WO2024048006A1 - Combustion equipment - Google Patents

Combustion equipment Download PDF

Info

Publication number
WO2024048006A1
WO2024048006A1 PCT/JP2023/021916 JP2023021916W WO2024048006A1 WO 2024048006 A1 WO2024048006 A1 WO 2024048006A1 JP 2023021916 W JP2023021916 W JP 2023021916W WO 2024048006 A1 WO2024048006 A1 WO 2024048006A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen concentration
furnace
air
combustion
burner
Prior art date
Application number
PCT/JP2023/021916
Other languages
French (fr)
Japanese (ja)
Inventor
幸嗣 作部屋
智樹 片山
Original Assignee
中外炉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外炉工業株式会社 filed Critical 中外炉工業株式会社
Publication of WO2024048006A1 publication Critical patent/WO2024048006A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention adjusts the ratio of gaseous or liquid fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe, and supplies the burner with the air ratio control system.
  • the present invention relates to a combustion equipment that injects fuel and combustion air into a furnace for combustion.
  • the fuel supplied to the burner and the combustion It is characterized in that a good combustion state can be stably obtained by appropriately controlling the ratio with air.
  • fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe are supplied to a burner at a predetermined ratio, and from this burner, fuel and combustion air are supplied into the furnace. It blows out air and burns it.
  • the pressure and valve opening are controlled in the furnace using a regenerative burner.
  • the burner's actual flow coefficient it is possible to treat the burner's flow coefficient as an actual value that matches changes in the state of the fluid, thereby controlling the combustion amount while keeping the air ratio in the furnace constant. This is shown here.
  • the actual flow coefficient of the burner is determined by actually measuring the pressure and the valve opening, and the flow coefficient of the burner is treated as an actual value that matches the change in the state of the fluid. For example, when the amount of air entering the furnace changes significantly, such as when opening and closing the furnace door, the oxygen concentration inside the furnace changes greatly. It is very difficult to maintain a constant air ratio. For example, when the furnace door is opened and the amount of air entering the furnace increases significantly, it is difficult to maintain a constant air ratio within the furnace.
  • Patent Document 2 Furthermore, in the conventional method of operating a continuous heating furnace equipped with a plurality of combustion zones each having combustion burners, as shown in Patent Document 2, some burners in the combustion zones are extinguished or operated in a low load state. It has been shown that at least the target value of oxygen concentration in the combustion zone concerned is determined when the combustion zone is in use, and the air ratio of each combustion zone on the upstream side is controlled based on the target value.
  • An oxygen concentration meter and a CO concentration meter are installed on the exhaust gas outlet side, and when burners in some combustion zones are extinguished or operating under low load, at least the target value of oxygen concentration in the combustion zone is determined, and the The air ratio of each combustion zone on the upstream side is determined based on the target value, and either the CO concentration target value or the oxygen concentration target value is set according to the determined air ratio, and the set target value and the oxygen concentration meter are set. It is shown that either the oxygen concentration or the CO concentration is controlled based on the measured value of the oxygen concentration meter and the measured value of the CO concentration meter.
  • an oxygen concentration meter and a CO concentration meter are provided on the flue gas outlet side of each combustion zone as described above, and burners in some combustion zones are extinguished or operated in a low load state.
  • the furnace shown in Patent Document 1 is used. Similar to opening and closing the door, if the amount of air entering the furnace changes significantly and the oxygen concentration inside the furnace changes greatly, you can quickly respond and keep the air ratio in the furnace constant.
  • the present invention adjusts the ratio of fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe to a burner, and supplies the burner with fuel into the furnace.
  • the object of the present invention is to solve the above-mentioned problems in a combustion equipment that blows out combustion air and burns the fuel and combustion air at an appropriate air ratio in a furnace.
  • the present invention can be used in combustion equipment as described above, in which the amount of air entering the furnace changes significantly, such as when opening and closing the furnace door, and the oxygen concentration within the furnace changes significantly. Even in such cases, it is an object of the present invention to appropriately control the ratio of the fuel supplied to the burner and the combustion air so that a good combustion state can be stably obtained.
  • the ratio of the fuel supplied through the fuel supply pipe and the combustion air supplied through the air supply pipe is adjusted by an air ratio control system.
  • an oxygen concentration sensor is provided to detect the oxygen concentration in the furnace, and the oxygen concentration sensor The detected oxygen concentration in the furnace is outputted to the air ratio control system by the output control device, and the air ratio control system adjusts the ratio of fuel and combustion air to be supplied to the burner.
  • the above-mentioned The oxygen concentration in the furnace detected by the oxygen concentration sensor is not outputted to the air ratio control system by the output control device, but the air ratio control system controls the fuel and combustion air to be supplied to the burner.
  • the output control device outputs the oxygen concentration to the air ratio control system, and the air ratio control system controls the ratio of fuel to combustion air supplied to the burner. .
  • the oxygen concentration in the furnace is detected by the oxygen concentration sensor as described above, and the oxygen concentration in the furnace detected by the oxygen concentration sensor is transmitted from the output device to the oxygen concentration in the furnace. Since the output is output to the ratio control system and the amount of fuel and combustion air supplied to the burner is adjusted by the air ratio control system, even when the oxygen concentration in the furnace is likely to change, the above-mentioned
  • the air ratio control system keeps the air ratio in the furnace at a predetermined value by adjusting the ratio of the fuel supplied to the burner and the combustion air so that the oxygen concentration in the furnace does not change. Combustion can be performed.
  • the air ratio control system controls the fuel and combustion air to be supplied to the burner. Even if the door installed in the furnace is opened and the oxygen concentration inside the furnace detected by the oxygen concentration sensor increases significantly, the air ratio control system The air ratio control system ensures that the proportion of combustion air supplied to the burner is not significantly reduced and that the fuel is completely combusted. (in other words, incomplete combustion), preventing unburned gas from being discharged from the furnace to the outside, and preventing soot and carbon monoxide from being generated.
  • the oxygen concentration in the furnace detected by the oxygen concentration sensor is The output control device outputs an output to the air ratio control system, which causes the air ratio control system to restore the ratio of fuel to combustion air supplied to the burner, so that the furnace Stable combustion can be achieved by returning the air ratio to the original predetermined value.
  • the oxygen concentration in the furnace is detected by the oxygen concentration sensor as described above, and the oxygen concentration in the furnace detected by the oxygen concentration sensor is transmitted from the output device to the air ratio control.
  • the air ratio control system adjusts the amount of fuel and combustion air supplied to the burner, so even if the oxygen concentration in the furnace changes, the air ratio
  • stable combustion can be achieved by setting the air ratio in the furnace to a predetermined value.
  • the output control device outputs the oxygen concentration in the air to the air ratio control system, and the air ratio control system controls the ratio of the fuel to the combustion air to be supplied to the burner.
  • the proportion of combustion air supplied to the burner is greatly reduced and the fuel is This prevents complete combustion from occurring, prevents unburned gas from being discharged from the furnace to the outside, and prevents soot and carbon monoxide from being generated.
  • the oxygen concentration of Stable combustion can be achieved by returning the ratio to its original predetermined value.
  • FIG. 2 is a schematic explanatory diagram showing a state in which the ratio of fuel gas, which is fuel supplied to a burner, and combustion air is adjusted, and the fuel gas and combustion air are ejected from the burner into a furnace to be combusted.
  • (A) is when the door provided in the furnace is opened and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases significantly.
  • FIG. 2 A schematic explanation showing a state in which the output control device does not output the oxygen concentration to the air ratio control system, and the air ratio control system maintains the ratio of the fuel gas supplied to the burner and the combustion air for combustion.
  • Figure 2 (B) shows that when the door that is open as described above is closed and the oxygen concentration in the furnace detected by the oxygen concentration sensor returns to the predetermined value, the The output control device does not output the oxygen concentration in the burner to the air ratio control system, and the air ratio control system maintains the ratio of fuel gas supplied to the burner to combustion air to perform combustion. It is a schematic explanatory diagram.
  • FIG. 4 is a timing chart showing changes in oxygen concentration and air ratio in the burner.
  • combustion equipment according to the present invention is not limited to that shown in the embodiments below, and can be implemented with appropriate modifications within the scope of the gist of the invention.
  • combustion air Air is supplied through an air supply pipe 40, and the combustion air Air and fuel gas G are ejected from the burner 20 into the furnace 10 for combustion. I have to.
  • the fuel gas G is supplied to the burner 20 through the fuel supply pipe 30 as described above, and the combustion air Air is supplied through the air supply pipe 40.
  • the air ratio control system 50 adjusts the flow rate adjustment valve 31 provided in the pipe 30 and the flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the ratio of the fuel gas G and combustion air Air supplied to the burner 20.
  • the air ratio in the burner 20 is adjusted to a predetermined value, and the fuel gas G and combustion air Air are ejected from the burner 20 into the furnace 10 for combustion.
  • the combustion equipment in this embodiment is provided with an oxygen concentration sensor 51 that detects the oxygen concentration in the furnace 10, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52.
  • the air ratio control system 50 controls the flow rate regulating valve 31 provided in the fuel supply pipe 30 and the air supply pipe 40.
  • the ratio of the fuel gas G and combustion air Air supplied to the burner 20 is controlled by adjusting the flow rate regulating valve 41 provided in the burner 20, and the air ratio in the burner 20 is adjusted to a predetermined value.
  • FIG. 1 shows a state in which the output control device 52 is connected to the air ratio control system 50.
  • the output control device 52 outputs the oxygen concentration in the furnace 10 to the air ratio control system 50 and supplies it to the burner 20.
  • the ratio of the fuel gas G to the combustion air Air is controlled by the air ratio control system 50, and the amount of combustion air Air supplied to the burner 20 is greatly increased so that the air ratio in the furnace 10 becomes a predetermined value.
  • the fuel gas G supplied to the burner 20 is not completely combusted, resulting in unburned gas remaining in the furnace 10 and being discharged to the outside, or generating soot and carbon monoxide. occurs.
  • the door 12 of the furnace 10 is opened, and a large amount of external air Air' outside the furnace 10 flows into the furnace 10 through the opening 11 of the furnace 10, and the oxygen concentration sensor 51 detects the If the detected oxygen concentration in the furnace 10 increases significantly, the output control device 52 is turned off and the oxygen concentration detected by the oxygen concentration sensor 51 increases, as shown in FIGS. 2(A) and 3.
  • the oxygen concentration in the furnace 10 is not outputted to the air ratio control system 50, and the ratio of the fuel gas G and combustion air Air supplied to the burner 20 is not changed by the air ratio control system 50.
  • the air ratio is kept constant.
  • FIG. 2(A) and FIG. 2(B), which will be described later, show that the output control device 52 and the air ratio control system 50 are in a disconnected state.
  • the door 12 of the furnace 10 that has been opened as described above is closed, and the external air Air' outside the furnace 10 is stopped from flowing into the furnace 10. Even if the oxygen concentration in the furnace 10 is high, as detected by the oxygen concentration sensor 51, the output control device 52 is kept in the OFF state, and the oxygen concentration sensor The oxygen concentration in the furnace 10 detected by the air ratio control system 51 is not outputted to the air ratio control system 50. Note that at this time, the oxygen concentration sensor 51 continues to monitor the oxygen concentration within the furnace 10.
  • the output control device 52 When the door 12 of the furnace 10 is closed as described above and the oxygen concentration inside the furnace 10 detected by the oxygen concentration sensor 51 returns to a predetermined value, as shown in FIGS. 1 and 3, , the output control device 52 is turned on, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is outputted to the air ratio control system 50 by the output control device 52 to fix the air ratio. is released, and the air ratio control system 50 adjusts the flow rate adjustment valve 31 provided in the fuel supply pipe 30 and the flow rate adjustment valve 41 provided in the air supply pipe 40 to control the fuel gas G supplied to the burner 20. The ratio between the combustion air and the combustion air Air is controlled so that the air ratio in the burner 20 is adjusted to a predetermined value.
  • the timing for turning off the output control device 52 is set to coincide with the timing for opening the door 12 of the furnace 10, as shown in FIG. It is also possible to turn off the device 52 immediately before opening the door 12 of the furnace 10 or immediately after opening the door 12 of the furnace 10.
  • the case where the door 12 provided in the furnace 10 is opened and closed is shown as a case in which the oxygen concentration detected by the oxygen concentration sensor 51 changes significantly.
  • the case where the detected oxygen concentration changes significantly is not limited to this.
  • each burner performs combustion. From the state in which combustion is occurring in the burners, combustion in one or more burners is stopped, and a large amount of cooling air is supplied into the furnace through the cooling air supply pipe around the outer periphery of the fuel nozzle of each burner that has been stopped. Even in a case where the oxygen concentration detected by the oxygen concentration sensor increases significantly, control can be performed in the same manner as in the above embodiment.

