JPS6051606B2 - Air-fuel ratio control device for heating furnace for exhaust gas denitrification - Google Patents
Air-fuel ratio control device for heating furnace for exhaust gas denitrificationInfo
- Publication number
- JPS6051606B2 JPS6051606B2 JP14068979A JP14068979A JPS6051606B2 JP S6051606 B2 JPS6051606 B2 JP S6051606B2 JP 14068979 A JP14068979 A JP 14068979A JP 14068979 A JP14068979 A JP 14068979A JP S6051606 B2 JPS6051606 B2 JP S6051606B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- air
- flow rate
- fuel
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Incineration Of Waste (AREA)
- Regulation And Control Of Combustion (AREA)
Description
【発明の詳細な説明】
本発明は、排ガス脱硝用昇温炉の空燃比を自動的に制
御する装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for automatically controlling the air-fuel ratio of a heating furnace for exhaust gas denitrification.
アンモニア接触還元法による排ガス脱硝は、第1図に
示すように100〜1800C程度の排ガスを熱交換器
1に通して300℃前後に昇温し、さらに混合室2内に
通して昇温炉3で生成した燃焼ガスと混合して脱硝反応
温度(340〜400℃)まで昇温し、これを反応器4
内でアンモニアと反応させて脱硝せしめ、しかる後上記
熱交換器1を通して温度を下げ外部に放出するものであ
る。As shown in Fig. 1, exhaust gas denitrification using the ammonia catalytic reduction method involves passing exhaust gas of about 100 to 1800C through a heat exchanger 1 to raise the temperature to around 300℃, and then passing it through a mixing chamber 2 to a heating furnace 3. The mixture is mixed with the combustion gas generated in the reactor 4, heated to the denitration reaction temperature (340-400°C)
The reactor is reacted with ammonia inside the reactor to remove nitrogen, and then the temperature is lowered through the heat exchanger 1 and discharged to the outside.
この方法において上記昇温炉3では、従来燃料ガスに
空気を混合して1600〜100℃の燃焼ガスを 生成
し、これに排ガス混合するようにしているが、近時燃料
ガスに空気の代りに排ガスの一部を混合して燃焼せしめ
る方法が提案されている。In this method, in the heating furnace 3, air is conventionally mixed with fuel gas to produce combustion gas at a temperature of 1,600 to 100°C, and exhaust gas is mixed with this, but recently, air is mixed with fuel gas. A method has been proposed in which a portion of the exhaust gas is mixed and combusted.
この方法は排ガスとくに焼結排ガス中に酸素が多く含ま
れていることに着目し、この排ガスを利用することによ
り空気を加熱するに要する燃料ガスを浮かすことができ
、また排ガス中のCo分が酸化発熱するため、その分燃
料を節約できる。 しかしながら排ガスを利用した場合
次のような問題がある。This method focuses on the fact that the exhaust gas, especially the sintering exhaust gas, contains a large amount of oxygen. By using this exhaust gas, it is possible to float the fuel gas required to heat the air, and the Co content in the exhaust gas can be reduced. Since oxidation heat is generated, fuel can be saved accordingly. However, when exhaust gas is used, there are the following problems.
すなわち従来おこなわれた空気を混合する方法では、バ
ーナーの空燃比をターンダウンレンジにわたつて一定と
しているが、この場合空気中の酸素含有量は十分多く、
又酸素濃度や温度の変動もないため、このように制御し
てもなんら支障がない。これに対し、排ガスを混合する
方法では、排ガス中の酸素含有量は空気の場合に比して
少なく、又酸素濃度の変動や温度の変動も大きく、(例
えば焼結排ガスの場合10〜16%、常温〜3300C
で変動する。)従来のように空燃比を一定ノとした場合
には安定した燃焼をおこなえない欠点がある。 本発明
は上記事情に鑑みてなされたもので、その目的とすると
ころは、燃料の負荷変動に応じて空気過剰率を演算し、
又排ガスの酸素濃度及び温度を測定し、これら測定値に
もとづいて排ガスの流量又必要に応じて吹込む空気の流
量を自動的に制御して常時安定した燃焼をおこなうこと
ができる空燃比制御装置を提供するものである。In other words, in the conventional method of mixing air, the air-fuel ratio of the burner is kept constant over the turndown range, but in this case, the oxygen content in the air is sufficiently high.
