JP7054094B2 - Combustion control method, waste incinerator power generation equipment - Google Patents

Combustion control method, waste incinerator power generation equipment Download PDF

Info

Publication number
JP7054094B2
JP7054094B2 JP2019095532A JP2019095532A JP7054094B2 JP 7054094 B2 JP7054094 B2 JP 7054094B2 JP 2019095532 A JP2019095532 A JP 2019095532A JP 2019095532 A JP2019095532 A JP 2019095532A JP 7054094 B2 JP7054094 B2 JP 7054094B2
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
waste
combustion air
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019095532A
Other languages
Japanese (ja)
Other versions
JP2020190364A (en
Inventor
政一 加藤
秀雄 菅原
倹吾 増田
良二 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Plantec Inc
Original Assignee
Tokyo Denki University
Plantec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University, Plantec Inc filed Critical Tokyo Denki University
Priority to JP2019095532A priority Critical patent/JP7054094B2/en
Publication of JP2020190364A publication Critical patent/JP2020190364A/en
Application granted granted Critical
Publication of JP7054094B2 publication Critical patent/JP7054094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、ごみ焼却炉の燃焼制御方法、及び、ごみ焼却炉に廃熱ボイラが付設されたごみ焼却炉発電設備に関する。 The present invention relates to a method for controlling combustion of a waste incinerator and a waste incinerator power generation facility in which a waste heat boiler is attached to the waste incinerator.

社会生活に伴って排出される廃棄物を処理するための焼却炉は、廃棄物の焼却処理によって膨大な熱エネルギーを持った排ガスを生じる。そのため、焼却設備の構造としては、排ガスの廃熱を熱源として利用するボイラ(廃熱ボイラ)が付帯されたものが一般的である。 An incinerator for treating waste discharged from social life produces exhaust gas with enormous heat energy by incinerating the waste. Therefore, the structure of the incineration facility is generally equipped with a boiler (waste heat boiler) that uses the waste heat of the exhaust gas as a heat source.

この種の焼却設備においては、廃棄物の燃焼量を廃棄物の供給量、送り速度、一次燃焼空気量とその分配等によって調節することにより、ボイラの発生蒸気量を一定とするための燃焼制御が行われることが多い。 In this type of incinerator, combustion control is performed to keep the amount of steam generated by the boiler constant by adjusting the amount of waste burned according to the amount of waste supplied, feed rate, amount of primary combustion air and its distribution, etc. Is often done.

しかしながら、炉内に供給される廃棄物の性質(燃料の成分、発熱量等)は一定していないため、これらを制御したとしても、廃棄物の急燃焼や難燃、或いは急燃焼に起因するその後の炉内残留廃棄物不足などが生じる場合があり、蒸発量を一定に維持することが困難となる場合がある。 However, the properties of the waste supplied into the furnace (fuel composition, calorific value, etc.) are not constant, so even if these are controlled, it is caused by rapid combustion, flame retardancy, or rapid combustion of the waste. Subsequent shortage of residual waste in the furnace may occur, and it may be difficult to maintain a constant amount of evaporation.

この点に鑑み、下記特許文献1では、ボイラ水の蒸発量と燃焼火格子上の廃棄物量とを周期的に測定し、廃棄物量と蒸発量とに基づいて廃棄物供給量や乾燥火格子速度を制御する技術を提案している。 In view of this point, in Patent Document 1 below, the evaporation amount of boiler water and the amount of waste on the combustion grate are periodically measured, and the waste supply amount and the dry grate speed are measured based on the waste amount and the evaporation amount. We are proposing a technology to control.

特開平09‐273731号公報Japanese Unexamined Patent Publication No. 09-273731

前記特許文献1に開示された技術は、ボイラ水の蒸発量を、燃焼制御の基本としている。
しかし、焼却炉及びボイラのプロセスは、前者の燃焼系と、後者のボイラ系(排ガスとボイラ水の熱交換)に大別される。ボイラ系の時定数は、燃焼系に比べて非常に長いので、ボイラ水の蒸発量のみで制御を行った場合には、廃棄物の性質変化による燃焼状態の急変に対応することが困難になり、ボイラ水の蒸発量の変動を招来することになる。
The technique disclosed in Patent Document 1 is based on the amount of evaporation of boiler water as the basis of combustion control.
However, the incinerator and boiler processes are roughly divided into the former combustion system and the latter boiler system (heat exchange between exhaust gas and boiler water). Since the time constant of the boiler system is much longer than that of the combustion system, it becomes difficult to respond to sudden changes in the combustion state due to changes in the properties of waste when controlling only by the amount of evaporation of boiler water. , Will cause fluctuations in the amount of evaporation of boiler water.

また、従来の水平式ストーカ炉では乾燥、燃焼、後燃焼の各工程で燃焼状態が異なるため、火格子速度や一次燃焼空気の投入位置と量の調整等複雑な制御が必要であった。 Further, in the conventional horizontal stoker furnace, since the combustion state is different in each process of drying, combustion, and post-combustion, complicated control such as adjustment of the grate speed and the input position and amount of the primary combustion air is required.

一方、竪型ごみ焼却炉では、上記の水平式ストーカ炉とは異なり、ごみを垂直方向に重ねて堆積層の下部から一次燃焼空気を空気比0.2~0.8で一定量供給し、堆積層下部の燃焼量を一定とすることが可能である。よって、水平式ストーカ炉のような複雑な制御を行うことなくボイラ蒸発量の変動の抑制が可能であり、また、これに加えて火格子上の蓄熱量が水平式ストーカ炉より大きいため安定性も優れている。ただし、燃焼量が一定であっても廃棄物の組成によって発生する熱分解ガスの組成が変動し、炉出口温度を制御した場合に排ガス量の変動があり蒸発量の変動幅は±10%程度となり、最近求められる±5%(望ましくは±3%)以内とすることは困難であった。 On the other hand, in the vertical waste incinerator, unlike the above horizontal stoker furnace, waste is stacked vertically and a certain amount of primary combustion air is supplied from the lower part of the sedimentary layer at an air ratio of 0.2 to 0.8, and the lower part of the sedimentary layer. It is possible to keep the amount of combustion constant. Therefore, it is possible to suppress fluctuations in the amount of boiler evaporation without performing complicated control as in a horizontal stoker furnace, and in addition, the amount of heat stored on the grate is larger than that of a horizontal stoker furnace, so stability is achieved. Is also excellent. However, even if the combustion amount is constant, the composition of the pyrolysis gas generated varies depending on the composition of the waste, and when the furnace outlet temperature is controlled, the amount of exhaust gas fluctuates and the fluctuation range of the evaporation amount is about ± 10%. It was difficult to keep it within the recently required ± 5% (preferably ± 3%).