Abstract

An air ratio control system 50 adjusts the ratio of fuel gas G and combustion air Air supplied to a burner 20, and when the fuel gas and combustion air are combusted in a furnace 10, the oxygen concentration in the furnace detected by an oxygen concentration sensor 51 is output by an output control device 52 to an air ratio control system to adjust the ratio of fuel gas and combustion air supplied to the burner. Meanwhile, when the oxygen concentration in the furnace detected by the oxygen concentration sensor changes significantly, the output control device does not output the detected oxygen concentration in the furnace to the air ratio control system, and the air ratio control system maintains the ratio of the fuel gas and combustion air supplied to the burner.

Description

燃焼設備combustion equipment
 本発明は、燃料供給管を通して供給される気体や液体の燃料と、空気供給管を通して供給される燃焼用空気との割合を、空気比制御システムにより調整してバーナーに供給し、前記のバーナーから燃料と燃焼用空気とを炉内に噴出させて燃焼させるようにした燃焼設備に関するものである。特に、炉の扉を開閉させる場合のように、炉内に侵入する侵入空気の量が大幅に変化して、炉内における酸素濃度が大きく変化する場合においても、バーナーに供給する燃料と燃焼用空気との割合を適切に制御して、良好な燃焼状態が安定して得られるようにした点に特徴を有するものである。 The present invention adjusts the ratio of gaseous or liquid fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe, and supplies the burner with the air ratio control system. The present invention relates to a combustion equipment that injects fuel and combustion air into a furnace for combustion. In particular, even when the amount of air entering the furnace changes significantly, such as when opening and closing the furnace door, and the oxygen concentration inside the furnace changes greatly, the fuel supplied to the burner and the combustion It is characterized in that a good combustion state can be stably obtained by appropriately controlling the ratio with air.
 従来から、燃焼設備においては、燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気とを所定の割合にしてバーナーに供給し、このバーナーから炉内に燃料と燃焼用空気とを噴出させて燃焼させるようにしている。 Conventionally, in combustion equipment, fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe are supplied to a burner at a predetermined ratio, and from this burner, fuel and combustion air are supplied into the furnace. It blows out air and burns it.
 ここで、炉内において燃料と燃焼用空気とが所定の空気比になるようにして燃焼させるにあたり、特許文献1に示されるものにおいては、リジェネバーナーを用いた炉において、圧力、弁開度を実測してバーナーの実流量係数を決定することにより、バーナーの流量係数を流体の状態変化に合わせた実測値として取り扱えるようにして、炉内における空気比を一定に保持したまま燃焼量を制御するようにしたものが示されている。 Here, in order to burn the fuel and combustion air at a predetermined air ratio in the furnace, in the method shown in Patent Document 1, the pressure and valve opening are controlled in the furnace using a regenerative burner. By actually measuring and determining the burner's actual flow coefficient, it is possible to treat the burner's flow coefficient as an actual value that matches changes in the state of the fluid, thereby controlling the combustion amount while keeping the air ratio in the furnace constant. This is shown here.
 しかし、特許文献1に示されるものにおいては、圧力、弁開度を実測してバーナーの実流量係数を決定することにより、バーナーの流量係数を流体の状態変化に合わせた実測値として取り扱うため、例えば、炉の扉を開閉させた場合のように、炉内に侵入する侵入空気の量が大幅に変化して、炉内における酸素濃度が大きく変化する場合に、速やかに対応して炉内における空気比を一定化させることは非常に困難であり、例えば、炉の扉を開けて、炉内に侵入する侵入空気の量が大幅に増加した場合において、炉内における空気比を一定化させるように、バーナーに供給する燃焼用空気の割合を減少させて、バーナーにおける空気比を大幅に減少させると、バーナーから未燃ガスが噴出されて、煤や一酸化炭素が発生しやすくなり、操業時における安全性が低下したり、製品や環境に悪影響を及ぼすという問題があった。 However, in the method shown in Patent Document 1, the actual flow coefficient of the burner is determined by actually measuring the pressure and the valve opening, and the flow coefficient of the burner is treated as an actual value that matches the change in the state of the fluid. For example, when the amount of air entering the furnace changes significantly, such as when opening and closing the furnace door, the oxygen concentration inside the furnace changes greatly. It is very difficult to maintain a constant air ratio. For example, when the furnace door is opened and the amount of air entering the furnace increases significantly, it is difficult to maintain a constant air ratio within the furnace. In addition, if the air ratio in the burner is significantly reduced by reducing the proportion of combustion air supplied to the burner, unburned gas will be ejected from the burner, making it easier to generate soot and carbon monoxide, which will cause problems during operation. There have been problems with the safety of products and the environment being adversely affected.
 また、従来においては、特許文献2に示されるように、燃焼バーナーを有する複数の燃焼帯を備えた連続式加熱炉の操業方法において、一部の燃焼帯のバーナーが消火又は低負荷状態で操業しているときに、当該燃焼帯での少なくとも酸素濃度の目標値を求め、当該目標値に基づいて上流側の各燃焼帯の空気比を制御することが示されており、各燃焼帯の燃焼排ガス出側に酸素濃度計及びCO濃度計を設け、一部の燃焼帯のバーナーが消火又は低負荷状態で操業しているときに、当該燃焼帯での少なくとも酸素濃度の目標値を求め、当該目標値に基づいて上流側の各燃焼帯の空気比を求め、求めた空気比に応じてCO濃度目標値及び酸素濃度目標値の何れかを設定し、設定された目標値と前記酸素濃度計及びCO濃度計の計測値とに基づいて酸素濃度及びCO濃度の何れかを制御することが示されている。 Furthermore, in the conventional method of operating a continuous heating furnace equipped with a plurality of combustion zones each having combustion burners, as shown in Patent Document 2, some burners in the combustion zones are extinguished or operated in a low load state. It has been shown that at least the target value of oxygen concentration in the combustion zone concerned is determined when the combustion zone is in use, and the air ratio of each combustion zone on the upstream side is controlled based on the target value. An oxygen concentration meter and a CO concentration meter are installed on the exhaust gas outlet side, and when burners in some combustion zones are extinguished or operating under low load, at least the target value of oxygen concentration in the combustion zone is determined, and the The air ratio of each combustion zone on the upstream side is determined based on the target value, and either the CO concentration target value or the oxygen concentration target value is set according to the determined air ratio, and the set target value and the oxygen concentration meter are set. It is shown that either the oxygen concentration or the CO concentration is controlled based on the measured value of the oxygen concentration meter and the measured value of the CO concentration meter.
