JP5995379B2 - Waste incinerator boiler control method - Google Patents

Waste incinerator boiler control method Download PDF

Info

Publication number
JP5995379B2
JP5995379B2 JP2015024093A JP2015024093A JP5995379B2 JP 5995379 B2 JP5995379 B2 JP 5995379B2 JP 2015024093 A JP2015024093 A JP 2015024093A JP 2015024093 A JP2015024093 A JP 2015024093A JP 5995379 B2 JP5995379 B2 JP 5995379B2
Authority
JP
Japan
Prior art keywords
temperature
superheater
stoker
primary air
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015024093A
Other languages
Japanese (ja)
Other versions
JP2016148470A (en
Inventor
大祐 鮎川
大祐 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2015024093A priority Critical patent/JP5995379B2/en
Publication of JP2016148470A publication Critical patent/JP2016148470A/en
Application granted granted Critical
Publication of JP5995379B2 publication Critical patent/JP5995379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

本発明は、一般廃棄物や産業廃棄物、汚泥等の廃棄物を焼却処理する焼却炉及びこの焼却炉に付設されて燃焼排ガスにより蒸気を発生させるボイラを備えた廃棄物焼却炉ボイラ、特に、廃棄物の流れ方向に複数に分割したストーカ下へ一次空気を分割供給してストーカ上の廃棄物を焼却処理し、発生した燃焼排ガスによりボイラで蒸気を発生させると共に、この蒸気を減温装置で減温して温度調整してからストーカの下流側位置に配設した過熱器で更に過熱して過熱蒸気とするようした廃棄物焼却炉ボイラの制御方法の改良に係り、廃棄物の供給量や性状が変動してストーカ上の火炎が変化しても、一次空気の供給量を制御することにより過熱器の出口側の過熱蒸気の温度を常時一定に制御できると共に、火炎からの輻射熱を有効に受熱できるようにした廃棄物焼却炉ボイラの制御方法に関するものである。 The present invention is a waste incinerator boiler equipped with an incinerator for incinerating wastes such as general waste, industrial waste, sludge and the like, and a boiler attached to this incinerator to generate steam by combustion exhaust gas, The primary air is dividedly supplied under the stalker divided in the flow direction of the waste to incinerate the waste on the stalker, and steam is generated in the boiler by the generated combustion exhaust gas. In connection with the improvement of the waste incinerator boiler control method in which the temperature is reduced and the temperature is adjusted and then further heated by the superheater arranged at the downstream position of the stalker to produce superheated steam, Even if the characteristics change and the flame on the stoker changes, the temperature of the superheated steam on the outlet side of the superheater can be controlled constantly at a constant level by controlling the supply amount of primary air, and the radiant heat from the flame can be effectively used. Can receive heat A method for controlling the waste incinerator boiler as.

一般に、廃棄物焼却炉ボイラは、都市ごみや汚泥等の廃棄物を焼却炉で燃焼させ、廃棄物の燃焼により発生した燃焼排ガスをボイラで熱回収し、ボイラの過熱器で過熱蒸気を生成させている。   In general, a waste incinerator boiler burns waste such as municipal waste and sludge in an incinerator, recovers the combustion exhaust gas generated by the combustion of the waste in the boiler, and generates superheated steam in the boiler superheater. ing.

ところで、これまでの廃棄物焼却炉ボイラは、燃焼排ガス中に含まれる塩素類や飛灰中に含まれる金属類によりボイラの過熱器が高温腐食を引き起こす虞があるため、過熱器の出口側の過熱蒸気の温度は、過熱器の高温腐食を低減でき、且つ燃焼排ガス中に含まれる飛灰が溶融しない温度とし、過熱蒸気の温度を400℃以上に上げられなかった。その結果、ボイラの運転条件が制約され、効率的な熱回収の妨げとなっていた。   By the way, conventional waste incinerator boilers may cause high temperature corrosion in boiler superheaters due to chlorine contained in combustion exhaust gas and metals contained in fly ash. The temperature of the superheated steam was such that the high temperature corrosion of the superheater could be reduced and the fly ash contained in the combustion exhaust gas was not melted, and the temperature of the superheated steam could not be raised to 400 ° C or higher. As a result, the operating conditions of the boiler are restricted, which hinders efficient heat recovery.

前記過熱器は、通常ボイラの輻射ゾーンの下流側位置に設置されているため、過熱器の入口側の燃焼排ガス温度が650℃程度であり、また、過熱器の出口側の過熱蒸気の温度が350℃位で燃焼排ガスの温度との温度差は差して大きくなく、しかも、飛灰の付着、堆積による伝熱阻害により過熱器の伝熱面積は大きく設定されている。   Since the superheater is usually installed at the downstream side of the radiation zone of the boiler, the combustion exhaust gas temperature on the inlet side of the superheater is about 650 ° C., and the temperature of the superheated steam on the outlet side of the superheater is The temperature difference with the temperature of the combustion exhaust gas is not so large at about 350 ° C., and the heat transfer area of the superheater is set large due to heat transfer inhibition due to the adhesion and deposition of fly ash.

また、過熱器の過熱管の配列は、燃焼排ガスが飛灰を含むため、過熱器の閉塞防止を考慮して碁盤目状の配列となっていると共に、過熱器への伝熱の主な形態は、対流熱伝達となっている。   Moreover, the arrangement of the superheater tubes of the superheater is a grid-like arrangement in consideration of prevention of blockage of the superheater because the combustion exhaust gas contains fly ash, and the main form of heat transfer to the superheater Is convective heat transfer.

尚、過熱蒸気の温度を400℃以上に上げることができるが、この場合には、過熱器の材質をステンレス鋼にしたり、或いは、過熱器の過熱管の表面にインコネル等の耐腐食鋼の溶射や肉盛りを施して高温腐食に耐えられるようにしなければならず、高価な材料や加工が必要となり、コスト高になると言う問題があった。   The temperature of the superheated steam can be raised to 400 ° C or higher. In this case, the superheater is made of stainless steel, or the surface of the superheater of the superheater is sprayed with corrosion resistant steel such as Inconel. In other words, it has to be able to withstand high-temperature corrosion by applying a thick layer and a build-up, which requires expensive materials and processing, resulting in high costs.

一方、廃棄物焼却炉ボイラにおいては、過熱器をなるべく腐食性のある燃焼排ガスと接触しないような位置に設置し、焼却炉内の燃焼火炎の輻射熱を利用して過熱蒸気を得るようにした技術が知られている(例えば、特許文献1、特許文献2及び特許文献3参照)。   On the other hand, in a waste incinerator boiler, a superheater is installed in a position where it does not come into contact with corrosive combustion exhaust gas as much as possible, and the technology that obtains superheated steam using the radiant heat of the combustion flame in the incinerator Is known (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

即ち、特許文献1(特開平7−190325号公報)に開示された廃棄物焼却炉ボイラ(ゴミ焼却装置)は、過熱器を腐食性のガスが殆ど発生しない焼却炉のストーカの下流側上方位置に設置し、ストーカ上の燃焼火炎からの輻射熱を利用して過熱蒸気を得ると共に、焼却炉の外部に設けたガス燃焼器(燃焼式過熱器)により過熱蒸気の温度を一定に保つようにしているため、高温腐食が発生する限界温度より高い温度まで過熱することができ、高温高圧の過熱蒸気が得られて熱回収量の増大及び発電効率の向上を図ることができる。   That is, the waste incinerator boiler (garbage incinerator) disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 7-190325) is located at the upper position on the downstream side of the stoker of the incinerator where the corrosive gas is hardly generated in the superheater. In order to obtain superheated steam using the radiant heat from the combustion flame on the stoker, keep the temperature of the superheated steam constant by the gas combustor (combustion superheater) provided outside the incinerator. Therefore, it is possible to heat up to a temperature higher than the limit temperature at which high-temperature corrosion occurs, and high-temperature and high-pressure superheated steam can be obtained to increase the amount of heat recovery and improve power generation efficiency.