本発明は前記技術的課題に鑑みて開発されたものであり、廃熱ボイラが付帯されたごみ焼却炉の稼働時におけるボイラ水の蒸発量を好適に制御し得る新規な燃焼制御方法、及びごみ焼却炉発電設備を提供することを目的とする。 The present invention has been developed in view of the above technical problems, and is a novel combustion control method capable of suitably controlling the amount of evaporation of boiler water during operation of a waste incinerator with a waste heat boiler, and waste. The purpose is to provide incinerator power generation equipment.

前記技術的課題を解決するための本発明の燃焼制御方法は、炉内に投入された廃棄物が形成する堆積層の下部より一次燃焼空気を供給しながら廃棄物を燃焼させる一次燃焼行程と、前記一次燃焼行程の実行によって発生した可燃性ガスにつき二次燃焼空気を供給しながら燃焼させる二次燃焼行程と、前記一次燃焼行程及び前記二次燃焼行程の実行によって発生した排ガスの廃熱を利用してボイラ発電を行うボイラ発電工程と、を実行することにより廃棄物を焼却処理すると共に発電を行うごみ焼却炉発電設備における燃焼制御方法であって、ボイラ水の蒸発量の変化に応じて、二次燃焼空気の供給量を変えるフィードバック制御に先行して、排ガスの熱量の変化に応じて、二次燃焼空気の供給量を変える先行要素制御を行うことを特徴とする(以下、「本発明制御方法」と称する。)。 The combustion control method of the present invention for solving the above technical problems includes a primary combustion stroke in which the waste is burned while supplying the primary combustion air from the lower part of the sedimentary layer formed by the waste put into the furnace. Utilizing the secondary combustion stroke in which the combustible gas generated by the execution of the primary combustion stroke is burned while supplying the secondary combustion air, and the waste heat of the exhaust gas generated by the execution of the primary combustion stroke and the secondary combustion stroke. It is a combustion control method in a waste incinerator power generation facility that incinerates waste and generates power by executing the boiler power generation process that generates boiler water. Prior to the feedback control that changes the supply amount of the secondary combustion air, the preceding element control that changes the supply amount of the secondary combustion air according to the change in the calorific value of the exhaust gas is performed (hereinafter, "the present invention"). Control method ").

前記本発明制御方法においては、前記先行要素制御では、二次燃焼空気の供給量で排ガスの熱量を制御するが、炉内温度が設定範囲に収まるように、炉内冷却水の供給量により微調整を行うことが好ましい態様となる。 In the control method of the present invention, in the preceding element control, the heat amount of the exhaust gas is controlled by the supply amount of the secondary combustion air, but it is finely controlled by the supply amount of the cooling water in the furnace so that the temperature in the furnace falls within the set range. It is a preferable embodiment to make adjustments.

前記本発明制御方法においては、前記フィードバック制御では、前記先行要素制御で排ガスの熱量を判断した後、ボイラ水の蒸発量を判断するもので、二次燃焼空気の供給量により微調整を行う。 In the control method of the present invention, in the feedback control, the calorific value of the exhaust gas is determined by the preceding element control, and then the evaporation amount of the boiler water is determined, and fine adjustment is performed according to the supply amount of the secondary combustion air.

前記本発明制御方法においては、前記先行要素制御では、更に、炉内温度を設定範囲に収め、且つ、排ガスの熱量に応じて、一次燃焼空気の供給量を変えることが好ましい態様となる。 In the control method of the present invention, in the preceding element control, it is preferable to further keep the temperature inside the furnace within the set range and change the supply amount of the primary combustion air according to the amount of heat of the exhaust gas.

前記技術的課題を解決するための本発明のごみ焼却炉発電設備は、炉内に投入された廃棄物が形成する堆積層の下部より一次燃焼空気を供給しながら廃棄物を燃焼させると共に、発生した可燃性ガスにつき二次燃焼空気を供給しながら燃焼させるごみ焼却炉と、前記ごみ焼却炉の稼働により発生した排ガスの廃熱を利用してボイラ発電を行う廃熱ボイラと、を具備するごみ焼却炉発電設備であって、排ガスの炉出口温度を測定するための排ガス温度測定器と、排ガスの流量を測定するための排ガス流量測定器と、ボイラ水の蒸発量を測定するための蒸気量測定器と、が備えられてなり、更に、前記蒸気量測定器によって測定されたボイラ水の蒸発量の変化に応じて、二次燃焼空気の供給量を変えるフィードバック制御と、前記排ガス温度測定器によって測定された排ガスの温度及び前記排ガス流量測定器によって測定された排ガスの流量の変化により予想される排ガス熱量の変化に応じて、二次燃焼空気の供給量を変える先行要素制御と、を行う制御装置を具備することを特徴とする(以下、「本発明発電設備」と称する。)。 The waste incinerator power generation facility of the present invention for solving the above technical problems burns and generates waste while supplying primary combustion air from the lower part of the sedimentary layer formed by the waste put into the furnace. Waste that includes a waste incinerator that burns combustible gas while supplying secondary combustion air, and a waste heat boiler that uses the waste heat of exhaust gas generated by the operation of the waste incinerator to generate boiler power. An incinerator power generation facility, an exhaust gas temperature measuring device for measuring the furnace outlet temperature of exhaust gas, an exhaust gas flow rate measuring device for measuring the flow rate of exhaust gas, and a steam amount for measuring the evaporation amount of boiler water. A measuring instrument is provided, and further, a feedback control that changes the supply amount of secondary combustion air according to a change in the amount of evaporation of boiler water measured by the steam amount measuring device, and the exhaust gas temperature measuring device. Preceding element control that changes the supply amount of secondary combustion air according to the change in the amount of heat of the exhaust gas expected due to the change in the temperature of the exhaust gas measured by the above-mentioned exhaust gas flow meter and the change in the flow rate of the exhaust gas measured by the exhaust gas flow rate measuring device. It is characterized by being provided with a control device (hereinafter, referred to as "the power generation facility of the present invention").