 しかし、特許文献2に示されるものにおいては、前記のように各燃焼帯の燃焼排ガス出側に酸素濃度計及びCO濃度計を設け、一部の燃焼帯のバーナーが消火又は低負荷状態で操業しているときに、当該燃焼帯での少なくとも酸素濃度の目標値を求めて、当該目標値に基づいて上流側の各燃焼帯の空気比を求めるため、前記の特許文献1に示される炉の扉を開閉させた場合と同様に、炉内に侵入する侵入空気の量が大幅に変化して、炉内における酸素濃度が大きく変化する場合に、速やかに対応して炉内における空気比を一定化させることは非常に困難であり、例えば、バーナーを複数設けた炉において、一部のバーナーの燃焼を停止し、燃料ノズルの熱変形を防止するための冷却用空気だけが炉内に流れ込むことによって、炉内に侵入する侵入空気の量が大幅に増加した場合において、炉内における空気比を一定化させるように、バーナーに供給する燃焼用空気の割合を減少させて、バーナーにおける空気比を大幅に減少させると、バーナーから未燃ガスが噴出されて、煤や一酸化炭素が発生しやすくなり、操業時における安全性が低下したり、製品や環境に悪影響を及ぼすという問題があった。 However, in the device shown in Patent Document 2, an oxygen concentration meter and a CO concentration meter are provided on the flue gas outlet side of each combustion zone as described above, and burners in some combustion zones are extinguished or operated in a low load state. In order to obtain at least a target value for the oxygen concentration in the combustion zone and determine the air ratio in each combustion zone on the upstream side based on the target value, the furnace shown in Patent Document 1 is used. Similar to opening and closing the door, if the amount of air entering the furnace changes significantly and the oxygen concentration inside the furnace changes greatly, you can quickly respond and keep the air ratio in the furnace constant. For example, in a furnace with multiple burners, it is very difficult to stop combustion in some burners and allow only cooling air to flow into the furnace to prevent thermal deformation of the fuel nozzle. When the amount of air entering the furnace increases significantly, the ratio of combustion air supplied to the burner is reduced to keep the air ratio in the furnace constant. If the amount is significantly reduced, unburned gas will be ejected from the burner, making it easier to generate soot and carbon monoxide, which will reduce safety during operation and have a negative impact on products and the environment.
特開平7-103461号公報Japanese Unexamined Patent Publication No. 7-103461 特開2001-26815号公報Japanese Patent Application Publication No. 2001-26815
 本発明は、燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気との割合を、空気比制御システムにより調整してバーナーに供給し、このバーナーから炉内に燃料と燃焼用空気とを噴出させて、炉内において燃料と燃焼用空気とを適切な空気比にして燃焼させるようにした燃焼設備における前記のような問題を解決することを課題とするものである。 The present invention adjusts the ratio of fuel supplied through a fuel supply pipe and combustion air supplied through an air supply pipe to a burner, and supplies the burner with fuel into the furnace. The object of the present invention is to solve the above-mentioned problems in a combustion equipment that blows out combustion air and burns the fuel and combustion air at an appropriate air ratio in a furnace.
 すなわち、本発明は、前記のような燃焼設備において、炉の扉を開閉させる場合のように、炉内に侵入する侵入空気の量が大幅に変化して、炉内における酸素濃度が大きく変化する場合においても、バーナーに供給する燃料と燃焼用空気との割合を適切に制御して、良好な燃焼状態が安定して得られるようにすることを課題とするものである。 That is, the present invention can be used in combustion equipment as described above, in which the amount of air entering the furnace changes significantly, such as when opening and closing the furnace door, and the oxygen concentration within the furnace changes significantly. Even in such cases, it is an object of the present invention to appropriately control the ratio of the fuel supplied to the burner and the combustion air so that a good combustion state can be stably obtained.
 本発明に係る燃焼設備においては、前記のような課題を解決するため、燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気との割合を、空気比制御システムにより調整してバーナーに供給し、前記のバーナーから燃料と燃焼用空気とを炉内に噴出させて燃焼させる燃焼設備において、炉内の酸素濃度を検知する酸素濃度センサーを設け、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、出力制御装置により前記の空気比制御システムに出力して、前記の空気比制御システムにより前記のバーナーに供給する燃料と燃焼用空気との割合を調整する一方、前記の炉に設けられた扉を開けることにより、炉内に侵入する侵入空気の量が大きくなって、酸素濃度センサーによって検知される炉内の酸素濃度が大きく増加する場合には、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、前記の出力制御装置により前記の空気比制御システムに出力せずに、前記の空気比制御システムにより、バーナーに供給する燃料と燃焼用空気との割合を維持させる一方、前記の扉が閉じられて、前記の酸素濃度センサーによって検知される炉内の酸素濃度が所定の値に戻った場合に、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、前記の出力制御装置により前記の空気比制御システムに出力して、前記の空気比制御システムにより、前記のバーナーに供給する燃料と燃焼用空気との割合を制御するようにした。 In order to solve the above problems, in the combustion equipment according to the present invention, the ratio of the fuel supplied through the fuel supply pipe and the combustion air supplied through the air supply pipe is adjusted by an air ratio control system. In a combustion equipment that supplies fuel and combustion air to a burner and injects the fuel and combustion air from the burner into the furnace for combustion, an oxygen concentration sensor is provided to detect the oxygen concentration in the furnace, and the oxygen concentration sensor The detected oxygen concentration in the furnace is outputted to the air ratio control system by the output control device, and the air ratio control system adjusts the ratio of fuel and combustion air to be supplied to the burner. , if opening the door installed in the furnace increases the amount of intruding air that enters the furnace, and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases significantly, the above-mentioned The oxygen concentration in the furnace detected by the oxygen concentration sensor is not outputted to the air ratio control system by the output control device, but the air ratio control system controls the fuel and combustion air to be supplied to the burner. When the door is closed and the oxygen concentration in the furnace detected by the oxygen concentration sensor returns to a predetermined value, The output control device outputs the oxygen concentration to the air ratio control system, and the air ratio control system controls the ratio of fuel to combustion air supplied to the burner. .
 そして、本発明の燃焼設備においては、前記のように炉内の酸素濃度を酸素濃度センサーによって検知し、前記の酸素濃度センサーによって検知された炉内の酸素濃度を前記の出力装置から前記の空気比制御システムに出力し、空気比制御システムにより、前記のバーナーに供給する燃料と燃焼用空気との量を調整するようにしたため、炉内における酸素濃度が変化しそうな場合等においても、前記の空気比制御システムにより、炉内における酸素濃度が変化しないように、前記のバーナーに供給する燃料と燃焼用空気との割合を調整することにより、炉内における空気比を所定の値にして安定した燃焼を行うことができる。 In the combustion equipment of the present invention, the oxygen concentration in the furnace is detected by the oxygen concentration sensor as described above, and the oxygen concentration in the furnace detected by the oxygen concentration sensor is transmitted from the output device to the oxygen concentration in the furnace. Since the output is output to the ratio control system and the amount of fuel and combustion air supplied to the burner is adjusted by the air ratio control system, even when the oxygen concentration in the furnace is likely to change, the above-mentioned The air ratio control system keeps the air ratio in the furnace at a predetermined value by adjusting the ratio of the fuel supplied to the burner and the combustion air so that the oxygen concentration in the furnace does not change. Combustion can be performed.
