉内温度と上記炉内圧力は上記許容範囲内である場合に、上記燃料の供給圧力を測定する圧力センサーの故障が原因であると判断するようにしたものが示されている。 Further, in Patent Document 2, at least a measurement value of the opening degree of a fuel control valve with a known relationship between the flow coefficient and the opening degree, and a measurement value of the opening degree of a combustion air control valve with a known relationship between the flow coefficient and the opening degree. measured values of the supply temperature and supply pressure of the fuel supplied to the burner with a known flow coefficient, the measured values of the supply temperature and supply pressure of the combustion air supplied to the burner, and the measured value of the furnace temperature. and the measured value of the furnace pressure are input into a burner control device, and the burner control device determines the combustion amount of the burner from the deviation between the measured value of the furnace temperature and the set value, and Calculating the opening degrees of the fuel control valve and the combustion air control valve corresponding to the fuel flow rate and combustion air flow rate that maintain the combustion amount of the burner by a compound throttling calculation so as to maintain a preset combustion air ratio; Adjust the openings of each of the control valves so that the measured openings of the fuel control valve and combustion air control valve match the calculated openings of the fuel control valve and combustion air control valve obtained by the composite throttling calculation. When controlling the flow rate of fuel and combustion air, the burner control device constantly updates each measurement value to the latest measurement value and stores it for a predetermined time, and any of the measurement values is If the permissible range for the set value is exceeded, the update of the measured value will be stopped after a predetermined period of time has passed from the time when the permissible range has been exceeded, and at the time the update of the measured value is stopped, the above value stored in the burner control device will be updated. The cause of exceeding the permissible range is determined from each of the above measured values measured before the permissible range was exceeded and each of the above measured values measured after the above permissible range was exceeded, and the measured value of the above fuel supply pressure is suddenly changed. If the temperature inside the furnace exceeds the above-mentioned allowable range, but the temperature inside the furnace and the pressure inside the furnace are within the above-mentioned allowable range, it will be determined that the cause is a failure of the pressure sensor that measures the fuel supply pressure. What has been done is shown.
 一方、燃焼設備を操業する際の空気比は燃焼排ガス中のCOやススやNOxが低減できる適正値に設定して調整している。 On the other hand, the air ratio when operating combustion equipment is adjusted to an appropriate value that can reduce CO, soot, and NOx in the combustion exhaust gas.
 しかし、実際の燃焼設備には、炉と扉との間の隙間や、炉の壁面における継ぎ目や亀裂等の隙間を通して外部から炉内に侵入する侵入空気が存在し、炉内ではそれが燃焼用空気と混合して燃料を燃焼させているため、実際に炉内で燃焼している空気比(炉内における空気比)は、バーナーで調整した空気比(バーナー内における空気比)とは異なってしまっている。 However, in actual combustion equipment, there is intruding air that enters the furnace from the outside through gaps between the furnace and the door and gaps such as joints and cracks on the wall of the furnace. Since the fuel is mixed with air and burned, the air ratio actually being burned in the furnace (air ratio in the furnace) is different from the air ratio adjusted by the burner (air ratio in the burner). It's stored away.
 また、炉内に侵入する侵入空気の量は、炉内圧力が高くなると減少し、炉内圧力が低くなると増加する。 Additionally, the amount of air entering the furnace decreases as the furnace pressure increases, and increases as the furnace pressure decreases.
 また、燃焼設備の操業では炉内温度の変更や調整のため、バーナーの燃焼量を変化させたり、複数のバーナーのうちの一部を消火したり再点火したりしているが、そのときにバーナーの燃焼排ガスの量が大きく変わって炉内圧力が大きく変動し、それに伴って侵入空気の量が変動し、炉内における空気比も変動する。 In addition, in the operation of combustion equipment, in order to change or adjust the temperature inside the furnace, the combustion amount of the burner is changed, and some of the burners are extinguished or re-ignited. The amount of combustion exhaust gas from the burner changes greatly, causing the pressure in the furnace to fluctuate greatly, and the amount of intruding air changes accordingly, causing the air ratio in the furnace to fluctuate as well.
 このように、従来の燃焼設備においては、前記のようにバーナーの空気比(バーナー内における空気比)を適正な値に調整しても、実際に炉内で燃焼している空気比(炉内における空気比)は異なっているうえ変動もしており、燃焼排ガスへのCOやススやNOの低減対策が十分にできていないという問題がある。 In this way, in conventional combustion equipment, even if the burner air ratio (air ratio inside the burner) is adjusted to an appropriate value as described above, the air ratio actually burning in the furnace (air ratio inside the furnace) The air ratio in the combustion chambers differs and also fluctuates, and there is a problem in that sufficient measures have not been taken to reduce CO, soot, and NO in the combustion exhaust gas.
 しかし、前記の特許文献1、2に示されているものにおいては、バーナーから炉内に燃料と燃焼用空気とを噴出させ、炉内において燃料と燃焼用空気とが、所定の空気比になるようにして燃焼させるにあたり、前記に示したような問題の対策がなされていない。 However, in the devices shown in Patent Documents 1 and 2, fuel and combustion air are ejected from the burner into the furnace, and the fuel and combustion air have a predetermined air ratio in the furnace. When burning in this way, no measures have been taken to address the problems mentioned above.
特許第3495995号公報Patent No. 3495995 特許第4234309号公報Patent No. 4234309
 本発明は、燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気との割合を、空気比制御システムにより調整してバーナーに供給し、このバーナーから炉内に燃焼用空気と燃料とを噴出させて燃焼させるようにした燃焼設備に前記のような問題を解決することを課題とするものである。 The present invention adjusts the ratio of fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe to a burner, and supplies the burner to a furnace for combustion. The object of the present invention is to solve the above-mentioned problems in a combustion equipment that blows out air and fuel for combustion.
 すなわち、本発明は、前記のような燃焼設備において、バーナーにおける燃焼量の変化によって炉内に侵入する空気の量が変化して、炉内の酸素濃度が変化した場合や、燃料を供給する燃料供給ノズルの外周に冷却用空気を導く冷却用空気案内管が設けられると共に、前記の冷却用空気案内管の外周に燃焼用空気を供給する燃焼用空気供給ノズルが設けられたバーナーが複数設けられた炉において、燃焼が停止されるバーナーの数が変化して、停止されたバーナーの冷却用空気案内管から炉内に導かれる冷却用空気の量が変化して、炉内の酸素濃度が変化した場合等においても、空気比制御システムによりバーナーに供給する燃焼用空気と燃料との割合を速やかに調整し、炉内における空気比が所定の値になるようにして安定して燃焼できるようにすることを課題とするものである。 That is, the present invention is applicable to combustion equipment as described above, when the amount of air entering the furnace changes due to a change in the amount of combustion in the burner, and the oxygen concentration inside the furnace changes, or when the amount of fuel supplied is A plurality of burners are provided with a cooling air guide pipe for guiding cooling air around the outer periphery of the supply nozzle, and combustion air supply nozzles for supplying combustion air around the outer periphery of the cooling air guide pipe. In a furnace where combustion is stopped, the number of burners whose combustion is stopped changes, and the amount of cooling air introduced into the furnace from the cooling air guide tube of the burner that has been stopped changes, which changes the oxygen concentration inside the furnace. Even in such cases, the air ratio control system quickly adjusts the ratio of combustion air and fuel supplied to the burner so that the air ratio in the furnace reaches a predetermined value to ensure stable combustion. The challenge is to do so.
