JP4605656B2 - Thermal power generation boiler and combustion air supply control method - Google Patents

Thermal power generation boiler and combustion air supply control method Download PDF

Info

Publication number
JP4605656B2
JP4605656B2 JP2005277261A JP2005277261A JP4605656B2 JP 4605656 B2 JP4605656 B2 JP 4605656B2 JP 2005277261 A JP2005277261 A JP 2005277261A JP 2005277261 A JP2005277261 A JP 2005277261A JP 4605656 B2 JP4605656 B2 JP 4605656B2
Authority
JP
Japan
Prior art keywords
air
outlet pressure
side outlet
value
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005277261A
Other languages
Japanese (ja)
Other versions
JP2007085682A5 (en
JP2007085682A (en
Inventor
栄治 二井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2005277261A priority Critical patent/JP4605656B2/en
Publication of JP2007085682A publication Critical patent/JP2007085682A/en
Publication of JP2007085682A5 publication Critical patent/JP2007085682A5/ja
Application granted granted Critical
Publication of JP4605656B2 publication Critical patent/JP4605656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、石炭や石油などの化石燃料を利用する火力発電用ボイラの空気流量制御や排出ガスの低減化に関連し、特にボイラ火炉内での化石燃料の燃焼を安定にし、且つ、効率化するのに好適な火力発電用ボイラと燃焼用空気供給制御方法に関する。   The present invention relates to air flow control and reduction of exhaust gas in boilers for thermal power generation using fossil fuels such as coal and petroleum, and in particular, stabilizes and improves the efficiency of fossil fuel combustion in boiler furnaces. The present invention relates to a thermal power generation boiler and a combustion air supply control method suitable for the above.

石炭や油などの化石燃料を利用する火力発電用ボイラでは、図2に示すようにバーナ17と二段燃焼用空気ポートであるアフタエアポート(以下OFAということがある)18へ空気ダクト20から燃焼用空気が供給される。このボイラ火炉21内での二段燃焼法による燃料の燃焼は、燃料の燃焼で生じた排出ガス中のNOxやCOを低減するための燃焼法であり、バーナ17での燃料の燃焼に必要な空気量より少し少なめの空気量をウィンドボックスダンパ22からバーナ17に供給し、前記不足の空気分を分岐ダクト19から二段燃焼用空気として二段燃焼用空気ダンパ(以下OFAダンパということがある)23からアフタエアポート18に供給しているが、この二段燃焼用空気は共に押し込み通風機(以下FDFということがある)24により取り込まれた空気をエアヒータ26において予熱した後、ボイラ火炉21へ取り込まれる。   In a thermal power generation boiler using fossil fuels such as coal and oil, as shown in FIG. 2, it burns from an air duct 20 to an after-air port (hereinafter sometimes referred to as OFA) 18 which is a burner 17 and a two-stage combustion air port. Supply air is supplied. The combustion of the fuel in the boiler furnace 21 by the two-stage combustion method is a combustion method for reducing NOx and CO in the exhaust gas generated by the combustion of the fuel, and is necessary for the combustion of the fuel in the burner 17. An amount of air slightly smaller than the amount of air is supplied from the wind box damper 22 to the burner 17, and the shortage of air is supplied from the branch duct 19 as two-stage combustion air (hereinafter referred to as OFA damper). ) Is supplied from 23 to the after-air port 18, and this two-stage combustion air is both pushed into the ventilator (hereinafter also referred to as FDF) 24 and preheated in the air heater 26, and then to the boiler furnace 21. It is captured.

すなわち、燃焼用空気も二段燃焼用空気もエアヒータ26の空気側出口より供給されるが、その元圧となるエアヒータ空気側出口圧力が制御対象となっていないため、エアヒータ空気側出口圧力と火炉内の圧力との差圧が安定に制御されず、空気流量制御の精度を悪くする一因となっていた。   That is, although both combustion air and two-stage combustion air are supplied from the air side outlet of the air heater 26, the air heater air side outlet pressure, which is the original pressure, is not controlled, so the air heater air side outlet pressure and the furnace The differential pressure with respect to the internal pressure was not stably controlled, which was one factor that deteriorated the accuracy of air flow control.

従来技術では、FDF24の動翼は火炉21への空気流量を制御し、ウィンドボックスダンパ22は各バーナ17での燃焼に必要な空気流量を制御し、OFAダンパ23は二段燃焼に必要な空気流量を制御しており、エアヒータ空気側出口圧力は、その圧力が制御範囲を逸脱した場合にウィンドボックスダンパ22への補正回路により補正される手法はあるものの、該当のバーナ17が点火していないとウィンドボックスダンパ22は規定開度のままで、エアヒータ空気側出口圧力からの補正が有効とならない場合もあり、好適に制御されていない。
特開11−14005号公報
In the prior art, the moving blade of the FDF 24 controls the air flow rate to the furnace 21, the wind box damper 22 controls the air flow rate necessary for combustion in each burner 17, and the OFA damper 23 is the air required for two-stage combustion. The flow rate is controlled, and the air heater air side outlet pressure is corrected by the correction circuit to the wind box damper 22 when the pressure exceeds the control range, but the corresponding burner 17 is not ignited. The wind box damper 22 remains at the specified opening, and correction from the air heater air side outlet pressure may not be effective, and is not suitably controlled.
JP 11-14005 A

上記従来技術においては、燃焼空気の理論計画上のバランスに合致するようにウィンドボックスダンパ開度を調節して燃焼用空気流量を制御しており、エアヒータ空気側出口圧力に対しては、その制御範囲を逸脱した場合に制御範囲へ引き戻すために、ウィンドボックスダンパ22の開度を補正する回路もある。しかし、ウィンドボックスダンパ22はバーナ17用の空気流量を制御することが主体であるため、エアヒータ空気側出口圧力をウィンドボックスダンパ22で制御するとバーナ17の燃焼が不安定になるおそれもあり、また、バーナ17が点火していない場合、ウィンドボックスダンパ22は規定開度で運用される。そのため、エアヒータ空気側出口圧力よるウィンドボックスダンパ22の開度補正は有効とならない。 In the above-mentioned prior art, by adjusting the wind box damper opening to match the balance of theoretical plans of the combustion air and controls the combustion air flow, for the air heater air side outlet pressure, the There is also a circuit for correcting the opening degree of the windbox damper 22 in order to return to the control range when the control range is deviated. However, since the wind box damper 22 mainly controls the air flow rate for the burner 17, if the air heater air side outlet pressure is controlled by the wind box damper 22, the combustion of the burner 17 may become unstable. When the burner 17 is not ignited, the wind box damper 22 is operated at the specified opening. Therefore, the opening degree correction of the wind box damper 22 by the air heater air side outlet pressure is not effective.