 一方、前記の炉に設けられた扉を開けることにより、炉内に侵入する侵入空気の量が大きくなって、酸素濃度センサーによって検知される炉内の酸素濃度が大きく増加する場合には、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、前記の出力制御装置により前記の空気比制御システムに出力せずに、前記の空気比制御システムにより、バーナーに供給する燃料と燃焼用空気との割合を維持させるようにしたため、炉に設けられた扉が開かれて、酸素濃度センサーによって検知される炉内の酸素濃度が大きく増加した場合においても、前記の空気比制御システムによって、バーナーに供給する燃料と燃焼用空気との割合が維持されるようになり、前記の空気比制御システムにより、バーナーに供給する燃焼用空気の割合が大きく減少されるということがなく、燃料が完全燃焼されなくなって(つまり、不完全燃焼となり)、炉内から未燃ガスが外部に排出されたり、煤や一酸化炭素が発生したりするのが防止される。 On the other hand, if opening the door installed in the furnace increases the amount of air entering the furnace, and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases significantly, The oxygen concentration in the furnace detected by the oxygen concentration sensor is not outputted to the air ratio control system by the output control device, but the air ratio control system controls the fuel and combustion air to be supplied to the burner. Even if the door installed in the furnace is opened and the oxygen concentration inside the furnace detected by the oxygen concentration sensor increases significantly, the air ratio control system The air ratio control system ensures that the proportion of combustion air supplied to the burner is not significantly reduced and that the fuel is completely combusted. (in other words, incomplete combustion), preventing unburned gas from being discharged from the furnace to the outside, and preventing soot and carbon monoxide from being generated.
 また、前記の扉が閉じられて、前記の酸素濃度センサーによって検知される炉内の酸素濃度が所定の値に戻った場合に、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、前記の出力制御装置により前記の空気比制御システムに出力して、前記の空気比制御システムにより、前記のバーナーに供給する燃料と燃焼用空気との割合を元通りに制御させるようにしたため、炉おける空気比を元通りの所定の値にして安定した燃焼を行うことができる。 Further, when the door is closed and the oxygen concentration in the furnace detected by the oxygen concentration sensor returns to a predetermined value, the oxygen concentration in the furnace detected by the oxygen concentration sensor is The output control device outputs an output to the air ratio control system, which causes the air ratio control system to restore the ratio of fuel to combustion air supplied to the burner, so that the furnace Stable combustion can be achieved by returning the air ratio to the original predetermined value.
 本発明における燃焼設備においては、前記のように炉内の酸素濃度を酸素濃度センサーによって検知し、前記の酸素濃度センサーによって検知された炉内の酸素濃度を前記の出力装置から前記の空気比制御システムに出力して、空気比制御システムにより、前記のバーナーに供給する燃料と燃焼用空気との量を調整するようにしたため、炉内における酸素濃度が変化した場合等においても、前記の空気比制御システムにより、前記のバーナーに供給する燃料と燃焼用空気との割合を調整することによって、炉内における空気比を所定の値にして安定した燃焼を行うことができる。一方、前記の炉に設けられた扉を開けることにより、炉内に侵入する侵入空気の量が大きくなって、酸素濃度センサーによって検知される炉内の酸素濃度が大きく増加する場合には、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、前記の出力制御装置により前記の空気比制御システムに出力せずに、前記の空気比制御システムにより、バーナーに供給する燃料と燃焼用空気との割合を維持させる一方、前記の扉が閉じられて、前記の酸素濃度センサーによって検知される炉内の酸素濃度が所定の値に戻った場合に、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、前記の出力制御装置により前記の空気比制御システムに出力して、前記の空気比制御システムにより、前記のバーナーに供給する燃料と燃焼用空気との割合を制御するようにしたため、炉に設けられた扉が開けられて、酸素濃度センサーによって検知される炉内の酸素濃度が大きく増加した場合に、バーナーに供給される燃焼用空気の割合が大きく減少されて、燃料が完全燃焼されなくなるということがなく、炉内から未燃ガスが外部に排出されたり、煤や一酸化炭素が発生したりするのが防止されると共に、前記の酸素濃度センサーによって検知される炉内の酸素濃度が所定の値に戻った場合には、前記の空気比制御システムにより、前記のバーナーに供給する燃料と燃焼用空気との割合を元通りに制御させるようにしたため、炉内における空気比を元通りの所定の値にして安定した燃焼を行うことができる。 In the combustion equipment according to the present invention, the oxygen concentration in the furnace is detected by the oxygen concentration sensor as described above, and the oxygen concentration in the furnace detected by the oxygen concentration sensor is transmitted from the output device to the air ratio control. The air ratio control system adjusts the amount of fuel and combustion air supplied to the burner, so even if the oxygen concentration in the furnace changes, the air ratio By adjusting the ratio of fuel and combustion air supplied to the burner using a control system, stable combustion can be achieved by setting the air ratio in the furnace to a predetermined value. On the other hand, if opening the door installed in the furnace increases the amount of air entering the furnace, and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases significantly, The oxygen concentration in the furnace detected by the oxygen concentration sensor of When the door is closed and the oxygen concentration in the furnace detected by the oxygen concentration sensor returns to a predetermined value, The output control device outputs the oxygen concentration in the air to the air ratio control system, and the air ratio control system controls the ratio of the fuel to the combustion air to be supplied to the burner. Therefore, when the door installed in the furnace is opened and the oxygen concentration inside the furnace detected by the oxygen concentration sensor increases significantly, the proportion of combustion air supplied to the burner is greatly reduced and the fuel is This prevents complete combustion from occurring, prevents unburned gas from being discharged from the furnace to the outside, and prevents soot and carbon monoxide from being generated. When the oxygen concentration of Stable combustion can be achieved by returning the ratio to its original predetermined value.
 この結果、本発明における燃焼設備においては、炉の扉を開閉させる場合のように、炉内に侵入する侵入空気の量が大幅に変化して、炉内における酸素濃度が大きく変化する場合においても、バーナーに供給する燃料と燃焼用空気との割合を適切に制御して、良好な燃焼状態が安定して得られるようになる。 As a result, in the combustion equipment of the present invention, even when the amount of air entering the furnace changes significantly, such as when opening and closing the furnace door, the oxygen concentration inside the furnace changes greatly. By appropriately controlling the ratio of fuel supplied to the burner and combustion air, a good combustion state can be stably obtained.