また、特許文献2(特開平9−79555号公報)に開示された廃棄物焼却炉ボイラ(ゴミ焼却装置)は、過熱器を腐食性のガスが殆ど発生しない焼却炉のストーカの下流側上方位置に設置し、ストーカ上の燃焼火炎からの輻射熱を利用して過熱蒸気を得ると共に、焼却炉の壁部に設けたバーナ(燃料噴射装置)により過熱蒸気の温度を一定に保つようにしているため、高温腐食が発生する限界温度より高い温度まで過熱することができ、高温高圧の過熱蒸気が得られて熱回収量の増大及び発電効率の向上を図ることができ、また、特許文献1のように外部にガス燃焼器を設けることなく同一の炉内で蒸気を過熱できるので燃料の消費量を一層低減することができる。   Further, a waste incinerator boiler (garbage incinerator) disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. 9-79555) is located at an upper position on the downstream side of a stoker of an incinerator that hardly generates corrosive gas in a superheater. Because it is used to obtain superheated steam using the radiant heat from the combustion flame on the stoker, and the temperature of the superheated steam is kept constant by a burner (fuel injection device) provided on the wall of the incinerator In addition, it can be heated to a temperature higher than the limit temperature at which high temperature corrosion occurs, and high temperature and high pressure superheated steam can be obtained, so that the amount of heat recovery can be increased and the power generation efficiency can be improved. In addition, since the steam can be superheated in the same furnace without providing an external gas combustor, fuel consumption can be further reduced.

更に、特許文献3(特開平9−60828号公報)に開示された廃棄物焼却炉ボイラは、過熱器を腐食性のガスが殆ど発生しない焼却炉のストーカの下流側上方位置に設置し、ストーカ上の燃焼火炎からの輻射熱を利用して過熱蒸気を得ると共に、減温装置から過熱器の入口に水を噴霧することにより過熱蒸気の温度を一定に保つようにしているため、過熱器に高温腐食を生じさせることなく、常時一定の高温高圧の過熱蒸気を得ることができる。   Further, in a waste incinerator boiler disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 9-60828), a superheater is installed at an upper position on the downstream side of a stoker of an incinerator where almost no corrosive gas is generated. The superheated steam is obtained by using the radiant heat from the upper combustion flame, and the temperature of the superheated steam is kept constant by spraying water from the temperature reducing device to the inlet of the superheater. A constant high temperature and high pressure superheated steam can be obtained without causing corrosion.

しかし、特許文献1,2に記載された廃棄物焼却炉ボイラは、何れも過熱蒸気の温度を一定に保つためにガス燃焼器やバーナ、ガス等の外部燃料等を必要とするため、高価な設備になると共に、ランニングコストが高騰すると言う問題があった。   However, the waste incinerator boilers described in Patent Documents 1 and 2 are both expensive because they require an external fuel such as a gas combustor, a burner, and gas to keep the temperature of the superheated steam constant. There was a problem that the running cost would increase with the equipment.

また、特許文献1,2に記載された廃棄物焼却炉ボイラは、性状が不安定なゴミを燃焼させた結果して生じる高温状態(ゴミの燃焼熱量が高い場合)への対策が全く行われていない。即ち、炉内が想定外の高温に状態になった場合には、過熱蒸気が高温高圧化されて不安定となる他、発電設備や熱利用設備に過負荷が生じたりし、折角回収したエネルギーを廃棄しなければならない事態が生じることがある。   In addition, the waste incinerator boilers described in Patent Documents 1 and 2 have no countermeasures against a high temperature state (in the case where the amount of combustion heat of garbage is high) generated as a result of burning garbage with unstable properties. Not. In other words, when the temperature inside the furnace becomes an unexpectedly high temperature, the superheated steam becomes high temperature and pressure and becomes unstable, and overload is generated in the power generation equipment and heat utilization equipment, so that the energy collected at the corner is recovered. It may happen that you have to discard it.

更に、特許文献3に記載された廃棄物焼却炉ボイラは、ごみの燃焼量や発熱量が大きく変動し、ストーカ上の燃焼火炎の大きさや輝度が大きく変動した場合には、水の噴霧量制御だけでは過熱蒸気の温度を一定に保つことができないと言う問題があった。   Furthermore, in the waste incinerator boiler described in Patent Document 3, the amount of water sprayed is controlled when the amount of combustion and the calorific value of the dust vary greatly, and the size and brightness of the combustion flame on the stoker vary greatly. There is a problem that the temperature of the superheated steam cannot be kept constant only by itself.

特開平7-190325号公報JP-A-7-190325 特開平9−79555号公報JP-A-9-79555 特開平9−60828号公報Japanese Patent Laid-Open No. 9-60828

本発明は、このような問題点に鑑みて為されたものであり、その目的は、廃棄物の供給量や性状が変動してストーカ上の火炎が変化しても、一次空気の供給量を制御することにより過熱器の出口側の過熱蒸気の温度を常時一定に制御できると共に、火炎からの輻射熱を有効に受熱できるようにした廃棄物焼却炉ボイラの制御方法を提供することにある。 The present invention has been made in view of such problems, and its purpose is to reduce the supply amount of primary air even if the supply amount and properties of waste fluctuate and the flame on the stoker changes. An object of the present invention is to provide a method for controlling a waste incinerator boiler that can control the temperature of superheated steam on the outlet side of the superheater to be always constant by controlling it, and can effectively receive radiant heat from a flame.

上記目的を達成するため、本発明の第1の発明は、廃棄物の流れ方向に複数に分割したストーカ下へ一次空気供給装置により一次空気を分割供給してストーカ上の廃棄物を順次乾燥、燃焼させ、発生した燃焼排ガスによりボイラで蒸気を発生させると共に、この蒸気を減温装置で減温して温度調整してからストーカの下流側位置に配設した過熱器で更に過熱して過熱蒸気とするようした廃棄物焼却炉ボイラの制御方法であって、ボイラで発生した蒸気を減温装置で減温して温度調整することにより過熱器の出口側の過熱蒸気の温度を一定に保つようにし、廃棄物の供給量や性状の変化によってストーカ上の火炎の大きさや輝度が変化し、減温装置だけでは過熱蒸気の温度を一定に制御できないときには、一次空気供給装置によりストーカ上の火炎の大きさや輝度に応じてストーカ下へ分割供給する一次空気の配分を制御し、ストーカ上の火炎の位置をストーカの下流側又は上流側へ変更して火炎輻射による過熱器の受熱量を変えることにより過熱蒸気の温度を一定に保つようにしたことに特徴がある。 In order to achieve the above-mentioned object, the first invention of the present invention is to dry the waste on the stoker sequentially by dividing and supplying primary air by a primary air supply device under the stoker divided into a plurality of waste flow directions. Steam is generated by the boiler using the generated combustion exhaust gas, and the temperature of the steam is reduced by a temperature reducing device, the temperature is adjusted, and further superheated by a superheater disposed at a downstream position of the stalker. In order to keep the temperature of superheated steam on the outlet side of the superheater constant by reducing the temperature of the steam generated in the boiler with a temperature reducing device and adjusting the temperature. When the size and brightness of the flame on the stoker changes due to changes in the amount and properties of waste, and the temperature of the superheated steam cannot be controlled to a constant level using only the temperature reducing device, the primary air supply device Controls the distribution of primary air that is divided and supplied under the stoker according to the size and brightness of the flame, changes the position of the flame on the stoker to the downstream or upstream side of the stoker, and changes the amount of heat received by the superheater by flame radiation This is characterized in that the temperature of the superheated steam is kept constant.

本発明の第2の発明は、前記第1の発明において、廃棄物の発熱量が低下してストーカ上の火炎の大きさや輝度が低下し、減温装置だけでは過熱蒸気の温度を一定に制御できないときには、一次空気供給装置によりストーカの下流側寄りの一次空気を増加させ、ストーカ上の火炎の位置を過熱器に近づく方向へ移動させて過熱器の受熱量を増やし、また、廃棄物の発熱量が上昇してストーカ上の火炎の大きさや輝度が上昇し、減温装置だけでは過熱蒸気の温度を一定に制御できないときには、一次空気供給装置によりストーカの上流側寄りの一次空気を増加させ、ストーカ上の火炎の位置を過熱器から遠ざかる方向へ移動させて過熱器の受熱量を減らすようにしたことに特徴がある。 According to a second aspect of the present invention, in the first aspect of the present invention, the amount of heat generated from the waste is reduced, the size and brightness of the flame on the stoker is reduced, and the temperature of the superheated steam is controlled to be constant only by the temperature reducing device. If this is not possible, use the primary air supply device to increase the primary air on the downstream side of the stoker, move the flame position on the stoker closer to the superheater to increase the amount of heat received by the superheater, and generate heat from the waste. When the volume increases and the flame size and brightness increase on the stoker, and the temperature of the superheated steam cannot be controlled to a certain level with just the temperature reducing device, the primary air near the upstream side of the stoker is increased by the primary air supply device. It is characterized in that the amount of heat received by the superheater is reduced by moving the flame position on the stoker away from the superheater.