前記本発明発電設備においては、前記廃熱ボイラより煙道の下流に、排ガス中に含まれる粉塵を除去するための集塵装置が設けられてなり、前記集塵装置を通過した排ガスの流量を測定すべく、前記排ガス流量測定器が前記集塵装置の下流に備えられてなるものが好ましい態様となる。 In the power generation facility of the present invention, a dust collector for removing dust contained in the exhaust gas is provided downstream of the flue from the waste heat boiler, and the flow rate of the exhaust gas passing through the dust collector is measured. In order to measure, it is preferable that the exhaust gas flow rate measuring device is provided downstream of the dust collector.

本発明によれば、廃熱ボイラが付帯されたごみ焼却炉の稼働時におけるボイラ水の蒸発量を制御することができ、もって安定した発電量を得ることができる。 According to the present invention, it is possible to control the amount of evaporation of boiler water during operation of a waste incinerator with a waste heat boiler, and it is possible to obtain a stable amount of power generation.

図1は、本発明発電設備の一実施形態を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the power generation facility of the present invention. 図2は、前記本発明発電設備の制御装置を示すブロック図である。FIG. 2 is a block diagram showing a control device for the power generation facility of the present invention. 図3は、前記制御装置の制御概念を示す制御系ブロック線図である。FIG. 3 is a control system block diagram showing a control concept of the control device. 図4は、前記制御装置によるフィードバック制御の制御手順を示すフローチャートである。FIG. 4 is a flowchart showing a control procedure of feedback control by the control device. 図5は、前記制御装置による先行要素制御の制御手順を示すフローチャートである。FIG. 5 is a flowchart showing a control procedure for controlling the preceding element by the control device. 図6は、本発明発電設備の他の実施形態を示す概略図である。FIG. 6 is a schematic view showing another embodiment of the power generation facility of the present invention.

以下、本発明の実施形態を、図面を参照しながら説明するが、本発明はこれらの実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.

[本発明発電設備(1)]
図1に本発明発電設備1の一実施形態を示す。前記本発明発電設備1は、「ごみ焼却炉(2)」と、「廃熱ボイラ(3)」と、を具備してなり、図2に示す「制御装置(4)」を更に具備する。
[Power generation equipment of the present invention (1)]
FIG. 1 shows an embodiment of the power generation facility 1 of the present invention. The power generation facility 1 of the present invention includes a "waste incinerator (2)" and a "waste heat boiler (3)", and further includes a "control device (4)" shown in FIG.

<ごみ焼却炉2>
本実施形態における前記ごみ焼却炉2は、炉21内に投入された廃棄物W が形成する堆積層W1の下部より「一次燃焼空気」を供給しながら廃棄物Wを燃焼させると共に、発生した可燃性ガスにつき「二次燃焼空気」を供給しながら燃焼させる燃焼方式を採用したいわゆる「竪型ごみ焼却炉」である。燃焼処理によって生じた「排ガス」は、炉出口22を通じて排出される。又、前記ごみ焼却炉2では、「炉内冷却水」を噴霧することによって、炉21内の燃焼状態を抑制し、もって炉21の高温化を防止し得る仕組みを採用している。
<Waste incinerator 2>
The waste incinerator 2 in the present embodiment burns the waste W while supplying "primary combustion air" from the lower part of the sedimentary layer W1 formed by the waste W put into the furnace 21, and the generated combustible. It is a so-called "vertical waste incinerator" that employs a combustion method that burns while supplying "secondary combustion air" for sex gas. The "exhaust gas" generated by the combustion treatment is discharged through the furnace outlet 22. Further, the waste incinerator 2 employs a mechanism that can suppress the combustion state in the furnace 21 by spraying "cooling water in the furnace" and thereby prevent the temperature of the furnace 21 from becoming high.

‐一次燃焼空気‐
本実施形態においては、一次燃焼空気につき一次燃焼空気供給ラインAL1を通じて供給している。前記一次燃焼空気供給ラインAL1は、一端が一次空気押し込み用ファンF1に連結され、他端が前記ごみ焼却炉2の炉21の下部に至るように配された配管であり、管路の途中に一次燃焼空気の供給量を決定する一次バルブ(ダンパ)V1が設けられている。
-Primary combustion air-
In the present embodiment, the primary combustion air is supplied through the primary combustion air supply line AL1. The primary combustion air supply line AL1 is a pipe in which one end is connected to the primary air pushing fan F1 and the other end is arranged so as to reach the lower part of the furnace 21 of the waste incinerator 2. A primary valve (damper) V1 that determines the amount of primary combustion air supplied is provided.

‐二次燃焼空気‐
本実施形態においては、二次燃焼空気につき二次燃焼空気供給ラインAL2を通じて供給している。前記二次燃焼空気供給ラインAL2は、一端が二次空気押し込み用ファンF2に連結され、他端が前記ごみ焼却炉2の炉21内に至るように配された配管であり、管路の途中に二次燃焼空気の供給量を決定する二次バルブ(ダンパ)V2が設けられている。
-Secondary combustion air-
In the present embodiment, the secondary combustion air is supplied through the secondary combustion air supply line AL2. The secondary combustion air supply line AL2 is a pipe in which one end is connected to the secondary air pushing fan F2 and the other end is arranged so as to reach the inside of the furnace 21 of the waste incinerator 2. Is provided with a secondary valve (damper) V2 that determines the supply amount of secondary combustion air.