 本発明に係る燃焼設備においては、前記のような課題を解決するため、燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気との割合を、空気比制御システムにより調整してバーナーに供給し、このバーナーから炉内に燃焼用空気と燃料とを噴出させて燃焼させるようにした燃焼設備において、炉内に侵入する空気の量の変化による炉内の酸素濃度の変化を検知する酸素濃度センサーを設け、前記の酸素濃度センサーに検知された炉内の酸素濃度を出力制御装置から前記の空気比制御システムに出力し、酸素濃度センサーに検知された炉内の酸素濃度に基づいて、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、炉内において燃料と燃焼用空気とを燃焼させるにあたり、前記のバーナーにおける燃焼量の増加により、炉内における燃焼排ガスの量が増加して炉内の圧力が高くなり、炉内に侵入する空気の量が減少して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が減少した場合には、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、バーナー内における空気比を上昇させる一方、前記のバーナーによる燃焼量の減少により、炉内における燃焼排ガスの量が減少して炉内の圧力が低くなり、炉内に侵入する侵入空気の量が増加して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が増加した場合には、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、バーナー内における空気比を減少させるようにした。 In order to solve the above problems, in the combustion equipment according to the present invention, the ratio of the fuel supplied through the fuel supply pipe and the combustion air supplied through the air supply pipe is adjusted by an air ratio control system. In combustion equipment in which combustion air and fuel are supplied to a burner and are injected into the furnace from the burner for combustion, changes in the oxygen concentration in the furnace due to changes in the amount of air entering the furnace. The oxygen concentration in the furnace detected by the oxygen concentration sensor is outputted from the output control device to the air ratio control system, and the oxygen concentration in the furnace detected by the oxygen concentration sensor is outputted from the output control device to the air ratio control system. Based on this, the air ratio control system adjusts the ratio of combustion air and fuel supplied to the burner, and when the fuel and combustion air are combusted in the furnace, the combustion in the burner is adjusted. Due to the increase in the amount of combustion exhaust gas in the furnace, the pressure inside the furnace increases, and the amount of air entering the furnace decreases, reducing the amount of oxygen in the furnace detected by the oxygen concentration sensor mentioned above. If the concentration decreases, the air ratio control system adjusts the ratio of combustion air and fuel supplied to the burner to increase the air ratio in the burner while increasing the combustion rate in the burner. Due to the decrease in the amount of flue gas in the furnace, the amount of flue gas in the furnace decreases and the pressure in the furnace decreases, and the amount of intruding air that enters the furnace increases, increasing the amount of air in the furnace detected by the oxygen concentration sensor. When the oxygen concentration increases, the air ratio control system adjusts the ratio of combustion air to fuel supplied to the burner to reduce the air ratio within the burner.
 そして、本発明の燃焼設備においては、前記のように炉内に侵入する空気の量の変化による炉内の酸素濃度の変化を酸素濃度センサーによって検知し、前記の酸素濃度センサーに検知された炉内の酸素濃度を出力制御装置から空気比制御システムに出力し、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、燃焼用空気と燃料とを炉内において燃焼させるようにしたため、炉内に侵入する空気の量が変化しても、炉内における燃焼用空気と燃料とが速やかに所定の空気比になるようにして、安定した燃焼が行えるようになる。 In the combustion equipment of the present invention, the oxygen concentration sensor detects the change in the oxygen concentration in the furnace due to the change in the amount of air entering the furnace as described above, and the The output control device outputs the oxygen concentration in the air to the air ratio control system, and the air ratio control system adjusts the ratio of combustion air and fuel to be supplied to the burner. Since the combustion air is combusted in the furnace, even if the amount of air entering the furnace changes, the combustion air and fuel in the furnace quickly reach a predetermined air ratio, resulting in stable combustion. Be able to do it.
 また、本発明の燃焼設備においては、前記の炉内に侵入する空気の量が減少して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が減少した場合には、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、バーナー内における空気比を上昇させる一方、前記の炉内に侵入する空気の量が増加して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が増加した場合には、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、バーナー内における空気比を減少させるようにしている。 Further, in the combustion equipment of the present invention, when the amount of air entering the furnace decreases and the oxygen concentration in the furnace detected by the oxygen concentration sensor decreases, the air ratio increases. A control system adjusts the ratio of combustion air and fuel supplied to the burner to increase the air ratio within the burner, while increasing the amount of air entering the furnace to increase the air ratio within the burner. When the oxygen concentration in the furnace detected by the oxygen concentration sensor increases, the air ratio control system adjusts the ratio of combustion air and fuel supplied to the burner to reduce the air in the burner. We are trying to reduce the ratio.
 そして、本発明の第1の燃焼設備においては、前記のようにバーナーにおける燃焼量の増加により、炉内における燃焼排ガスの量が増加して炉内の圧力が高くなり、炉内に侵入する空気の量が減少して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が減少した場合には、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、バーナー内における空気比を上昇させる一方、前記のバーナーによる燃焼量の減少により、炉内における燃焼排ガスの量が減少して炉内の圧力が低くなり、炉内に侵入する侵入空気の量が増加して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が増加した場合には、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、バーナー内における空気比を減少させるようにしている。このようにすると、バーナーにおける燃焼量が変化した場合においても、炉内における空気比が速やかに所定の値になるようにして、安定した燃焼が行えるようになる。 In the first combustion equipment of the present invention, as described above, due to the increase in the amount of combustion in the burner, the amount of combustion exhaust gas in the furnace increases and the pressure in the furnace increases, causing air to enter the furnace. When the amount of oxygen in the furnace decreases and the oxygen concentration in the furnace detected by the oxygen concentration sensor decreases, the air ratio control system controls the ratio of combustion air to fuel supplied to the burner. While increasing the air ratio in the burner, the amount of combustion gas in the burner decreases, reducing the amount of combustion exhaust gas in the furnace and lowering the pressure in the furnace. When the amount of air increases and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases, the air ratio control system changes the ratio between the combustion air supplied to the burner and the fuel. The proportions are adjusted to reduce the air ratio within the burner. In this way, even if the combustion amount in the burner changes, the air ratio in the furnace quickly reaches a predetermined value, and stable combustion can be performed.
 また、本発明の第2の燃焼設備においては、炉に複数のバーナーが設けられ、各バーナーは、燃料を供給する燃料供給ノズルの外周に冷却用空気を導く冷却用空気案内管が設けられると共に、前記の冷却用空気案内管の外周に燃焼用空気を供給する燃焼用空気供給ノズルが設けられてなり、燃焼が停止されるバーナーの数が増加し、燃焼が停止されたバーナーにおける冷却用空気案内管から炉内に侵入する冷却用空気の量が増加して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が増加した場合には、前記の空気比制御システムにより、燃焼が行われているバーナーに供給する燃焼用空気と燃料との割合を調整して、燃焼が行われているバーナー内における空気比を減少させる一方、燃焼が停止されるバーナーの数が減少し、燃焼が停止されたバーナーにおける冷却用空気案内管から炉内に侵入する冷却用空気の量が減少して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が減少した場合には、前記の空気比制御システムにより、燃焼が行われているバーナーに供給する燃焼用空気と燃料との割合を調整して、燃焼が行われているバーナー内における空気比を増加させるようにする。このようにすると、燃焼が停止されるバーナーの数が変化して、冷却用空気案内管から炉内に侵入する冷却用空気の量が変化しても、炉内における空気比が速やかに所定の値になるようにして、安定した燃焼が行えるようになる。 Further, in the second combustion equipment of the present invention, the furnace is provided with a plurality of burners, and each burner is provided with a cooling air guide pipe that guides cooling air around the outer periphery of a fuel supply nozzle that supplies fuel. , a combustion air supply nozzle for supplying combustion air is provided on the outer periphery of the cooling air guide tube, the number of burners whose combustion is stopped is increased, and the cooling air in the burners whose combustion is stopped is increased. When the amount of cooling air entering the furnace from the guide tube increases and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases, the air ratio control system prevents combustion from occurring. Adjusting the ratio of combustion air and fuel supplied to the burners in which combustion is taking place reduces the air ratio in the burners where combustion is taking place, while reducing the number of burners in which combustion is shut off and reducing combustion. If the amount of cooling air that enters the furnace from the cooling air guide pipe in the stopped burner decreases and the oxygen concentration in the furnace detected by the oxygen concentration sensor decreases, the A ratio control system adjusts the ratio of combustion air and fuel supplied to the burner in which combustion is occurring to increase the air ratio within the burner in which combustion is occurring. In this way, even if the number of burners whose combustion is stopped changes and the amount of cooling air that enters the furnace from the cooling air guide tube changes, the air ratio in the furnace will quickly reach the specified level. By adjusting the value so that stable combustion can be performed.
