JPS59195019A - Fluidized-bed type combustion furnace - Google Patents

Fluidized-bed type combustion furnace

Info

Publication number
JPS59195019A
JPS59195019A JP58069240A JP6924083A JPS59195019A JP S59195019 A JPS59195019 A JP S59195019A JP 58069240 A JP58069240 A JP 58069240A JP 6924083 A JP6924083 A JP 6924083A JP S59195019 A JPS59195019 A JP S59195019A
Authority
JP
Japan
Prior art keywords
oxygen concentration
fluidized bed
air
flow rate
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58069240A
Other languages
Japanese (ja)
Other versions
JPS6239325B2 (en
Inventor
Hiroshi Muramatsu
洋 村松
Masaaki Furukawa
正昭 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP58069240A priority Critical patent/JPS59195019A/en
Publication of JPS59195019A publication Critical patent/JPS59195019A/en
Publication of JPS6239325B2 publication Critical patent/JPS6239325B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/16Controlling secondary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/18Controlling fluidized bed burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To prevent production of NOX, by a method wherein the air fed to a fluidized-bed combustion furnace is divided into a primary air and a secondary air. CONSTITUTION:A furnace is provided with a first flow meter 12 for measuring the flow rate of a primary air, a second flow meter 14 for measuring the flow rate of a secondary air, an oxygen concentration meter 16 for measuring oxygen concentration in exhaust gas, and a computing part 17 which, based on output signals from the flow meters 12 and 14, and the oxygen concentration meter 16, computes an xygen concentration condition on a fludizied bed surface 18. A first regulating part 19 outputs a control signal which regulates the flow rate of a primary air, based on a deviation between an oxygen concentration condition outputted from the computing part 17 and a previously set oxygen concentration condition on the fluidized bed surface 18. A second regulating part 20 outputs a control signal which controls the flow rate of a secondary air so that an output signal from the oxygen concentration meter 16 attains a previously set value. This prevents production of NOX.

Description

【発明の詳細な説明】 本発明は流動床燃焼炉に関し、特に−次空気量と二次空
気量とを適切な値に制御しで、排ガス中の窒素酸化物N
Oxの発生を抑制し、かつ完全燃焼を行うための流動床
燃焼炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluidized bed combustion furnace, and in particular controls the amount of secondary air and the amount of secondary air to appropriate values to reduce nitrogen oxides N in exhaust gas.
The present invention relates to a fluidized bed combustion furnace for suppressing the generation of Ox and performing complete combustion.

流動床燃焼は、空気分散機構上に砂などを充填し、下方
から空気を吹ぎ込んで流動化させた炉床において、油、
石炭、ごみ、汚泥或いは各種廃棄物を700〜900℃
前後の低湿で燃焼させるものであり、通常の石炭ボイラ
や石油ボイラの燃焼温度(約130’0℃以上〉よりも
低温で燃焼するためリーマル窒素酸化物の発生路が極め
て少ない燃焼方法とされている。しかし被焼却物中に含
まれ−(いる窒素化合物に」:る窒素酸化物NOXの発
生については何らかの対策が望まれでいた。
In fluidized bed combustion, oil, oil,
Coal, garbage, sludge or various wastes at 700-900℃
It is a combustion method that burns with low humidity at the front and back, and because it burns at a lower temperature than the combustion temperature of normal coal boilers and oil boilers (approximately 130'0°C or more), there are very few paths for the generation of legal nitrogen oxides. However, some kind of countermeasure has been desired for the generation of nitrogen oxides (NOx) contained in the materials to be incinerated.

ここで従来の流動jλ、燃焼におりる燃料の窒素酸化′
1ジノの低減方法についで概説すると、例えば特公昭5
5−240058公報に開示された方法では、流動床焼
却炉へ供給する空気を一次空気と二次空気とに分割し、
炉床に供給される一次空気の昂を汚泥プラス補助燃料の
燃焼に必要な理論空気量の1倍未;値となるようにし、
流動床表面における雰囲気を還元性となし、さらに流動
床上方のフリーボードに供給される二次空気(こよって
完全燃焼を行うものである。この方法によれば流動床上
部の雰囲気が還元性に別持され、その領域で熱分解する
被焼却物中の窒素化合物からの窒素分は窒素酸化物NO
xとはならず、かなりの窒素酸化物NO×が発生するの
を抑制する効果があるものとさflている。しかし、そ
の方法は同公報にも記載されているように、汚泥の流動
床燃焼にしか適用できないものである。即ち、流動床へ
供給される被焼却物を燃焼するに必要な理論空気1nが
変化すると、−次空気の量が過剰になるこ・とがあるか
らである。
Here, the conventional flow jλ, the nitrogen oxidation of the fuel going into combustion'
To give an overview of the method of reducing 1 Gino, for example,
In the method disclosed in Publication No. 5-240058, air supplied to a fluidized bed incinerator is divided into primary air and secondary air,
The primary air flow supplied to the hearth is set to a value less than 1 times the theoretical air amount required for combustion of sludge plus auxiliary fuel,
The atmosphere on the surface of the fluidized bed is made reducing, and secondary air is supplied to the free board above the fluidized bed (thus, complete combustion is achieved. According to this method, the atmosphere above the fluidized bed becomes reducing). The nitrogen content from the nitrogen compounds in the incinerated material that is kept separately and thermally decomposed in that area is converted into nitrogen oxides NO.
However, it is believed to have the effect of suppressing the generation of a considerable amount of nitrogen oxide NOx. However, as described in the same publication, this method can only be applied to fluidized bed combustion of sludge. That is, if the theoretical air 1n required to burn the material to be incinerated supplied to the fluidized bed changes, the amount of secondary air may become excessive.