‐排ガス‐
本実施形態では、前記廃棄物Wの燃焼に伴い発生する可燃性ガスにつき、まず、主燃焼室211において燃やし、次いで、整流装置23を通過した可燃性ガスを再燃焼室212において完全燃焼している。燃焼処理によって生じた排ガスは、炉出口22を通過し、排ガスラインGLに沿って輸送される。本実施形態では、排ガスを前記廃熱ボイラ3に供給した後、排ガスの余熱を利用して給水を予熱するエコノマイザ5、排ガスに含まれる粉塵を除去する集塵装置(バグフィルタ)6を順に通過させ、煙突7を通じて大気に排出する排ガスラインGLを構築している。又、前記排ガスの流れにつき、前記集塵装置6と前記煙突7との間に設けられたガス誘引ファンF3によって形成している。なお、本実施形態においては、前記炉出口22を通過する排ガスの温度を測定するための「排ガス温度測定器(24)」を前記炉出口22に備え、前記炉出口22を通過した排ガスの流量を測定するための「排ガス流量測定器(25)」を前記排ガスラインGLに備えている。
-Exhaust gas-
In the present embodiment, the combustible gas generated by the combustion of the waste W is first burned in the main combustion chamber 211, and then the combustible gas that has passed through the rectifying device 23 is completely burned in the recombustion chamber 212. There is. The exhaust gas generated by the combustion treatment passes through the furnace outlet 22 and is transported along the exhaust gas line GL. In the present embodiment, after the exhaust gas is supplied to the waste heat boiler 3, the economizer 5 that preheats the water supply by using the residual heat of the exhaust gas and the dust collector (bug filter) 6 that removes the dust contained in the exhaust gas pass in order. The exhaust gas line GL is constructed so that the exhaust gas is discharged to the atmosphere through the chimney 7. Further, the flow of the exhaust gas is formed by a gas attracting fan F3 provided between the dust collector 6 and the chimney 7. In the present embodiment, the exhaust gas temperature measuring device (24) for measuring the temperature of the exhaust gas passing through the furnace outlet 22 is provided in the furnace outlet 22, and the flow rate of the exhaust gas passing through the furnace outlet 22 is provided. The exhaust gas line GL is provided with an "exhaust gas flow rate measuring device (25)" for measuring the temperature.

‐炉内冷却水‐
本実施形態においては、炉内冷却水につき冷却水供給ラインWLを通じて炉21内に供給している。前記冷却水供給ラインWLは、一端が水供給源(図示せず)に連結され、他端が前記ごみ焼却炉2の炉21内に至るように配された配管であり、管路の途中に炉内冷却水の供給量を決定する冷却水バルブV3が設けられている。
-Cooling water in the furnace-
In the present embodiment, the cooling water in the furnace is supplied into the furnace 21 through the cooling water supply line WL. The cooling water supply line WL is a pipe arranged so that one end is connected to a water supply source (not shown) and the other end reaches the inside of the furnace 21 of the waste incinerator 2, and is in the middle of the pipeline. A cooling water valve V3 that determines the amount of cooling water supplied in the furnace is provided.

<廃熱ボイラ3>
前記廃熱ボイラ3は、前記ごみ焼却炉2の稼働により発生した排ガスの廃熱を利用してボイラ発電を行う役割を担う。本実施形態においては、ボイラ水の蒸発に伴って生じる蒸気につき、蒸気ラインSLを通じて輸送される仕組みとしている。なお、本実施形態においては、ボイラ水の蒸発量を測定するための「蒸気量測定器(31)」を前記蒸気ラインSLに備えている。
<Waste heat boiler 3>
The waste heat boiler 3 plays a role of generating boiler power by utilizing the waste heat of the exhaust gas generated by the operation of the waste incinerator 2. In the present embodiment, the steam generated by the evaporation of the boiler water is transported through the steam line SL. In the present embodiment, the steam line SL is provided with a "steam amount measuring device (31)" for measuring the amount of evaporation of boiler water.

<制御装置4>
前述のように、ボイラ水の蒸発量の変化は、前記蒸気量測定器31によって測定される。又、排ガスの熱量は、前記排ガス温度測定器24と前記排ガス流量測定器25とによって測定された排ガスの温度の変化と排ガスの流量の変化に応じて予想される。図2に示すように、各測定器(31、24、25)によって測定された値は制御装置4に伝達される。前記制御装置4は、測定されたボイラ水の蒸発量や予想される排ガスの熱量と、記憶手段41に予め記憶されている設定値とを演算手段42において比較し、測定された値に応じた命令を、制御手段43を通じて前記二次バルブV2や前記冷却水バルブV3に与える。そして、図3に示すように、前記制御装置4による制御では、「先行要素制御」と、「フィードバック制御」と、を行う。
<Control device 4>
As described above, the change in the evaporation amount of the boiler water is measured by the steam amount measuring device 31. Further, the calorific value of the exhaust gas is expected according to the change in the temperature of the exhaust gas and the change in the flow rate of the exhaust gas measured by the exhaust gas temperature measuring device 24 and the exhaust gas flow rate measuring device 25. As shown in FIG. 2, the values measured by each measuring instrument (31, 24, 25) are transmitted to the control device 4. The control device 4 compares the measured evaporation amount of boiler water and the expected heat amount of exhaust gas with the set value stored in advance in the storage means 41 in the calculation means 42, and corresponds to the measured value. The command is given to the secondary valve V2 and the cooling water valve V3 through the control means 43. Then, as shown in FIG. 3, in the control by the control device 4, "preceding element control" and "feedback control" are performed.

‐先行要素制御‐
前記先行要素制御では、排ガスの温度と排ガスの流量の変化から予想される排ガスの熱量の変化応じて、二次燃焼空気の供給量を変える。本実施形態においては、図5のフローチャートに示す制御手順にて前記先行要素制御を実行する。
-Preceding element control-
In the preceding element control, the supply amount of the secondary combustion air is changed according to the change in the calorific value of the exhaust gas expected from the change in the temperature of the exhaust gas and the flow rate of the exhaust gas. In the present embodiment, the preceding element control is executed by the control procedure shown in the flowchart of FIG.

このフローチャートに示す制御手順では、まず、前記ごみ焼却炉2の稼働開始後(S1)、一定時間経過した後(S2)、排ガス温度測定器24及び前記排ガス流量測定器25にて排ガスの温度と流量を測定する(S7、S8)。前記演算手段42は、測定された排ガスの温度と流量から排ガスの熱量を予測し、前記記憶手段41に記憶された設定値(この場合、予め設定された排ガスの熱量の許容範囲)と予測値とを比較することによって現在の排ガスの熱量を評価し(S9)、前記二次バルブV2に与える操作を決定する(S10)。前記制御手段43は、決定された操作を前記二次バルブV2に命令する(S11)。操作の命令後(S6)、直ちに排ガスの温度と流量の測定(S7、S8)以下のステップが繰り返される。なお、本実施形態では、前記先行要素制御における前記二次バルブV2に与える操作につき下記表1に示す条件にて決定した。 In the control procedure shown in this flowchart, first, after the operation of the waste incinerator 2 is started (S1) and after a certain period of time has elapsed (S2), the temperature of the exhaust gas is determined by the exhaust gas temperature measuring device 24 and the exhaust gas flow rate measuring device 25. The flow chart is measured (S7, S8). The calculation means 42 predicts the calorific value of the exhaust gas from the measured temperature and flow rate of the exhaust gas, and sets the set value (in this case, the allowable range of the calorific value of the exhaust gas preset) and the predicted value stored in the storage means 41. The calorific value of the current exhaust gas is evaluated by comparing with (S9), and the operation to be applied to the secondary valve V2 is determined (S10). The control means 43 commands the determined operation to the secondary valve V2 (S11). Immediately after the operation command (S6), the following steps of measuring the temperature and flow rate of the exhaust gas (S7, S8) are repeated. In this embodiment, the operation given to the secondary valve V2 in the preceding element control is determined under the conditions shown in Table 1 below.