Furthermore, since there are no fluctuations in oxygen concentration or temperature, there is no problem in controlling in this way. On the other hand, in the method of mixing exhaust gas, the oxygen content in the exhaust gas is lower than that of air, and the fluctuations in oxygen concentration and temperature are also large (for example, 10 to 16% in the case of sintering exhaust gas). , room temperature ~ 3300C
It fluctuates. ) If the air-fuel ratio is kept constant as in the past, there is a drawback that stable combustion cannot be achieved. The present invention has been made in view of the above circumstances, and its purpose is to calculate an excess air ratio according to fuel load fluctuations,
Also, an air-fuel ratio control device that measures the oxygen concentration and temperature of exhaust gas and automatically controls the flow rate of exhaust gas and the flow rate of air blown in as needed based on these measured values to ensure stable combustion at all times. It provides:
すなわち本発明は、燃料に排ガス又は該ガスと空気とを
混合して燃焼する排ガス脱硝用昇温炉に、燃料ガスの変
動に応じて空気比を演算する加減演算器と、排ガスの温
度測定器と、排ガスの酸素濃度測定器と、これらの演算
値及び測定値にもとついて排ガスの流量を制御する流量
制御器と、酸素濃度測定器の測定値にもとづいて、排ガ
スと空気との分配割合を設定する設定器とを具備したも
のである。That is, the present invention provides an exhaust gas denitrification heating furnace that burns a mixture of fuel and exhaust gas or the gas and air, and an adjustment calculator that calculates an air ratio according to fluctuations in the fuel gas, and an exhaust gas temperature measuring device. , an exhaust gas oxygen concentration measuring device, a flow rate controller that controls the flow rate of exhaust gas based on these calculated and measured values, and a distribution ratio between exhaust gas and air based on the measured value of the oxygen concentration measuring device. The device is equipped with a setting device for setting.
以下本発明を図示する実施例を参照して説明する。The present invention will be described below with reference to illustrative embodiments.
第2図は排ガス脱硝用昇温炉及びその空燃比制御装置を
示し、11は昇温炉、12はバーナーである。FIG. 2 shows a heating furnace for exhaust gas denitrification and its air-fuel ratio control device, where 11 is a heating furnace and 12 is a burner.
昇温炉11には排ガス管13が接続され、ここに焼結排
ガス等酸素を比較的多く含む排ガスが流入するようにな
つている。排ガス管13には排ガス分岐管14が分岐さ
れ、上記バーナー12に接続されている。さらにバーナ
ー12には上記排ガス分岐管14とともに空気吹込管1
5及び燃料ガス吸込管16が接続している。上記排ガス
分岐管14には、排ガスプロア17、酸素濃度測定器1
8、温度測定器19、排ガス流量測定器20及び排ガス
流量調節弁21が装着されている。An exhaust gas pipe 13 is connected to the temperature rising furnace 11, into which exhaust gas containing a relatively large amount of oxygen, such as sintering exhaust gas, flows. An exhaust gas branch pipe 14 is branched off from the exhaust gas pipe 13 and connected to the burner 12 . Furthermore, the burner 12 is provided with an air blowing pipe 1 along with the exhaust gas branch pipe 14.
5 and a fuel gas suction pipe 16 are connected. The exhaust gas branch pipe 14 includes an exhaust gas prower 17 and an oxygen concentration measuring device 1.
8. A temperature measuring device 19, an exhaust gas flow rate measuring device 20, and an exhaust gas flow rate control valve 21 are installed.
又空気吹込管15には空気プロア22、空気流量測定器
23及び空気流量調節弁24を装着している。さらに又
燃料ガス吹込管16.には燃料流量測定器25及び燃料
流量調節弁26を装着している。排ガス分岐管14に装
着した酸素濃度測定器18は比率設定器27及び選択器
28に接続し、酸素濃度の検知信号をこれら比率設定器
27及び選壬択器28に入力している。Further, the air blowing pipe 15 is equipped with an air blower 22, an air flow measuring device 23, and an air flow regulating valve 24. Furthermore, fuel gas injection pipe 16. A fuel flow rate measuring device 25 and a fuel flow rate regulating valve 26 are attached to the unit. An oxygen concentration measuring device 18 attached to the exhaust gas branch pipe 14 is connected to a ratio setting device 27 and a selector 28, and inputs an oxygen concentration detection signal to these ratio setting device 27 and selection device 28.