本発明によれば、ボイラで発生した蒸気の温度を減温装置により制御すると共に、ストーカ下へ分割供給する一次空気量を制御してストーカ上の火炎の位置を変更して火炎輻射による過熱器の受熱量を変えるようにしているため、廃棄物の供給量や性状が大きく変動してストーカ上の火炎に影響する場合でも、過熱器の出口側の過熱蒸気の温度を常時一定に制御することができる。   According to the present invention, the temperature of the steam generated in the boiler is controlled by the temperature reducing device, and the primary air quantity dividedly supplied to the lower part of the stoker is controlled to change the position of the flame on the stoker so as to superheat the flame heater. The amount of waste heat received is changed so that the temperature of the superheated steam at the outlet side of the superheater must be constantly controlled even if the amount of waste supplied and the properties of the waste fluctuate and affect the flame on the stoker. Can do.

また、本発明によれば、廃棄物の供給量や性状が大きく変動してストーカ上の火炎の大きさが大きく変わり、炉内が想定外の温度になった場合でも、ストーカ上の火炎の位置を一次空気量の制御により変更することができるので、過熱器が火炎からの輻射熱を有効に受熱することができる。   In addition, according to the present invention, even when the amount of waste supplied and the properties greatly fluctuate to greatly change the size of the flame on the stoker and the temperature inside the furnace becomes an unexpected temperature, the position of the flame on the stoker Therefore, the superheater can effectively receive the radiant heat from the flame.

更に、本発明によれば、過熱器を腐食性のガスが殆ど発生しないストーカの下流側位置に配設すると共に、過熱器の過熱管を千鳥状に配列してストーカ上の火炎に対して並ばないようにしているため、過熱器の高温腐食を防止することができると共に、過熱管の伝熱面が有効に機能して所定の受熱量を確保することができる。   Furthermore, according to the present invention, the superheater is arranged at a downstream side position of the stoker where almost no corrosive gas is generated, and the superheater tubes of the superheater are arranged in a staggered manner so as to line up the flames on the stoker. Therefore, the high temperature corrosion of the superheater can be prevented, and the heat transfer surface of the superheater tube can effectively function to secure a predetermined heat receiving amount.

本発明の一実施形態に係る廃棄物焼却炉ボイラの概略系統図である。1 is a schematic system diagram of a waste incinerator boiler according to an embodiment of the present invention. 減温装置の水噴霧量と制御信号の関係を示すグラフである。It is a graph which shows the relationship between the water spray amount of a temperature reducing apparatus, and a control signal. ストーカ下への一次空気量の配分を示す説明図である。It is explanatory drawing which shows distribution of the primary air quantity under a stalker. 過熱器の過熱管の配置例を示し、(a)は過熱器の概略横断面図、(b)は過熱器の概略正面図である。The example of arrangement | positioning of the superheater tube of a superheater is shown, (a) is a schematic cross-sectional view of a superheater, (b) is a schematic front view of a superheater. 過熱器の過熱管の他の配置例を示し、(a)は過熱器の概略横断面図、(b)は過熱器の概略正面図である。The other example of arrangement | positioning of the superheater tube of a superheater is shown, (a) is a schematic cross-sectional view of a superheater, (b) is a schematic front view of a superheater.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。
図1は本発明の一実施形態に係る廃棄物焼却炉ボイラを示し、当該廃棄物焼却炉ボイラは、都市ごみや汚泥等の廃棄物Bを焼却処理する焼却炉1と、焼却炉1内の燃焼排ガスから熱回収するボイラ2とを備えている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a waste incinerator boiler according to an embodiment of the present invention. The waste incinerator boiler includes an incinerator 1 that incinerates waste B such as municipal waste and sludge, and an incinerator 1. And a boiler 2 that recovers heat from the combustion exhaust gas.

即ち、前記焼却炉1は、図1に示す如く、炉壁から成る炉本体3と、廃棄物Bが投入される廃棄物投入ホッパ4と、廃棄物Bを燃焼させるストーカ5と、ストーカ5下に配設されたストーカ下ホッパ6と、ストーカ5上へ廃棄物Bを供給する廃棄物供給プッシャー7と、ストーカ5の上方に形成された一次燃焼室8と、一次燃焼室8の上方に形成された二次燃焼室9と、燃焼排ガスを排出する燃焼排ガス出口10と、焼却灰を排出する灰出し口11と、焼却灰を冷却する冷却水槽12と、焼却灰を搬送する水封式コンベア13と、ストーカ5下へ一次空気A1を供給する一次空気供給装置14と、二次燃焼室9へ二次空気A2を供給する二次空気供給装置15等を備えている。   That is, as shown in FIG. 1, the incinerator 1 includes a furnace body 3 composed of a furnace wall, a waste charging hopper 4 into which the waste B is charged, a stalker 5 for burning the waste B, and a bottom of the stalker 5 A hopper 6 below the stalker disposed in the hopper, a waste supply pusher 7 for supplying the waste B onto the stalker 5, a primary combustion chamber 8 formed above the stalker 5, and a formation above the primary combustion chamber 8. Secondary combustion chamber 9, combustion exhaust gas outlet 10 for discharging combustion exhaust gas, ash outlet 11 for discharging incineration ash, cooling water tank 12 for cooling the incineration ash, and water-sealed conveyor for conveying the incineration ash 13, a primary air supply device 14 that supplies primary air A <b> 1 below the stoker 5, a secondary air supply device 15 that supplies secondary air A <b> 2 to the secondary combustion chamber 9, and the like.

一方、前記ボイラ2は、図1に示す如く、廃棄物Bの燃焼により発生した燃焼排ガスから熱回収してボイラ給水を加熱して蒸気Sを発生させ、この蒸気Sを更に過熱して高温高圧の過熱蒸気S′とするものであり、ドラム16と、炉内の壁面等に配置された多数の水管17と、蒸気Sを過熱蒸気S′とする過熱器18〜20と、過熱器18〜20へ供給される蒸気Sを減温して温度調整する減温装置21とを備えている。   On the other hand, as shown in FIG. 1, the boiler 2 recovers heat from the combustion exhaust gas generated by the combustion of the waste B, heats boiler feed water to generate steam S, and further superheats the steam S to generate high temperature and pressure. Superheated steam S ′, a drum 16, a large number of water pipes 17 arranged on the wall surface of the furnace, the superheaters 18 to 20 having the steam S as the superheated steam S ′, and the superheaters 18 to And a temperature reducing device 21 for adjusting the temperature by reducing the temperature of the steam S supplied to 20.

前記ストーカ5は、乾燥段5aと、乾燥段5aの下流側位置に配設された前部燃焼段5bと、前部燃焼段5bの下流側位置に配設された後部燃焼段5cと、後部燃焼段5cの下流側位置に配設された後燃焼段5dとを備えており、各段5a〜5dの下方位置には、ストーカ下ホッパ6がそれぞれ配設されている。このストーカ5を構成する各段5a〜5dは、図示していないが、可動火格子と固定火格子とを交互に配列して成り、各可動火格子をシリンダ等の駆動装置で前後方向へ一定のピッチで往復動させることによりストーカ5上の廃棄物Bを撹拌しながら上流側から下流側(図1の左側から右側)へ向って前進させるようになっている。   The stoker 5 includes a drying stage 5a, a front combustion stage 5b disposed downstream of the drying stage 5a, a rear combustion stage 5c disposed downstream of the front combustion stage 5b, And a post-combustion stage 5d disposed downstream of the combustion stage 5c, and lower stoker hoppers 6 are disposed below the respective stages 5a to 5d. Although not shown, each stage 5a to 5d constituting the stoker 5 is formed by alternately arranging movable grate and fixed grate, and each movable grate is fixed in the front-rear direction by a driving device such as a cylinder. The waste B on the stalker 5 is moved forward from the upstream side toward the downstream side (from the left side to the right side in FIG. 1) while being agitated.

尚、上記の実施形態においては、ストーカ5を乾燥段5a、前部燃焼段5b、後部燃焼段5c、後燃焼段5dの四つに分割し、一次空気A1の供給箇所を四箇所としたが、他の実施形態においては、ストーカ5を乾燥段、燃焼段、後燃焼段の三つに分割し、一次空気A1の供給箇所を三箇所としても良い。   In the above-described embodiment, the stoker 5 is divided into four parts, that is, the drying stage 5a, the front combustion stage 5b, the rear combustion stage 5c, and the rear combustion stage 5d, and the supply place of the primary air A1 is four. In other embodiments, the stoker 5 may be divided into three stages, ie, a drying stage, a combustion stage, and a post-combustion stage, and the supply location of the primary air A1 may be three.