Figure 0007054094000001
Figure 0007054094000001

‐フィードバック制御‐
一方、前記フィードバック制御では、制御対象たるボイラ水の蒸発量の変化に応じて、二次燃焼空気の供給量を変え、もってボイラ水の蒸発量が設定値内に収まるように制御する。本実施形態においては、前記フィードバック制御につき、図4のフローチャートに示す制御手順にて実行する。
-Feedback control-
On the other hand, in the feedback control, the supply amount of the secondary combustion air is changed according to the change in the evaporation amount of the boiler water to be controlled, so that the evaporation amount of the boiler water is controlled to be within the set value. In the present embodiment, the feedback control is executed by the control procedure shown in the flowchart of FIG.

このフローチャートに示す制御手順では、まず、前記ごみ焼却炉2の稼働開始後(S1)、一定時間経過した後(S2)、前記蒸気量測定器31にてボイラ水の蒸発量を測定する(S3)。前記演算手段42は、前記記憶手段41に記憶された予め設定された設定値(この場合、ボイラ水の蒸発量の許容範囲)と実測値とを比較することによって現在の蒸発量を評価し(S4)、前記二次バルブV2に与える操作を決定する(S5)。前記制御手段43は、決定された操作を前記二次バルブV2に命令する(S6)。操作の命令後(S6)、一定時間経過すれば(S2)、蒸発量測定(S3)以下のステップが繰り返される。なお、本実施形態では、前記フィードバック制御における前記二次バルブV2に与える操作につき、下記表2に示す条件にて決定した。 In the control procedure shown in this flowchart, first, after the operation of the waste incinerator 2 is started (S1) and after a certain period of time has elapsed (S2), the evaporation amount of the boiler water is measured by the steam amount measuring device 31 (S3). ). The calculation means 42 evaluates the current evaporation amount by comparing the preset set value (in this case, the allowable range of the evaporation amount of the boiler water) stored in the storage means 41 with the actually measured value (the calculation means 42). S4), the operation to be applied to the secondary valve V2 is determined (S5). The control means 43 commands the determined operation to the secondary valve V2 (S6). After the operation command (S6), if a certain period of time elapses (S2), the following steps of evaporation amount measurement (S3) are repeated. In this embodiment, the operation given to the secondary valve V2 in the feedback control is determined under the conditions shown in Table 2 below.

Figure 0007054094000002
Figure 0007054094000002

[本発明制御方法]
前記構成を有する本発明発電設備1は、ボイラ水の蒸発量の変化に応じて二次燃焼空気の供給量又は炉内冷却水の供給量を変えるフィードバック制御に先行して、排ガスの熱量の変化に応じて二次燃焼空気の供給量を変える先行要素制御を行う本発明制御方法を実行するために構築されたものである。
[Control method of the present invention]
The power generation facility 1 of the present invention having the above configuration changes the calorific value of the exhaust gas prior to the feedback control in which the supply amount of the secondary combustion air or the supply amount of the cooling water in the furnace is changed according to the change in the evaporation amount of the boiler water. It is constructed to execute the control method of the present invention that controls the preceding element that changes the supply amount of the secondary combustion air according to the above.

前記フィードバック制御によって、「ボイラ水の蒸発量の測定」→「制御演算」→「操作量(前記二次バルブV2の開度)の出力」→「ボイラ水の蒸発量の変化」→「ボイラ水の蒸発量の測定」・・・という閉ループ制御(図3、図4参照)を行えば、制御対象たるボイラ水の蒸発量を制御することができる。 By the feedback control, "measurement of boiler water evaporation amount"-> "control calculation"-> "operation amount (opening of the secondary valve V2) output"-> "change in boiler water evaporation amount"-> "boiler water" By performing the closed loop control (see FIGS. 3 and 4) of "measurement of the amount of evaporation of the boiler water", the amount of evaporation of the boiler water to be controlled can be controlled.

但し、前記フィードバック制御では、操作量の出力後の結果(ボイラ水の蒸発量の変化)をフィードバックしてから修正するため、制御を乱す様々な外乱(例えば、投入された廃棄物の性質変化による燃焼状態の急変等)が発生しても、その影響がボイラ水の蒸発量の変化として現れてからでなければ修正を行えない。 However, in the feedback control, since the result after the output of the operation amount (change in the evaporation amount of boiler water) is fed back and then corrected, various disturbances that disturb the control (for example, changes in the properties of the input waste) are used. Even if a sudden change in the combustion state occurs), it can only be corrected after the effect appears as a change in the amount of evaporation of boiler water.

この点につき、本発明制御方法においては、前記フィードバック制御に先行して、排ガスの温度と排ガスの流量から導き出される排ガスの熱量(排ガス温度×排ガス量≒熱量)の変化に応じて二次燃焼空気の供給量を変える先行要素制御を行うことから、廃棄物の性質変化による燃焼状態の急変等に迅速に対応することができる。 Regarding this point, in the control method of the present invention, prior to the feedback control, the secondary combustion air is changed according to the change of the heat amount of the exhaust gas (exhaust gas temperature × exhaust gas amount ≒ heat amount) derived from the temperature of the exhaust gas and the flow rate of the exhaust gas. Since the preceding element control that changes the supply amount of the exhaust gas is performed, it is possible to quickly respond to a sudden change in the combustion state due to a change in the properties of the waste.

即ち、前記先行要素制御は、前記フィードバック制御とは異なり、信号の流れが閉ループになっておらず、「外乱の検知(排ガスの温度や排ガスの流量の変化)」→「制御演算」→「操作量の出力」という一方向の制御方式となされている(図3、図5参照)。そのため、前記フィードバック制御に先行して前記先行要素制御を行えば、前記フィードバック制御を乱すような外乱が発生しても、それが「ボイラ水の蒸発量の変化」として現れる前に、前記先行要素制御により前もってその影響をなくす修正動作を行うことができる。 That is, unlike the feedback control, the preceding element control does not have a closed loop in the signal flow, and "disturbance detection (change in exhaust gas temperature or exhaust gas flow rate)" → "control calculation" → "operation". It is a one-way control method called "quantity output" (see FIGS. 3 and 5). Therefore, if the preceding element control is performed prior to the feedback control, even if a disturbance that disturbs the feedback control occurs, the preceding element does not appear as a "change in the amount of evaporation of boiler water". By controlling, it is possible to perform a correction operation that eliminates the influence in advance.