排ガス分岐管14に装着した温度測定器19及び排ガス
流量測定器20はそれぞれ流量補正演算器29に接続し
ており、この流量補正演算器29で排ガス温度の変動に
もとづいて排ガス流量の補正をおこなつている。こ4の
流量補正演算器29からの信号は排ガス流量制御器30
に入力している。一方燃料ガス吹込管16に装着した燃
料流量測定器25は、その検知信号を燃料流料制御器3
1及び加減演算器32に入力し、燃料流量制御器31に
より燃料流量調節弁26に制御指令を与えて燃料ガスの
流量を制御している。The temperature measuring device 19 and the exhaust gas flow rate measuring device 20 attached to the exhaust gas branch pipe 14 are each connected to a flow rate correction calculator 29, and the flow rate correction calculator 29 corrects the exhaust gas flow rate based on fluctuations in the exhaust gas temperature. I'm getting used to it. The signal from the four flow rate correction calculators 29 is sent to the exhaust gas flow rate controller 30.
is being input. On the other hand, the fuel flow rate measuring device 25 attached to the fuel gas injection pipe 16 sends its detection signal to the fuel flow controller 3.
1 and the addition/subtraction calculator 32, and the fuel flow controller 31 gives a control command to the fuel flow control valve 26 to control the flow rate of fuel gas.
上記加減演算器32は燃料ガスの流量すなわち燃焼量に
もとづいて空気比(μ)を演算するもので、その演算は
第3図に示す如き燃焼量と空気比との関係を利用してお
こなわれる。この加減演算器32は、出力信号を前記比
率設定器27に入力する。比率設定器27は空気比と排
ガス中の酸素濃度とから排ガスフの流量を設定するもの
で、この設定値を前記選択器28に入力している。選択
器28は、排ガスの酸素濃度が所定値以上(例えば12
%以上)の場合は、排ガスのみが流れ空気が流れないよ
うに各分配器33,34に信号を入力し、酸素濃度が所
定・値未満の場合は必要酸素量を確保するために排ガス
及び空気がれぞれ一定割合で流れるように各分配器33
,34に信号を入力している。上記排ガスの分配器33
はその信号を前記排ガス流量制御器30に入力しており
この排ガス流量制御器30は、分配器33からの排ガス
流量設定信号及び流量補正演算器29からの補正した排
ガス流量にもとづいて前記排ガス流量調節弁21を作動
し、排ガスの流量を制御している。上記空気の分配器3
4は、その信号を空気流量制御器35に入力しており、
この空気流量制御器35は、分配器34からの空気流量
設定信号及び空気流量測定器23からの空気流量にもと
づいて前記空気流量調節弁24を作動し、空気の流量を
制御している。上述した空燃比制御装置によれば、燃料
ガスの負荷変動が生じると、演算器32で空気過剰率を
測定し、この測定値にもとづいて排ガスの流量を適正な
値に制御できる。The addition/subtraction calculator 32 calculates the air ratio (μ) based on the flow rate of fuel gas, that is, the amount of combustion, and the calculation is performed using the relationship between the amount of combustion and the air ratio as shown in FIG. . This addition/subtraction calculator 32 inputs an output signal to the ratio setting device 27. The ratio setter 27 sets the flow rate of the exhaust gas from the air ratio and the oxygen concentration in the exhaust gas, and this set value is input to the selector 28. The selector 28 selects whether the oxygen concentration of the exhaust gas is equal to or higher than a predetermined value (for example, 12
% or more), a signal is input to each distributor 33, 34 so that only exhaust gas flows and no air flows, and if the oxygen concentration is less than a predetermined value, exhaust gas and air are input to ensure the required amount of oxygen. Each distributor 33
, 34. The exhaust gas distributor 33
inputs the signal to the exhaust gas flow rate controller 30, and the exhaust gas flow rate controller 30 adjusts the exhaust gas flow rate based on the exhaust gas flow rate setting signal from the distributor 33 and the corrected exhaust gas flow rate from the flow rate correction calculator 29. The control valve 21 is operated to control the flow rate of exhaust gas. The air distributor 3
4 inputs the signal to the air flow controller 35,
The air flow controller 35 operates the air flow control valve 24 based on the air flow setting signal from the distributor 34 and the air flow from the air flow measuring device 23 to control the air flow. According to the above-described air-fuel ratio control device, when a fuel gas load fluctuation occurs, the computing unit 32 measures the excess air ratio, and the exhaust gas flow rate can be controlled to an appropriate value based on this measured value.