前記一次空気供給装置14は、ストーカ5下の各ストーカ下ホッパ6に分岐状に接続されてストーカ5下へ一次空気A1を分割供給する一次空気供給ダクト22と、一次空気供給ダクト22に接続された一次空気送風機23と、一次空気供給ダクト22の上流側に介設されて一次空気A1の供給量を調整する一次空気用ダンパ24と、一次空気供給ダクト22内の一次空気A1の供給量を測定し、この測定結果に基づいて一次空気A1の供給量が所定量になるように一次空気用ダンパ24を制御する一次空気用風量制御器25と、一次空気供給ダクト22の分岐部分に介設されてストーカ5の各段5a〜5dへ供給される一次空気A1の供給量を調整する複数のダンパ26〜29と、一次空気供給ダクト22の分岐部分の一次空気A1の供給量を測定し、この測定結果に基づいて一次空気供給ダクト22の分岐部分の一次空気A1の供給量が所定量になるように各ダンパ26〜29を制御する風量制御器30〜33と、一次空気用制御器25からの制御信号に基づいて一次空気A1の配分が所定の配分になるように各風量制御器30〜33を制御する制御装置34とを備えており、制御装置34からの制御信号に基づいて各風量制御器30〜33で各ダンパ26〜29をそれぞれ制御することによりストーカ5の各段5a〜5dに分配供給する一次空気A1の比率を所定の比率に調整することができるようになっている。   The primary air supply device 14 is connected to the primary air supply duct 22 and the primary air supply duct 22, which are branchedly connected to the hoppers 6 below the stalker 5 and supply the primary air A 1 under the stalker 5. The primary air blower 23, the primary air damper 24 that is provided upstream of the primary air supply duct 22 and adjusts the supply amount of the primary air A1, and the supply amount of the primary air A1 in the primary air supply duct 22 An air volume controller 25 for primary air that controls the primary air damper 24 so that the supply amount of the primary air A1 becomes a predetermined amount based on the measurement result, and a branch portion of the primary air supply duct 22 is provided. The plurality of dampers 26 to 29 for adjusting the supply amount of the primary air A1 supplied to the respective stages 5a to 5d of the stoker 5 and the supply of the primary air A1 at the branch portion of the primary air supply duct 22 Air flow controllers 30 to 33 for controlling the dampers 26 to 29 so that the supply amount of the primary air A1 at the branching portion of the primary air supply duct 22 becomes a predetermined amount based on the measurement results, and the primary air And a control device 34 that controls each of the air volume controllers 30 to 33 so that the distribution of the primary air A1 becomes a predetermined distribution based on the control signal from the controller 25 for control, and the control signal from the control device 34 By controlling the dampers 26 to 29 by the air volume controllers 30 to 33 based on the above, the ratio of the primary air A1 distributed and supplied to the stages 5a to 5d of the stoker 5 can be adjusted to a predetermined ratio. It has become.

前記二次空気供給装置15は、二次燃焼室9の炉壁に設けた二次空気供給口35に接続された二次空気供給管36と、二次空気供給管36に接続された二次空気送風機37と、二次空気供給管36に介設されて二次空気A2の供給量を調整する二次空気用ダンパ38と、二次空気供給管36内の二次空気A2の供給量を測定し、この測定結果に基づいて二次空気用ダンパ38を制御する二次空気用風量制御器39とを備えており、常温若しくは予熱された二次空気A2を二次燃焼室9に吹き込めるようになっている。   The secondary air supply device 15 includes a secondary air supply pipe 36 connected to a secondary air supply port 35 provided on the furnace wall of the secondary combustion chamber 9, and a secondary air connected to the secondary air supply pipe 36. An air blower 37, a secondary air damper 38 interposed in the secondary air supply pipe 36 for adjusting the supply quantity of the secondary air A2, and a supply quantity of the secondary air A2 in the secondary air supply pipe 36 And a secondary air volume controller 39 for measuring and controlling the secondary air damper 38 based on the measurement result, and blowing the secondary air A2 at normal temperature or preheated into the secondary combustion chamber 9. It is like that.

前記一次空気供給装置14及び二次空気供給装置15に供給される燃焼用空気は、燃焼排ガス出口10側に配置した酸素濃度測定器40により酸素濃度を測定し、この酸素濃度が一定に保たれるように一次空気A1の供給量と二次空気A2の供給量とが決められており、前記酸素濃度測定器40からの検出信号に基づいて制御装置41により一次空気用風量制御器25及び二次空気用風量制御器39をそれぞれ制御することにより所定量の一次空気A1及び二次空気A2が供給される。   The combustion air supplied to the primary air supply device 14 and the secondary air supply device 15 is measured for oxygen concentration by an oxygen concentration measuring device 40 disposed on the combustion exhaust gas outlet 10 side, and this oxygen concentration is kept constant. Thus, the supply amount of the primary air A1 and the supply amount of the secondary air A2 are determined, and based on the detection signal from the oxygen concentration measuring device 40, the control device 41 controls the primary air flow rate controllers 25 and 2. A predetermined amount of primary air A1 and secondary air A2 are supplied by controlling the air volume controller 39 for secondary air.

この実施形態においては、一次空気A1と二次空気A2の合計空気量を空気比で約1.3となるようにしている。また、ストーカ5下へ供給する一次空気A1の供給量は、一次空気比(一次空気量/理論空気量)で1.0となるようにしており、ストーカ5の各段5a〜5dに供給する一次空気A1の供給量は、乾燥段5aが0.2、前部燃焼段5bが0.3、後部燃焼段5cが0.3、後燃焼段5dが0.2の比率になるように送られている。前記一次空気A1の比率は、過熱器20の出口側の過熱蒸気S′の温度を減温装置21で一定に制御できる場合の比率であり、廃棄物Bの供給量や性質が変化して減温装置21だけでは過熱蒸気S′の温度を一定に制御できない場合には、その比率を変更する。   In this embodiment, the total air amount of the primary air A1 and the secondary air A2 is set to about 1.3 in the air ratio. The supply amount of the primary air A1 supplied below the stoker 5 is 1.0 in terms of the primary air ratio (primary air amount / theoretical air amount), and is supplied to each stage 5a to 5d of the stoker 5. The amount of primary air A1 supplied is such that the drying stage 5a has a ratio of 0.2, the front combustion stage 5b is 0.3, the rear combustion stage 5c is 0.3, and the rear combustion stage 5d is 0.2. It has been. The ratio of the primary air A1 is a ratio when the temperature of the superheated steam S ′ on the outlet side of the superheater 20 can be controlled to be constant by the temperature reducing device 21, and the ratio is reduced by changing the supply amount and properties of the waste B. When the temperature of the superheated steam S ′ cannot be controlled to be constant only by the temperature device 21, the ratio is changed.

尚、上記の実施形態においては、一次空気A1の供給量を一次空気比で1.0としたが、他の実施形態においは、一次空気A1の供給量を一次空気比で0.9〜1.1の範囲で変動させても良い。この場合、二次空気A2の供給量も二次空気比で0.2〜0.4の範囲で変動させる。   In the above embodiment, the supply amount of the primary air A1 is 1.0 as the primary air ratio. However, in other embodiments, the supply amount of the primary air A1 is 0.9 to 1 in terms of the primary air ratio. .1 may be varied. In this case, the supply amount of the secondary air A2 is also changed in the range of 0.2 to 0.4 in terms of the secondary air ratio.

前記過熱器18〜20は、二箇所に分割して配置されており、焼却炉1の燃焼排ガス出口10に接続された煙道に配設されて蒸気Sを過熱する二つの過熱器18,19と、ストーカ5の下流側位置で且つ後燃焼段5dと焼却炉1の前壁3aとの間に配設されて前記二つの過熱器18,19を経た過熱蒸気S′を更に過熱する過熱器20とを備えている。   The superheaters 18 to 20 are divided into two locations, and are arranged in a flue connected to the combustion exhaust gas outlet 10 of the incinerator 1 to superheat the steam S and two superheaters 18 and 19. And a superheater that is disposed downstream of the stoker 5 and between the post-combustion stage 5d and the front wall 3a of the incinerator 1 and further superheats the superheated steam S ′ that has passed through the two superheaters 18 and 19. 20.

煙道に配設された二つの過熱器18,19は、従来公知のものと同様に碁盤目状に配列した過熱管18a,19a及び過熱管18a,19aに接続された管寄せ18b,19bから成り、煙道内を流れる燃焼排ガスにより過熱管18a,19a内を流れる蒸気Sを過熱するようになっている。煙道内に過熱管18a,19aを碁盤目状に配列したのは、過熱管18a,19aを千鳥状に配列した場合に比較して燃焼排ガス中のダストによる閉塞の可能性が低くなるからである。   Two superheaters 18 and 19 arranged in the flue are connected to superheater pipes 18a and 19a arranged in a grid pattern and headers 18b and 19b connected to the superheater pipes 18a and 19a in the same manner as conventionally known. Thus, the steam S flowing in the superheat pipes 18a and 19a is superheated by the combustion exhaust gas flowing in the flue. The reason why the superheat pipes 18a, 19a are arranged in a grid pattern in the flue is that the possibility of clogging by dust in the combustion exhaust gas becomes lower than when the superheat pipes 18a, 19a are arranged in a staggered pattern. .