これより、本発明によれば、前記廃熱ボイラ3が付帯された前記ごみ焼却炉2の稼働時におけるボイラ水の蒸発量を制御することができ、もって安定した発電量を得ることができる。 From this, according to the present invention, it is possible to control the amount of evaporation of boiler water during operation of the waste incinerator 2 to which the waste heat boiler 3 is attached, and it is possible to obtain a stable power generation amount.

なお、本実施形態では前記先行要素制御及び前記フィードバック制御につき、前記二次バルブV2のみに同時に命令を与えているが(表2参照)、前記先行要素制御及び前記フィードバック制御における操作は、前記二次バルブV2に加えて冷却水バルブV3に命令を与えても良い。例えば、炉内温度が設定値(例えば、950℃)より高い場合に炉内冷却水の供給量を増加させ、炉内温度が設定値(例えば、850℃)より低い場合に炉内冷却水の供給量を減少させれば、ダイオキシン類の発生やクリンカーの生成を効果的に防止することができる。 In the present embodiment, commands are given only to the secondary valve V2 at the same time for the preceding element control and the feedback control (see Table 2), but the operations in the preceding element control and the feedback control are described in the above two. A command may be given to the cooling water valve V3 in addition to the next valve V2. For example, when the temperature inside the furnace is higher than the set value (for example, 950 ° C), the supply amount of the cooling water in the furnace is increased, and when the temperature inside the furnace is lower than the set value (for example, 850 ° C), the cooling water in the furnace is increased. By reducing the supply amount, it is possible to effectively prevent the generation of dioxin and the production of clinker.

更に、本実施形態では前記フィードバック制御及び前記先行要素制御における操作を、上記表1及び上記表2に示す条件にて決定しているが、前記フィードバック制御及び前記先行要素制御における操作は、必ずしも係る条件のみにより決定されるものではなく、ごみ焼却炉2の焼却処理能力や、廃熱ボイラ3に求められるボイラ水の蒸発量、許容される蒸発量の変動幅などに応じて適宜決定すれば良い。 Further, in the present embodiment, the operations in the feedback control and the preceding element control are determined under the conditions shown in Tables 1 and 2, but the operations in the feedback control and the preceding element control are not necessarily related. It is not determined only by the conditions, but may be appropriately determined according to the incinerator capacity of the waste incinerator 2, the amount of boiler water evaporation required for the waste heat boiler 3, the allowable fluctuation range of the amount of evaporation, and the like. ..

なお、本実施形態においては、前記ごみ焼却炉2として竪型ごみ焼却炉を用いているが、本発明制御方法は、竪型ごみ焼却炉の制御に限られるものではない。但し、ボイラの蒸発量の変化に応じて二次燃焼空気の供給量を変えるフィードバック制御に先行して排ガスの熱量の変化に応じて二次燃焼空気の供給量を変える先行要素制御は竪型ごみ焼却炉の特徴を活かしたものとなる。 In the present embodiment, a vertical waste incinerator is used as the waste incinerator 2, but the control method of the present invention is not limited to the control of the vertical waste incinerator. However, prior element control that changes the supply amount of secondary combustion air according to the change in the calorific value of the exhaust gas precedes the feedback control that changes the supply amount of the secondary combustion air according to the change in the evaporation amount of the boiler is vertical waste. It makes the best use of the characteristics of the incinerator.

ところで、本実施形態では、前記フィードバック制御及び前記先行要素制御において一次燃焼空気の供給量に変化を与えていないが、前記フィードバック制御では、更に、一次燃焼空気の供給量を変えることも可能であり、前記先行要素制御では、更に、排ガスの温度又は排ガスの流量の変化に応じて、一次燃焼空気の供給量を変えることも可能である。前記フィードバック制御及び前記先行要素制御における一次燃焼空気の供給量の変化は、前記一次燃焼空気供給ラインAL1に設けられた一次バルブ(ダンパ)V1の開度の増減により行うことができる。なお、一次燃焼空気の増減は、二次燃焼空気の増減に準じて行うことが好ましい。 By the way, in the present embodiment, the supply amount of the primary combustion air is not changed in the feedback control and the preceding element control, but in the feedback control, the supply amount of the primary combustion air can be further changed. In the preceding element control, it is also possible to change the supply amount of the primary combustion air according to the change in the temperature of the exhaust gas or the flow rate of the exhaust gas. The change in the supply amount of the primary combustion air in the feedback control and the preceding element control can be performed by increasing or decreasing the opening degree of the primary valve (damper) V1 provided in the primary combustion air supply line AL1. It is preferable that the increase / decrease of the primary combustion air is performed according to the increase / decrease of the secondary combustion air.

又、本実施形態では、前記先行要素制御のレスポンスを良くするために、前記排ガス温度測定器24を前記炉出口22に備える一方、前記排ガス流量測定器25を前記排ガスラインGLの上流に備えているが、前記排ガスラインGLの上流を流れる排ガスには粉塵が多く含まれているため前記排ガス流量測定器25については、図6に示すように、集塵装置6の下流に備え、もって前記集塵装置6を通過した粉塵含有量の少ない排ガスの流量を測定できるようにすることが好ましい。 Further, in the present embodiment, in order to improve the response of the preceding element control, the exhaust gas temperature measuring device 24 is provided at the furnace outlet 22, while the exhaust gas flow rate measuring device 25 is provided upstream of the exhaust gas line GL. However, since the exhaust gas flowing upstream of the exhaust gas line GL contains a large amount of dust, the exhaust gas flow rate measuring device 25 is provided downstream of the dust collector 6 as shown in FIG. It is preferable to be able to measure the flow rate of the exhaust gas having a low dust content that has passed through the dust device 6.

なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形態で実施することができる。そのため、上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には何ら拘束されない。更に、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。 It should be noted that the present invention can be carried out in various other forms without departing from its spirit or main characteristics. Therefore, the above embodiments are merely exemplary in all respects and should not be construed in a limited way. The scope of the present invention is shown by the scope of claims and is not bound by the text of the specification. Further, all modifications and modifications that fall within the equivalent scope of the claims are within the scope of the present invention.