 本発明における第1及び第2の燃焼設備においては、前記のように炉内に侵入する空気の量の変化による炉内の酸素濃度の変化を酸素濃度センサーによって検知し、前記の酸素濃度センサーに検知された炉内の酸素濃度を出力制御装置から空気比制御システムに出力し、酸素濃度センサーに検知された炉内の酸素濃度に基づいて、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整するようにしたため、炉内に侵入する侵入空気の量が変化した場合においても、酸素濃度センサーに検知された炉内の酸素濃度に基づいて、前記の空気比制御システムによりバーナーに供給する燃焼用空気と燃料との割合を適切に調整し、炉内における空気比が速やかに所定の値になるようにして、安定した燃焼が行えるようになる。 In the first and second combustion equipment of the present invention, the oxygen concentration sensor detects the change in the oxygen concentration in the furnace due to the change in the amount of air entering the furnace as described above. The detected oxygen concentration in the furnace is output from the output control device to the air ratio control system, and the air ratio control system supplies the air to the burner based on the oxygen concentration in the furnace detected by the oxygen concentration sensor. Since the ratio of combustion air to fuel is adjusted, even if the amount of air entering the furnace changes, the above-mentioned The air ratio control system appropriately adjusts the ratio of combustion air and fuel supplied to the burner so that the air ratio in the furnace quickly reaches a predetermined value, allowing stable combustion.
 なお、炉内の酸素濃度の値と炉内における空気比の値は比例関係にあるため、炉内の酸素濃度を測定することにより、その値から炉内における空気比を演算によって換算することができる。 Furthermore, since the value of the oxygen concentration in the furnace and the value of the air ratio in the furnace are in a proportional relationship, by measuring the oxygen concentration in the furnace, it is possible to calculate the air ratio in the furnace from that value. can.
 また、燃焼量は燃料と燃焼用空気の流量で調整され、空気比は主に燃焼用空気の流量で調整される。 Additionally, the amount of combustion is adjusted by the flow rate of fuel and combustion air, and the air ratio is mainly adjusted by the flow rate of combustion air.
本発明の実施形態1に係る燃焼設備において、酸素濃度センサーに検知された炉内の酸素濃度に基づいて、空気比制御システムにより、バーナー内における空気比が所定の値になるように、バーナーに供給する燃焼用空気と燃料である燃料ガスとの割合を調整する構成を示した概略説明図である。In the combustion equipment according to Embodiment 1 of the present invention, based on the oxygen concentration in the furnace detected by the oxygen concentration sensor, the air ratio control system controls the burner so that the air ratio in the burner becomes a predetermined value. FIG. 2 is a schematic explanatory diagram showing a configuration for adjusting the ratio of combustion air to be supplied and fuel gas as fuel. 前記の実施形態1に係る燃焼設備において、(A)は、バーナーにおける燃焼量が増加して炉内に侵入する空気の量が減少し、酸素濃度センサーによって検知される炉内の酸素濃度が減少した場合に、バーナーに供給する燃焼用空気と燃料ガスとの割合を調整して、バーナー内における空気比を増加させる状態を示した概略説明図、(B)は、バーナーにおける燃焼量が減少して炉内に侵入する空気の量が増加し、酸素濃度センサーによって検知される炉内の酸素濃度が増加した場合に、バーナーに供給する燃焼用空気と燃料ガスとの割合を調整して、バーナー内における空気比を減少させる状態を示した概略説明図である。In the combustion equipment according to the first embodiment, (A) is such that the amount of combustion in the burner increases, the amount of air entering the furnace decreases, and the oxygen concentration in the furnace detected by the oxygen concentration sensor decreases. (B) is a schematic explanatory diagram showing a state in which the ratio of combustion air and fuel gas supplied to the burner is adjusted to increase the air ratio in the burner when the combustion amount in the burner decreases. When the amount of air entering the furnace increases, and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases, the ratio of combustion air and fuel gas supplied to the burner is adjusted. FIG. 3 is a schematic explanatory diagram showing a state in which the air ratio in the interior of the vehicle is decreased. 前記の実施形態1に係る燃焼設備において、(A)は、バーナーにおける燃焼量を増加させた場合における、燃焼量の変化と、炉内圧力の変化と、炉内への侵入空気量の変化と、炉内の酸素濃度の変化と、バーナー内における空気比の変化とを示したタイミング図、(B)は、バーナーにおける燃焼量を減少させた場合における、燃焼量の変化と、炉内圧力の変化と、炉内への侵入空気量の変化と、炉内の酸素濃度の変化と、バーナー内における空気比の変化とを示したタイミング図である。In the combustion equipment according to the first embodiment, (A) is a change in the combustion amount, a change in the furnace pressure, and a change in the amount of air entering the furnace when the combustion amount in the burner is increased. , A timing diagram showing changes in the oxygen concentration in the furnace and changes in the air ratio in the burner. (B) shows the change in the combustion amount and the change in the pressure in the furnace when the combustion amount in the burner is decreased. FIG. 4 is a timing diagram showing changes in the amount of air entering the furnace, changes in the oxygen concentration in the furnace, and changes in the air ratio in the burner. 本発明の実施形態2に係る燃焼設備において、燃料ガスを供給する燃料ガス供給ノズルの外周に冷却用空気を導く冷却用空気案内管が設けられ、前記の冷却用空気案内管の外周に燃焼用空気を供給する燃焼用空気供給ノズルが設けられたバーナーを炉に複数設け、全てのバーナーにおいて燃焼を行う状態を示した概略説明図である。In the combustion equipment according to Embodiment 2 of the present invention, a cooling air guide pipe that guides cooling air is provided on the outer periphery of the fuel gas supply nozzle that supplies fuel gas, and a cooling air guide pipe that guides cooling air is provided on the outer periphery of the cooling air guide pipe. FIG. 2 is a schematic explanatory diagram showing a state in which a furnace is provided with a plurality of burners each provided with a combustion air supply nozzle that supplies air, and combustion is performed in all the burners. 前記の実施形態2に係る燃焼設備において、炉に設けられた一部のバーナーにおける燃焼を停止させた状態を示した概略説明図である。FIG. 7 is a schematic explanatory diagram showing a state in which combustion in some burners provided in the furnace is stopped in the combustion equipment according to the second embodiment. 前記の実施形態2に係る燃焼設備において、全てのバーナーにおいて燃焼を行う図4に示す状態から、一部のバーナーにおける燃焼を停止させる図5に示す状態に変更させた場合における、燃焼量の変化と、炉内圧力の変化と、冷却用空気案内管から炉内に侵入する侵入冷却用空気量の変化と、炉内の酸素濃度の変化と、バーナー内における空気比の変化とを示したタイミング図である。In the combustion equipment according to Embodiment 2, the change in combustion amount when changing from the state shown in FIG. 4 in which combustion occurs in all burners to the state shown in FIG. 5 in which combustion in some burners is stopped. , the timing showing changes in the pressure inside the furnace, changes in the amount of cooling air entering the furnace from the cooling air guide pipe, changes in the oxygen concentration inside the furnace, and changes in the air ratio inside the burner. It is a diagram. 前記の実施形態2に係る燃焼設備において、一部のバーナーにおける燃焼を停止させた図5に示す状態から、全てのバーナーにおいて燃焼を行う図4に示す状態に変更させた場合における、燃焼量の変化と、炉内圧力の変化と、冷却用空気案内管から炉内に侵入する侵入冷却用空気量の変化と、炉内の酸素濃度の変化と、バーナー内における空気比の変化とを示したタイミング図である。In the combustion equipment according to Embodiment 2, the combustion amount is changed from the state shown in FIG. 5 in which combustion is stopped in some burners to the state shown in FIG. 4 in which combustion is performed in all burners. Changes in the pressure inside the furnace, changes in the amount of cooling air that enters the furnace from the cooling air guide tube, changes in the oxygen concentration in the furnace, and changes in the air ratio in the burner are shown. FIG.