また、エアヒータ空気側出口圧力が変動した場合、該当空気系統の圧力が最適とならないため、自動制御の対でない固定式の空気ダンパにより空気流量を調節している点火トーチ用の燃焼空気も最適とすることができず、点火トーチの燃焼を不安定としてしまう。
本発明の課題は、ボイラ火炉内での燃焼に悪影響を与えず、常時エアヒータ空気側出口圧力を最適に保つことで、燃焼用空気流量の安定化を図り、燃焼性を改善することである。
Optimal Also, if the air heater air side outlet pressure is varied, the pressure of the corresponding air system is not optimal, the combustion air for igniting the torch which adjusts the air flow rate by a fixed type air damper not subject to automatic control also This makes the combustion of the ignition torch unstable.
An object of the present invention is to stabilize the flow rate of combustion air and improve the combustibility by keeping the air heater air side outlet pressure optimal at all times without adversely affecting the combustion in the boiler furnace.

上記本発明の課題は次の解決手段により解決される。
請求項1記載の発明は、燃料を燃焼させる火炉(21)と、該火炉(21)の壁面に設けた理論空気比以下で燃料を燃焼させるバーナ(17)と、該バーナ(17)の後流側の火炉(21)の壁面に設けた前記バーナ(17)での不足分の燃焼用空気を火炉(21)内に噴出するアフタエアポート(18)と、前記バーナ(17)とアフタエアポート(18)に予熱された燃焼用空気を供給する空気ダクト(20)と、該空気ダクト(20)に設けた空気を予熱するエアヒータ(26)と、該エアヒータ(26)で予熱された空気の一部をアフタエアポート(18)に供給するためのダクト開閉ダンパ(23)付き分岐ダクト(19)と、火炉(21)内での燃料の燃焼に必要空気流量に対して所定の比率で予め決められたプログラムに従ってアフタエアポート用空気流量設定値(A)が設定されている燃焼制御装置(16)とを備えた火力発電用ボイラにおいて、
前記燃焼制御装置(16)は、(a)前記エアヒータ(26)で予熱された空気の圧力を測定するエアヒータ空気側出口圧力測定手段(1)と、(b)前記バーナ(17)に供給する燃料流量を測定する燃料流量測定手段(2)と、(c)該燃料流量測定手段(2)により測定される燃料流量に応じて算出されるエアヒータ空気側出口圧力設定値算出手段(3)と、(d)該エアヒータ空気側出口圧力測定手段(1)で測定されるエアヒータ空気側出口圧力実測値(B)と前記エアヒータ空気側出口圧力設定値算出手段(3)より算出されるエアヒータ空気側出口圧力設定値(C)との偏差(D)を算出するエアヒータ空気側出口圧力設定値偏差算出手段(4)と、(e)前記エアヒータ空気側出口圧力偏差(D)の絶対値が所定値(T2)を超える場合には、前記偏差(D)が前記所定値(T2)以下になるようにダクト開閉ダンパ(23)の開度を調整してアフタエアポート用空気流量設定値(A)を補正する制御信号(11)の信号発生手段(10)とを備えている火力発電用ボイラである。
The problems of the present invention are solved by the following means.
The invention according to claim 1 is a furnace (21) for burning fuel, a burner (17) for burning fuel at a theoretical air ratio or less provided on a wall surface of the furnace (21), and a rear of the burner (17). An after-air port (18) for injecting a short amount of combustion air in the burner (17) provided on the wall surface of the flow-side furnace (21) into the furnace (21), the burner (17) and the after-air port ( and 18) that to supply preheated combustion air air duct (20), the air and gas ducts (air heater for preheating the air which is provided to the 20) (26), which is preheated in the air heater (26) air A branch duct (19) with a duct opening / closing damper (23) for supplying a part of the air to the after-air port (18), and a predetermined ratio with respect to the air flow rate required for combustion of fuel in the furnace (21) in advance. Follow a predetermined program In thermal power boiler comprising a combustion control system (16) after air port air flow rate set value (A) is set,
The combustion control device (16) supplies (a) air heater air side outlet pressure measuring means (1) for measuring the pressure of air preheated by the air heater (26), and (b) supplying the burner (17). A fuel flow rate measuring means (2) for measuring the fuel flow rate, (c) an air heater air-side outlet pressure set value calculating means (3) calculated according to the fuel flow rate measured by the fuel flow rate measuring means (2), (D) Air heater air side outlet pressure measurement value (B) measured by the air heater air side outlet pressure measurement means (1) and air heater air side calculated by the air heater air side outlet pressure set value calculation means (3) Air heater air side outlet pressure set value deviation calculating means (4) for calculating a deviation (D) from the outlet pressure set value (C), and (e) an absolute value of the air heater air side outlet pressure deviation (D) is a predetermined value. (T2) When exceeding, a control signal for adjusting the air flow set value (A) for the after-airport by adjusting the opening of the duct opening / closing damper (23) so that the deviation (D) is equal to or less than the predetermined value (T2). It is a boiler for thermal power generation provided with the signal generation means (10) of (11).

請求項2記載の発明は、前記燃焼制御装置(16)は、起動時にはエアヒータ空気側出口圧力実測値(B)が、エアヒータ空気側出口圧力設定値(C)より小さい値である規定値(T1)に比べて、さらに小さい値である場合には、前記ダクト開閉ダンパ(23)を閉じない制御を行う請求項1記載の火力発電用ボイラである。
According to a second aspect of the present invention, when the combustion control device (16) is started, the actual value (B) of the air heater air side outlet pressure is smaller than the air heater air side outlet pressure set value (C). 2. The thermal power generation boiler according to claim 1, wherein when the value is smaller than that of (), the duct opening / closing damper (23) is controlled not to be closed.