本発明は、ごみ焼却炉の燃焼状態を安定させる制御手段として好適に用いられる。 INDUSTRIAL APPLICABILITY The present invention is suitably used as a control means for stabilizing the combustion state of a waste incinerator.

1 本発明発電設備(ごみ焼却炉発電設備)
2 ごみ焼却炉
21 炉
22 炉出口
24 排ガス温度測定器
25 排ガス流量測定器
3 廃熱ボイラ
31 蒸気量測定器
4 制御装置
41 記憶手段
42 演算手段
43 制御手段
5 エコノマイザ
6 集塵装置
7 煙突
AL1 一次燃焼空気供給ライン
AL2 二次燃焼空気供給ライン
GL 排ガスライン
SL 蒸気ライン
WL 冷却水供給ライン
V1 一次バルブ
V2 二次バルブ
V3 冷却水バルブ
W 廃棄物
W1 堆積層
1 Power generation equipment of the present invention (waste incinerator power generation equipment)
2 Waste incinerator 21 Furnace 22 Furnace outlet 24 Exhaust gas temperature measuring device 25 Exhaust gas flow rate measuring device 3 Waste heat boiler 31 Steam amount measuring device 4 Control device 41 Storage means 42 Calculation means 43 Control means 5 Economizer 6 Dust collector 7 Chimney AL1 Primary Combustion air supply line AL2 Secondary combustion air supply line GL Exhaust gas line SL Steam line WL Cooling water supply line V1 Primary valve V2 Secondary valve V3 Cooling water valve W Waste W1 Deposit layer

Claims (6)

炉内に投入された廃棄物が形成する堆積層の下部より一次燃焼空気を供給しながら廃棄物を燃焼させる一次燃焼行程と、
前記一次燃焼行程の実行によって発生した可燃性ガスにつき二次燃焼空気を供給しながら燃焼させる二次燃焼行程と、
前記一次燃焼行程及び前記二次燃焼行程の実行によって発生した排ガスの廃熱を利用してボイラ発電を行うボイラ発電工程と、
を実行することにより廃棄物を焼却処理すると共に発電を行うごみ焼却炉発電設備における燃焼制御方法であって、
ボイラ水の蒸発量の変化に応じて、二次燃焼空気の供給量を変えるフィードバック制御に先行して、
排ガスの熱量の変化に応じて、二次燃焼空気の供給量を変える先行要素制御を行い、
前記フィードバック制御では、
ボイラ水の蒸発量が設定値より高い場合、二次燃焼空気の供給量を減少させ、
ボイラ水の蒸発量が設定値より低い場合、二次燃焼空気の供給量を増加させることを特徴とする燃焼制御方法。
The primary combustion process in which the waste is burned while supplying the primary combustion air from the lower part of the sedimentary layer formed by the waste put into the furnace.
A secondary combustion stroke in which the combustible gas generated by the execution of the primary combustion stroke is burned while supplying secondary combustion air, and
A boiler power generation process that uses the waste heat of exhaust gas generated by the execution of the primary combustion stroke and the secondary combustion stroke to generate boiler power.
It is a combustion control method in a waste incinerator power generation facility that incinerates waste and generates electricity by executing.
Prior to feedback control that changes the supply amount of secondary combustion air according to the change in the evaporation amount of boiler water,
Preceding element control that changes the supply amount of secondary combustion air according to the change in the calorific value of the exhaust gas is performed.
In the feedback control,
If the amount of evaporation of boiler water is higher than the set value, the amount of secondary combustion air supplied will be reduced.
A combustion control method characterized by increasing the supply amount of secondary combustion air when the evaporation amount of boiler water is lower than a set value .
請求項1に記載の燃焼制御方法において、
前記先行要素制御では、
炉内温度が設定範囲より高い場合、炉内冷却水の供給量を増加させ、
炉内温度が設定範囲より低い場合、炉内冷却水の供給量を減少させる燃焼制御方法。
In the combustion control method according to claim 1 ,
In the preceding element control,
If the temperature inside the furnace is higher than the set range, the supply amount of cooling water in the furnace is increased.
A combustion control method that reduces the supply of cooling water in the furnace when the temperature inside the furnace is lower than the set range.
請求項1又は2に記載の燃焼制御方法において、
前記フィードバック制御では、
更に、ボイラ水の蒸発量の変化に応じて、一次燃焼空気の供給量を変える燃焼制御方法。
In the combustion control method according to claim 1 or 2 ,
In the feedback control,
Furthermore, a combustion control method that changes the supply amount of primary combustion air according to the change in the evaporation amount of boiler water.
請求項1ないしのいずれか1項に記載の燃焼制御方法において、
前記先行要素制御では、
更に、排ガスの温度又は排ガスの流量の変化に応じて、一次燃焼空気の供給量を変える燃焼制御方法。
In the combustion control method according to any one of claims 1 to 3 ,
In the preceding element control,
Further, a combustion control method in which the supply amount of primary combustion air is changed according to a change in the temperature of the exhaust gas or the flow rate of the exhaust gas.
炉内に投入された廃棄物が形成する堆積層の下部より一次燃焼空気を供給しながら廃棄物を燃焼させると共に、発生した可燃性ガスにつき二次燃焼空気を供給しながら燃焼させるごみ焼却炉と、
前記ごみ焼却炉の稼働により発生した排ガスの廃熱を利用してボイラ発電を行う廃熱ボイラと、
を具備するごみ焼却炉発電設備であって、
排ガスの炉出口温度を測定するための排ガス温度測定器と、
排ガスの流量を測定するための排ガス流量測定器と、
ボイラ水の蒸発量を測定するための蒸気量測定器と、
が備えられてなり、
更に、前記蒸気量測定器によって測定されたボイラ水の蒸発量が設定値より高い場合、二次燃焼空気の供給量を減少させ、ボイラ水の蒸発量が設定値より低い場合、二次燃焼空気の供給量を増加させるフィードバック制御と、前記排ガス温度測定器によって測定された排ガスの温度及び前記排ガス流量測定器によって測定された排ガスの流量の変化により予想される排ガス熱量の変化に応じて、二次燃焼空気の供給量を変える先行要素制御と、
を行う制御装置を具備することを特徴とするごみ焼却炉発電設備。
A waste incinerator that burns waste while supplying primary combustion air from the lower part of the sedimentary layer formed by the waste input into the furnace, and also supplies secondary combustion air for the generated combustible gas. ,
A waste heat boiler that uses the waste heat of exhaust gas generated by the operation of the waste incinerator to generate electricity.
It is a waste incinerator power generation facility equipped with
An exhaust gas temperature measuring device for measuring the furnace outlet temperature of exhaust gas,
An exhaust gas flow rate measuring device for measuring the flow rate of exhaust gas,
A steam meter for measuring the amount of evaporation of boiler water,
Be prepared,
Further, when the evaporation amount of the boiler water measured by the steam amount measuring device is higher than the set value, the supply amount of the secondary combustion air is reduced, and when the evaporation amount of the boiler water is lower than the set value, the secondary combustion air is reduced. According to the feedback control that increases the supply amount of the exhaust gas, and the change in the amount of heat of the exhaust gas expected due to the change in the temperature of the exhaust gas measured by the exhaust gas temperature measuring device and the flow rate of the exhaust gas measured by the exhaust gas flow measuring device. Preceding element control that changes the supply amount of next combustion air,
A waste incinerator power generation facility characterized by being equipped with a control device for performing the above.
請求項に記載のごみ焼却炉発電設備において、
前記廃熱ボイラより煙道の下流に、排ガス中に含まれる粉塵を除去するための集塵装置が設けられてなり、
前記集塵装置を通過した排ガスの流量を測定すべく、前記排ガス流量測定器が前記集塵装置の下流に備えられてなるごみ焼却炉発電設備。
In the waste incinerator power generation facility according to claim 5 .
A dust collector for removing dust contained in the exhaust gas is provided downstream of the flue from the waste heat boiler.
A waste incinerator power generation facility in which the exhaust gas flow rate measuring device is provided downstream of the dust collecting device in order to measure the flow rate of the exhaust gas that has passed through the dust collecting device.
JP2019095532A 2019-05-21 2019-05-21 Combustion control method, waste incinerator power generation equipment Active JP7054094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019095532A JP7054094B2 (en) 2019-05-21 2019-05-21 Combustion control method, waste incinerator power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095532A JP7054094B2 (en) 2019-05-21 2019-05-21 Combustion control method, waste incinerator power generation equipment