また排ガスの温度が変動しても流量を補正して流量制御
を的確におこなえる。さらに排ガスの酸素濃度が低下し
、υ[ガスのみでは安定した燃焼をおこなえない場合、
選択器28で所定量の空気を排ガスとともにバーナー1
2に吹込むようにしたもので、排ガスの酸素濃度にかか
わらず安定した燃焼をおこなうことができる。以上要約
すれば本発明は、燃料ガスの負荷変動及び排ガスの性状
の変動に応じて排ガス(又は排ガスと空気)の流量を自
動的に制御して、排ガスを燃焼用に用いた場合にもバー
ナーのターンダウンレンジにわたつて安定した燃焼をお
こなうことができる。Furthermore, even if the exhaust gas temperature fluctuates, the flow rate can be corrected to accurately control the flow rate. In addition, the oxygen concentration of the exhaust gas decreases, and υ [if stable combustion cannot be achieved with gas alone,
The selector 28 sends a predetermined amount of air to the burner 1 together with the exhaust gas.
2, allowing stable combustion to occur regardless of the oxygen concentration of the exhaust gas. In summary, the present invention automatically controls the flow rate of exhaust gas (or exhaust gas and air) in accordance with changes in fuel gas load and flue gas properties, so that even when exhaust gas is used for combustion, the burner Stable combustion can be achieved over the turndown range.
第1図は従来の排ガス脱硝を示した全体概略図、第2図
は本発明の一実施例を示す空燃比制御装置のブロック図
、第3図はバーナーの燃焼量と空気比との関係を示す特
性図である。
11・・・・・・昇温炉、12・・・・・・バーナー、
13・・排ガス管、14・・・・・・排ガス分岐管、1
5・・・・・・空気吹込管、16・・・・・・燃料ガス
吹込管、18・・・・・・酸素濃度測定器、19・・・
・・温度測定器、20・・・・・・排ガス流量測定器、
21・・・・・・排ガス流量調節弁、23・・・・・空
気気流量測定器、24・・・・・・空気流量調節弁、2
5・・・・・・燃料流量測定器、26・・・・・・燃料
流量調節弁、27・・・・・・比率設定器、28・・・
・・・選択器、29・・・・・・流量補正演算器、30
・・・・・・排ガス流量制御器、31・・・・・・燃料
流量制御器、32・・・・・・演算器、33,34・・
・・・・分配器、35・・・・・・空気流量制御器。Fig. 1 is an overall schematic diagram showing conventional exhaust gas denitrification, Fig. 2 is a block diagram of an air-fuel ratio control device showing an embodiment of the present invention, and Fig. 3 shows the relationship between the combustion amount of the burner and the air ratio. FIG. 11...Temperature rising furnace, 12...Burner,
13...Exhaust gas pipe, 14...Exhaust gas branch pipe, 1
5... Air blowing pipe, 16... Fuel gas blowing pipe, 18... Oxygen concentration measuring device, 19...
...Temperature measuring device, 20...Exhaust gas flow rate measuring device,
21...Exhaust gas flow rate control valve, 23...Air flow rate measuring device, 24...Air flow rate control valve, 2
5...Fuel flow rate measuring device, 26...Fuel flow rate adjustment valve, 27...Ratio setting device, 28...
... Selector, 29 ... Flow rate correction calculator, 30
...Exhaust gas flow rate controller, 31...Fuel flow rate controller, 32...Arithmetic unit, 33, 34...
...Distributor, 35...Air flow rate controller.