一方、ストーカ5の下流側位置に配設された過熱器20は、一本のパイプを折り曲げて少なくとも一回以上ターンした過熱管20aを縦向き姿勢で且つ焼却炉1の幅方向(ストーカ5上の廃棄物Bの流れ方向に対して直角の方向)に複数配列し、各過熱管20aの両端部を管寄せ20bに接続することにより構成されており、各過熱管20aは、横断面視において千鳥状に配列されてストーカ5上の火炎Fに対して並ばないように配置されている。ストーカ5の後燃焼段5dと焼却炉1の前壁3aとの間に過熱管20aを千鳥状に配列したのは、過熱管20aの配置場所が付着ダストの少ない位置にあってダストによる閉塞を起こすことがなく、また、上流側の過熱管20aによって下流側の過熱管20aへの火炎輻射が妨げられ難くなり、過熱管20aの受熱量が向上するからである。   On the other hand, the superheater 20 disposed on the downstream side of the stalker 5 has a superheated pipe 20a that is turned at least once by bending one pipe in a vertical orientation and in the width direction of the incinerator 1 (on the stalker 5). Are arranged in a direction perpendicular to the flow direction of the waste B, and both ends of each superheater tube 20a are connected to the header 20b. Each superheater tube 20a is viewed in a cross-sectional view. They are arranged in a staggered manner so as not to line up with the flames F on the stoker 5. The superheater tubes 20a are arranged in a staggered manner between the post-combustion stage 5d of the stalker 5 and the front wall 3a of the incinerator 1. This is because it does not occur, and it is difficult for the upstream superheater tube 20a to prevent flame radiation to the downstream superheater tube 20a, and the amount of heat received by the superheater tube 20a is improved.

前記各過熱管20aのU字状のターン部は、過熱管20aの外径Dの2倍以上の芯間Pが必要となる。また、各列の隣接する過熱管20aの間隔Wは、火炎輻射を受けるのに過熱管20aの外径D以上必要となり、あまり間隔Wを空け過ぎると、限られた空間に過熱管20aを多く配列できなくなり、所定の受熱量を確保できなくなるため、過熱管20aのターン数n×過熱管20aの直径Dの1〜2倍に設定されている。   The U-shaped turn portion of each superheater tube 20a requires an inter-core P that is twice or more the outer diameter D of the superheater tube 20a. Further, the interval W between adjacent superheater tubes 20a in each row is required to be equal to or greater than the outer diameter D of the superheater tube 20a in order to receive flame radiation. If the interval W is too large, the number of superheater tubes 20a is increased in a limited space. Since it becomes impossible to arrange and a predetermined amount of heat received cannot be secured, the number of turns n of the superheater tube 20 x 1 to 2 times the diameter D of the superheater tube 20a is set.

図4及び図5は過熱器20の過熱管20aの配置例を示し、図4は一回だけターンした過熱管20aを縦向き姿勢で且つ焼却炉1の幅方向に複数配列したものであり、また、図5は複数回ターンした過熱管20aを縦向き姿勢で且つ焼却炉1の幅方向に複数配列したものである。   4 and 5 show an arrangement example of the superheater tubes 20a of the superheater 20, and FIG. 4 shows a plurality of superheater tubes 20a that are turned only once in a vertical orientation and in the width direction of the incinerator 1. FIG. 5 shows a plurality of superheated tubes 20 a that are turned a plurality of times in a vertical orientation and in the width direction of the incinerator 1.

尚、上記の実施形態においては、過熱器18〜20を二箇所に分割して配置したが、他の実施形態においては、過熱器18〜20をストーカ5の下流側位置のみに配設するようにしても良い。また、上記の実施形態においては、過熱管20aを焼却炉1の幅方向に複数配列したが、他の実施形態においては、過熱管20aをストーカ5上の廃棄物Bの流れ方向に複数配列するようにしても良い。   In addition, in said embodiment, although superheater 18-20 was divided | segmented and arrange | positioned in two places, in other embodiment, superheater 18-20 is arrange | positioned only in the downstream position of the stoker 5. Anyway. In the above embodiment, a plurality of superheat tubes 20 a are arranged in the width direction of the incinerator 1. However, in another embodiment, a plurality of superheat tubes 20 a are arranged in the flow direction of the waste B on the stoker 5. You may do it.

前記減温装置21は、廃棄物Bの供給量や性状により発熱量及び発生蒸気量が変動した場合でも、過熱器20の出口側の過熱蒸気S′の温度が変動するのを防止し、過熱蒸気S′の温度を常時一定に保つものである。   The temperature reducing device 21 prevents the temperature of the superheated steam S ′ on the outlet side of the superheater 20 from fluctuating even when the heat generation amount and the generated steam amount fluctuate due to the supply amount and properties of the waste B. The temperature of the steam S ′ is always kept constant.

即ち、減温装置21は、ストーカ5の下流側位置に配設した過熱器20に蒸気を導く蒸気供給管42内に水Cを噴霧する水供給管43と、水供給管43に介設した制御弁44と、過熱器20の出口側の過熱蒸気S′の温度を検出し、この検出温度に基づいて過熱蒸気S′の温度が所定の温度になるように制御弁44を制御する温度制御器45とを備えたスプレー式の減温装置21に構成されており、蒸気供給管42内に噴霧する水Cの量を制御することにより過熱器20の出口側の過熱蒸気S′の温度を一定に保てるようになっている。   That is, the temperature reducing device 21 is interposed in the water supply pipe 43 and the water supply pipe 43 for spraying water C into the steam supply pipe 42 for introducing the steam to the superheater 20 disposed at the downstream side position of the stoker 5. Temperature control for detecting the temperature of the control valve 44 and the superheated steam S ′ on the outlet side of the superheater 20 and controlling the control valve 44 so that the temperature of the superheated steam S ′ becomes a predetermined temperature based on the detected temperature. The temperature of the superheated steam S ′ on the outlet side of the superheater 20 is controlled by controlling the amount of water C sprayed in the steam supply pipe 42. It can be kept constant.

そして、前記廃棄物焼却炉ボイラにおいては、廃棄物Bの供給量や性状の変化によってストーカ5上の火炎の大きさや輝度が変化し、減温装置21だけでは過熱蒸気S′の温度を一定に制御できないときには、一次空気供給装置14によりストーカ5上の火炎の大きさや輝度に応じてストーカ5下へ分割供給する一次空気A1の配分を制御し、ストーカ5上の火炎の位置をストーカ5の下流側又は上流側へ変更して火炎輻射による過熱器20の受熱量を変えることにより過熱蒸気S′の温度を一定に保つようにしている。つまり、この廃棄物焼却炉ボイラにおいては、安定燃焼を図る目的で決定されていた一次空気A1の供給量を過熱蒸気S′の性状の安定のために変動させている。   In the waste incinerator boiler, the size and brightness of the flame on the stoker 5 change due to changes in the supply amount and properties of the waste B, and the temperature of the superheated steam S ′ is made constant only by the temperature reducing device 21. When the control cannot be performed, the primary air supply device 14 controls the distribution of the primary air A <b> 1 dividedly supplied below the stalker 5 according to the size and brightness of the flame on the stalker 5, and the flame position on the stalker 5 is positioned downstream of the stalker 5. The temperature of the superheated steam S ′ is kept constant by changing to the side or the upstream side and changing the amount of heat received by the superheater 20 by flame radiation. That is, in this waste incinerator boiler, the supply amount of the primary air A1, which has been determined for the purpose of achieving stable combustion, is varied to stabilize the properties of the superheated steam S '.

次に、上述した廃棄物焼却炉ボイラの制御方法について説明する。   Next, a method for controlling the waste incinerator boiler described above will be described.

廃棄物投入ホッパ4に投入された都市ごみや汚泥等の廃棄物Bは、廃棄物供給プッシャー7により炉内のストーカ5上に供給される。ストーカ5上に供給された廃棄物Bは、可動火格子(図示省略)の前後運動によりストーカ5上を乾燥段5a、前部燃焼段5b、後部燃焼段5c、後燃焼段5dの順に上流側から下流側へ向って乾燥、燃焼、後燃焼しながら移動し、完全な灰となって灰出し口11から炉外へ排出される。   Waste B such as municipal waste and sludge charged into the waste input hopper 4 is supplied onto a stoker 5 in the furnace by a waste supply pusher 7. Waste B supplied onto the stalker 5 is upstream of the drying stage 5a, the front combustion stage 5b, the rear combustion stage 5c, and the rear combustion stage 5d on the stalker 5 by the longitudinal movement of a movable grate (not shown). It moves while being dried, combusted and post-combusted from the downstream to the downstream side, and becomes complete ash, which is discharged from the ash outlet 11 to the outside of the furnace.