本発明の実施形態に係る燃焼設備において、炉内の酸素濃度を酸素濃度センサーによって検知し、検知された炉内の酸素濃度を出力制御装置により空気比制御システムに出力し、空気比制御システムによりバーナーに供給する燃料である燃料ガスと燃焼用空気との割合を調整し、バーナーから燃料ガスと燃焼用空気とを炉内に噴出させて燃焼させる状態を示した概略説明図である。In the combustion equipment according to the embodiment of the present invention, the oxygen concentration in the furnace is detected by the oxygen concentration sensor, the detected oxygen concentration in the furnace is outputted to the air ratio control system by the output control device, and the oxygen concentration in the furnace is outputted to the air ratio control system by the output control device. FIG. 2 is a schematic explanatory diagram showing a state in which the ratio of fuel gas, which is fuel supplied to a burner, and combustion air is adjusted, and the fuel gas and combustion air are ejected from the burner into a furnace to be combusted. 前記の実施形態における燃焼設備において、(A)は、炉に設けられた扉を開けて、酸素濃度センサーによって検知される炉内の酸素濃度が大きく増加した場合に、酸素濃度センサーによって検知された酸素濃度を、出力制御装置により空気比制御システムに出力しないようにして、空気比制御システムにより、バーナーに供給する燃料ガスと燃焼用空気との割合を維持させて燃焼させる状態を示した概略説明図、(B)は、前記のように開いた状態にある扉を閉じて、酸素濃度センサーによって検知される炉内の酸素濃度が所定の値に戻るまでは、酸素濃度センサーによって検知された炉内の酸素濃度を、出力制御装置により空気比制御システムに出力しないようにして、空気比制御システムにより、バーナーに供給する燃料ガスと燃焼用空気との割合を維持させて燃焼させる状態を示した概略説明図である。In the combustion equipment according to the embodiment described above, (A) is when the door provided in the furnace is opened and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases significantly. A schematic explanation showing a state in which the output control device does not output the oxygen concentration to the air ratio control system, and the air ratio control system maintains the ratio of the fuel gas supplied to the burner and the combustion air for combustion. Figure 2 (B) shows that when the door that is open as described above is closed and the oxygen concentration in the furnace detected by the oxygen concentration sensor returns to the predetermined value, the The output control device does not output the oxygen concentration in the burner to the air ratio control system, and the air ratio control system maintains the ratio of fuel gas supplied to the burner to combustion air to perform combustion. It is a schematic explanatory diagram. 前記の実施形態における燃焼設備において、炉に設けられた扉を開閉させるタイミングと、出力制御装置による空気比制御システムへの出力のON/OFFのタイミングと、酸素濃度センサーによって検知される炉内の酸素濃度の変化状態と、バーナーにおける空気比の状態を示したタイミング図である。In the combustion equipment in the above embodiment, the timing of opening and closing the door provided in the furnace, the timing of ON/OFF of the output to the air ratio control system by the output control device, and the timing of the output inside the furnace detected by the oxygen concentration sensor. FIG. 4 is a timing chart showing changes in oxygen concentration and air ratio in the burner.
 以下、本発明の実施形態に係る燃焼設備を添付図面に基づいて具体的に説明する。なお、本発明に係る燃焼設備は、下記の実施形態に示したものに限定されず、発明の要旨を変更しない範囲において、適宜変更して実施できるものである。 Hereinafter, a combustion facility according to an embodiment of the present invention will be specifically described based on the accompanying drawings. Note that the combustion equipment according to the present invention is not limited to that shown in the embodiments below, and can be implemented with appropriate modifications within the scope of the gist of the invention.
 この実施形態における燃焼設備においては、図1に示すように、開口部11の開閉を行なう扉12が設けられた炉10にバーナー20を設け、前記のバーナー20に、燃料供給管30を通して燃料である都市ガス等の燃料ガスGを供給すると共に、空気供給管40を通して燃焼用空気Airを供給し、このバーナー20から燃焼用空気Airと燃料ガスGとを炉10内に噴出させて燃焼させるようにしている。 In the combustion equipment according to this embodiment, as shown in FIG. In addition to supplying a fuel gas G such as a certain city gas, combustion air Air is supplied through an air supply pipe 40, and the combustion air Air and fuel gas G are ejected from the burner 20 into the furnace 10 for combustion. I have to.
 そして、この実施形態における燃焼設備においては、前記のようにバーナー20に、燃料供給管30を通して燃料ガスGを供給すると共に、空気供給管40を通して燃焼用空気Airを供給するにあたり、前記の燃料供給管30に設けた流量調整弁31と空気供給管40に設けた流量調整弁41とを空気比制御システム50により調整して、バーナー20に供給する燃料ガスGと燃焼用空気Airとの割合を制御し、バーナー20における空気比を所定の値に調整して、バーナー20から燃料ガスGと燃焼用空気Airとを炉10内に噴出させて燃焼させるようにしている。 In the combustion equipment of this embodiment, the fuel gas G is supplied to the burner 20 through the fuel supply pipe 30 as described above, and the combustion air Air is supplied through the air supply pipe 40. The air ratio control system 50 adjusts the flow rate adjustment valve 31 provided in the pipe 30 and the flow rate adjustment valve 41 provided in the air supply pipe 40 to adjust the ratio of the fuel gas G and combustion air Air supplied to the burner 20. The air ratio in the burner 20 is adjusted to a predetermined value, and the fuel gas G and combustion air Air are ejected from the burner 20 into the furnace 10 for combustion.
 また、この実施形態における燃焼設備においては、炉10内の酸素濃度を検知する酸素濃度センサー51を設け、この酸素濃度センサー51によって検知された炉10内の酸素濃度を、出力制御装置52により前記の空気比制御システム50に出力させるようにし、出力された炉10内の酸素濃度に基づいて、前記の空気比制御システム50により、燃料供給管30に設けた流量調整弁31と空気供給管40に設けた流量調整弁41とを調整して、バーナー20に供給する燃料ガスGと燃焼用空気Airとの割合を制御し、バーナー20における空気比を所定の値に調整するようにしている。なお、図1においては、出力制御装置52を空気比制御システム50に接続させている状態を示している。 In addition, the combustion equipment in this embodiment is provided with an oxygen concentration sensor 51 that detects the oxygen concentration in the furnace 10, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is controlled by the output control device 52. Based on the output oxygen concentration in the furnace 10, the air ratio control system 50 controls the flow rate regulating valve 31 provided in the fuel supply pipe 30 and the air supply pipe 40. The ratio of the fuel gas G and combustion air Air supplied to the burner 20 is controlled by adjusting the flow rate regulating valve 41 provided in the burner 20, and the air ratio in the burner 20 is adjusted to a predetermined value. Note that FIG. 1 shows a state in which the output control device 52 is connected to the air ratio control system 50.
 そして、この実施形態における燃焼設備において、図2(A)に示すように、炉10の扉12が開かれると、炉10の開口部11を通して炉10外の外部空気Air’が大量に炉10内に流れ込んで、前記の酸素濃度センサー51によって検知される炉10内の酸素濃度が大幅に増加することになる。 In the combustion equipment of this embodiment, as shown in FIG. As a result, the oxygen concentration within the furnace 10 detected by the oxygen concentration sensor 51 increases significantly.
 ここで、このように炉10内の酸素濃度が大幅に増加した場合には、前記のように炉10内の酸素濃度を出力制御装置52により空気比制御システム50に出力し、バーナー20に供給する燃料ガスGと燃焼用空気Airとの割合を空気比制御システム50により制御して、炉10内における空気比が所定の値になるようにバーナー20に供給する燃焼用空気Airの量を大幅に減少させる結果となり、バーナー20に供給された燃料ガスGが完全燃焼されなくなって、炉10内に未燃ガスが残って外部に排出されたり、煤や一酸化炭素が発生したりするという問題が生じる。 Here, when the oxygen concentration in the furnace 10 increases significantly as described above, the output control device 52 outputs the oxygen concentration in the furnace 10 to the air ratio control system 50 and supplies it to the burner 20. The ratio of the fuel gas G to the combustion air Air is controlled by the air ratio control system 50, and the amount of combustion air Air supplied to the burner 20 is greatly increased so that the air ratio in the furnace 10 becomes a predetermined value. As a result, the fuel gas G supplied to the burner 20 is not completely combusted, resulting in unburned gas remaining in the furnace 10 and being discharged to the outside, or generating soot and carbon monoxide. occurs.