 以下、本発明の実施形態に係る燃焼設備を添付図面に基づいて具体的に説明する。なお、本発明に係る燃焼設備は、下記の実施形態に示したものに限定されず、発明の要旨を変更しない範囲において、適宜変更して実施できるものである。 Hereinafter, a combustion equipment according to an embodiment of the present invention will be specifically described based on the accompanying drawings. Note that the combustion equipment according to the present invention is not limited to that shown in the embodiments below, and can be implemented with appropriate modifications within the scope of the gist of the invention.
(実施形態1)
 実施形態1における燃焼設備においては、図1に示すように、開口部11の開閉を行なう扉12が設けられた炉10にバーナー20を設け、前記のバーナー20に、燃料供給管30を通して燃料である都市ガス等の燃料ガスGを供給すると共に、空気供給管40を通して燃焼用空気Airを供給し、このバーナー20から燃焼用空気Airと燃料ガスGとを炉10内に噴出させて燃焼させるようにしている。
(Embodiment 1)
In the combustion equipment in the first embodiment, as shown in FIG. In addition to supplying a fuel gas G such as a certain city gas, combustion air Air is supplied through an air supply pipe 40, and the combustion air Air and fuel gas G are ejected from the burner 20 into the furnace 10 for combustion. I have to.
 そして、実施形態1における燃焼設備においては、前記のようにバーナー20に、燃料供給管30を通して燃料ガスGを供給すると共に、空気供給管40を通して燃焼用空気Airを供給するにあたり、前記の燃料供給管30に設けた流量調整弁31と空気供給管40に設けた流量調整弁41とを空気比制御システム50により調整して、バーナー20に供給する燃料ガスGと燃焼用空気Airとの割合を制御し、バーナー20における燃焼量とバーナー20内における空気比μAを所定の値に調整して、バーナー20から燃料ガスGと燃焼用空気Airとを炉10内に噴出させて燃焼させるようにしている。 In the combustion equipment according to the first embodiment, the fuel gas G is supplied to the burner 20 through the fuel supply pipe 30 as described above, and the combustion air Air is supplied through the air supply pipe 40. The air ratio control system 50 adjusts the flow rate adjustment valve 31 provided in the pipe 30 and the flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the ratio of the fuel gas G and combustion air Air supplied to the burner 20. The combustion amount in the burner 20 and the air ratio μA in the burner 20 are adjusted to predetermined values, and the fuel gas G and combustion air Air are ejected from the burner 20 into the furnace 10 for combustion. There is.
 また、実施形態1における燃焼設備においては、炉10内の酸素濃度を検知する酸素濃度センサー51を設け、この酸素濃度センサー51によって検知された炉10内の酸素濃度を、出力制御装置52により前記の空気比制御システム50に出力させ、出力された炉10内の酸素濃度に基づいて、炉10内における空気比に換算して、前記の空気比制御システム50により、燃料供給管30に設けた流量調整弁31と空気供給管40に設けた流量調整弁41とを調整して、バーナー20に供給する燃料ガスGと燃焼用空気Airとの割合を制御し、バーナー20における燃焼量とバーナー20内における空気比μAを調整するようにしている。なお、バーナー20における燃焼量は、燃料ガスGと燃焼用空気Airの流量で調整され、バーナー20内における空気比μAは、主に燃焼用空気Airの流量で調整される。 Further, in the combustion equipment according to the first embodiment, an oxygen concentration sensor 51 that detects the oxygen concentration in the furnace 10 is provided, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52. Based on the outputted oxygen concentration in the furnace 10, the air ratio control system 50 converts the oxygen concentration in the furnace 10 into the air ratio provided in the fuel supply pipe 30. The flow rate adjustment valve 31 and the flow rate adjustment valve 41 provided in the air supply pipe 40 are adjusted to control the ratio of the fuel gas G and combustion air Air supplied to the burner 20, and the amount of combustion in the burner 20 and the amount of combustion in the burner 20 are controlled. The air ratio μA in the air is adjusted. Note that the amount of combustion in the burner 20 is adjusted by the flow rates of the fuel gas G and the combustion air Air, and the air ratio μA in the burner 20 is mainly adjusted by the flow rate of the combustion air Air.
 ここで、実施形態1における燃焼設備において、図2(A)及び図3(A)に示すように、バーナー20に供給する燃焼用空気Airと燃料ガスGの量を増加させて、バーナー20における燃焼量を増加させると、炉10内における燃焼排ガスの量が増加して、炉10内の圧力(炉内圧力)が高くなり、炉10と扉12との間の隙間や、炉10の壁面13における継ぎ目や亀裂等の隙間を通して外部から炉10内に侵入する侵入空気Air’の量(侵入空気量)が減少して、前記の酸素濃度センサー51によって検知される炉10内の酸素濃度が減少するようになる。 Here, in the combustion equipment in Embodiment 1, as shown in FIGS. 2(A) and 3(A), the amount of combustion air Air and fuel gas G supplied to the burner 20 is increased to When the amount of combustion is increased, the amount of combustion exhaust gas in the furnace 10 increases, and the pressure in the furnace 10 (furnace pressure) increases, causing damage to the gap between the furnace 10 and the door 12 and the wall surface of the furnace 10. The amount of intruding air Air' that enters into the furnace 10 from the outside through gaps such as joints and cracks in 13 (intruding air amount) decreases, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 increases. will start to decrease.
 そして、このように酸素濃度センサー51によって検知される炉10内の酸素濃度が減少した場合には、酸素濃度センサー51によって検知された炉10内の酸素濃度を、前記の出力制御装置52によって前記の空気比制御システム50に出力し、炉10内における空気比に換算して、この空気比制御システム50により、空気供給管40に設けた流量調整弁41を調整して、バーナー20における空気比μBを元の空気比μAよりも増加させて(μB>μA)、炉10内における酸素濃度を元の酸素濃度に戻して、炉10内における空気比を元に戻すようにしている。 When the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 decreases in this way, the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52. The air ratio control system 50 adjusts the flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the air ratio in the burner 20. By increasing μB more than the original air ratio μA (μB>μA), the oxygen concentration in the furnace 10 is returned to the original oxygen concentration, and the air ratio in the furnace 10 is restored to its original value.