従って流動床への供給量が極めて安定して、かつその成
分も一定である汚泥の焼却にしか適用できないものとさ
れている。また特公昭55−24−005号公報記載の
方法の上述の欠点を解消するため、特公昭4’7−57
90号公報では特公昭55−24. OOS号公報の方
法の想定し1qる最も極端な状況の下で流動床燃焼を行
っている。即ち一次空気のmを流動床が適切な流動化を
行い得る最低の空気量とし、完全燃焼に必要な残余の空
気量を二次空気としてフリーボードへ供給するものであ
る。流動床燃焼である以上−次空気串と二次空気量との
関係だけで、この特公昭47−5790号公報の方法以
上に窒素酸化物NOxの低減効果を1(することは難し
い。しかし一般に燃焼炉は窒素酸化物NOxの発生量だ
E〕に着目して運転されるものではなく、単に物を燃焼
するだ(プの焼却炉であっても単位時間当りに所定の1
nだ(〕の物を焼ム1]処i!IF L/なければなら
ないものぐあるし、またボイラや渇水熱交換器が付設さ
れに焼却設備にあっては、ボイラや温水熱交換器の負荷
が要求するだけの物を燃焼しなければならないものであ
る。従って特公昭=17−5790号公報の方法をその
まま現状の流動床燃焼炉に適用するには限界がある。
Therefore, it is said that this method can only be applied to the incineration of sludge in which the amount supplied to the fluidized bed is extremely stable and its components are constant. In addition, in order to eliminate the above-mentioned drawbacks of the method described in Japanese Patent Publication No. 55-24-005,
Publication No. 90 is published under Special Publication No. 55-24. Fluidized bed combustion is carried out under the most extreme conditions envisaged by the method in the OOS publication. That is, m of the primary air is set to the minimum amount of air at which the fluidized bed can perform appropriate fluidization, and the remaining amount of air necessary for complete combustion is supplied to the freeboard as secondary air. In fluidized bed combustion, it is difficult to reduce nitrogen oxides (NOx) by more than the method of Japanese Patent Publication No. 47-5790 just by the relationship between the secondary air skewer and the amount of secondary air.However, in general Combustion furnaces are not operated with a focus on the amount of nitrogen oxides (NOx) produced; they simply burn things (even if they are incinerators of
There are some things that must be done, and if the incinerator is equipped with a boiler or hot water heat exchanger, It is necessary to burn as much material as the load requires.Therefore, there are limits to applying the method disclosed in Japanese Patent Publication No. 17-5790 to current fluidized bed combustion furnaces.

上記の2つの方法の限界をI」破する方法として、持分
ljj 58 17366号、公報の方法では、流動床
の上部にアンモニアガスを供給することを提案している
。確かにこのアンモニアガスを添加Jる方法を強力な窒
素酸化物NOx低減化方法で(ユあるが流動床燃焼に際
し、常時アンモニアカスを消費することどなるので、負
荷価値が極めて高い場合の流1F11床燃焼には採用づ
ることができても多くの場合には採用できないものとさ
れている。本発明はこのような実情に鑑みてなされたも
のであって、本発明の流動床燃焼炉は石油、6疾、ご力
、汚泥或いはさまざまな廃棄物等をどのような状態であ
っても窒素酸化物NOxの発生量を抑制し−(−燃焼し
得るものであり、また本発明の流動床燃焼炉は排ガス中
の窒素酸化物NOXのみaらず一酸化炭本ガスCO或い
は右視煙の排出を41′Ji力低減ししめるものである
。。
As a method of overcoming the limitations of the above two methods, the method of Publication No. 17366 proposes supplying ammonia gas to the upper part of the fluidized bed. It is true that this method of adding ammonia gas can be used as a strong nitrogen oxide NOx reduction method, but since ammonia scum is constantly consumed during fluidized bed combustion, it is recommended to use the 1F11 bed when the load value is extremely high. Although it can be used for combustion, in many cases it cannot be used.The present invention was made in view of these circumstances, and the fluidized bed combustion furnace of the present invention 6. The fluidized bed combustion furnace of the present invention is capable of suppressing the amount of nitrogen oxides (NOx) produced by combusting sludge, sludge, various wastes, etc. This reduces the emission of not only nitrogen oxides (NOX) but also carbon monoxide (CO) or right-side smoke in the exhaust gas by 41'Ji.