 このため、この実施形態における燃焼設備において、炉10の扉12が開かれて、炉10の開口部11を通して炉10外の外部空気Air’が大量に炉10内に流れ込み、酸素濃度センサー51によって検知される炉10内の酸素濃度が大幅に増加する場合には、図2(A)及び図3に示すように、前記の出力制御装置52をOFFにして、酸素濃度センサー51によって検知された炉10内の酸素濃度を、空気比制御システム50に出力させないようにし、バーナー20に供給する燃料ガスGと燃焼用空気Airとの割合を空気比制御システム50によって変更させないようにし、バーナー20における空気比を一定に固定するようにしている。このようにすると、炉10内の酸素濃度が大幅に増加した場合に、前記のようにバーナー20に供給する燃焼用空気Airの量が大幅に減少されるということがなく、バーナー20に供給された燃料ガスGが完全燃焼されなくなるのが防止される。なお、図2(A)及び後述する図2(B)においては、出力制御装置52と空気比制御システム50とが切断状態にあることを示している。 Therefore, in the combustion equipment of this embodiment, the door 12 of the furnace 10 is opened, and a large amount of external air Air' outside the furnace 10 flows into the furnace 10 through the opening 11 of the furnace 10, and the oxygen concentration sensor 51 detects the If the detected oxygen concentration in the furnace 10 increases significantly, the output control device 52 is turned off and the oxygen concentration detected by the oxygen concentration sensor 51 increases, as shown in FIGS. 2(A) and 3. The oxygen concentration in the furnace 10 is not outputted to the air ratio control system 50, and the ratio of the fuel gas G and combustion air Air supplied to the burner 20 is not changed by the air ratio control system 50. The air ratio is kept constant. In this way, when the oxygen concentration in the furnace 10 increases significantly, the amount of combustion air Air supplied to the burner 20 will not be significantly reduced as described above, and the amount of combustion air supplied to the burner 20 will be reduced. This prevents the fuel gas G from being completely combusted. Note that FIG. 2(A) and FIG. 2(B), which will be described later, show that the output control device 52 and the air ratio control system 50 are in a disconnected state.
 また、図2(B)及び図3に示すように、前記のように開かれた炉10の扉12が閉じられて、炉10外の外部空気Air’が炉10内に流れ込むのが停止された状態であっても、前記の酸素濃度センサー51によって検知された炉10内の酸素濃度が高い状態にある場合には、前記の出力制御装置52をOFFにした状態で維持させ、酸素濃度センサー51によって検知された炉10内の酸素濃度を、空気比制御システム50に出力させないようにする。なお、このとき、酸素濃度センサー51は炉10内の酸素濃度の監視を続けている。 Further, as shown in FIGS. 2(B) and 3, the door 12 of the furnace 10 that has been opened as described above is closed, and the external air Air' outside the furnace 10 is stopped from flowing into the furnace 10. Even if the oxygen concentration in the furnace 10 is high, as detected by the oxygen concentration sensor 51, the output control device 52 is kept in the OFF state, and the oxygen concentration sensor The oxygen concentration in the furnace 10 detected by the air ratio control system 51 is not outputted to the air ratio control system 50. Note that at this time, the oxygen concentration sensor 51 continues to monitor the oxygen concentration within the furnace 10.
 そして、前記のように炉10の扉12が閉じられて、酸素濃度センサー51によって検知される炉10内の酸素濃度が所定の値に戻った場合には、図1及び図3に示すように、前記の出力制御装置52をONにして、前記の酸素濃度センサー51によって検知された炉10内の酸素濃度を、出力制御装置52により前記の空気比制御システム50に出力し、空気比の固定を解除して、この空気比制御システム50により、燃料供給管30に設けた流量調整弁31と空気供給管40に設けた流量調整弁41とを調整して、バーナー20に供給する燃料ガスGと燃焼用空気Airとの割合を制御し、バーナー20における空気比を所定の値に調整させるようにする。 When the door 12 of the furnace 10 is closed as described above and the oxygen concentration inside the furnace 10 detected by the oxygen concentration sensor 51 returns to a predetermined value, as shown in FIGS. 1 and 3, , the output control device 52 is turned on, and the oxygen concentration in the furnace 10 detected by the oxygen concentration sensor 51 is outputted to the air ratio control system 50 by the output control device 52 to fix the air ratio. is released, and the air ratio control system 50 adjusts the flow rate adjustment valve 31 provided in the fuel supply pipe 30 and the flow rate adjustment valve 41 provided in the air supply pipe 40 to control the fuel gas G supplied to the burner 20. The ratio between the combustion air and the combustion air Air is controlled so that the air ratio in the burner 20 is adjusted to a predetermined value.
 ここで、この実施形態における燃焼設備においては、前記の出力制御装置52をOFFにするタイミングが、図3に示すように、炉10の扉12を開けるタイミングと同時になるようにしたが、出力制御装置52をOFFにするタイミングを、炉10の扉12を開く直前や、炉10の扉12を開いた直後にすることも可能である。 Here, in the combustion equipment of this embodiment, the timing for turning off the output control device 52 is set to coincide with the timing for opening the door 12 of the furnace 10, as shown in FIG. It is also possible to turn off the device 52 immediately before opening the door 12 of the furnace 10 or immediately after opening the door 12 of the furnace 10.
 また、この実施形態における燃焼設備においては、酸素濃度センサー51によって検知される酸素濃度が大きく変化する場合として、炉10に設けられた扉12を開閉させる場合を示したが、酸素濃度センサー51によって検知される酸素濃度が大きく変化する場合はこれに限定されない。 Furthermore, in the combustion equipment of this embodiment, the case where the door 12 provided in the furnace 10 is opened and closed is shown as a case in which the oxygen concentration detected by the oxygen concentration sensor 51 changes significantly. The case where the detected oxygen concentration changes significantly is not limited to this.
 例えば、図示していないが、バーナーの燃料ノズルの外周に熱変形防止用の冷却空気供給管が設けられたバーナーを炉に複数設け、各バーナーにより燃焼を行うようになった燃焼設備において、各バーナーにおいて燃焼を行っている状態から、1本以上のバーナーにおける燃焼が停止されて、停止された各バーナーにおける燃料ノズルの外周における冷却空気供給管を通して大量の冷却用空気が炉内に供給されて、酸素濃度センサーによって検知される酸素濃度が大きく増加するような場合においても、前記の実施形態の場合と同様にして制御することができる。 For example, although not shown in the figure, in a combustion equipment where a furnace is equipped with multiple burners each having a cooling air supply pipe installed around the outer periphery of the burner fuel nozzle to prevent thermal deformation, each burner performs combustion. From the state in which combustion is occurring in the burners, combustion in one or more burners is stopped, and a large amount of cooling air is supplied into the furnace through the cooling air supply pipe around the outer periphery of the fuel nozzle of each burner that has been stopped. Even in a case where the oxygen concentration detected by the oxygen concentration sensor increases significantly, control can be performed in the same manner as in the above embodiment.
10   :炉
11   :開口部
12   :扉
20   :バーナー
30   :燃料供給管
31   :流量調整弁
40   :空気供給管
41   :流量調整弁
50   :空気比制御システム
51   :酸素濃度センサー
52   :出力制御装置
Air  :燃焼用空気
Air’ :外部空気
G    :燃料ガス 
10: Furnace 11: Opening 12: Door 20: Burner 30: Fuel supply pipe 31: Flow rate adjustment valve 40: Air supply pipe 41: Flow rate adjustment valve 50: Air ratio control system 51: Oxygen concentration sensor 52: Output control device Air : Combustion air Air' : External air G : Fuel gas