 このようにすると、バーナー20における燃焼量を増加させた場合にも、炉10内における酸素濃度を元の酸素濃度に戻して、炉10内における空気比を速やかに一定化させて、燃料ガスGを安定して燃焼させることができるようになる。 In this way, even when the combustion amount in the burner 20 is increased, the oxygen concentration in the furnace 10 is returned to the original oxygen concentration, the air ratio in the furnace 10 is quickly stabilized, and the fuel gas G can be burned stably.
 また、実施形態1における燃焼設備において、図2(B)及び図3(B)に示すように、バーナー20に供給する燃焼用空気Airと燃料ガスGの量を減少させて、バーナー20における燃焼量を減少させると、炉10内における燃焼排ガスの量が減少して、炉10内の圧力(炉内圧力)が低くなり、炉10と扉12との間の隙間や炉10の壁面13における継ぎ目や亀裂等の隙間を通して外部から炉10内に侵入する侵入空気Air’の量(侵入空気量)が増加して、前記の酸素濃度センサー51によって検知される炉10内の酸素濃度が増加するようになる。 In addition, in the combustion equipment in Embodiment 1, as shown in FIGS. 2(B) and 3(B), the amount of combustion air Air and fuel gas G supplied to the burner 20 is reduced to reduce combustion in the burner 20. When the amount is decreased, the amount of combustion exhaust gas in the furnace 10 is reduced, the pressure in the furnace 10 (furnace pressure) is lowered, and the gap between the furnace 10 and the door 12 and the wall surface 13 of the furnace 10 are reduced. The amount of intruding air Air' that enters the furnace 10 from the outside through gaps such as seams and cracks (intruding air amount) increases, and the oxygen concentration inside the furnace 10 detected by the oxygen concentration sensor 51 increases. It becomes like this.
 そして、このように酸素濃度センサー51によって検知される炉10内の酸素濃度が増加した場合には、酸素濃度センサー51によって検知された炉10内の酸素濃度を、前記の出力制御装置52によって前記の空気比制御システム50に出力し、炉10内における空気比に換算して、この空気比制御システム50により、空気供給管40に設けた流量調整弁41を調整して、バーナー20における空気比μCを元の空気比μAよりも減少させて(μC<μA)、炉10内における酸素濃度を元の酸素濃度に戻して、炉10内における空気比を元に戻すようにしている。 When the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 increases in this way, the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52. The air ratio control system 50 adjusts the flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the air ratio in the burner 20. By decreasing μC from the original air ratio μA (μC<μA), the oxygen concentration in the furnace 10 is returned to the original oxygen concentration, and the air ratio in the furnace 10 is restored to its original value.
 このようにすると、バーナー20における燃焼量を減少させた場合にも、炉10内における酸素濃度を元の酸素濃度に戻して、炉10内における空気比を速やかに一定化させて、燃料ガスGを安定して燃焼させることができるようになる。 In this way, even when the combustion amount in the burner 20 is reduced, the oxygen concentration in the furnace 10 is returned to the original oxygen concentration, the air ratio in the furnace 10 is quickly stabilized, and the fuel gas G can be burned stably.
(実施形態2)
 実施形態2における燃焼設備においては、図4及び図5に示すように、炉10に複数のバーナー20が設けられており、各バーナー20においては、燃料ガスGを、燃料供給管30を通して燃料ガス供給ノズル21に導くようにする共に、冷却用空気Air”を、冷却用空気供給管60に設けた弁61を通して前記の燃料ガス供給ノズル21の外周に設けた冷却用空気案内管22に導くようにし、さらに燃焼用空気Airを、空気供給管40を通して前記の冷却用空気案内管22の外周に設けた燃焼用空気供給ノズル23に導くようにしている。
(Embodiment 2)
In the combustion equipment according to the second embodiment, as shown in FIGS. 4 and 5, a plurality of burners 20 are provided in the furnace 10, and each burner 20 supplies the fuel gas G through the fuel supply pipe 30. At the same time, the cooling air Air" is guided to the cooling air guide pipe 22 provided on the outer periphery of the fuel gas supply nozzle 21 through a valve 61 provided on the cooling air supply pipe 60. Further, the combustion air Air is guided through the air supply pipe 40 to the combustion air supply nozzle 23 provided on the outer periphery of the cooling air guide pipe 22.
 そして、前記のバーナー20においては、燃料供給管30を通して燃料ガス供給ノズル21に導かれた燃料ガスGと、冷却用空気案内管22を通して燃料ガス供給ノズル21の外周に導かれた冷却用空気Air”と、空気供給管40を通して燃焼用空気供給ノズル23に導かれた燃焼用空気Airとを炉10内に噴出させて燃焼させるようにしている。 In the burner 20, the fuel gas G is guided to the fuel gas supply nozzle 21 through the fuel supply pipe 30, and the cooling air Air is guided to the outer periphery of the fuel gas supply nozzle 21 through the cooling air guide pipe 22. ”, and the combustion air Air guided to the combustion air supply nozzle 23 through the air supply pipe 40 is ejected into the furnace 10 for combustion.
 また、実施形態2における燃焼設備においては、各バーナー20に対応して、それぞれ空気比制御システム50を設けると共に、各バーナー20に燃料ガスGを導く燃料供給管30にそれぞれ流量調整弁31を、燃焼用空気Airを導く空気供給管40にそれぞれ流量調整弁41を設けている。 In addition, in the combustion equipment according to the second embodiment, an air ratio control system 50 is provided corresponding to each burner 20, and a flow rate adjustment valve 31 is provided in the fuel supply pipe 30 that guides the fuel gas G to each burner 20. A flow rate regulating valve 41 is provided in each air supply pipe 40 that guides the combustion air Air.
 また、実施形態2における燃焼設備においては、炉10内の酸素濃度を検知する酸素濃度センサー51を設け、この酸素濃度センサー51によって検知された炉10内の酸素濃度を、出力制御装置52により前記の各空気比制御システム50に出力し、出力された炉10内の酸素濃度に基づいて、各空気比制御システム50により、各バーナー20に対応して燃料供給管30に設けられた流量調整弁31と空気供給管40に設けられた流量調整弁41とを制御し、バーナー20に供給する燃料ガスGと燃焼用空気Airとの割合を調整して、各バーナー20における燃焼量と、各バーナー20内における空気比μDとを調整するようにしている。なお、各バーナー20における燃焼量は燃料ガスGと燃焼用空気Airの流量で調整され、各バーナー20内における空気比μDは、主に燃焼用空気Airの流量で調整される。 Further, in the combustion equipment according to the second embodiment, an oxygen concentration sensor 51 that detects the oxygen concentration in the furnace 10 is provided, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52. Based on the output oxygen concentration in the furnace 10, each air ratio control system 50 controls the flow rate adjustment valve provided in the fuel supply pipe 30 corresponding to each burner 20. 31 and a flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the ratio of the fuel gas G and combustion air Air supplied to the burners 20, thereby adjusting the combustion amount in each burner 20 and the amount of combustion in each burner 20. The air ratio .mu.D within 20 is adjusted. The combustion amount in each burner 20 is adjusted by the flow rate of the fuel gas G and the combustion air Air, and the air ratio μD in each burner 20 is mainly adjusted by the flow rate of the combustion air Air.