本発明の流動床燃焼炉は基本的には上述の特公昭55−
2 Il、 OO5号公報記載の発明と同扛に流動床燃
焼炉へ供給りる空気を一次空気と一次空気とに分割づる
こと、によって燃料の窒素酸化物N。
The fluidized bed combustion furnace of the present invention is basically the above-mentioned
2 Il, In the same way as the invention described in Publication No. OO5, nitrogen oxide N is produced as a fuel by dividing the air supplied to a fluidized bed combustion furnace into primary air and primary air.

×の発生を抑制しようとするものである。This is intended to suppress the occurrence of x.

本発明は、燃焼用空気を流動床下部から供給する一次空
気とフリーボードへ供給する一次空気とに分割して炉内
へ供給する流動床燃焼炉において、−次空気の流出をC
1制する第1の流量ム1と、二次空気の流量を計測する
第2の流量計と、排ガス中の酸素濃度を;1測する酸素
Na瓜泪と、該第1及び穿12の流量計と酸素濃度計か
らの出力’fi ”fEに基づいて流動床表面にお(プ
る酸素m度状態を演算する第1の演紳部と、該第1の演
粋部から出力された酸素濃度状態と:rめ設定さ、れた
流動床表面における酸素82度状態との偏差に基づいて
一次空気の流出を調節する操作信号を出力する第1の調
節部と、該C1!2索)12度δ1からの出力信宛が予
め設定された設定飴となるべく二次空気の流出を調節す
る操作信号を出力する第2の調節部とを具備する流動床
燃焼炉である。
The present invention provides a fluidized bed combustion furnace in which combustion air is divided into primary air supplied from the lower part of the fluidized bed and primary air supplied to a freeboard, and the primary air is supplied into the furnace.
A first flow meter 1 that measures the flow rate of secondary air, a second flow meter that measures the flow rate of secondary air, an oxygen Na gas meter that measures the oxygen concentration in the exhaust gas, and the flow rates of the first and second holes 12. a first operating section that calculates the state of oxygen (m) on the surface of the fluidized bed based on the output 'fi' fE from the oxygen concentration meter and the oxygen concentration meter; a first adjustment section that outputs an operation signal for adjusting the outflow of the primary air based on the deviation between the concentration state and the 82 degree oxygen state at the surface of the fluidized bed, which has been set to 82 degrees; This fluidized bed combustion furnace is equipped with a second adjustment section that outputs an operation signal for adjusting the outflow of secondary air so that the output signal from 12 degrees δ1 becomes a preset setting point.

次に、図面を用いて本発明の流動床燃焼炉について4休
的に説明する。
Next, the fluidized bed combustion furnace of the present invention will be briefly explained using the drawings.

第1図LJ本発「す」の流動床燃焼炉の一実施例を承り
概略図である。流動床燃焼炉の本体1は空気箱2、流動
床3、−ツリーボード4から成り空気箱2と流動床3と
の間には空気箱2からの空気を分散して流動床3へ導く
空気分散板5が設(づられている。都市とみ、石炭など
の可燃性物質を含有する被焼却物はスクリューフィーダ
6によって流動床3へ供給される。流動床燃焼炉の本体
1へ供給される空気は流動床3の下部から供給される一
次空気とフリーボード4へ供給される二次空気とに分割
されでいる。−次空気は押込ファン7によって上昇され
た空気が性・路8によって空気箱2へ導入されることに
より供給され、他方二次空気はファン9によって吸引さ
れた空気がフリーボード4の複数位置に吹出し]をもつ
管路10にJ:ってフリーボード4へ導入されることに
より供給されている。
FIG. 1 is a schematic diagram of an embodiment of the fluidized bed combustion furnace of LJ Honsha "SU". The main body 1 of the fluidized bed combustion furnace consists of an air box 2, a fluidized bed 3, and a tree board 4. Between the air box 2 and the fluidized bed 3, air is distributed and introduced from the air box 2 to the fluidized bed 3. A dispersion plate 5 is provided.Incineration materials containing combustible materials such as coal are supplied to the fluidized bed 3 by a screw feeder 6.They are supplied to the main body 1 of the fluidized bed combustion furnace. The air is divided into primary air supplied from the lower part of the fluidized bed 3 and secondary air supplied to the freeboard 4. The secondary air is supplied by being introduced into the box 2, while the secondary air is sucked in by a fan 9 and is introduced into the freeboard 4 through a pipe 10 having air blowouts at multiple locations on the freeboard 4. It is supplied by