請求項3記載の発明は、燃料を燃焼させる火炉(21)の壁面に設けた理論空気比以下で燃料を燃焼させるバーナ(17)と該バーナ(17)の後流側の火炉(21)の壁面に設けた前記バーナ(17)での不足分の燃焼用空気を火炉(21)内に噴出するダクト開閉ダンパ(23)付きのアフタエアポート(18)にそれぞれエアヒータ(26)で予熱された燃焼用空気を供給するに際して、該燃焼用空気の供給量を制御する燃焼用空気供給量制御方法において、火力発電用ボイラでの燃料の燃焼に必要空気流量に対して所定の比率で予め決められたプログラムに従ってアフタエアポート用空気流量設定値(A)を設定し、エアヒータ空気側出口圧力の実測値(B)とエアヒータ空気側出口圧力設定値(C)との偏差(D)の絶対値が所定値(T2)を超える場合には、前記偏差(D)が前記所定値(T2)以下になるようにダクト開閉ダンパ(23)の開度を調整してアフタエアポート用空気流量設定値(A)を補正する制御を行うことを特徴とする燃焼用空気供給量制御方法である。   The invention according to claim 3 includes a burner (17) for burning fuel at a theoretical air ratio or less provided on a wall surface of a furnace (21) for burning fuel, and a furnace (21) on the downstream side of the burner (17). Combustion preheated by an air heater (26) to an after air port (18) with a duct opening / closing damper (23) for injecting a short amount of combustion air in the burner (17) provided on the wall surface into the furnace (21) In the combustion air supply amount control method for controlling the supply amount of the combustion air when supplying the combustion air, the combustion air supply amount control method is predetermined at a predetermined ratio with respect to the air flow rate required for combustion of fuel in the thermal power generation boiler. The after-air port air flow set value (A) is set according to the program, and the absolute value of the deviation (D) between the measured value (B) of the air heater air side outlet pressure and the air heater air side outlet pressure set value (C) is predetermined. When exceeding (T2), the opening degree of the duct opening / closing damper (23) is adjusted so that the deviation (D) becomes equal to or less than the predetermined value (T2), and the after-airport air flow rate set value (A) is set. It is a combustion air supply amount control method characterized by performing correction control.

請求項4記載の発明は、火力発電用ボイラの起動時には、エアヒータ空気側出口圧力の実測値(B)がエアヒータ空気側出口圧力設定値()より小さい値である規定値(T1)に比べて、さらに小さい値である場合には、前記ダクト用ダクト開閉ダンパ(23)を閉じない制御を行うことを特徴とする請求項3記載の燃焼用空気供給制御方法である。 According to the fourth aspect of the present invention, the actual value (B) of the air heater air-side outlet pressure is smaller than the specified value (T1) which is smaller than the air heater air-side outlet pressure set value ( C ) when the thermal power generation boiler is started. 4. The combustion air supply control method according to claim 3, wherein when the value is smaller, the duct opening / closing damper (23) is controlled not to be closed.

(作用)
一般に二段燃焼法では火炉内でのNOx濃度低減のため、バーナ(17)へは理論上必要な空気よりも少なめの燃焼用空気を供給し、残り分をダクト開閉ダンパ(以下OFAダンパという)(23)から供給する。
実際には必要空気流量に対して、ある比率でOFAダンパ(23)の開度によりアフタエアポート用空気流量設定値(A)を決めており、その比率を関数発生器においてプログラム設定している。
(Function)
In general, in the two-stage combustion method, in order to reduce the NOx concentration in the furnace, less burner air is supplied to the burner (17) than theoretically required, and the remainder is a duct open / close damper (hereinafter referred to as OFA damper). Supply from (23).
In practice, the after-air port air flow rate setting value (A) is determined by the opening degree of the OFA damper (23) at a certain ratio with respect to the required air flow rate, and the ratio is set by a program in the function generator.

通常、OFAダンパ(23)は上記比率より決められた前記空気流量設定値(A)に合わせるように制御しているが、請求項1、3記載の発明によれば、例えば、エアヒータ(AH)空気側出口圧力が高くなるとOFAダンパ(23)を開ける方向、つまり前記プログラム設定された流量設定値(A)に補正信号(11)分を加えて、新たに流量設定値(A’)とし、逆にエアヒータ(AH)空気側出口圧力が低ければ、前記プログラム設定された流量設定値(A)から補正信号(11)分を減じて、新たな流量設定値(A’)とする補正を行う。   Normally, the OFA damper (23) is controlled to match the air flow rate setting value (A) determined from the ratio, but according to the inventions of claims 1 and 3, for example, the air heater (AH) When the air-side outlet pressure becomes high, the correction signal (11) is added to the direction in which the OFA damper (23) is opened, that is, the programmed flow rate setting value (A) to obtain a new flow rate setting value (A ′). Conversely, if the air heater (AH) air-side outlet pressure is low, the correction signal (11) is subtracted from the flow rate setting value (A) set in the program to make a new flow rate setting value (A ′). .

このように、本発明で得られる補正後のアフタエアポート用空気流量設定値(A’)は、プログラムにより設定された時間に応じて設定された各時間毎には不変の値(A)にエアヒータ空気側出口圧力の変化に応じた補正値を加えるか、減じて得られる値である。   As described above, the corrected after-air port air flow rate setting value (A ′) obtained in the present invention is set to an invariable value (A) for each time set according to the time set by the program. This value is obtained by adding or subtracting a correction value corresponding to the change in the air-side outlet pressure.

請求項1、3記載の発明によれば、化石燃料を使用するボイラの燃焼用空気の圧力としてエアヒータ空気側出口圧力を用いて、この圧力を最適化して燃焼空気流量制御の正確性を増してボイラ火炉内での燃焼性を改善でき、また、点火トーチ用の燃焼用空気に対しても空気流量を最適化でき、安定な燃焼を提供できる。   According to the first and third aspects of the present invention, the air heater air side outlet pressure is used as the combustion air pressure of the boiler using fossil fuel, and this pressure is optimized to increase the accuracy of the combustion air flow rate control. The combustibility in the boiler furnace can be improved, and the air flow rate can be optimized for the combustion air for the ignition torch, thereby providing stable combustion.