 ここで、実施形態2における燃焼設備において、図4に示すように、全てのバーナー20において燃焼を行う場合には、前記の冷却用空気供給管60を通して、各バーナー20に設けた冷却用空気案内管22に冷却用空気Air”を供給すると共に、前記の酸素濃度センサー51によって検知された炉10内の酸素濃度に基づいて、各空気比制御システム50により、各バーナー20に対応して燃料供給管30に設けられた流量調整弁31と空気供給管40に設けられた流量調整弁41とを制御し、各バーナー20に供給する燃焼用空気Airと燃料ガスGの量を調整して、各バーナー20における燃焼量と各バーナー20内における空気比μDを調整して燃焼させるようにしている。 Here, in the combustion equipment in Embodiment 2, as shown in FIG. In addition to supplying cooling air "Air" to the pipe 22, fuel is supplied to each burner 20 by each air ratio control system 50 based on the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51. The flow rate adjustment valve 31 provided in the pipe 30 and the flow rate adjustment valve 41 provided in the air supply pipe 40 are controlled to adjust the amount of combustion air Air and fuel gas G supplied to each burner 20. The amount of combustion in the burner 20 and the air ratio μD in each burner 20 are adjusted to perform combustion.
 また、実施形態2における燃焼設備において、図5に示すように、一部のバーナー20における燃焼を停止させる場合、燃焼を停止させるバーナー20においては、前記の空気比制御システム50により、前記のバーナー20に対する燃料供給管30に設けた流量調整弁31と、空気供給管40に設けた流量調整弁41とを閉じて、燃料ガス供給ノズル21と燃焼用空気供給ノズル23とに燃料ガスGと燃焼用空気Airとを導かないようにして燃焼を停止させる一方、このように燃焼を停止させたバーナー20の内部に突出している燃料ガス供給ノズル21が炉10内の熱によって変形するのを防止するため、燃焼を停止させたバーナー20においても、前記の冷却用空気供給管60を通して冷却用空気Air”を炉10内に供給するようにしている。 Further, in the combustion equipment according to the second embodiment, as shown in FIG. 20 and the flow rate regulating valve 41 provided in the air supply pipe 40 are closed, and the fuel gas G and combustion are supplied to the fuel gas supply nozzle 21 and the combustion air supply nozzle 23. While stopping the combustion by not introducing the air for use, the fuel gas supply nozzle 21 protruding into the interior of the burner 20 whose combustion has been stopped in this way is prevented from being deformed by the heat inside the furnace 10. Therefore, even in the burner 20 where combustion has been stopped, cooling air "Air" is supplied into the furnace 10 through the cooling air supply pipe 60.
 ここで、図4に示すように、全てのバーナー20において燃焼を行っている状態から、図5に示すように、一部のバーナー20における燃焼を停止させるようにした場合、図6に示すように、炉10全体における燃焼量が減少すると共に、炉10内の圧力(炉内圧力)が減少し、燃焼に使用されずに冷却用空気供給管60を通して炉10内に侵入する冷却用空気Air”の量(侵入冷却用空気量)が増えて、酸素濃度センサー51によって検知される炉10内の酸素濃度が増加するようになる。 Here, as shown in FIG. 4, when combustion is performed in all burners 20, as shown in FIG. 5, when combustion is stopped in some burners 20, as shown in FIG. In addition, as the amount of combustion in the entire furnace 10 decreases, the pressure within the furnace 10 (furnace pressure) decreases, and the cooling air that is not used for combustion and enters the furnace 10 through the cooling air supply pipe 60. The amount of `` (the amount of intruding cooling air) increases, and the oxygen concentration within the furnace 10 detected by the oxygen concentration sensor 51 increases.
 そして、このように炉10内の酸素濃度が増加した場合には、酸素濃度センサー51によって検知された炉10内の酸素濃度を、前記の出力制御装置52によって燃焼を継続している各バーナー20における各空気比制御システム50に出力し、炉10内における空気比に換算して、それぞれの空気比制御システム50により、燃焼を継続している各バーナー20における空気供給管40に設けた流量調整弁41を調整して、図5及び図6に示すように、燃焼を継続している各バーナー20内における空気比μEを、図4に示すバーナー20内における空気比μDよりも減少させて(μD>μE)、炉10内における酸素濃度を元の酸素濃度に戻し、炉10内における空気比を元に戻すようにしている。 When the oxygen concentration in the furnace 10 increases in this way, the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is applied to each burner 20 that is continuing combustion by the output control device 52. The flow rate adjustment provided in the air supply pipe 40 in each burner 20 that continues combustion is outputted to each air ratio control system 50 in and converted into the air ratio in the furnace 10 by each air ratio control system 50. By adjusting the valve 41, the air ratio μE in each burner 20 that continues combustion, as shown in FIGS. 5 and 6, is decreased from the air ratio μD in the burner 20 shown in FIG. μD>μE), the oxygen concentration within the furnace 10 is returned to the original oxygen concentration, and the air ratio within the furnace 10 is returned to its original value.
 このようにすると、一部のバーナー20における燃焼を停止させた場合においても、炉10内における酸素濃度を元の酸素濃度に戻し、炉10内における空気比を速やかに一定化させて、燃料ガスGを安定して燃焼させることができるようになる。 In this way, even if combustion in some burners 20 is stopped, the oxygen concentration in the furnace 10 is returned to the original oxygen concentration, the air ratio in the furnace 10 is quickly stabilized, and the fuel gas is It becomes possible to stably burn G.
 また、実施形態2における燃焼設備において、図5に示すように、一部のバーナー20における燃焼を停止させた状態から、図4に示すように、燃焼を停止させていた前記のバーナー20に対する燃料供給管30に設けた流量調整弁31と空気供給管40に設けた流量調整弁41とを開けて、燃料ガス供給ノズル21と燃焼用空気供給ノズル23とに燃料ガスGと燃焼用空気Airとを導き、全てのバーナー20において燃焼を行うようにした場合、図7に示すように、炉10全体における燃焼量が増加すると共に、炉10内の圧力(炉内圧力)が増加し、燃焼に使用されずに冷却用空気供給管60を通して炉10内に侵入する冷却用空気Air”の量(侵入冷却用空気量)が減少し、酸素濃度センサー51によって検知される炉10内の酸素濃度が減少するようになる。 In addition, in the combustion equipment according to the second embodiment, as shown in FIG. 5, from a state in which combustion in some of the burners 20 is stopped, as shown in FIG. The flow rate adjustment valve 31 provided in the supply pipe 30 and the flow rate adjustment valve 41 provided in the air supply pipe 40 are opened, and the fuel gas G and combustion air Air are supplied to the fuel gas supply nozzle 21 and the combustion air supply nozzle 23. When all the burners 20 perform combustion, as shown in FIG. 7, the amount of combustion in the entire furnace 10 increases and the pressure inside the furnace 10 (furnace pressure) increases, causing The amount of cooling air Air" that enters the furnace 10 through the cooling air supply pipe 60 without being used (intrusion cooling air amount) decreases, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 decreases. will start to decrease.
 そして、このように炉10内の酸素濃度が減少した場合には、酸素濃度センサー51によって検知された炉10内の酸素濃度を、前記の出力制御装置52によって各バーナー20における各空気比制御システム50に出力し、炉10内における空気比に換算して、それぞれの空気比制御システム50により、各バーナー20における空気供給管40に設けた流量調整弁41を調整し、図4及び図7に示すように、各バーナー20内における空気比μDを、図5に示す燃焼を行っているバーナー20内における元の空気比μEよりも増加させて(μE<μD)、炉10内における酸素濃度が元の酸素濃度に戻し、炉10内における空気比を元に戻すようにしている。 When the oxygen concentration in the furnace 10 decreases in this way, the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is transmitted to each air ratio control system in each burner 20 by the output control device 52. 50 and converted to the air ratio in the furnace 10, the flow rate adjustment valve 41 provided in the air supply pipe 40 of each burner 20 is adjusted by each air ratio control system 50, and the flow rate adjustment valve 41 provided in the air supply pipe 40 of each burner 20 is adjusted. As shown, the air ratio μD in each burner 20 is increased from the original air ratio μE in the burner 20 performing the combustion shown in FIG. 5 (μE<μD), and the oxygen concentration in the furnace 10 is increased. The original oxygen concentration is restored, and the air ratio in the furnace 10 is restored to its original value.