−乃排カスはフリーボード4に開口が接続された排ガス
ダクト1゛1を介して図示しない誘引ファンに吸引され
で、同様に図示しない煙突から大気中へ放出される。−
次空気の管路8には一次空気の流量を計測する第1の流
量側12と一次空気の流量を調節する調節弁13とが設
りられ、同様に一次空気の管路10にも二次空気の流山
をh4測する第2の流出田14と二次空気の流出を調節
する調節弁15が設()られでいる。ざらに1ノ1ガス
ダクト11にはJノlガス中の酸素濃度をh1測する酸
素濃度計16が設【プられている。
- The waste gas is sucked by an induction fan (not shown) through the exhaust gas duct 1'1 having an opening connected to the freeboard 4, and is similarly discharged into the atmosphere from a chimney (not shown). −
The primary air conduit 8 is provided with a first flow rate side 12 for measuring the flow rate of the primary air and a control valve 13 for adjusting the flow rate of the primary air. A second outflow field 14 for measuring the air flow height h4 and a control valve 15 for adjusting the outflow of secondary air are provided. The 1-1 gas duct 11 is provided with an oxygen concentration meter 16 for measuring the oxygen concentration in the J-1 gas.

第1の演算部′17は第1の流山G112から出力され
る一次空気の流量を示す出ノ゛)481号S1と、第2
の流帛占114から出力される一次空気の流量を示寸出
力信月82と、酸素濃度計16から出力される排ガス中
の酸14 +IiJ Wを示す出力信号S3とを入力信
号として、流動床3の表面18における酸素濃庶状態を
演算によって求めるもの1ある。この演舜部17にJ−
3りる演算は、出カイ言号S1によっで特定される一次
空気の流山をQtCNv?>、出力信号S2によって特
定される二次空気の流樋をQ 2  (N Tel’ 
)及び出力信号83によって特定される排カス中の酸素
濃度を×(%)と1れは゛、’l’ = ((Ql +
Q2 )・X〜21・Q2)/Ql・・・・・(1) なる演算を実行けるものであって、上記(1)式によっ
て求められる演算値Yは流動床3の表面18における酸
素儂IC!−状態を示すものである。即らY=Oであれ
ば一次空気の供給量が理論空気量に等しいことどなり、
Yが正の値であれば、−次空気の供給量が理論空気量よ
りも大きいことを示しまたYが負の値であれば一次空気
の供給、4Bが1!lt論空気囲よりも小ざいことを示
すものである。−jlノ。
The first calculation unit '17 outputs No. 481 S1 indicating the flow rate of the primary air output from the first flow mountain G112, and the second
The output signal 82 indicating the flow rate of primary air output from the flow meter 114 of There is one method in which the oxygen-enriched state on the surface 18 of 3 is determined by calculation. In this performance part 17 J-
3. The calculation calculates the flow mountain of the primary air specified by the output word S1 as QtCNv? >, the secondary air flow gutter specified by the output signal S2 is Q 2 (N Tel'
) and the oxygen concentration in the waste gas specified by the output signal 83 are expressed as x (%), 'l' = ((Ql +
Q2 ) · IC! - indicates a condition. That is, if Y=O, the supply amount of primary air is equal to the theoretical air amount,
If Y is a positive value, it indicates that the supply amount of negative air is larger than the theoretical air amount, and if Y is a negative value, the supply of primary air, 4B is 1! This shows that it is smaller than the theoretical air enclosure. -jlノ.

て、Yの絶対値の大小はそれぞれの度合の大小に対応す
るものである。演算部17は、このようにして得られる
流動床3の表面18にJハブる酸A jl/jl/態度
示づ演算1的Yを出力信号s4として出ノ;するもので
ある。
Therefore, the magnitude of the absolute value of Y corresponds to the magnitude of each degree. The arithmetic section 17 outputs an arithmetic expression Y representing the acid A jl/jl/attitude on the surface 18 of the fluidized bed 3 thus obtained as an output signal s4.

第1の調fli)部19は、第1の演算部17がらの出
力信号S4に阜づいて一次空気の流量を制御するための
操作信号を出力づる機能を右するものであって、炉床部
酸素)83度調節計190、制御幅制限演算器19b 
、−数字気流帛も1準設定器’19C及び−数字気流母
調節計196とから成るものである。炉床部酸木゛濃度
調節2it19aL;jい予め設定された流動床3の表
面18にd3ける酸素)農度状態YOと演算部17から
の出ツノ信@s4によって特定される酸素濃度状態Yと
の偏差ΔY(ΔY=YO−Y)が10」となるように出
カイ5号S5を出ツクする調節計でdりる2、また制御
軸1制限゛演算器19bは信号S・、ど、−数字気流量
基準設定器19Cに予め設定された基準−数字気流H>
 Q oに対応する信号S6とを人力し、次の式〈2)
の演算を行い、信号S7を出力するものである。
The first adjustment unit 19 has a function of outputting an operation signal for controlling the flow rate of primary air based on the output signal S4 from the first calculation unit 17, and has a function of outputting an operation signal for controlling the flow rate of primary air. part oxygen) 83 degree controller 190, control width limit calculator 19b
, - The numerical airflow network also consists of a sub-setting device '19C and - a numerical airflow master controller 196. Hearth part acid concentration adjustment 2it19aL; oxygen concentration state Y specified by the preset oxygen concentration state YO on the surface 18 of the fluidized bed 3 and the output signal @s4 from the calculation section 17 The controller 19b outputs output No. 5 S5 so that the deviation ΔY (ΔY=YO-Y) from , - Reference set in advance in the numerical airflow reference setting device 19C - Numerical airflow H>
By manually inputting the signal S6 corresponding to Qo, the following formula (2) is obtained.
is calculated and outputs a signal S7.