請求項2、4記載の発明によれば、請求項1、3記載の発明の効果に加えて、火力発電用ボイラの起動時においては、前記エアヒータ(26)の空気側出口圧力の実測値が規定値T1より小さい場合には、アフタエアポート(18)への燃焼用空気の供給量の制御を行わないので、燃焼用空気の供給制御が不能になるおそれがない。 According to the invention of claim 2 and 4, wherein, in addition to the effects of the invention of claim 1 and 3 wherein, Oite when starting the boiler for thermal power generation, measured value of the air-side outlet pressure of the air heater (26) Is smaller than the specified value T1, the supply amount of the combustion air to the after-air port (18) is not controlled, so there is no possibility that the supply control of the combustion air cannot be disabled.

以下、本発明の実施例について図1には図2で説明したOFAダンパ23から火炉21内へ供給する未燃分の燃料を完全燃焼させるためのプログラムで得られた空気流量設定値に対する補正信号11を出力させるための制御回路を示す。   FIG. 1 shows a correction signal for an air flow rate set value obtained by a program for completely burning unburned fuel supplied from the OFA damper 23 described in FIG. 11 shows a control circuit for outputting 11.

ボイラ火炉21のウインドボックスダンパ22からバーナ17での燃料の燃焼に必要な空気量より不足気味の空気を供給し、OFAダンパ23からアフタエアポート18に未燃分の燃料を燃焼させる空気を供給することは図2で説明した通りである。   Air that is less than the amount of air necessary for combustion of fuel in the burner 17 is supplied from the wind box damper 22 of the boiler furnace 21, and air that burns unburned fuel is supplied from the OFA damper 23 to the after-air port 18. This is as explained in FIG.

図1に示す制御回路は、エアヒータ26の空気側出口圧力検出器1、ボイラ火炉21への燃料投入量である全燃料流量検出器2及び制御装置(演算装置)16により構成される。なお、制御装置(演算装置)16においてOFA流量設定補正信号11が出力されるとOFAダンパ23の流量制御回路に送信され、OFA流量設定値(A)の補正バイアスとしてOFA流量設定値(A)に加算または減算される。   The control circuit shown in FIG. 1 includes an air-side outlet pressure detector 1 of the air heater 26, a total fuel flow rate detector 2 that is the amount of fuel input to the boiler furnace 21, and a control device (calculation device) 16. When the OFA flow rate setting correction signal 11 is output from the control device (arithmetic unit) 16, it is transmitted to the flow rate control circuit of the OFA damper 23, and the OFA flow rate setting value (A) is used as a correction bias for the OFA flow rate setting value (A). Is added to or subtracted from.

ここで、OFA流量設定値(A)は、火炉内での燃焼条件などに応じて予めプログラムされ、ボイラの起動時から時間の経過と共に変化するように一般的な制御回路で出力されるのでここでは図示していない。本実施例の制御回路16は、このOFA流量設定値(A)に対してエアヒータ26の空気側出口圧力とボイラ火炉21への全燃料流量の変動に対応して、OFA流量設定値(A)に対して空気流量を増加または減少させるための制御回路である。   Here, the OFA flow rate setting value (A) is programmed in advance according to the combustion conditions in the furnace and is output by a general control circuit so as to change with the passage of time from the start of the boiler. Is not shown. The control circuit 16 of the present embodiment responds to the OFA flow rate setting value (A) in response to fluctuations in the air-side outlet pressure of the air heater 26 and the total fuel flow rate to the boiler furnace 21. Is a control circuit for increasing or decreasing the air flow rate.

本発明の制御回路及び制御信号の挙動を図1を用いて説明する。
全燃料流量検出器2の信号に基づき関数発生器3において、全燃料流量検出時のボイラ火炉21の負荷条件に見合ったエアヒータ26の空気側出口圧力設定値(C)を算出し、エアヒータ26の空気側出口圧力実測値(B)であるエアヒータ空気側出口圧力との偏差を減算器4にて算出し、エアヒータ空気側出口圧力設定偏差(D)を得る。
The behavior of the control circuit and the control signal of the present invention will be described with reference to FIG.
Based on the signal from the total fuel flow rate detector 2, the function generator 3 calculates the air side outlet pressure set value (C) of the air heater 26 corresponding to the load condition of the boiler furnace 21 when the total fuel flow rate is detected. The subtractor 4 calculates a deviation from the air heater air side outlet pressure, which is the actual air side outlet pressure value (B), to obtain an air heater air side outlet pressure setting deviation (D).

このエアヒータ空気側出口圧力設定偏差(D)に対してOFA流量設定値(A)を過度に補正動作させないように、前記圧力設定偏差(D)の絶対値が設定値T2以下である場合は、関数発生器6において制御上の不感帯を設け、補正された設定偏差である補正設定偏差7を得る。
この補正設定偏差7に基づき、次のような手順で積分器10においてOFA流量設定の補正バイアスであるOFA流量設定補正信号11を得る。
When the absolute value of the pressure setting deviation (D) is equal to or less than the setting value T2 so that the OFA flow rate setting value (A) is not excessively corrected with respect to the air heater air side outlet pressure setting deviation (D), A dead zone for control is provided in the function generator 6 to obtain a corrected setting deviation 7 which is a corrected setting deviation.
Based on the correction setting deviation 7, the integrator 10 obtains an OFA flow rate setting correction signal 11 which is a correction bias for OFA flow rate setting in the following procedure.

例えば、エアヒータ空気側出口圧力設定偏差(D)が正の数値、つまりエアヒータ空気側出口圧力の実測値(B)が規定値T1を超え、さらにその偏差(D)が前記関数発生器6で定められた不感帯となる所定値T2より大きくなると、OFA流量設定補正信号11も正の数値となり、OFA流量設定値(A)より空気量を増加させるように作用し、その結果としてOFAダンパ23が開動作し、エアヒータ26の空気側出口圧力は低下することとなる。従ってエアヒータ空気側出口圧力が上がり続けることが回避されてエアヒータ空気側出口圧力が下がることになる。   For example, the air heater air side outlet pressure setting deviation (D) is a positive value, that is, the actually measured value (B) of the air heater air side outlet pressure exceeds a specified value T1, and the deviation (D) is determined by the function generator 6. When it becomes larger than the predetermined value T2 that becomes the dead zone, the OFA flow rate setting correction signal 11 also becomes a positive value, and acts to increase the air amount from the OFA flow rate setting value (A), and as a result, the OFA damper 23 is opened. It operates, and the air side outlet pressure of the air heater 26 decreases. Therefore, it is avoided that the air heater air side outlet pressure continues to increase, and the air heater air side outlet pressure decreases.