 このようにすると、燃焼を停止させた一部のバーナー20における燃焼を再開させた場合にも、炉10内における酸素濃度を元の酸素濃度に戻して、炉10内における空気比を速やかに一定化させて、燃料ガスGを安定して燃焼させることができるようになる。 In this way, even when restarting combustion in some of the burners 20 that have stopped combustion, the oxygen concentration in the furnace 10 is returned to the original oxygen concentration, and the air ratio in the furnace 10 is quickly kept constant. This makes it possible to stably burn the fuel gas G.
 なお、前記の実施形態1、2における燃焼設備において、前記の空気比制御システム50により、燃料供給管30を通してバーナー20に供給する燃料ガスGと、空気供給管40を通してバーナー20に供給する燃焼用空気Airとの割合を調整するにあたり、バーナー20内における空気比μが低くなりすぎると、バーナー20に供給された燃料ガスGが、燃焼用空気Airによって十分に燃焼されずに未燃ガスが発生し、この未燃ガスが炉10から外部に排出されたり、未完全燃焼によって発生した煤が被処理物に付着したりする等の問題が生じるため、前記の空気比制御システム50により、燃料供給管30を通してバーナー20に供給する燃料ガスGと、空気供給管40を通してバーナー20に供給する燃焼用空気Airとの割合を調整するにあたり、バーナー20内における空気比μの下限値を設定し、バーナー20内における空気比μが下限値以下にならないようにすることが好ましい。 In the combustion equipment in the first and second embodiments, the air ratio control system 50 controls the fuel gas G supplied to the burner 20 through the fuel supply pipe 30 and the combustion gas G supplied to the burner 20 through the air supply pipe 40. When adjusting the ratio with air, if the air ratio μ in the burner 20 becomes too low, the fuel gas G supplied to the burner 20 will not be sufficiently combusted by the combustion air, and unburned gas will be generated. However, problems such as this unburned gas being discharged to the outside from the furnace 10 and soot generated due to incomplete combustion adhering to the object to be processed arise, so the air ratio control system 50 controls the fuel supply. In adjusting the ratio of fuel gas G supplied to the burner 20 through the pipe 30 and combustion air Air supplied to the burner 20 through the air supply pipe 40, the lower limit value of the air ratio μ in the burner 20 is set, and the lower limit value of the air ratio μ in the burner 20 is set. It is preferable that the air ratio μ in 20 does not become less than the lower limit value.
 また、前記の実施形態1、2においては、燃料として燃料ガスGを用いるようにしたが、燃料は気体の燃料ガスGに限られず、液体燃料を使用することもできる。 Furthermore, in the first and second embodiments described above, the fuel gas G is used as the fuel, but the fuel is not limited to the gaseous fuel gas G, and liquid fuel can also be used.
10   :炉
11   :開口部
12   :扉
13   :壁面
20   :バーナー
21   :燃料ガス供給ノズル
22   :冷却用空気案内管
23   :燃焼用空気供給ノズル
30   :燃料供給管
31   :流量調整弁
40   :空気供給管
41   :流量調整弁
50   :空気比制御システム
51   :酸素濃度センサー
52   :出力制御装置
60   :冷却用空気供給管
61   :弁
Air  :燃焼用空気
Air’ :侵入空気
Air” :冷却用空気
G    :燃料ガス
μ(μA,μB,μC,μD,μE) :バーナー内における空気比 
10: Furnace 11: Opening 12: Door 13: Wall surface 20: Burner 21: Fuel gas supply nozzle 22: Cooling air guide pipe 23: Combustion air supply nozzle 30: Fuel supply pipe 31: Flow rate adjustment valve 40: Air supply Pipe 41 : Flow rate adjustment valve 50 : Air ratio control system 51 : Oxygen concentration sensor 52 : Output control device 60 : Cooling air supply pipe 61 : Valve Air : Combustion air Air' : Intruding air Air' : Cooling air G : Fuel gas μ (μA, μB, μC, μD, μE): Air ratio in the burner

Claims (2)

  1.  燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気との割合を、空気比制御システムにより調整してバーナーに供給し、このバーナーから炉内に燃焼用空気と燃料とを噴出させて燃焼させるようにした燃焼設備において、炉内に侵入する空気の量の変化による炉内の酸素濃度の変化を検知する酸素濃度センサーを設け、前記の酸素濃度センサーに検知された炉内の酸素濃度を出力制御装置から前記の空気比制御システムに出力し、酸素濃度センサーに検知された炉内の酸素濃度に基づいて、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、炉内において燃料と燃焼用空気とを燃焼させるにあたり、前記のバーナーにおける燃焼量の増加により、炉内における燃焼排ガスの量が増加して炉内の圧力が高くなり、炉内に侵入する空気の量が減少して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が減少した場合には、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、バーナー内における空気比を上昇させる一方、前記のバーナーによる燃焼量の減少により、炉内における燃焼排ガスの量が減少して炉内の圧力が低くなり、炉内に侵入する侵入空気の量が増加して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が増加した場合には、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整して、バーナー内における空気比を減少させることを特徴とする燃焼設備。 The ratio of fuel supplied through the fuel supply pipe and combustion air supplied through the air supply pipe is adjusted by an air ratio control system and supplied to the burner, and the combustion air and fuel are supplied from the burner into the furnace. In combustion equipment that ejects and burns oxygen, an oxygen concentration sensor is installed to detect changes in the oxygen concentration in the furnace due to changes in the amount of air entering the furnace, and the oxygen concentration detected by the oxygen concentration sensor is The output control device outputs the oxygen concentration in the furnace to the air ratio control system, and based on the oxygen concentration in the furnace detected by the oxygen concentration sensor, the air ratio control system supplies combustion to the burner. When adjusting the proportion of air for combustion and fuel to burn the fuel and air for combustion in the furnace, the amount of combustion in the burner increases, and the amount of combustion exhaust gas in the furnace increases. When the pressure increases and the amount of air entering the furnace decreases, causing a decrease in the oxygen concentration in the furnace as detected by the oxygen concentration sensor, the air ratio control system causes the burner to The air ratio in the burner is increased by adjusting the ratio of combustion air and fuel supplied to the burner, while the reduction in the amount of combustion by the burner reduces the amount of combustion exhaust gas in the furnace. When the pressure decreases and the amount of air entering the furnace increases, causing an increase in the oxygen concentration in the furnace as detected by the oxygen concentration sensor, the air ratio control system causes the air ratio control system to Combustion equipment characterized by adjusting the ratio of combustion air and fuel supplied to the burner to reduce the air ratio within the burner.