Claims (2)

  1.  燃料供給管を通して供給される燃料と、空気供給管を通して供給される燃焼用空気との割合を、空気比制御システムにより調整してバーナーに供給し、前記のバーナーから燃料と燃焼用空気とを炉内に噴出させて燃焼させる燃焼設備において、炉内の酸素濃度を検知する酸素濃度センサーを設け、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、出力制御装置により前記の空気比制御システムに出力して、前記の空気比制御システムにより前記のバーナーに供給する燃料と燃焼用空気との割合を調整する一方、前記の炉に設けられた扉を開けることにより、炉内に侵入する侵入空気の量が大きくなって、酸素濃度センサーによって検知される炉内の酸素濃度が大きく増加する場合には、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、前記の出力制御装置により前記の空気比制御システムに出力せずに、前記の空気比制御システムにより、バーナーに供給する燃料と燃焼用空気との合を維持させる一方、前記の扉が閉じられて、前記の酸素濃度センサーによって検知される炉内の酸素濃度が所定の値に戻った場合に、前記の酸素濃度センサーによって検知された炉内の酸素濃度を、前記の出力制御装置により前記の空気比制御システムに出力して、前記の空気比制御システムにより、前記のバーナーに供給する燃料と燃焼用空気との割合を制御することを特徴とする燃焼設備。 The proportion of fuel supplied through the fuel supply pipe and combustion air supplied through the air supply pipe is adjusted by an air ratio control system and supplied to the burner, and the fuel and combustion air are supplied from the burner to the furnace. In combustion equipment that injects air into the furnace for combustion, an oxygen concentration sensor is provided to detect the oxygen concentration in the furnace, and the oxygen concentration in the furnace detected by the oxygen concentration sensor is controlled by the output control device to control the air ratio. output to the system and adjust the ratio of fuel and combustion air supplied to the burner by the air ratio control system, while entering the furnace by opening the door provided in the furnace. When the amount of intruding air increases and the oxygen concentration in the furnace detected by the oxygen concentration sensor increases significantly, the oxygen concentration in the furnace detected by the oxygen concentration sensor is controlled by the output control device. The air ratio control system maintains the combination of fuel supplied to the burner and combustion air without outputting to the air ratio control system, while the door is closed and the oxygen concentration is maintained. When the oxygen concentration in the furnace detected by the sensor returns to a predetermined value, the oxygen concentration in the furnace detected by the oxygen concentration sensor is outputted to the air ratio control system by the output control device. A combustion facility characterized in that the air ratio control system controls the ratio of fuel and combustion air supplied to the burner.
  2.  請求項1に記載の燃焼設備において、前記の酸素濃度センサーによって検知された炉内の酸素濃度を前記の出力制御装置により前記の空気比制御システムに出力させないようにするタイミングを、前記の扉を開く直前にしたことを特徴とする燃焼設備。 The combustion equipment according to claim 1, wherein the timing at which the output control device prevents the output control device from outputting the oxygen concentration in the furnace detected by the oxygen concentration sensor to the air ratio control system is controlled by opening the door. Combustion equipment characterized by what it did just before opening.
PCT/JP2023/021916 2022-08-29 2023-06-13 Combustion equipment WO2024048006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-135532 2022-08-29
JP2022135532A JP7210125B2 (en) 2022-08-29 2022-08-29 Combustion equipment