このとき、廃棄物Bの燃焼は、主に前部燃焼段5b(図1のイの位置)で起こり、前部燃焼段5b上に旺盛な火炎Fを形成する。また、燃焼用空気は、燃焼排ガス出口10側に配置した酸素濃度測定器40により酸素濃度を測定し、酸素濃度が一定に保たれるように一次空気A1の供給量と二次空気A2の供給量とが決められている。一次空気A1と二次空気A2の空気量の制御は、酸素濃度測定器40からの検出信号に基づいて制御装置41により一次空気用風量制御器25及び二次空気用風量制御器39をそれぞれ制御することにより行われている。更に、一次空気A1の供給量は、ストーカ5の乾燥段5a、前部燃焼段5b、後部燃焼段5c、後燃焼段5dに決められた比率で送られており、この例では、乾燥段5aが0.2、前部燃焼段5bが0.3、後部燃焼段5cが0.3、後燃焼段5dが0.2の比率になるように送られている。   At this time, the combustion of the waste B mainly occurs in the front combustion stage 5b (position a in FIG. 1), and a vigorous flame F is formed on the front combustion stage 5b. The combustion air is measured for oxygen concentration by an oxygen concentration measuring device 40 disposed on the combustion exhaust gas outlet 10 side, and the supply amount of the primary air A1 and the supply of the secondary air A2 so that the oxygen concentration is kept constant. The amount is determined. Control of the air volume of the primary air A1 and the secondary air A2 is performed by controlling the primary air volume controller 25 and the secondary air volume controller 39 by the control device 41 based on the detection signal from the oxygen concentration measuring device 40, respectively. Is done by doing. Furthermore, the supply amount of the primary air A1 is sent at a ratio determined to the drying stage 5a, the front combustion stage 5b, the rear combustion stage 5c, and the rear combustion stage 5d of the stoker 5, and in this example, the drying stage 5a Is 0.2, the front combustion stage 5b is 0.3, the rear combustion stage 5c is 0.3, and the rear combustion stage 5d is 0.2.

廃棄物Bの燃焼により発生した炉内の燃焼排ガスは、一次燃焼室8、二次燃焼室9、燃焼排ガス出口10及び煙道を通り、その間にボイラ2等により熱回収されると共に、排ガス処理装置(図示省略)等により浄化処理されて大気中へ放出される。   The flue gas in the furnace generated by the combustion of the waste B passes through the primary combustion chamber 8, the secondary combustion chamber 9, the flue gas outlet 10 and the flue, during which heat is recovered by the boiler 2 and the exhaust gas treatment. It is purified by a device (not shown) and released into the atmosphere.

ボイラ2での熱回収により発生した蒸気Sは、蒸気供給管42により煙道に配設した過熱器18,19及びストーカ5の下流側位置に配設した過熱器20に順次導かれ、450℃まで過熱されて過熱蒸気S′となる。450℃の過熱蒸気S′は、蒸気供給管42により蒸気タービン46及び発電機47から成る発電設備に送られ、蒸気タービン46を回して発電を行う。尚、48は排気蒸気の凝縮器である。   The steam S generated by the heat recovery in the boiler 2 is sequentially guided to the superheaters 18 and 19 disposed in the flue by the steam supply pipe 42 and the superheater 20 disposed downstream of the stalker 5 at 450 ° C. To superheated steam S ′. The 450 ° C. superheated steam S ′ is sent to the power generation facility including the steam turbine 46 and the generator 47 through the steam supply pipe 42, and the steam turbine 46 is rotated to generate power. Reference numeral 48 denotes an exhaust vapor condenser.

ボイラ2においては、廃棄物Bの供給量や性状の変動により発生蒸気量が変動し、ストーカ5の下流側位置に配設した過熱器20の出口側の過熱蒸気S′の温度が変動することがあるので、減温装置21により過熱器20の入口側の蒸気供給管42に水Cを噴霧して温度調整することにより過熱器20の出口側の過熱蒸気S′の温度を一定に保つようにしている。   In the boiler 2, the amount of generated steam varies due to fluctuations in the supply amount and properties of the waste B, and the temperature of the superheated steam S ′ on the outlet side of the superheater 20 disposed downstream of the stoker 5 varies. Therefore, the temperature of the superheated steam S ′ on the outlet side of the superheater 20 is kept constant by spraying water C onto the steam supply pipe 42 on the inlet side of the superheater 20 and adjusting the temperature by the temperature reducing device 21. I have to.

即ち、過熱器20の出口側の過熱蒸気S′の温度は、過熱器20の出口側の過熱蒸気S′の温度を検出し、この検出温度に基づいて過熱蒸気S′の温度が所定の温度(450℃)になるように温度制御器45により制御弁44を制御し、水Cの噴霧量を変えることに調整しており、図2のグラフに示す如く、水Cの噴霧量が制御幅の範囲(c〜dの範囲)に収まるようにしている。   That is, the temperature of the superheated steam S ′ on the outlet side of the superheater 20 detects the temperature of the superheated steam S ′ on the outlet side of the superheater 20, and the temperature of the superheated steam S ′ is determined to be a predetermined temperature based on this detected temperature. The control valve 44 is controlled by the temperature controller 45 so as to be (450 ° C.), and adjustment is made to change the spray amount of the water C. As shown in the graph of FIG. (The range of c to d).

ところで、廃棄物Bは、日や月によって供給量や性状に変動があり、ストーカ5上の火炎の大きさや輝度が大きく変動すると、減温装置21による水Cの噴霧制御では、制御幅の範囲(水噴霧量がc〜d)に収まらない場合があり、過熱器20の出口側の過熱蒸気S′の温度を一定に保てないときがある。   By the way, the amount and property of waste B varies depending on the day and month, and when the size and brightness of the flame on the stoker 5 vary greatly, the spray range of the water C by the temperature reducing device 21 is within the range of the control width. In some cases, the water spray amount may not be within the range of c to d, and the temperature of the superheated steam S ′ on the outlet side of the superheater 20 may not be kept constant.

この場合には、一次空気供給装置14を制御し、ストーカ5下へ分割供給する一次空気A1の配分を変えてストーカ5上の火炎Fの位置を移動させ、過熱器20の受熱量を増やしたり、減らしたりすることにより減温装置21の水Cの噴霧量が制御幅の範囲に収まり、過熱器20の出口側の過熱蒸気S′の温度を一定に保つことができる。   In this case, the primary air supply device 14 is controlled, the distribution of the primary air A1 dividedly supplied below the stalker 5 is changed, the position of the flame F on the stalker 5 is moved, and the amount of heat received by the superheater 20 is increased. By reducing the amount, the spray amount of the water C of the temperature reducing device 21 falls within the range of the control width, and the temperature of the superheated steam S ′ on the outlet side of the superheater 20 can be kept constant.

例えば、廃棄物Bの供給量や性質が変動し、発熱量が低下してストーカ5上(前部燃焼段5b上)の火炎Fの大きさや輝度が低下した場合、制御信号aにより減温装置21による水噴霧量を図2のグラフのcの位置まで絞っても、過熱器20の出口側の過熱蒸気S′の温度が低下し、過熱蒸気S′の温度を一定に保つことができない。   For example, when the supply amount or nature of the waste B changes, the calorific value decreases, and the size or brightness of the flame F on the stoker 5 (on the front combustion stage 5b) decreases, the temperature reducing device is controlled by the control signal a. Even if the water spray amount by 21 is reduced to the position c in the graph of FIG. 2, the temperature of the superheated steam S ′ on the outlet side of the superheater 20 is lowered, and the temperature of the superheated steam S ′ cannot be kept constant.