  2.  燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気との割合を、空気比制御システムにより調整してバーナーに供給し、このバーナーから炉内に燃焼用空気と燃料とを噴出させて燃焼させるようにした燃焼設備において、炉内に侵入する空気の量の変化による炉内の酸素濃度の変化を検知する酸素濃度センサーを設け、前記の酸素濃度センサーに検知された炉内の酸素濃度を出力制御装置から前記の空気比制御システムに出力し、酸素濃度センサーに検知された炉内の酸素濃度に基づいて、前記の空気比制御システムにより、前記のバーナーに供給する燃焼用空気と燃料との割合を調整するにあたり、炉に複数のバーナーが設けられ、各バーナーは、燃料を供給する燃料供給ノズルの外周に冷却用空気を導く冷却用空気案内管が設けられると共に、前記の冷却用空気案内管の外周に燃焼用空気を供給する燃焼用空気供給ノズルが設けられてなり、燃焼が停止されるバーナーの数が増加し、燃焼が停止されたバーナーにおける冷却用空気案内管から炉内に侵入する冷却用空気の量が増加して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が増加した場合には、前記の空気比制御システムにより、燃焼が行われているバーナーに供給する燃焼用空気と燃料との割合を調整して、燃焼が行われているバーナー内における空気比を減少させる一方、燃焼が停止されるバーナーの数が減少し、燃焼が停止されたバーナーにおける冷却用空気案内管から炉内に侵入する冷却用空気の量が減少して、前記の酸素濃度センサーによって検知される炉内の酸素濃度が減少した場合には、前記の空気比制御システムにより、燃焼が行われているバーナーに供給する燃焼用空気と燃料との割合を調整して、燃焼が行われているバーナー内における空気比を増加させることを特徴とする燃焼設備。 The ratio of fuel supplied through the fuel supply pipe and combustion air supplied through the air supply pipe is adjusted by an air ratio control system and supplied to the burner, and the combustion air and fuel are supplied from the burner into the furnace. In combustion equipment that ejects and burns oxygen, an oxygen concentration sensor is installed to detect changes in the oxygen concentration in the furnace due to changes in the amount of air entering the furnace, and the oxygen concentration detected by the oxygen concentration sensor is The output control device outputs the oxygen concentration in the furnace to the air ratio control system, and based on the oxygen concentration in the furnace detected by the oxygen concentration sensor, the air ratio control system supplies combustion to the burner. In order to adjust the ratio of air for use and fuel, a plurality of burners are provided in the furnace, and each burner is provided with a cooling air guide pipe that guides cooling air around the outer periphery of a fuel supply nozzle that supplies fuel, and A combustion air supply nozzle for supplying combustion air is provided on the outer periphery of the cooling air guide pipe, the number of burners whose combustion is stopped is increased, and the cooling air guide in the burners whose combustion is stopped is increased. When the amount of cooling air entering the furnace from the tube increases and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases, the air ratio control system prevents combustion from occurring. By adjusting the ratio of combustion air and fuel supplied to the burners that are in use, the air ratio in the burners where combustion is occurring is reduced, while the number of burners that are stopped is reduced, and combustion is stopped. If the amount of cooling air that enters the furnace from the cooling air guide tube in the burner is reduced, and the oxygen concentration in the furnace detected by the oxygen concentration sensor decreases, the air ratio will decrease. A combustion facility characterized in that a control system adjusts the ratio of combustion air and fuel supplied to a burner in which combustion is occurring, thereby increasing the air ratio in the burner in which combustion is occurring.
PCT/JP2023/022894 2022-08-29 2023-06-21 Combustion facility WO2024048028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022135533A JP7210126B2 (en) 2022-08-29 2022-08-29 Combustion equipment
JP2022-135533 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048028A1 true WO2024048028A1 (en) 2024-03-07

Family

ID=84231065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022894 WO2024048028A1 (en) 2022-08-29 2023-06-21 Combustion facility

Country Status (2)

Country Link
JP (1) JP7210126B2 (en)
WO (1) WO2024048028A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533529A (en) * 1978-08-30 1980-03-08 Kawasaki Steel Corp Combustion control method for combustion equipment which allows penetration of outside air
JPS6149928A (en) * 1984-08-15 1986-03-12 Kawasaki Steel Corp Combustion controlling method for combustion device and apparatus thereof
JPH07103461A (en) * 1993-10-12 1995-04-18 Nkk Corp Air ratio regulating method for furnace employing heat accumulation type burner
JPH07280258A (en) * 1994-04-02 1995-10-27 Nippon Steel Corp Combustion controlling method for burner of industrial kiln
JPH09143565A (en) * 1995-11-28 1997-06-03 Kawasaki Steel Corp Method for controlling atmosphere in heating furnace
JPH11172326A (en) * 1997-12-05 1999-06-29 Kawasaki Steel Corp Method for controlling atmosphere in furnace and device therefor
JP2019158268A (en) * 2018-03-14 2019-09-19 Jfeスチール株式会社 Abnormality determination method and abnormality determination device for oximeter installed in consecutive type heating furnace
JP2020139698A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Air amount control method of heating furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3558184B2 (en) * 1995-12-15 2004-08-25 東京瓦斯株式会社 Adjustment structure of air flow rate in regenerative combustion burner
JP3294215B2 (en) * 1999-03-23 2002-06-24 日本碍子株式会社 Burner combustion control method in batch type combustion furnace
JP5310817B2 (en) * 2011-10-03 2013-10-09 株式会社Ihi Heating furnace atmosphere control method
JP2019168209A (en) * 2018-03-26 2019-10-03 東邦瓦斯株式会社 Combustion monitoring device and combustion control system
JP2020060330A (en) * 2018-10-11 2020-04-16 京都Eic株式会社 Air ratio controller, control program, and control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533529A (en) * 1978-08-30 1980-03-08 Kawasaki Steel Corp Combustion control method for combustion equipment which allows penetration of outside air
JPS6149928A (en) * 1984-08-15 1986-03-12 Kawasaki Steel Corp Combustion controlling method for combustion device and apparatus thereof
JPH07103461A (en) * 1993-10-12 1995-04-18 Nkk Corp Air ratio regulating method for furnace employing heat accumulation type burner
JPH07280258A (en) * 1994-04-02 1995-10-27 Nippon Steel Corp Combustion controlling method for burner of industrial kiln
JPH09143565A (en) * 1995-11-28 1997-06-03 Kawasaki Steel Corp Method for controlling atmosphere in heating furnace
JPH11172326A (en) * 1997-12-05 1999-06-29 Kawasaki Steel Corp Method for controlling atmosphere in furnace and device therefor
JP2019158268A (en) * 2018-03-14 2019-09-19 Jfeスチール株式会社 Abnormality determination method and abnormality determination device for oximeter installed in consecutive type heating furnace
JP2020139698A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Air amount control method of heating furnace

Also Published As

Publication number Publication date
JP2022176423A (en) 2022-11-29
JP7210126B2 (en) 2023-01-23

Similar Documents

Publication Publication Date Title
US20120100493A1 (en) Assured compliance mode of operating a combustion system
JP2011099608A (en) Boiler combustion control device
KR102494767B1 (en) Industrial furnace and industrial furnace ignition method
JP4850163B2 (en) Gas combustion equipment
WO2024048028A1 (en) Combustion facility
RU2761604C1 (en) Positive pressure coke oven heating system and method for temperature control
US8814561B2 (en) Method and apparatus for controlling operation of oxyfuel combustion boiler
WO2024048029A1 (en) Combustion control method for combustion facility
WO2024048006A1 (en) Combustion equipment
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP4551265B2 (en) Thermal equipment that adjusts the air supply for combustion
JP2009174741A (en) Ground flare and its combustion control method
TW202421969A (en) Method for controlling combustion in combustion equipment
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JP4926915B2 (en) Method and apparatus for preventing backfire of partially premixed burner
JPH06241416A (en) Gas fuel low oxygen burner and control method thereof
JP3020737B2 (en) Combustion treatment device for combustible emission gas
JP4463220B2 (en) Exhaust reburning burner device
KR100755454B1 (en) The preventing methode of explosion in radiant tube
JP2022179847A (en) Combustion control method and combustion control device
JP2021011954A (en) Oxygen ratio control system
JPS6033423A (en) Combustion device
JP3926075B2 (en) Gas turbine combustor
JP2023093147A (en) Boiler device
JP2020118357A (en) Oxygen ratio control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859798

Country of ref document: EP

Kind code of ref document: A1