Publications (1)

Publication Number Publication Date
WO2024048006A1 true WO2024048006A1 (en) 2024-03-07

Family

ID=84237619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021916 WO2024048006A1 (en) 2022-08-29 2023-06-13 Combustion equipment

Country Status (2)

Country Link
JP (1) JP7210125B2 (en)
WO (1) WO2024048006A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573848B2 (en) * 1977-02-17 1982-01-23
JPS6051607B2 (en) * 1979-12-05 1985-11-14 日本鋼管株式会社 Combustion control device in heating furnace
JPH07103461A (en) * 1993-10-12 1995-04-18 Nkk Corp Air ratio regulating method for furnace employing heat accumulation type burner
JP2000274670A (en) * 1999-03-23 2000-10-03 Ngk Insulators Ltd Batch type combustion furnace and burner combustion control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843658B2 (en) * 1978-08-30 1983-09-28 川崎製鉄株式会社 Combustion control method for combustion equipment where outside air can enter
JP5310817B2 (en) 2011-10-03 2013-10-09 株式会社Ihi Heating furnace atmosphere control method
JP6773066B2 (en) 2018-03-14 2020-10-21 Jfeスチール株式会社 Abnormality judgment method and abnormality judgment device of oxygen concentration meter installed in the continuous heating furnace
JP2019168209A (en) 2018-03-26 2019-10-03 東邦瓦斯株式会社 Combustion monitoring device and combustion control system
JP2020060330A (en) 2018-10-11 2020-04-16 京都Eic株式会社 Air ratio controller, control program, and control method
JP7214940B2 (en) 2019-02-28 2023-01-31 株式会社神戸製鋼所 Heating furnace air volume control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573848B2 (en) * 1977-02-17 1982-01-23
JPS6051607B2 (en) * 1979-12-05 1985-11-14 日本鋼管株式会社 Combustion control device in heating furnace
JPH07103461A (en) * 1993-10-12 1995-04-18 Nkk Corp Air ratio regulating method for furnace employing heat accumulation type burner
JP2000274670A (en) * 1999-03-23 2000-10-03 Ngk Insulators Ltd Batch type combustion furnace and burner combustion control method

Also Published As

Publication number Publication date
JP7210125B2 (en) 2023-01-23
JP2022177842A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
CA2642980A1 (en) Assured compliance mode of operating a combustion system
KR102494767B1 (en) Industrial furnace and industrial furnace ignition method
JP2011099608A (en) Boiler combustion control device
JP4850163B2 (en) Gas combustion equipment
WO2024048006A1 (en) Combustion equipment
WO2024048028A1 (en) Combustion facility
GB2444109A (en) Burner temperature control apparatus
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP7220971B2 (en) Combustion control method for combustion equipment
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JP2009174741A (en) Ground flare and its combustion control method
KR930006170B1 (en) Control device for combustion apparatus
JPS6113531B2 (en)
JP3679148B2 (en) Flame detection device in gas processing torch
JPH01139915A (en) Control method of slurry burner
KR200179069Y1 (en) Decreasing apparatus of nox in annealing furnace of steel sheet
JP2000179836A (en) Combustion controller
JPH09170749A (en) Heating furnace and its operating method
JP2022179847A (en) Combustion control method and combustion control device
JP3142460B2 (en) Pressure control method for burner combustion air
JP3020737B2 (en) Combustion treatment device for combustible emission gas
JP2003336838A (en) Method for determining trouble of wind pressure sensor
JP2016006357A (en) Boiler
KR100755454B1 (en) The preventing methode of explosion in radiant tube
JPH0814523A (en) Incinerator and controlling method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859776

Country of ref document: EP

Kind code of ref document: A1