また、本制御回路はOFA流量設定値(A)を補正してOFAダンパ23を操作することでエアヒータ空気側出口圧力を制御するので、OFAダンパ23が自動制御できる状態の時のみ有効とし、それ以外の時はOFA流量設定補正信号11の出力をゼロとするように、積分器10はOFAダンパ23が自動制御可能の時に積分演算可能とし、それ以外の時は切替器8によって一定の時定数によりアナログ設定器9に切替わるようにして、積分器10はOFA流量設定補正信号11の出力をゼロに戻すものとする。   In addition, this control circuit corrects the OFA flow rate setting value (A) and operates the OFA damper 23 to control the air heater air side outlet pressure. Therefore, this control circuit is effective only when the OFA damper 23 can be automatically controlled. In other cases, the integrator 10 can perform integral calculation when the OFA damper 23 is automatically controllable so that the output of the OFA flow rate setting correction signal 11 is zero. In other cases, the integrator 8 can perform a constant time constant. Therefore, the integrator 10 returns the output of the OFA flow rate setting correction signal 11 to zero.

さらに、ボイラ起動過程等のように、プラント運用上エアヒータ空気側出口圧力が、その設定値(C)に対して継続的に低めとなる場合、本制御回路によりOFAダンパ23が全閉となってしまうことを避けるため、低モニタ12で常時計測しているエアヒータ空気側出口圧力実測値(B)が規定値T1より小さい時には、低モニタ12の信号により切替器13がアナログ設定器15からアナログ設定器14に切替えて、OFA流量設定補正信号11を負の数値としないように積分器10の下限をゼロに設定する。
また、低モニタ12により計測されたエアヒータ空気側出口圧力が規定値T1を超える時には積分器10の下限の規定をしなくても良いので、アナログ設定器15は必ずしも必要ではない。
Further, when the air heater outlet pressure on the plant operation is continuously lower than the set value (C), such as in the boiler starting process, the OFA damper 23 is fully closed by this control circuit. In order to avoid this, when the actual measured value (B) of the air heater air-side outlet pressure, which is constantly measured by the low monitor 12, is smaller than the specified value T1, the switch 13 is set to the analog setting from the analog setting device 15 by the signal of the low monitor 12. The lower limit of the integrator 10 is set to zero so that the OFA flow rate setting correction signal 11 is not negative.
Further, when the air heater air-side outlet pressure measured by the low monitor 12 exceeds the specified value T1, it is not necessary to define the lower limit of the integrator 10, and therefore the analog setting device 15 is not necessarily required.

なお、従来技術や特開昭63−318404号公報、特開平8−261410号公報記載の発明などに記載された方法では前記関数発生器6が設けられていないので、エアヒータ空気側出口圧力設定偏差Dがゼロでない場合は常時圧力制御がされて、OFAダンパ23のプログラム制御に外乱を与えてしまう。   The function generator 6 is not provided in the method described in the prior art or the invention described in Japanese Patent Application Laid-Open No. Sho 63-318404 and Japanese Patent Application Laid-Open No. 8-261410, so that the air heater air side outlet pressure setting deviation is not provided. When D is not zero, pressure control is always performed, and disturbance is given to the program control of the OFA damper 23.

図3には前記ボイラ起動過程でのエアヒータ空気側出口圧力(実測値(B))の時間変化の様子とエアヒータ空気側出口圧力設定値(C)の時間的変化の様子(図3(a))と、予めプログラムにより時間ともに変化するように設定されたOFA流量設定値(A)の時間的変化の様子(図3(b))と、OFAダンパ23の開度の時間的変化の様子(図3(c))を示す。   FIG. 3 shows how the air heater air-side outlet pressure (actual measurement value (B)) changes with time during the boiler start-up process and how the air heater air-side outlet pressure set value (C) changes with time (FIG. 3 (a)). ), The temporal change of the OFA flow rate setting value (A) set in advance so as to change with time according to the program (FIG. 3B), and the temporal change of the opening degree of the OFA damper 23 ( FIG. 3 (c)) is shown.

ボイラ起動過程でエアヒータ空気側出口圧力(実測値(B))が規定値T1より小さいときにはOFAダンパ23の開度調整によるエアヒータ空気側出口圧力制御は行わず、低モニタ12により積分器10の下限値をゼロに設定する。図3(c)の曲線(イ)はエアヒータ空気側出口圧力が規定値T1より小さい時にエアヒータ空気側出口圧力制御を抑制する機能が無い場合のOFAダンパ23の開度の時間的変化を示す。このように曲線(イ)の場合には、ボイラの起動時にエアヒータ空気側出口圧力(=実測値(B))が全燃料流量検出時の負荷条件に見合ったエアヒータ空気側出口圧力設定値(C)より低いので、OFAダンパ23はすぐに全閉してしまい、エアヒータ空気側出口圧力制御ができなくなる。   When the air heater air-side outlet pressure (actual value (B)) is smaller than the specified value T1 during the boiler start-up process, the air heater air-side outlet pressure control is not performed by adjusting the opening degree of the OFA damper 23, and the lower limit of the integrator 10 is determined by the low monitor 12. Set the value to zero. A curve (A) in FIG. 3C shows a temporal change in the opening degree of the OFA damper 23 when there is no function of suppressing the air heater air side outlet pressure control when the air heater air side outlet pressure is smaller than the specified value T1. Thus, in the case of the curve (A), the air heater air-side outlet pressure set value (C) in which the air heater air-side outlet pressure (= measured value (B)) matches the load condition at the time of detecting the total fuel flow rate when the boiler is started. ), The OFA damper 23 is fully closed immediately, and the air heater air-side outlet pressure control cannot be performed.