Publications (2)

Publication Number Publication Date
JP2020190364A JP2020190364A (en) 2020-11-26
JP7054094B2 true JP7054094B2 (en) 2022-04-13

Family

ID=73454964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095532A Active JP7054094B2 (en) 2019-05-21 2019-05-21 Combustion control method, waste incinerator power generation equipment

Country Status (1)

Country Link
JP (1) JP7054094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460096B1 (en) 2023-01-18 2024-04-02 株式会社プランテック Vertical waste incinerator and combustion method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029725A (en) 1999-07-19 2001-02-06 Nippon Steel Corp Control method of temperature of exhaust gas inlet of dust collector of waste melting equipment
JP2001082719A (en) 1999-09-16 2001-03-30 Ebara Corp Combustion control for refuse incinerating plant
JP2001289401A (en) 2000-04-07 2001-10-19 Mitsubishi Heavy Ind Ltd Method and apparatus for vapor flow rate control in incinerator
KR20030075449A (en) 2002-03-19 2003-09-26 현대중공업 주식회사 Control of Combustion and Steam Generation Using Friction Coefficient of the Combustion Air in a Stoker Type Incinerator
JP2004301352A (en) 2003-03-28 2004-10-28 Plantec Inc Vertical-type waste incinerator and its control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU212738B (en) * 1991-02-22 1996-10-28 Von Roll Ag Method for operating incinerator with grate and controlling system and incineractor for carrying out that method
JPH0798108A (en) * 1993-09-30 1995-04-11 Mitsubishi Heavy Ind Ltd Combustion controller for incinerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029725A (en) 1999-07-19 2001-02-06 Nippon Steel Corp Control method of temperature of exhaust gas inlet of dust collector of waste melting equipment
JP2001082719A (en) 1999-09-16 2001-03-30 Ebara Corp Combustion control for refuse incinerating plant
JP2001289401A (en) 2000-04-07 2001-10-19 Mitsubishi Heavy Ind Ltd Method and apparatus for vapor flow rate control in incinerator
KR20030075449A (en) 2002-03-19 2003-09-26 현대중공업 주식회사 Control of Combustion and Steam Generation Using Friction Coefficient of the Combustion Air in a Stoker Type Incinerator
JP2004301352A (en) 2003-03-28 2004-10-28 Plantec Inc Vertical-type waste incinerator and its control method

Also Published As

Publication number Publication date
JP2020190364A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2020015694A1 (en) Combustion air volume control system and method for biomass boiler
JP5774381B2 (en) Waste heat recovery boiler and power plant
JP2008145007A (en) Coal burning boiler
JP6153090B2 (en) Waste incinerator and waste incineration method
JP7054094B2 (en) Combustion control method, waste incinerator power generation equipment
JP6803747B2 (en) Rotation speed control device for mill classifier and fuel ratio calculation device suitable for this
JP6616945B2 (en) Incineration plant
CN115479276A (en) Control device, waste incineration facility, control method, and program
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP2022076571A (en) System control device and control method
JP7397627B2 (en) Incineration plant and its combustion control method
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP6150721B2 (en) Heavy oil combustion method, heavy oil fired boiler and control device
JP2005308362A (en) Combustion control method of refuse incinerator, and refuse incinerator
CN101535912B (en) Method and arrangement for air quantity regulation of a combustion system which is operated with solid fossil fuels
JPH0323806B2 (en)
JP2922711B2 (en) Urban waste incineration equipment
JP2020098081A (en) Combustion control method
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
RU2416759C1 (en) Procedure for automatic control of interconnected processes of direct flow boiler loading under conditions of process limits
JP5995379B2 (en) Waste incinerator boiler control method
JP2007139412A (en) Refuse incineration plant regulation method using operation of support burner
JPS6023717A (en) Method of controlling amount of combustion air in coal burning boiler
RU2686130C1 (en) Boiler of low power of high-temperature boiler layer with a system of automatic regulation of the combustion process
JP2005282970A (en) Combustion control method for stoker type garbage incinerator, and garbage incinerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220318

R150 Certificate of patent or registration of utility model

Ref document number: 7054094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150