S7 =Se +2α(Ss−0,5)・・・(2)こ
こでαは、砂の流動化に必要な最低流量(G mf )
をffr保し、制御不調或いは酸素濃19泪不調時にお
いて、ブ′ンンドの暴走を防ぐための基へマ設定値信”
”i SGに対J−る許容幅である。
S7 = Se +2α (Ss-0,5)...(2) Here, α is the minimum flow rate (G mf ) required for fluidization of sand
ffr and prevents the bundle from running out of control in the event of poor control or poor oxygen concentration.
``i'' is the allowable width for J-SG.

このことを第2図によって説明Jれば、信号$5のOか
ら1までに対応して信号S7が信号S6を基片にして±
αの範囲で′変化するもの−(” dつる。
If this is explained with reference to FIG. 2, the signal S7 corresponds to the signal $5 from O to 1, and the signal S7 becomes ±± with the signal S6 as the base.
Things that change within the range of α - (" d vine.

そしてこの信号S7の下限値は(Slj−α)で規定さ
れるものであ犠。前記最低流量(Gmf)に相当する値
以上に錐保されているものである。ざらに−数字気流出
調節計19dは前記信)ちS7を設定値とし、第1の流
量計12からの信号$1を入カし、信号81が信号S7
に等しくなるJζうに、−数字気流量を制御する調節弁
13を操作する信号S9を出力する調節計である。
The lower limit value of this signal S7 is defined by (Slj-α). The flow rate is maintained above a value corresponding to the minimum flow rate (Gmf). Roughly speaking, the numerical airflow controller 19d takes the above-mentioned signal S7 as the set value, inputs the signal $1 from the first flowmeter 12, and the signal 81 becomes the signal S7.
This is a controller that outputs a signal S9 that operates the control valve 13 that controls the air flow rate.

負′12の調節部20は排ガス酸素濃!臭諷節削20a
と二次空気流単調fib 8120 bとから成り、酸
克淵度計16からの出力信号S3を入力し、排ガス中の
酸11良を予め設定された値となるように二次空気流量
を調節するための操作信尼をを出ツノする調節胴である
。この第2.の調節部20において、先ず信号$3が排
ガス酸素濃度調節ii’ 2.0 a ’\大入力れ、
予め設定さ“れた排ガス中の酸素a度値に対応する設定
1直SVOに信号S3が貿しくなる、J:うに排ガス酸
素濃度調節計20aから信gS9が出力される。二次空
気流単調flt+Hf2011よ排ガス酸詣淵瓜調il
i′1M20aからの信号S9を設定値として入力し、
さらに第2の流量側14からの信号S2を入力し、信号
S2が信号S〕と等しくなるように二次空気流量を制御
する調DO弁15を操作する信号S +oを出力する調
節計である。なa3市2炉床部酸素濃度調節削19a及
び排ガス酸素濃度調節計20aにおりる制御動作として
は比例積分微分(P I D )動作を行うのがよく、
また−数字気流m調B+5 it i 9 dと二次空
気流用調節計20bとの制御動作は流動床燃焼設備にボ
イラが側設されている場合には比例(P)動作がよく、
他方ボイラがイ明設されていない場合には比例積分(P
I)動作とづるのが望ましい。第′1図に示した本発明
の流動床燃焼炉では、流動床3の表面18における酸素
濃度状態を予め設定した酸素′a度状態に制御できるも
のであり、即ちこの予め設定づ−る酸素)製度状態を還
元性の範囲にしてd3りば二次空気からの取水の影響を
受ける直前での燃焼ガス(近似的に(J流動床の表面で
の燃焼ガス〉の雰囲気を常時還元性に維持すべ・く−数
字気の供給量が調節されるものである。従って流動床3
で発生づる窒素酸化物NOxは一酸化炭素ガスCOの作
用によって還元される1〕1ガス中の窒素酸化物NOx
のωは著しくイへ減されることとなる。
Negative '12 adjustment section 20 is exhaust gas oxygen concentration! Smelling idiom 20a
and a secondary air flow monotonic fib 8120b, which inputs the output signal S3 from the acid concentration meter 16 and adjusts the secondary air flow rate so that the acid concentration in the exhaust gas becomes a preset value. It is an adjustable barrel that allows you to control the operation. This second. In the adjustment section 20, first, the signal $3 is input as the exhaust gas oxygen concentration adjustment ii' 2.0 a'\large input;
The signal S3 is output to the setting 1st shift SVO corresponding to the preset oxygen a degree value in the exhaust gas.J: The signal gS9 is output from the sea urchin exhaust gas oxygen concentration controller 20a. flt+Hf2011 exhaust gas acid purification melon style ill
Input the signal S9 from i'1M20a as the setting value,
Furthermore, it is a controller that inputs a signal S2 from the second flow rate side 14 and outputs a signal S+o that operates a regulating DO valve 15 that controls the secondary air flow rate so that the signal S2 becomes equal to the signal S]. . It is preferable to perform a proportional-integral-derivative (PID) operation as the control operation for the a3 city 2 hearth oxygen concentration adjustment cutter 19a and the exhaust gas oxygen concentration controller 20a.
In addition, the control operation of the numerical air flow m adjustment B+5 it i 9 d and the secondary air flow controller 20b is preferably proportional (P) operation when a boiler is installed on the side of the fluidized bed combustion equipment.
On the other hand, if the boiler is not installed, the proportional integral (P
I) It is preferable to spell it as action. In the fluidized bed combustion furnace of the present invention shown in FIG. ) Set the production state to the reducing range and keep the atmosphere of the combustion gas (approximately (combustion gas on the surface of the J fluidized bed)) immediately before being affected by water intake from the secondary air at the d3 platform to be always reducing. The amount of air supplied to the fluidized bed 3 must be maintained.
The nitrogen oxides NOx generated in the gas are reduced by the action of carbon monoxide gas CO.
ω will be significantly reduced to i.