しかし、本実施例によると、ボイラ起動過程においてエアヒータ空気側出口圧力(実測値(B))が規定値T1を超え、エアヒータ空気側出口圧力設定偏差(D)の絶対値が所定値(T2)を超える場合にのみ、OFAダンパ23を補正動作させて、エアヒータ空気側出口圧力の制御と、OFAダンパ23による二段燃焼に必要な空気流量制御を両立させる。例えば、ボイラ起動時から予めプログラムされた手順に従ってエアヒータ空気側出口圧力設定値(C)が上昇しているときに、図3(a)の斜線部(ロ)に示すようにエアヒータ空気側出口の実際の圧力(B)が、何らかの原因で低下したためエアヒータ空気側出口圧力設定偏差(D=C−B)が設定値T2を超えた場合には、偏差(D)がエアヒータ空気側出口圧力の設定値T2を超えないように図1に示すOFA流量設定値(A)の補正信号11の出力値により、図3(b)に示す予めプログラムで設定されたOFA流量設定値(A)より下方の点線(ハ)で示すように、前記設定値(A)の補正後の設定値(A’)を出力する。その結果、OFAダンパ23を閉方向に補正動作する(図3(c)の(ニ))。   However, according to the present embodiment, the air heater air side outlet pressure (actual value (B)) exceeds the specified value T1 in the boiler starting process, and the absolute value of the air heater air side outlet pressure setting deviation (D) is a predetermined value (T2). Only when the value exceeds the value, the OFA damper 23 is corrected so that both the control of the air heater outlet pressure and the air flow rate control necessary for the two-stage combustion by the OFA damper 23 are achieved. For example, when the air heater air side outlet pressure set value (C) is increasing in accordance with a pre-programmed procedure from the start of the boiler, as shown in the hatched portion (b) of FIG. When the air heater air-side outlet pressure setting deviation (D = CB) exceeds the set value T2 because the actual pressure (B) has decreased for some reason, the deviation (D) is the setting of the air heater air-side outlet pressure. The output value of the correction signal 11 of the OFA flow set value (A) shown in FIG. 1 so as not to exceed the value T2 is lower than the OFA flow set value (A) set in advance by the program shown in FIG. As indicated by the dotted line (c), the set value (A ′) after the correction of the set value (A) is output. As a result, the OFA damper 23 is corrected in the closing direction ((d) in FIG. 3C).

なお、二段燃焼用空気ダンパを具備したボイラにおいて、エアヒータ空気側出口圧力の設定偏差(D)が大きくなり制御範囲を逸脱した場合に、バーナ17に供給するウィンドボックスダンパ22に補正を加え、エアヒータ空気側出口圧力を制御範囲に引戻すような制御回路を具備した従来技術があるが、この従来技術のウィンドボックスダンパ22は主にバーナ17の燃焼用空気流量制御をしており、エアヒータ26の空気側出口圧力の制御による補正を加えると燃焼バランスがずれるおそれがある。   In a boiler equipped with a two-stage combustion air damper, when the set deviation (D) of the air heater air-side outlet pressure becomes large and deviates from the control range, a correction is applied to the windbox damper 22 supplied to the burner 17, Although there is a conventional technique including a control circuit for returning the air heater outlet pressure to the control range, the wind box damper 22 of this prior art mainly controls the combustion air flow rate of the burner 17, and the air heater 26. If the correction by the control of the air side outlet pressure is added, the combustion balance may be shifted.

一方、本実施例ではOFAダンパ23も通常、二段燃焼用空気流量を制御しているので、本実施例によるOFAダンパ23への補正動作は二段燃焼のバランスがずれるおそれがあるが、ウィンドボックスダンパ22のように主燃焼に関わっているのでは無いので、最終的な燃焼ガスへの影響、すなわち燃焼ガス中のNOx濃度やCO濃度の増加は小さく、技術的に改善されている。   On the other hand, since the OFA damper 23 normally controls the flow rate of the air for two-stage combustion in this embodiment, the correction operation to the OFA damper 23 according to this embodiment may cause the balance of the two-stage combustion to shift. Since it is not involved in the main combustion unlike the box damper 22, the influence on the final combustion gas, that is, the increase in NOx concentration and CO concentration in the combustion gas is small and technically improved.

さらに、従来技術ではバーナ17が点火されていない場合にウィンドボックスダンパ22は規定開度に固定されて、ダンパ開度補正が無効となり、エアヒータ空気側出口圧力を常時制御できないといった欠点がある。しかし、本実施例では燃焼操作(バーナ17の点火操作)中にOFAダンパ23が規定開度に固定されることは無いので、従来技術における上記欠点は解消される。   Further, in the prior art, when the burner 17 is not ignited, the wind box damper 22 is fixed at a specified opening, and the damper opening correction becomes invalid, and the air heater air side outlet pressure cannot be controlled at all times. However, in this embodiment, since the OFA damper 23 is not fixed at the specified opening during the combustion operation (ignition operation of the burner 17), the above disadvantages in the prior art are eliminated.

本発明は、石炭や石油などの化石燃料を利用する火力発電用ボイラ等の空気流量制御に好適な置と方法として産業上の利用可能性がある。
The present invention has the availability of the coal and industrial Suitable equipment and methods to the air flow rate control of the thermal power boiler or the like that utilize fossil fuels such as oil.

本発明の実施例に関わる制御回路図である。It is a control circuit diagram concerning the Example of this invention. ボイラ火炉のバーナとOFAへの燃料用空気の供給系統例を示す構成図である。It is a block diagram which shows the example of the supply system of the fuel air to the burner and OFA of a boiler furnace. 本発明の実施例のボイラ起動過程でのエアヒータ空気側出口圧力と時間変化の関係を示すグラフ(図3(a))と、OFA流量設定値Aと時間的変化の関係を示すグラフ(図3(b))と、OFAダンパの開度と時間的変化の関係を示すグラフ(図3(c))である。The graph (FIG. 3 (a)) which shows the relationship between the air heater air side outlet pressure and time change in the boiler starting process of the Example of this invention, and the graph which shows the relationship between OFA flow rate setting value A and time change (FIG. 3) FIG. 3B is a graph showing the relationship between the opening degree of the OFA damper and the temporal change (FIG. 3C).