Claims (1)
る排ガス脱硝用昇温炉に、燃料ガスの変動に応じて空気
比を演算する加減演算器と、排ガスの温度測定器と、排
ガスの酸素濃度測定器と、これらの演算値及び測定値に
もとづいて排ガスの流量を制御する流量制御器と、上記
酸素濃度測定器の測定値にもとづいて排ガスと空気との
分配割合を設定する設定部とを具備して、排ガス及び空
気の流量を制御するようにした排ガス脱硝用昇温炉の空
燃比制御装置。1. A heating furnace for exhaust gas denitration that burns a mixture of fuel and exhaust gas or the gas and air is equipped with an adjustment calculator that calculates the air ratio according to fluctuations in the fuel gas, an exhaust gas temperature measuring device, and an exhaust gas temperature measuring furnace. an oxygen concentration measuring device, a flow rate controller that controls the flow rate of exhaust gas based on these calculated and measured values, and a setting section that sets the distribution ratio between exhaust gas and air based on the measured value of the oxygen concentration measuring device. An air-fuel ratio control device for a heating furnace for exhaust gas denitrification, comprising: and controlling the flow rate of exhaust gas and air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14068979A JPS6051606B2 (en) | 1979-10-31 | 1979-10-31 | Air-fuel ratio control device for heating furnace for exhaust gas denitrification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14068979A JPS6051606B2 (en) | 1979-10-31 | 1979-10-31 | Air-fuel ratio control device for heating furnace for exhaust gas denitrification |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5664226A JPS5664226A (en) | 1981-06-01 |
JPS6051606B2 true JPS6051606B2 (en) | 1985-11-14 |
Family
ID=15274460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14068979A Expired JPS6051606B2 (en) | 1979-10-31 | 1979-10-31 | Air-fuel ratio control device for heating furnace for exhaust gas denitrification |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6051606B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014178065A (en) * | 2013-03-14 | 2014-09-25 | Ricoh Co Ltd | Regenerative combustion device and pyrolysis processing method |
KR20220108136A (en) | 2019-12-09 | 2022-08-02 | 티에치케이 가부시끼가이샤 | Mounting member and motion guide device including the mounting member |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100397959B1 (en) * | 2000-05-08 | 2003-09-13 | 삼성물산 주식회사 | The system of the complete combustion of the waste gas as the fuel |
-
1979
- 1979-10-31 JP JP14068979A patent/JPS6051606B2/en not_active Expired
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014178065A (en) * | 2013-03-14 | 2014-09-25 | Ricoh Co Ltd | Regenerative combustion device and pyrolysis processing method |
KR20220108136A (en) | 2019-12-09 | 2022-08-02 | 티에치케이 가부시끼가이샤 | Mounting member and motion guide device including the mounting member |
DE112020006018T5 (en) | 2019-12-09 | 2022-10-06 | Thk Co., Ltd. | Fastening element and movement guide device with such a fastening element |
Also Published As
Publication number | Publication date |
---|---|
JPS5664226A (en) | 1981-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102686946B (en) | The method regulated for the burning correcting one group of combustion chamber and the equipment implementing the method | |
JPS61130729A (en) | Process heater control | |
JPS6051606B2 (en) | Air-fuel ratio control device for heating furnace for exhaust gas denitrification | |
US4493635A (en) | Oxygen-enriched air ratio control device for combustion apparatus | |
JPS59195019A (en) | Fluidized-bed type combustion furnace | |
JP2637529B2 (en) | Furnace temperature and NOx control device | |
JPS62276322A (en) | Nitrogen oxide reducing device | |
JPH028213B2 (en) | ||
JPS60259823A (en) | Optimum burning control of induction type radiant tube burner furnace | |
JPH0419445B2 (en) | ||
JPS6113531B2 (en) | ||
JPS6030415B2 (en) | Control method for preventing black smoke generation from combustion furnace | |
SU1497432A1 (en) | Method and apparatus for controlling carbon oixide afterburning | |
SU1204877A1 (en) | Method of automatic regulation of air-to-gas ratio | |
JPS61272509A (en) | Catalytic burning apparatus | |
US20050089811A1 (en) | Exhaust recirculating method and apparatus for a hydrocarbon fired burner | |
SU1138606A1 (en) | Method of automatic control of burning process in drum-type boiler | |
JPH025222Y2 (en) | ||
JPH09280551A (en) | Controlling method of combustion of heating furnace | |
JPH0555765B2 (en) | ||
KR20030035576A (en) | Combustion control method for hot stove of blast furnace | |
JPS59138808A (en) | System for controlling combustion | |
JPS62237219A (en) | In-pile denitration control system | |
JPH0842801A (en) | Method for controlling quantity of exhaust gas from boiler | |
JPS62206320A (en) | Air-fuel ratio control device of furnace |