減温装置21の制御信号が図2のグラフのaの位置になると、一次空気供給装置14が制御されて一次空気A1の配分を図3に示すパターン1からパターン2に変更し、乾燥段5aが0.2、前部燃焼段5bが0.3、後部燃焼段5cが0.3、後燃焼段5dが0.2になっている一次空気A1の比率を乾燥段5aが0.2、前部燃焼段5bが0.2、後部燃焼段5cが0.4、後燃焼段5dが0.2になるように変更する。そうすると、ストーカ5上の火炎Fの位置が前部燃焼段5b上(図1のイの位置)から後部燃焼段5c上(図1のロの位置)へと移動し、火炎Fが過熱器20に近づくことで火炎Fと過熱器20の受熱面の輻射形態係数が上って過熱器20の受熱量が増える。その結果、減温装置21の水噴霧制御が制御幅の範囲(水噴霧量がc〜d)に収まることになり、過熱蒸気S′の温度を一定に保つことができる。   When the control signal of the temperature reducing device 21 reaches the position a in the graph of FIG. 2, the primary air supply device 14 is controlled to change the distribution of the primary air A1 from the pattern 1 shown in FIG. 3 to the pattern 2, and the drying stage 5a. Is 0.2, the front combustion stage 5b is 0.3, the rear combustion stage 5c is 0.3, and the ratio of the primary air A1 is 0.2, the drying stage 5a is 0.2, The front combustion stage 5b is changed to 0.2, the rear combustion stage 5c is set to 0.4, and the rear combustion stage 5d is changed to 0.2. As a result, the position of the flame F on the stalker 5 moves from the front combustion stage 5b (position a in FIG. 1) to the rear combustion stage 5c (position b in FIG. 1), and the flame F moves to the superheater 20. As a result, the radiation form factor of the heat receiving surface of the flame F and the superheater 20 increases and the amount of heat received by the superheater 20 increases. As a result, the water spray control of the temperature reducing device 21 falls within the control range (water spray amount cd), and the temperature of the superheated steam S ′ can be kept constant.

反対に廃棄物Bの供給量や性状が変動し、発熱量が上昇してストーカ5上(前部燃焼段5b上)の火炎Fの大きさや輝度が上昇した場合、制御信号bにより減温装置21による水噴霧量を図2のグラフのdの位置まで上げても、過熱器20の出口側の過熱蒸気S′の温度が上昇し、過熱蒸気S′の温度を一定に保つことができない。   On the other hand, when the supply amount and properties of the waste B fluctuate and the calorific value increases and the size and brightness of the flame F on the stoker 5 (on the front combustion stage 5b) increase, the temperature reducing device is controlled by the control signal b. Even if the water spray amount by 21 is increased to the position of d in the graph of FIG. 2, the temperature of the superheated steam S ′ on the outlet side of the superheater 20 rises, and the temperature of the superheated steam S ′ cannot be kept constant.

減温装置21の制御信号が図2のグラフのbの位置になると、一次空気供給装置14が制御されて一次空気A1の配分を図3に示すパターン1からパターン3に変更し、乾燥段5aが0.2、前部燃焼段5bが0.3、後部燃焼段5cが0.3、後燃焼段5dが0.2になっている一次空気A1の比率を乾燥段5aが0.3、前部燃焼段5bが0.3、後部燃焼段5cが0.2、後燃焼段5dが0.2になるように変更する。そうすると、ストーカ5上の火炎Fの位置が前部燃焼段5b上(図1のイの位置)から乾燥段5a上(図1のハの位置)へと移動し、火炎Fが過熱器20から遠ざかることで火炎Fと過熱器20の受熱面の輻射形態係数が下がって過熱器20の受熱量が減る。その結果、減温装置21の水噴霧制御が制御幅の範囲(水噴霧量がc〜d)に収まることになり、過熱蒸気S′の温度を一定に保つことができる。   When the control signal of the temperature reducing device 21 reaches the position b in the graph of FIG. 2, the primary air supply device 14 is controlled to change the distribution of the primary air A1 from the pattern 1 shown in FIG. 3 to the pattern 3, and the drying stage 5a. Is 0.2, the front combustion stage 5b is 0.3, the rear combustion stage 5c is 0.3, and the ratio of the primary air A1 is 0.2, the drying stage 5a is 0.3. The front combustion stage 5b is changed to 0.3, the rear combustion stage 5c is changed to 0.2, and the rear combustion stage 5d is changed to 0.2. As a result, the position of the flame F on the stoker 5 moves from the front combustion stage 5b (position a in FIG. 1) to the drying stage 5a (position c in FIG. 1), and the flame F moves from the superheater 20. By moving away, the radiation form factor of the heat receiving surface of the flame F and the superheater 20 decreases, and the amount of heat received by the superheater 20 decreases. As a result, the water spray control of the temperature reducing device 21 falls within the control range (water spray amount cd), and the temperature of the superheated steam S ′ can be kept constant.

このように、前記廃棄物焼却炉ボイラは、減温装置21による水噴霧制御と一次空気供給装置14による一次空気A1の分配制御とを組み合わせているため、廃棄物Bの供給量や性状が大きく変動してストーカ5上の火炎Fに影響した場合でも、過熱器20の出口側の過熱蒸気S′の温度を一定に制御することができる。   Thus, since the waste incinerator boiler combines the water spray control by the temperature reducing device 21 and the distribution control of the primary air A1 by the primary air supply device 14, the supply amount and properties of the waste B are large. Even when it fluctuates and affects the flame F on the stalker 5, the temperature of the superheated steam S 'on the outlet side of the superheater 20 can be controlled to be constant.

また、廃棄物焼却炉ボイラは、一次空気供給装置14による一次空気A1の分配制御によりストーカ5上の火炎Fの位置を一次空気A1量の制御により変更することができるので、過熱器20が火炎はからの輻射熱を有効に受熱することができる。   Moreover, since the waste incinerator boiler can change the position of the flame F on the stalker 5 by controlling the amount of primary air A1 by controlling the distribution of the primary air A1 by the primary air supply device 14, the superheater 20 can be used as a flame. The radiant heat from can be effectively received.

更に、廃棄物焼却炉ボイラは、過熱器20を腐食性のガスが殆ど発生しないストーカ5の下流側位置に配設すると共に、過熱器20の過熱管20aを千鳥状に配列してストーカ5上の火炎Fに対して並ばないようにしているため、過熱器20の高温腐食を防止することができると共に、過熱管20aの伝熱面が有効に機能して所定の受熱量を確保することができる。   Further, in the waste incinerator boiler, the superheater 20 is disposed at a downstream side position of the stoker 5 where almost no corrosive gas is generated, and the superheater tubes 20a of the superheater 20 are arranged in a staggered manner on the stoker 5. Therefore, the high-temperature corrosion of the superheater 20 can be prevented, and the heat transfer surface of the superheater tube 20a can function effectively to ensure a predetermined amount of heat received. it can.

加えて、廃棄物焼却炉ボイラは、ストーカ5を乾燥段5a、前部燃焼段5b、後部燃焼段5c、後燃焼段5dの四つに分割し、一次空気A1の供給箇所を四箇所としているため、より細かい制御を行うことができ、安定燃焼を阻害することなく蒸気制御を行うことができる。   In addition, the waste incinerator boiler divides the stoker 5 into four parts, a drying stage 5a, a front combustion stage 5b, a rear combustion stage 5c, and a rear combustion stage 5d, and supplies four primary air A1. Therefore, finer control can be performed, and steam control can be performed without inhibiting stable combustion.

本発明は、上記の実施形態に限定解釈されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、本発明は、排ガスの一部を燃焼空気に混合して供給する排ガス再循環法等を併用しても良い。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, the present invention may be used in combination with an exhaust gas recirculation method in which a part of exhaust gas is mixed with combustion air and supplied.

1は焼却炉、2はボイラ、3は炉本体、3aは前壁、4は廃棄物投入ホッパ、5はストーカ、5aは乾燥段、5bは前部燃焼段、5cは後部燃焼段、5dは後燃焼段、6はストーカ下ホッパ、8は廃棄物供給プッシャー、8は一次燃焼室、9は二次燃焼室、10は燃焼排ガス出口、11は灰出し口、12は冷却水槽、13は水封式コンベア、14は一次空気供給装置、15は二次空気供給装置、16はドラム、17は多数の水管、18〜20は過熱器、18a〜20aは過熱管、18b〜20bは管寄せ、21は減温装置、22は一次空気供給ダクト、23は一次空気送風機、24は一次空気用ダンパ、25は一次空気用風量制御器、26〜29はダンパ、30〜33は風量制御器、34は制御装置、35は二次空気供給口、36は二次空気供給管、37は二次空気送風機、38は二次空気用ダンパ、39は二次空気用風量制御器、40は酸素濃度測定器、41は制御装置、42は蒸気供給管、43は水供給管、44は制御弁、45は温度制御器、46は蒸気タービン、47は発電機、48は凝縮器、A1は一次空気、A2は二次空気、Bは廃棄物、Cは水、Sは蒸気、S′は過熱蒸気、Dは過熱管の直径、Pは芯間、Wは過熱管の間隔、Fは火炎。   1 is an incinerator, 2 is a boiler, 3 is a furnace body, 3a is a front wall, 4 is a waste charging hopper, 5 is a stoker, 5a is a drying stage, 5b is a front combustion stage, 5c is a rear combustion stage, and 5d is Post combustion stage, 6 is a hopper under the stoker, 8 is a waste supply pusher, 8 is a primary combustion chamber, 9 is a secondary combustion chamber, 10 is a combustion exhaust gas outlet, 11 is an ash outlet, 12 is a cooling water tank, and 13 is water Sealed conveyor, 14 is a primary air supply device, 15 is a secondary air supply device, 16 is a drum, 17 is a number of water tubes, 18 to 20 are superheaters, 18a to 20a are superheat tubes, 18b to 20b are headers, 21 is a temperature reducing device, 22 is a primary air supply duct, 23 is a primary air blower, 24 is a primary air damper, 25 is a primary air volume controller, 26 to 29 are dampers, 30 to 33 are air volume controllers, 34 Is a control device, 35 is a secondary air supply port, and 36 is a secondary air Supply pipe, 37 is a secondary air blower, 38 is a secondary air damper, 39 is a secondary air flow rate controller, 40 is an oxygen concentration measuring device, 41 is a control device, 42 is a steam supply pipe, 43 is a water supply Pipe, 44 control valve, 45 temperature controller, 46 steam turbine, 47 generator, 48 condenser, A1 primary air, A2 secondary air, B waste, C water, S Steam, S 'is superheated steam, D is the diameter of the superheated tube, P is the distance between the cores, W is the space between the superheated tubes, and F is the flame.

Claims (2)

廃棄物の流れ方向に複数に分割したストーカ下へ一次空気供給装置により一次空気を分割供給してストーカ上の廃棄物を順次乾燥、燃焼させ、発生した燃焼排ガスによりボイラで蒸気を発生させると共に、この蒸気を減温装置で減温して温度調整してからストーカの下流側位置に配設した過熱器で更に過熱して過熱蒸気とするようした廃棄物焼却炉ボイラの制御方法であって、ボイラで発生した蒸気を減温装置で減温して温度調整することにより過熱器の出口側の過熱蒸気の温度を一定に保つようにし、廃棄物の供給量や性状の変化によってストーカ上の火炎の大きさや輝度が変化し、減温装置だけでは過熱蒸気の温度を一定に制御できないときには、一次空気供給装置によりストーカ上の火炎の大きさや輝度に応じてストーカ下へ分割供給する一次空気の配分を制御し、ストーカ上の火炎の位置をストーカの下流側又は上流側へ変更して火炎輻射による過熱器の受熱量を変えることにより過熱蒸気の温度を一定に保つようにしたことを特徴とする廃棄物焼却炉ボイラの制御方法。The primary air is divided and supplied by the primary air supply device under the stoker divided in the direction of waste flow, the waste on the stoker is dried and burned sequentially, and steam is generated in the boiler by the generated combustion exhaust gas, A method for controlling a waste incinerator boiler in which the temperature of the steam is reduced by a temperature reducing device and the temperature is adjusted, and further superheated by a superheater disposed at a downstream position of the stalker to be superheated steam, The temperature of the superheated steam on the outlet side of the superheater is kept constant by reducing the temperature of the steam generated in the boiler with a temperature reducing device and adjusting the temperature. When the size and brightness of the heater changes and the temperature of the superheated steam cannot be controlled to a certain level with just the temperature reducing device, the primary air supply device divides and supplies the gas under the stoker according to the size and brightness of the flame on the stoker. The temperature of the superheated steam is kept constant by changing the position of the flame on the stoker to the downstream side or upstream side of the stoker and changing the amount of heat received by the superheater by flame radiation. A method for controlling a waste incinerator boiler, characterized by: 廃棄物の発熱量が低下してストーカ上の火炎の大きさや輝度が低下し、減温装置だけでは過熱蒸気の温度を一定に制御できないときには、一次空気供給装置によりストーカの下流側寄りの一次空気を増加させ、ストーカ上の火炎の位置を過熱器に近づく方向へ移動させて過熱器の受熱量を増やし、また、廃棄物の発熱量が上昇してストーカ上の火炎の大きさや輝度が上昇し、減温装置だけでは過熱蒸気の温度を一定に制御できないときには、一次空気供給装置によりストーカの上流側寄りの一次空気を増加させ、ストーカ上の火炎の位置を過熱器から遠ざかる方向へ移動させて過熱器の受熱量を減らすようにしたことを特徴とする請求項1に記載の廃棄物焼却炉ボイラの制御方法。When the amount of heat generated by the waste decreases and the size and brightness of the flame on the stalker decrease, and the temperature of the superheated steam cannot be controlled to a constant level using only the temperature reducing device, the primary air near the downstream side of the stalker is caused by the primary air supply device. To increase the amount of heat received by the superheater by moving the position of the flame on the stoker closer to the superheater, and the amount of heat generated from the waste increases, increasing the size and brightness of the flame on the stoker. When the temperature of the superheated steam cannot be controlled to a certain level using only the temperature reducing device, the primary air near the upstream side of the stalker is increased by the primary air supply device, and the flame position on the stalker is moved away from the superheater. 2. The method for controlling a waste incinerator boiler according to claim 1, wherein the amount of heat received by the superheater is reduced.
JP2015024093A 2015-02-10 2015-02-10 Waste incinerator boiler control method Active JP5995379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015024093A JP5995379B2 (en) 2015-02-10 2015-02-10 Waste incinerator boiler control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015024093A JP5995379B2 (en) 2015-02-10 2015-02-10 Waste incinerator boiler control method

Publications (2)

Publication Number Publication Date
JP2016148470A JP2016148470A (en) 2016-08-18
JP5995379B2 true JP5995379B2 (en) 2016-09-21

Family

ID=56688354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015024093A Active JP5995379B2 (en) 2015-02-10 2015-02-10 Waste incinerator boiler control method

Country Status (1)

Country Link
JP (1) JP5995379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7105469B2 (en) * 2017-11-09 2022-07-25 株式会社アクトリー incinerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119919A (en) * 1993-10-25 1995-05-12 Kubota Corp Temperature controller for steam superheater with exhaust gas at heat source
JPH0979555A (en) * 1995-09-19 1997-03-28 Kubota Corp Garbage incinerator
JPH09112869A (en) * 1995-10-16 1997-05-02 Kubota Corp Combustion controller for refuse incinerating furnace
JP3467751B2 (en) * 1998-03-06 2003-11-17 住友重機械工業株式会社 Detection method of combustion position and burn-off point position in refuse incinerator
JP2003161420A (en) * 2001-11-28 2003-06-06 Mitsubishi Heavy Ind Ltd Combustion control method and combustion control device of stoker incinerator

Also Published As

Publication number Publication date
JP2016148470A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
CN103958968B (en) The burning of the incinerator in compound facility promotes method and compound facility
CN108758651A (en) A kind of circulating fluidized bed boiler suitable for waste incineration
CN104141958A (en) Tail flue gas afterheat recycling system of mechanical waste incineration grate boiler and automatic control method thereof
JP6309709B2 (en) BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD
JP5995379B2 (en) Waste incinerator boiler control method
CN204026686U (en) Mechanical type garbage incinerator grate furnace boiler tail flue gas recycling residual heat system
CN108779913B (en) Mechanical grate type garbage incinerator provided with waste heat recovery boiler
JP5875720B1 (en) Waste incinerator boiler and control method thereof
CN107559804A (en) A kind of garbage burning boiler superheater system
JP5800237B2 (en) Waste incinerator and waste incineration method
CN207378803U (en) A kind of garbage burning boiler superheater system
CN111550758A (en) High-capacity high-parameter waste incineration waste heat boiler
JP2013117336A (en) Combustion method and combustion device of stoker-type incinerator
JP2023108772A (en) Boiler controller, boiler control method and program
CN101535912B (en) Method and arrangement for air quantity regulation of a combustion system which is operated with solid fossil fuels
JP5498434B2 (en) Biomass fired boiler
JP2003083507A (en) High-temperature and high-pressure boiler
JP6797083B2 (en) Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method, and grate-type waste incinerator
JP2020190364A (en) Combustion control method and refuse incinerator power generating facility
JP6655947B2 (en) Modification method of burner unit, burner unit and boiler
CN110425544A (en) A kind of novel 900t/d high heating value domestic waste incineration
JP7495876B2 (en) Boiler and method for inhibiting corrosion of boiler
JP2015209992A (en) Waste incineration treatment equipment and waste incineration treatment method
Jegla et al. Secondary combustion chamber with inbuilt heat transfer area–thermal model for improved waste-to-energy systems modelling
CN112880204B (en) Method for protecting smoke side smoke screen of boiler

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 5995379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250