符号の説明Explanation of symbols

1 エアヒータ空気側出口圧力検出器
2 全燃料流量検出器 3 関数発生器
4 減算器 6 関数発生器
7 補正設定偏差 8 切替器
9 アナログ設定器 10 積分器
11 OFA流量設定補正信号 12 低モニタ
13 切替器 14 アナログ設定器
15 アナログ設定器 16 演算装置
17 バーナ 18 アフターエアポート
19 分岐ダクト 20 空気ダクト
21 ボイラ火炉 22 ウィンドボックスダンパ
23 二段燃焼用空気ダンパ(OFAダンパ)
24 押し込み通風機(FDF) 26 エアヒータ
A アフタエアポート用空気流量設定値(OFA流量設定値)
B エアヒータ空気側出口圧力実測値
C エアヒータ空気側出口圧力設定値
D エアヒータ空気側出口圧力設定偏差
T1 規定値 T2 所定値
DESCRIPTION OF SYMBOLS 1 Air heater air side outlet pressure detector 2 Total fuel flow rate detector 3 Function generator 4 Subtractor 6 Function generator 7 Correction setting deviation 8 Switch 9 Analog setting device 10 Integrator 11 OFA flow rate setting correction signal 12 Low monitor 13 switching 14 Analog setter 15 Analog setter 16 Arithmetic unit 17 Burner 18 After air port 19 Branch duct 20 Air duct 21 Boiler furnace 22 Wind box damper 23 Two-stage combustion air damper (OFA damper)
24 Push-in ventilator (FDF) 26 Air heater
A After-air port air flow rate setting value (OFA flow rate setting value)
B Air heater air side outlet pressure measured value C Air heater air side outlet pressure set value D Air heater air side outlet pressure setting deviation T1 Specified value T2 Predetermined value

Claims (4)

燃料を燃焼させる火炉(21)と、該火炉(21)の壁面に設けた理論空気比以下で燃料を燃焼させるバーナ(17)と、該バーナ(17)の後流側の火炉(21)の壁面に設けた前記バーナ(17)での不足分の燃焼用空気を火炉(21)内に噴出するアフタエアポート(18)と、前記バーナ(17)とアフタエアポート(18)に予熱された燃焼用空気を供給する空気ダクト(20)と、該空気ダクト(20)に設けた空気を予熱するエアヒータ(26)と、該エアヒータ(26)で予熱された空気の一部をアフタエアポート(18)に供給するために、ダクト開閉ダンパ(23)付きの分岐ダクト(19)と、火炉(21)内での燃料の燃焼に必要空気流量に対して所定の比率で予め決められたプログラムに従ってアフタエアポート用空気流量設定値(A)が設定されている燃焼制御装置(16)とを備えた火力発電用ボイラにおいて、
前記燃焼制御装置(16)は、
(a)前記エアヒータ(26)で予熱された空気の圧力を測定するエアヒータ空気側出口圧力測定手段(1)と、
(b)前記バーナ(17)に供給する燃料流量を測定する燃料流量測定手段(2)と、
(c)該燃料流量測定手段(2)により測定される燃料流量に応じて算出されるエアヒータ空気側出口圧力設定値算出手段(3)と、
(d)該エアヒータ空気側出口圧力測定手段(1)で測定されるエアヒータ空気側出口圧力実測値(B)と前記エアヒータ空気側出口圧力設定値算出手段(3)より算出されるエアヒータ空気側出口圧力設定値(C)との偏差(D)を算出するエアヒータ空気側出口圧力設定値偏差算出手段(4)と、
(e)前記エアヒータ空気側出口圧力偏差(D)の絶対値が所定値(T2)を超える場合には、前記偏差(D)が前記所定値(T2)以下になるようにダクト開閉ダンパ(23)の開度を調整してアフタエアポート用空気流量設定値(A)を補正する制御信号(11)の信号発生手段(10)と
を備えていることを特徴とする火力発電用ボイラ。
A furnace (21) for burning fuel, a burner (17) for burning fuel at a theoretical air ratio or less provided on a wall surface of the furnace (21), and a furnace (21) on the downstream side of the burner (17) A combustion air preheated by the burner (17) and the after-air port (18), and an after-air port (18) for jetting a short amount of combustion air from the burner (17) provided on the wall surface into the furnace (21) the air duct that to supply air (20), said air duct air heater for preheating the air which is provided in (20) and (26), some after-air ports of the air preheated by the air heater (26) (18 ) And a branch duct (19) with a duct opening / closing damper (23), and an after-treatment according to a program determined in advance at a predetermined ratio with respect to the air flow rate required for combustion of fuel in the furnace (21). Airport In thermal power boiler with an air flow rate setpoint combustion control apparatus (A) is set (16),
The combustion control device (16)
(A) air heater air side outlet pressure measuring means (1) for measuring the pressure of air preheated by the air heater (26);
(B) fuel flow rate measuring means (2) for measuring the flow rate of fuel supplied to the burner (17);
(C) an air heater air side outlet pressure set value calculation means (3) calculated according to the fuel flow rate measured by the fuel flow rate measurement means (2);
(D) The air heater air side outlet pressure measured value (B) measured by the air heater air side outlet pressure measuring means (1) and the air heater air side outlet pressure calculated by the air heater air side outlet pressure set value calculating means (3). An air heater air side outlet pressure set value deviation calculating means (4) for calculating a deviation (D) from the pressure set value (C);
(E) When the absolute value of the air heater air side outlet pressure deviation (D) exceeds a predetermined value (T2), the duct opening / closing damper (23) is set so that the deviation (D) is equal to or less than the predetermined value (T2). And a signal generation means (10) for a control signal (11) for adjusting the after-air port air flow rate set value (A) by adjusting the opening degree of the thermal power generation boiler.
前記燃焼制御装置(16)は、起動時にはエアヒータ空気側出口圧力実測値(B)が、エアヒータ空気側出口圧力設定値(C)より小さい値である規定値(T1)に比べて、さらに小さい値である場合には、前記ダクト用ダクト開閉ダンパ(23)を閉じない制御を行うことを特徴とする請求項1記載の火力発電用ボイラ。   When the combustion control device (16) is started, the measured value (B) of the air heater air side outlet pressure is smaller than the specified value (T1) which is smaller than the air heater air side outlet pressure set value (C). If it is, the boiler for thermal power generation according to claim 1, wherein control is performed so as not to close the duct opening / closing damper (23). 燃料を燃焼させる火炉(21)の壁面に設けた理論空気比以下で燃料を燃焼させるバーナ(17)と該バーナ(17)の後流側の火炉(21)の壁面に設けた前記バーナ(17)での不足分の燃焼用空気を火炉(21)内に噴出するダクト開閉ダンパ(23)付きのアフタエアポート(18)にそれぞれエアヒータ(26)で予熱された燃焼用空気を供給するに際して、該燃焼用空気の供給量を制御する燃焼用空気供給量制御方法において、
火力発電用ボイラでの燃料の燃焼に必要空気流量に対して所定の比率で予め決められたプログラムに従ってアフタエアポート用空気流量設定値(A)を設定し、
エアヒータ空気側出口圧力の実測値(B)とエアヒータ空気側出口圧力設定値(C)との偏差(D)の絶対値が所定値(T2)を超える場合には、前記偏差(D)が前記所定値(T2)以下になるようにダクト開閉ダンパ(23)の開度を調整してアフタエアポート用空気流量設定値(A)を補正する制御を行うことを特徴とする燃焼用空気供給量制御方法。
The burner (17) for burning fuel at a theoretical air ratio or less provided on the wall surface of the furnace (21) for burning fuel and the burner (17) provided on the wall surface of the furnace (21) on the downstream side of the burner (17) When the combustion air preheated by the air heater (26) is supplied to the after air port (18) with the duct opening / closing damper (23) for injecting the shortage of combustion air into the furnace (21). In the combustion air supply amount control method for controlling the supply amount of combustion air,
The after-air port air flow rate setting value (A) is set according to a predetermined program at a predetermined ratio with respect to the air flow rate required for fuel combustion in the boiler for thermal power generation,
When the absolute value of the deviation (D) between the measured value (B) of the air heater air side outlet pressure and the air heater air side outlet pressure set value (C) exceeds a predetermined value (T2), the deviation (D) is Combustion air supply amount control characterized in that control is performed to correct the after-airport air flow rate setting value (A) by adjusting the opening of the duct opening / closing damper (23) so as to be equal to or less than a predetermined value (T2). Method.
火力発電用ボイラの起動時には、エアヒータ空気側出口圧力の実測値(B)がエアヒータ空気側出口圧力設定値()より小さい値である規定値(T1)に比べて、さらに小さい値である場合には、前記ダクト用ダクト開閉ダンパ(23)を閉じない制御を行うことを特徴とする請求項3記載の燃焼用空気供給制御方法。 When the thermal power generation boiler is started, the measured value (B) of the air heater air side outlet pressure is smaller than the specified value (T1), which is smaller than the air heater air side outlet pressure set value ( C ). 4. The combustion air supply control method according to claim 3, wherein control is performed so as not to close the duct opening / closing damper (23).
JP2005277261A 2005-09-26 2005-09-26 Thermal power generation boiler and combustion air supply control method Expired - Fee Related JP4605656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277261A JP4605656B2 (en) 2005-09-26 2005-09-26 Thermal power generation boiler and combustion air supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005277261A JP4605656B2 (en) 2005-09-26 2005-09-26 Thermal power generation boiler and combustion air supply control method

