JPH0419445B2 - - Google Patents
Info
- Publication number
- JPH0419445B2 JPH0419445B2 JP58113272A JP11327283A JPH0419445B2 JP H0419445 B2 JPH0419445 B2 JP H0419445B2 JP 58113272 A JP58113272 A JP 58113272A JP 11327283 A JP11327283 A JP 11327283A JP H0419445 B2 JPH0419445 B2 JP H0419445B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- combustion
- gas
- oxygen
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 claims description 64
- 238000002485 combustion reaction Methods 0.000 claims description 62
- 239000001301 oxygen Substances 0.000 claims description 56
- 229910052760 oxygen Inorganic materials 0.000 claims description 56
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 53
- 239000000446 fuel Substances 0.000 claims description 14
- 239000002737 fuel gas Substances 0.000 claims description 4
- 238000009841 combustion method Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical class O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 150000002926 oxygen Chemical class 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-OUBTZVSYSA-N oxygen-17 atom Chemical compound [17O] QVGXLLKOCUKJST-OUBTZVSYSA-N 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/003—Systems for controlling combustion using detectors sensitive to combustion gas properties
- F23N5/006—Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/02—Air or combustion gas valves or dampers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/12—Fuel valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2237/00—Controlling
- F23N2237/02—Controlling two or more burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2237/00—Controlling
- F23N2237/08—Controlling two or more different types of fuel simultaneously
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
Description
【発明の詳細な説明】
本発明は燃焼用空気を酸素で富化した富化空気
による燃焼方法に係り、詳しくは、燃焼用空気中
に酸素を混合富化して燃焼させる際に、排ガス中
の酸素濃度が一定になるよう燃焼用空気量を制御
して燃焼させる方法に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion method using enriched air in which combustion air is enriched with oxygen. It relates to a method of combustion by controlling the amount of combustion air so that the oxygen concentration is constant.
一般に、熱設備において燃料中の可燃成分量が
一定の場合には、その発熱量によつて理論空気量
が決まるため、この理論空気量に一定の空気比を
与えてやると、実際に必要とする燃焼用空気量が
求められる。このため、燃料流量の変化に追従し
て燃焼用空気量を変化させることができることか
ら、排ガス中の酸素濃度を一定に保つて燃焼を行
なうことができる。 Generally, when the amount of combustible components in the fuel in thermal equipment is constant, the theoretical amount of air is determined by its calorific value. The amount of combustion air required is determined. Therefore, since the amount of combustion air can be changed in accordance with the change in the fuel flow rate, combustion can be performed while keeping the oxygen concentration in the exhaust gas constant.
例えば、鉄鋼一貫製鉄所では、高炉から発生す
る高炉ガス(以下、Bガスという。)、コークス炉
から発生するコークス炉ガス(以下、Cガスとい
う。)、転炉から発生する転炉ガス等の副生ガスが
発生し、これら副生ガスはその有効利用のため
に、用途に応じてボイラその他の熱設備の熱源と
して使用されている。例えば、蒸気を大量に発生
するボイラにおいては、主燃料にBガス、補助燃
料にCガスを使用し、その燃焼は第1図に示す如
く制御されて行なわれている。すなわち、Bガス
1、Cガス10はそれぞれ配管1a,10aを経
てボイラ燃焼室7に供給される。これら燃料の発
熱量から理論空気量が決まり、Bガス用比率調節
器6、Cガス用比率調節器14により一定の空気
比を定めておけば、燃焼用空気量が決まり、Bガ
ス量や、Cガス量が変化しても、その変化はガス
流量計3ならびに12で検出され、それに対応し
てそれぞれの空気調節弁5,16を調整するた
め、燃焼空気量が追従し、燃焼用空気2,11が
各配管2a,11aを経て供給され、燃焼室7内
の各バーナ8,15で燃焼される。排ガス中の酸
素濃度は酸素メータ9で測定され、該濃度一定で
燃焼が行なわれる。 For example, in an integrated steelworks, blast furnace gas generated from a blast furnace (hereinafter referred to as B gas), coke oven gas generated from a coke oven (hereinafter referred to as C gas), converter gas generated from a converter, etc. By-product gases are generated, and these by-product gases are used as heat sources for boilers and other heat equipment depending on the purpose, in order to make effective use of them. For example, in a boiler that generates a large amount of steam, B gas is used as the main fuel and C gas is used as the auxiliary fuel, and the combustion thereof is controlled as shown in FIG. That is, B gas 1 and C gas 10 are supplied to boiler combustion chamber 7 via piping 1a and 10a, respectively. The theoretical air amount is determined from the calorific value of these fuels, and if a constant air ratio is determined by the B gas ratio adjuster 6 and the C gas ratio adjuster 14, the amount of air for combustion is determined, and the amount of B gas, Even if the amount of C gas changes, the change is detected by the gas flow meters 3 and 12, and the respective air control valves 5 and 16 are adjusted accordingly, so the amount of combustion air follows and the combustion air 2 , 11 are supplied through the respective pipes 2a, 11a, and are burned in the respective burners 8, 15 in the combustion chamber 7. The oxygen concentration in the exhaust gas is measured by an oxygen meter 9, and combustion is performed at a constant concentration.
また、製鉄所内での酸素の需給バランスから酸
素が余剰になることが多い。この酸素ガスの有効
利用の一つとして、ボイラの燃焼用空気中に酸素
を富化(空気と酸素を混合させて燃焼用空気中の
酸素濃度を上げる)する方法がある。 Furthermore, due to the supply and demand balance of oxygen within the steelworks, there is often a surplus of oxygen. One way to effectively utilize this oxygen gas is to enrich the combustion air of a boiler with oxygen (mix air and oxygen to increase the oxygen concentration in the combustion air).
ところが、このように燃焼空気中に純酸素を混
合し燃焼空気中の酸素濃度を上げて燃焼効率を上
昇させるときには、上記の如く燃焼をコントロー
ルすることができない。つまり、富化時の酸素流
量ならびに燃料流量が変化する場合には、燃料発
熱量が一定であつても、これから求めた理論空気
量にある定まつた空気比を与えて燃焼用空気を求
め、この燃焼用空気によつて燃焼させることはで
きない。 However, when pure oxygen is mixed into the combustion air to increase the oxygen concentration in the combustion air to increase combustion efficiency, combustion cannot be controlled as described above. In other words, when the oxygen flow rate and fuel flow rate during enrichment change, even if the fuel calorific value is constant, the combustion air is determined by giving a certain fixed air ratio to the theoretical air amount calculated from this. Combustion cannot be carried out with this combustion air.
とくに、富化空気による燃焼方法において、排
ガス中の酸素濃度を一定に保つような燃焼制御を
行なう場合には、燃料流量に対する酸素富化後の
富化空気中における酸素濃度を求め、これにより
必要な燃焼用空気量を求めて制御することが必要
である。 In particular, when performing combustion control to keep the oxygen concentration in the exhaust gas constant in a combustion method using enriched air, the oxygen concentration in the enriched air after oxygen enrichment is determined relative to the fuel flow rate, and the necessary It is necessary to determine and control the combustion air amount.
本発明は、このところを有為に利用し、具体的
には、燃焼用空気に酸素を混合富化した富化空気
によつて燃料ガスを燃焼させるときに、混合富化
後の富化空気中の酸素濃度ならびに燃料ガスの流
量を検出し、これらの検出値にもとずいて燃焼用
空気の流量を制御し、排ガス中の酸素濃度を一定
に保つものである。 The present invention makes effective use of this point, and specifically, when burning fuel gas with enriched air obtained by mixing and enriching combustion air with oxygen, the enriched air after mixing and enrichment This system detects the oxygen concentration in the exhaust gas and the flow rate of the fuel gas, and controls the flow rate of combustion air based on these detected values to keep the oxygen concentration in the exhaust gas constant.
以下、本発明法について詳しく説明する。 The method of the present invention will be explained in detail below.
まず、第2図は本発明法を実施する制御系の一
例のフローシートであつて、第1図に示すものと
同様に2種の燃料、つまり、高エネルギーのCガ
ス10(発熱量4400kal/Nm3)と低エネルギー
のBガス1(発熱量700kal/Nm3)をボイラの燃
焼室7で燃焼させるものである。 First, FIG. 2 is a flow sheet of an example of a control system for carrying out the method of the present invention, and similarly to the one shown in FIG. Nm 3 ) and low-energy B gas 1 (calorific value 700 kal/Nm 3 ) are combusted in the combustion chamber 7 of the boiler.
この制御系においてBガス1の供給で富化空気
を用いて燃焼させる場合には、Bガス1の燃焼の
ために、配管2aから通常の通り燃焼用空気2を
供給するとともに、この配管2aに酸素供給用の
配管17aを接続し、配管17aから純酸素17
を供給する。バーナー8の前段において燃焼用空
気2と酸素17が混合する個所に酸素分析計18
を設ける一方、この酸素分析計18からの富化空
気中の酸素濃度を検出し、この酸素濃度にもとず
いて後記の如く燃焼用空気量を演算し、これによ
つて燃焼用空気を制御する。なお、符号20は空
気比率調節の機能を持つ演算器20である。 In this control system, when supplying B gas 1 to perform combustion using enriched air, in order to combust B gas 1, combustion air 2 is supplied as usual from piping 2a, and Connect the oxygen supply pipe 17a and supply pure oxygen 17 from the pipe 17a.
supply. An oxygen analyzer 18 is installed at the point where the combustion air 2 and oxygen 17 are mixed before the burner 8.
At the same time, the oxygen concentration in the enriched air from this oxygen analyzer 18 is detected, and based on this oxygen concentration, the amount of combustion air is calculated as described later, and the combustion air is controlled thereby. do. Note that the reference numeral 20 is a computing unit 20 having a function of adjusting the air ratio.
すなわち、第2図において、燃焼用空気を吹込
むだけでCガス10を通常燃焼させるときは、第
1図に示す場合と同様に、Cガスの発熱量から理
論空気量が決まり、Cガス用空気比率調節器14
にて一定の空気比を定め燃焼される。Bガス1を
燃焼用空気も吹込むだけの通常燃焼の場合は、演
算器20に対してBガス流量計3からの燃焼ガス
流量信号を入力して演算器20で空気比較調器と
同様の機能を果たさせ、Bガス1の発熱量から理
論空気量を求め、燃焼に必要空気2を空気調節弁
5により調整してBガス流量に応じて燃焼用空気
量で燃焼させる。 That is, in FIG. 2, when C gas 10 is normally combusted by simply blowing combustion air, the theoretical air amount is determined from the calorific value of C gas, and the amount of air for C gas is determined as in the case shown in FIG. Air ratio controller 14
It is burned at a fixed air ratio. In the case of normal combustion in which B gas 1 is simply blown in with combustion air, the combustion gas flow rate signal from the B gas flow meter 3 is input to the calculator 20, and the calculator 20 performs the same operation as the air comparator. The theoretical air amount is determined from the calorific value of the B gas 1, and the air 2 necessary for combustion is adjusted by the air control valve 5, and combustion is performed with the amount of combustion air according to the B gas flow rate.
これに対し、Bガス1を純酸素17で富化した
富化空気によつて燃焼する時には、Bガス流量計
3からの燃料ガス流量信号を演算器20に入力す
る。一方、演算器20には最適空燃比になるよう
予め富化空気の酸素濃度に対するBガス1Nm3に
必要な燃焼用空気量(第3図参照)を入力してお
き、純酸素17で富化後の富化空気中の酸素濃度
を酸素分析計18で検出し、この酸素濃度信号を
演算器20に入力する。例えば、富化空気の酸素
濃度30%の時には、排ガス酸素分析計9で検出さ
れる排ガス中の酸素濃度を1.5%で一定にするの
には、第3図に示す如くBガス1Nm3に必要な燃
焼用空気量は0.47Nm3になり、この燃焼用空気量
が流れるよう、Bガス燃焼用空気調節弁5にて調
節する。 On the other hand, when the B gas 1 is combusted with enriched air enriched with pure oxygen 17, the fuel gas flow rate signal from the B gas flow meter 3 is input to the calculator 20. On the other hand, the amount of combustion air required for 1Nm 3 of B gas (see Fig. 3) for the oxygen concentration of enriched air is input in advance into the calculator 20 so as to obtain the optimum air-fuel ratio. The subsequent oxygen concentration in the enriched air is detected by the oxygen analyzer 18, and this oxygen concentration signal is input to the calculator 20. For example, when the oxygen concentration of enriched air is 30%, in order to keep the oxygen concentration in the exhaust gas detected by the exhaust gas oxygen analyzer 9 constant at 1.5%, 1Nm 3 of B gas is required as shown in Figure 3. The amount of combustion air is 0.47Nm 3 , and the B gas combustion air adjustment valve 5 is adjusted so that this amount of combustion air flows.
次に実施例について説明する。 Next, an example will be described.
まず、第2図に示す如くBガス(発熱量
700kal/Nm3)とCガス(発熱量4400kal/Nm3)
とを燃料とするボイラにおいて、Bガスの燃焼用
空気中に酸素を混合して富化した。この際、富化
空気中の酸素濃度とこの時のBガス1Nm3を燃焼
させて排ガス中の酸素濃度を1.5%にするために
必要な富化空気量との関係を第3図に示す如く求
め、この第3図に示す関係を予め演算器20に入
力した。 First, as shown in Figure 2, B gas (calorific value
700kal/Nm 3 ) and C gas (calorific value 4400kal/Nm 3 )
In a boiler using B gas as fuel, oxygen was mixed into the combustion air of B gas to enrich it. At this time, the relationship between the oxygen concentration in the enriched air and the amount of enriched air required to burn 1Nm3 of B gas and reduce the oxygen concentration in the exhaust gas to 1.5% is shown in Figure 3. The relationship shown in FIG. 3 was input into the calculator 20 in advance.
そこで、例えば、富化空気中の酸素濃度を求
め、この値が30%であつたので、その排ガス酸素
濃度を1.5%にするためのBガス1Nm3に対する燃
焼用空気の必要量を第3図から求めると、0.47N
m3であり、この値に燃焼用空気量を0.47×(Bガ
ス流量)に制御した。この結果、排ガス中の酸
素濃度は1.5%にすることができた。 Therefore, for example, the oxygen concentration in the enriched air was determined and this value was 30%, so the required amount of combustion air for 1Nm 3 of B gas to make the exhaust gas oxygen concentration 1.5% is shown in Figure 3. Calculated from 0.47N
m 3 , and the combustion air amount was controlled to this value at 0.47×(B gas flow rate). As a result, the oxygen concentration in the exhaust gas could be reduced to 1.5%.
以上詳しく説明した通り、本発明法は酸素を混
合富化した燃焼用空気で燃焼させる方法であつ
て、混合富化後に富化空気中の酸素濃度を測定
し、この酸素濃度と燃料流量とから、排ガス中の
酸素濃度が一定になるよう、燃焼用空気量を求め
て燃焼する。このため、排ガス中の酸素濃度は一
定に制御して燃焼でき、酸素富化によりBガス等
の燃料の燃焼温度が上昇するため、ボイラ効率
が、82%から85%の如く上昇し、排ガス中の酸素
濃度を一定値以下保つことができるため、NOX
の発生をおさえられる。 As explained in detail above, the method of the present invention is a method of combustion with combustion air that has been mixed and enriched with oxygen. , determine the amount of air for combustion so that the oxygen concentration in the exhaust gas remains constant. Therefore, the oxygen concentration in the exhaust gas can be controlled to a constant level for combustion, and the enrichment of oxygen increases the combustion temperature of fuel such as B gas, increasing the boiler efficiency from 82% to 85%. NO x
The occurrence of can be suppressed.
なお、燃焼用空気中に酸素を富化することによ
つて火炎温度が上昇するため、例えばバーナチツ
プの温度が許容値を超える時、あるいはNOX発
生量が許容値を超える時などは富化する酸素量を
低下させるような回路を組む必要も考えられる
が、このような場合でも本発明によると問題はな
い。 Furthermore, enriching the combustion air with oxygen increases the flame temperature, so for example, when the temperature of the burner tip exceeds the allowable value or when the amount of NOx generated exceeds the allowable value, enrichment occurs. Although it may be necessary to construct a circuit to reduce the amount of oxygen, there is no problem according to the present invention even in such a case.
また、上記のところではガス燃料を中心として
説明したが、これ以下でも、例えば、微粉炭その
他の固形燃料の燃焼に適用できる。 Furthermore, although the above description has focused on gas fuel, the present invention can also be applied to the combustion of pulverized coal and other solid fuels, for example.
第1図は従来例に係るガス燃料の燃焼制御系の
一つのフローシート、第2図は本発明法を実施す
る制御系の一つのフローシート、第3図は本発明
法において酸素富化後の燃焼用空気中の酸素濃度
と排ガス中の酸素濃度を1.5%にするために高炉
ガス1Nm3に対して必要な酸素富化後の燃焼空気
量との関係を示すグラフである。
符号1……Bガス、1a……Bガス配管、2…
…空気、2a……空気配管、3……Bガス流量
計、4……空気流量計、5……空気流量調節弁、
6……比率調節計、7……燃焼室、8……Bガス
バーナー、9……O2メーター、10……Cガス、
10a……Cガス配管、11……空気、11a…
…空気配管、12……Cガス流量計、13……空
気流量計、14……比率調節計、15……Cガス
バーナー、16……空気流量調節弁、17……酸
素、17……酸素配管、18……酸素分析計、1
9……標準値、20……演算器。
Fig. 1 is a flow sheet of a gas fuel combustion control system according to a conventional example, Fig. 2 is a flow sheet of a control system implementing the method of the present invention, and Fig. 3 is a flow sheet of a control system after oxygen enrichment in the method of the present invention. 2 is a graph showing the relationship between the oxygen concentration in the combustion air and the amount of combustion air after oxygen enrichment required for 1Nm 3 of blast furnace gas in order to make the oxygen concentration in the exhaust gas 1.5%. Code 1...B gas, 1a...B gas piping, 2...
... Air, 2a ... Air piping, 3 ... B gas flow meter, 4 ... Air flow meter, 5 ... Air flow control valve,
6... Ratio controller, 7... Combustion chamber, 8... B gas burner, 9... O 2 meter, 10... C gas,
10a...C gas pipe, 11...Air, 11a...
...Air piping, 12...C gas flow meter, 13...Air flow meter, 14...Ratio controller, 15...C gas burner, 16...Air flow control valve, 17...Oxygen, 17...Oxygen Piping, 18...Oxygen analyzer, 1
9...Standard value, 20...Arithmetic unit.
Claims (1)
気により燃焼させる際に、予め、演算器に前記富
化空気中の酸素濃度と排ガス中の酸素濃度を所定
値にするための燃料単位量に対する燃焼用空気量
との関係を記憶させておいてから、この演算器中
に酸素混合富化後の前記富化空気中の酸素濃度と
燃料ガスの流量とを入力して演算し、その演算結
果にもとづく演算器からの制御信号により酸素混
合富化前の燃焼用空気量を制御することを特徴と
する燃焼用酸素富化空気による燃焼方法。1. When mixing and enriching combustion air with oxygen and performing combustion with this enriched air, a unit amount of fuel is input in advance to a computing unit to bring the oxygen concentration in the enriched air and the oxygen concentration in the exhaust gas to predetermined values. After storing the relationship between the amount of air for combustion and the amount of combustion air, the oxygen concentration in the enriched air after oxygen mixing and enrichment and the flow rate of the fuel gas are input into this calculator and calculated. A combustion method using oxygen-enriched air for combustion, characterized in that the amount of combustion air before oxygen mixing and enrichment is controlled by a control signal from a computer based on the result.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58113272A JPS604724A (en) | 1983-06-23 | 1983-06-23 | Combustion method by oxygen-enriched air for combustion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58113272A JPS604724A (en) | 1983-06-23 | 1983-06-23 | Combustion method by oxygen-enriched air for combustion |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS604724A JPS604724A (en) | 1985-01-11 |
JPH0419445B2 true JPH0419445B2 (en) | 1992-03-30 |
Family
ID=14607963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58113272A Granted JPS604724A (en) | 1983-06-23 | 1983-06-23 | Combustion method by oxygen-enriched air for combustion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS604724A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2847659B1 (en) * | 2002-11-25 | 2005-12-16 | Air Liquide | METHOD FOR ENERGY OPTIMIZATION OF AN INDUSTRIAL SITE, BY COMBUSTION AIR OXYGEN ENRICHMENT |
HUP0301098A2 (en) * | 2003-04-23 | 2005-05-30 | János Ősz | Method for ecological utilization of low caloric value gases |
JP5023537B2 (en) * | 2006-03-31 | 2012-09-12 | Jfeスチール株式会社 | Burner combustion method |
JP2009068774A (en) * | 2007-09-13 | 2009-04-02 | Jfe Steel Kk | Method for controlling combustion of fuel gas |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53149103A (en) * | 1977-06-01 | 1978-12-26 | Nippon Steel Corp | Controller method for combustion in heating furnace |
JPS5847914A (en) * | 1981-09-14 | 1983-03-19 | Osaka Gas Co Ltd | Burner |
-
1983
- 1983-06-23 JP JP58113272A patent/JPS604724A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53149103A (en) * | 1977-06-01 | 1978-12-26 | Nippon Steel Corp | Controller method for combustion in heating furnace |
JPS5847914A (en) * | 1981-09-14 | 1983-03-19 | Osaka Gas Co Ltd | Burner |
Also Published As
Publication number | Publication date |
---|---|
JPS604724A (en) | 1985-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009110036A1 (en) | Method of controlling oxygen supply in oxygen combustion burner and apparatus therefor | |
JP2009257751A (en) | Oxygen combustion coal fired boiler and method of transition between air and oxygen combustion | |
CN109084324A (en) | The burning air quantity control system and control method of biomass boiler | |
WO2009110035A1 (en) | Method of controlling combustion in oxygen combustion boiler and apparatus therefor | |
CN112664975A (en) | Air volume control method suitable for pulverized coal fired boiler | |
US20040255831A1 (en) | Combustion-based emission reduction method and system | |
US7832210B2 (en) | System for controlling and optimizing the emission of a catalytic combustor in a single-shaft gas turbine | |
JPH0419445B2 (en) | ||
CN215259928U (en) | Natural gas system acetylene device preheater combustion control system | |
JPS59195019A (en) | Fluidized-bed type combustion furnace | |
JPS62276322A (en) | Nitrogen oxide reducing device | |
Slim et al. | The combustion behaviour of forced-draught industrial burners when fired within the EASEE-gas range of Wobbe Index | |
JPH07280256A (en) | In-furnace pressure controlling method for burning furnace | |
JP4348027B2 (en) | Control method of unburned carbon in fly ash in co-firing furnace | |
KR20040056883A (en) | Apparatus and method for controlling air flowrate in a firing furnace | |
CN113669753B (en) | Method, system and device for determining excess air coefficient of flame in hearth | |
JP2612284B2 (en) | Combustion equipment | |
Matsumoto et al. | Development of ultra-low NOx coal firing M-PM burner and successfully operational results | |
JPH01139915A (en) | Control method of slurry burner | |
JPS6321404A (en) | Starting method of powdered coal-burning boiler | |
JPS60263014A (en) | Combustion controlling method | |
SU1719796A1 (en) | Method of combustion automatic control | |
JPH08159411A (en) | Cogeneration system | |
SU1698566A1 (en) | Method of fuel combustion | |
JPS6115393Y2 (en) |