また本発明では第2の調節部20によって排ガス中の酸
素濃度が一定の値となるべく、二次空気の流量を制御す
るものであるから燃焼ガス中の可燃成分を効果的に燃焼
し、有視煙の発生を抑制することと4rる。
In addition, in the present invention, the second adjustment section 20 controls the flow rate of the secondary air so that the oxygen concentration in the exhaust gas becomes a constant value, so that the combustible components in the combustion gas are effectively combusted and the visible 4r Ru to suppress the generation of smoke.

本発明は、燃焼用空気を流動床下部から供給する一次空
気とフリーボードへ供給する一次空気とに分割して炉内
へ供給J−る流動床燃焼炉1こおいで、−数字気の流量
を計測する第1の流量側と、二次空気の流量を計測する
第2の流ff1=lと、]ノ1ガス中の酸素濃度を計1
tlll する酸素濃磨削と、該第1及び第2の流量計
と酸素′a麿泪からの出力信号に基づいて流動床表面に
おりる酸素濃度状態を演幹する第1の演算部と、該第1
の演算部から出力された酸素濃度状態と予め設定された
流動体表面にJ5りる酸素濃度状態との偏差に基づいて
一次空気の流量を調節する操作イハ号を出力する第1の
調節部と、該酸素濃度H1からの出力信号が予め設定さ
れた設定値となるべ(二次空気の流量を調節する操作信
号を出力する第、2の調節部とを具備する流動床燃焼炉
である。
The present invention provides a fluidized bed combustion furnace in which combustion air is divided into primary air supplied from the lower part of the fluidized bed and primary air supplied to the freeboard and supplied into the furnace. The first flow rate side to be measured, the second flow rate ff1=l to measure the flow rate of secondary air, and the total oxygen concentration in the gas 1
a first calculation unit that determines the oxygen concentration state at the fluidized bed surface based on the output signals from the first and second flowmeters and the oxygen 'amaro'; The first
a first adjustment section that outputs an operation number for adjusting the flow rate of the primary air based on the deviation between the oxygen concentration state output from the calculation section and the preset oxygen concentration state on the surface of the fluid; , the output signal from the oxygen concentration H1 becomes a preset setting value (a fluidized bed combustion furnace is provided with a second adjustment section that outputs an operation signal for adjusting the flow rate of secondary air).

従って本発明の流動床部、焼炉によれば、流動床部に高
価な@素瀧度b1を設(プることなく流動床表面の酸素
濃度状態を把握し、所定の酸素濃度状態に維持でさるか
ら刊ガス中の窒素酸化物NOXの■を低減することかで
きる。ざらにt〕lガス中の酸素)震度を独立して制御
しているので、常時右視煙の発生を抑止できる完全燃焼
通゛転をすることが可能となる。
Therefore, according to the fluidized bed section and kiln of the present invention, the oxygen concentration state on the surface of the fluidized bed can be grasped without installing an expensive It is possible to reduce the amount of nitrogen oxide (NOx) in gas.Since the seismic intensity (oxygen in gas) is controlled independently, it is possible to suppress the generation of smoke on the right side at all times. It becomes possible to perform a complete combustion cycle.

特に従来の低窒素酸化物NOX流動床燃焼炉では前記の
如く汚泥のように極めて均質な被焼却物しか適用できな
かったものが、本発明にあっては、都市ごみのよ゛うに
発熱量が不均質でかつその変化が予測1ノ得イ【いもの
であって・b、窒素酸化物N。
In particular, in the conventional low nitrogen oxide NOX fluidized bed combustion furnace, only extremely homogeneous incineration materials such as sludge can be used, but in the present invention, it is possible to incinerate materials with a low calorific value such as municipal waste. Nitrogen oxides are heterogeneous and their changes are unpredictable.

×の発生を抑制しつつ燃焼できるしのである。This allows for combustion while suppressing the occurrence of x.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図【J1本発明の実施例である流動床燃焼炉のil
λ略図であり、第2図は調節計の作動のご(四回である
、。 1・・・炉本体  2・・・空気箱  3・・・流動床
  4・・・フリーボード  5・・・空気分散仮  
6・・・スクリューフイーダ7・・・押込ファン  8
・・・管路  9・・・ファン  10・・・管路  
11・・・排ガスグ91〜 12・・・第1の流(i>
 St、   13・・・調節弁  14・・・第2の
流昂割  15・・・調節弁  16・・・酸素′a度
計  17・・・第1の演幹部  18・・・流動床の
表面19・・・第′1の調節部  19a ・・・炉床
部酸素i農j哀調節計  19b ・・・制御幅制限演
粋器  19C・・・−数字気流品塁4(設定器19d
 ・・・−数字気流単調tti)it   20・・・
第2の調nt)部  20a ・・・排ガス酸素濃調節
11iiδ1 20b・・・二次空気流昆調節計S1〜
S 1o・・・信号
Figure 1 [J1 IL of a fluidized bed combustion furnace which is an embodiment of the present invention
This is a schematic diagram of λ, and Figure 2 shows the operation of the controller (four times). 1...furnace body 2...air box 3...fluidized bed 4...freeboard 5... air dispersion tentative
6...Screw feeder 7...Pushing fan 8
...Pipe line 9...Fan 10...Pipe line
11... Exhaust gas gas 91-12... First flow (i>
St, 13...Control valve 14...Second flow rate 15...Control valve 16...Oxygen'a meter 17...First stage part 18...Surface of fluidized bed 19...'1st adjustment section 19a...Heart part oxygen i/ratio controller 19b...control width limiter 19C...-Numerical airflow quality base 4 (setting device 19d
...-Number air flow monotone tti) it 20...
Second adjustment unit 20a...Exhaust gas oxygen concentration adjustment 11iiδ1 20b...Secondary airflow controller S1~
S 1o...Signal

Claims (1)

【特許請求の範囲】[Claims] 燃焼用空気を流動床下部から供給する一次空気とフリー
ボードへ供給する二次空気とに分割して炉内へ供給する
流動床燃焼炉にd3いて、−次空気の流量を計測する第
1の流ff1fflと、二次空気の流量を泪測する第2
の流けSlと、JノIガス中の酸素濃度を51測する酸
素濃度計と、該第′I及び第2の流ffi itと酸素
濃度計からの出力信号に基づいて流動床表面における酸
素濃度状態を演樟する第1の演算部と、該第1の演算部
から出力された酸素濃度状態と予め設定された流動床表
面にお(′Jる酸素)農疫状態との偏Xに基づいて一次
空気の流部な調節する操作信号を出力覆る第1の調節部
と、該酸素濃度h1からの出力信号が予め設定された設
定値となるべく二次空気の流量を調節する操作1言鴻を
出力する第2の調節部とを具備することを特徴と苅る流
動床燃焼炉。
The combustion air is divided into primary air supplied from the lower part of the fluidized bed and secondary air supplied to the freeboard, and the fluidized bed combustion furnace is supplied with the divided air into the furnace. flow ff1ffl, and a second one that measures the flow rate of secondary air.
An oxygen concentration meter that measures the flow Sl and the oxygen concentration in the J No. I gas, and an oxygen concentration meter that measures the oxygen concentration in the fluidized bed surface based on the output signal from the oxygen concentration meter and the flow Sl and the oxygen concentration in the A first calculation unit that calculates the concentration state; and a first calculation unit that calculates the concentration state; and a first adjustment section that outputs an operation signal to adjust the flow of the primary air based on the oxygen concentration h1; and an operation word that adjusts the flow rate of the secondary air so that the output signal from the oxygen concentration h1 becomes a preset value. A fluidized bed combustion furnace characterized by comprising: a second regulating section for outputting molten metal.
JP58069240A 1983-04-21 1983-04-21 Fluidized-bed type combustion furnace Granted JPS59195019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58069240A JPS59195019A (en) 1983-04-21 1983-04-21 Fluidized-bed type combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58069240A JPS59195019A (en) 1983-04-21 1983-04-21 Fluidized-bed type combustion furnace

Publications (2)

Publication Number Publication Date
JPS59195019A true JPS59195019A (en) 1984-11-06
JPS6239325B2 JPS6239325B2 (en) 1987-08-22

Family

ID=13397027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58069240A Granted JPS59195019A (en) 1983-04-21 1983-04-21 Fluidized-bed type combustion furnace

Country Status (1)

Country Link
JP (1) JPS59195019A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008504A1 (en) * 1987-05-01 1988-11-03 Ebara Corporation Combustion control method for fluidized bed incinerator
EP0421820A2 (en) * 1989-10-05 1991-04-10 Ishikawajima-Harima Heavy Industries Co., Ltd. Fluidized-bed combustion furnace
JPH03152302A (en) * 1989-11-08 1991-06-28 Kawasaki Heavy Ind Ltd High efficiency combustion in fluidized bed furnace and its device
JPH0545407U (en) * 1991-11-08 1993-06-18 石川島播磨重工業株式会社 Pressurized fluidized bed boiler
JPH06323510A (en) * 1993-05-11 1994-11-25 Kawasaki Heavy Ind Ltd Combustion control method in fluidized bed type furnace
WO2014041213A1 (en) * 2012-09-11 2014-03-20 Fundacion Cidaut Solid fuel boiler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328021U (en) * 1989-07-28 1991-03-20
DE19501236C2 (en) * 1995-01-17 1996-11-14 Ldt Gmbh & Co amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979068A (en) * 1972-12-05 1974-07-30
JPS5389281A (en) * 1977-01-14 1978-08-05 Ishigaki Mech Ind Control of nox emission in fluidized bed incinerator
JPS5556514A (en) * 1978-10-20 1980-04-25 Takuma Co Ltd Method of automatic combustion control for refuse incinerating furnace
JPS5790512A (en) * 1980-11-26 1982-06-05 Kubota Ltd Method and device for controlling fusion incinerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979068A (en) * 1972-12-05 1974-07-30
JPS5389281A (en) * 1977-01-14 1978-08-05 Ishigaki Mech Ind Control of nox emission in fluidized bed incinerator
JPS5556514A (en) * 1978-10-20 1980-04-25 Takuma Co Ltd Method of automatic combustion control for refuse incinerating furnace
JPS5790512A (en) * 1980-11-26 1982-06-05 Kubota Ltd Method and device for controlling fusion incinerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008504A1 (en) * 1987-05-01 1988-11-03 Ebara Corporation Combustion control method for fluidized bed incinerator
US4986198A (en) * 1987-05-01 1991-01-22 Ebara Corporation Method of controlling combustion in fluidized bed incinerator
AU608004B2 (en) * 1987-05-01 1991-03-21 Ebara Corporation Combustion control method for fluidized bed incinerator
EP0421820A2 (en) * 1989-10-05 1991-04-10 Ishikawajima-Harima Heavy Industries Co., Ltd. Fluidized-bed combustion furnace
JPH03152302A (en) * 1989-11-08 1991-06-28 Kawasaki Heavy Ind Ltd High efficiency combustion in fluidized bed furnace and its device
JPH0545407U (en) * 1991-11-08 1993-06-18 石川島播磨重工業株式会社 Pressurized fluidized bed boiler
JPH06323510A (en) * 1993-05-11 1994-11-25 Kawasaki Heavy Ind Ltd Combustion control method in fluidized bed type furnace
WO2014041213A1 (en) * 2012-09-11 2014-03-20 Fundacion Cidaut Solid fuel boiler

Also Published As

Publication number Publication date
JPS6239325B2 (en) 1987-08-22

Similar Documents

Publication Publication Date Title
JPH04371712A (en) Combustion control method for garbage incinerator
JP2000065314A (en) Fuel combustion process by oxygen rich oxidant
JPS59195019A (en) Fluidized-bed type combustion furnace
JPS62276322A (en) Nitrogen oxide reducing device
JP3023948B2 (en) Sewage sludge fluidized bed incinerator
JP2637529B2 (en) Furnace temperature and NOx control device
JPH0323806B2 (en)
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPH0419445B2 (en)
JPH11108327A (en) Garbage incinerator and combustion control method
JPH025222Y2 (en)
JP4348027B2 (en) Control method of unburned carbon in fly ash in co-firing furnace
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator
JPS61110809A (en) Control method of oxygen concentration in combustion exhaust gas
JPS58145820A (en) Method for controlling air flow rate when boiler is operated under low load
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
JPH0599411A (en) Dust incinerator
JPS6125969B2 (en)
JP3621792B2 (en) Combustion control method for waste melting furnace generated gas combustion furnace
JPS6051606B2 (en) Air-fuel ratio control device for heating furnace for exhaust gas denitrification
JP2004309122A (en) Combustion control method for fire grate type garbage incinerator, and garbage incinerator
JPS62238911A (en) Discharged gas purifying method in fluidized bed type boiler
JPS6155007B2 (en)
JPS63271001A (en) Method of controlling pressure of boiler drum
JPS6017624A (en) Sox control system of combustion furnace