Publications (3)

Publication Number Publication Date
JP2007085682A JP2007085682A (en) 2007-04-05
JP2007085682A5 JP2007085682A5 (en) 2008-08-21
JP4605656B2 true JP4605656B2 (en) 2011-01-05

Family

ID=37972821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277261A Expired - Fee Related JP4605656B2 (en) 2005-09-26 2005-09-26 Thermal power generation boiler and combustion air supply control method

Country Status (1)

Country Link
JP (1) JP4605656B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968412B (en) * 2014-03-28 2016-02-24 广东电网公司电力科学研究院 The acquisition methods of combustion characteristics under different CCOFA wind and SOFA wind ratio after boiler improvement
CN103994463B (en) * 2014-03-28 2016-09-28 广东电网公司电力科学研究院 The acquisition methods of the lower combustion characteristics of different coal pulverizer combinations after boiler improvement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318404A (en) * 1987-06-22 1988-12-27 Ishikawajima Harima Heavy Ind Co Ltd Air supplying device for coal-burning boiler
JPH08261410A (en) * 1995-03-20 1996-10-11 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for reducing nitrogen oxide of pulverized coal burning boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318404A (en) * 1987-06-22 1988-12-27 Ishikawajima Harima Heavy Ind Co Ltd Air supplying device for coal-burning boiler
JPH08261410A (en) * 1995-03-20 1996-10-11 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for reducing nitrogen oxide of pulverized coal burning boiler

Also Published As

Publication number Publication date
JP2007085682A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
WO2020015694A1 (en) Combustion air volume control system and method for biomass boiler
JP2008145007A (en) Coal burning boiler
JP2011099608A (en) Boiler combustion control device
JP6153090B2 (en) Waste incinerator and waste incineration method
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JPH025975B2 (en)
JP4184291B2 (en) Combustion method of garbage by stoker type incinerator
JP4859512B2 (en) Combustion boiler control method
CN115479276A (en) Control device, waste incineration facility, control method, and program
JP7054094B2 (en) Combustion control method, waste incinerator power generation equipment
JP7210125B2 (en) Combustion equipment
JP7210126B2 (en) Combustion equipment
JPS62276322A (en) Nitrogen oxide reducing device
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPS6023717A (en) Method of controlling amount of combustion air in coal burning boiler
WO2024048029A1 (en) Combustion control method for combustion facility
JP4463220B2 (en) Exhaust reburning burner device
JP2612284B2 (en) Combustion equipment
JPS60263014A (en) Combustion controlling method
JP2007024425A (en) Composite boiler system, and its operating method
RU2416759C1 (en) Procedure for automatic control of interconnected processes of direct flow boiler loading under conditions of process limits
JPH11108327A (en) Garbage incinerator and combustion control method
JP2007139412A (en) Refuse incineration plant regulation method using operation of support burner
JPH0419445B2 (en)
JP3769660B2 (en) Water heater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

R150 Certificate of patent or registration of utility model

Ref document number: 4605656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees