JPS60259823A - Optimum burning control of induction type radiant tube burner furnace - Google Patents

Optimum burning control of induction type radiant tube burner furnace

Info

Publication number
JPS60259823A
JPS60259823A JP59115833A JP11583384A JPS60259823A JP S60259823 A JPS60259823 A JP S60259823A JP 59115833 A JP59115833 A JP 59115833A JP 11583384 A JP11583384 A JP 11583384A JP S60259823 A JPS60259823 A JP S60259823A
Authority
JP
Japan
Prior art keywords
air
amount
fuel
oxygen concentration
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59115833A
Other languages
Japanese (ja)
Other versions
JPH061122B2 (en
Inventor
Isamu Tanimoto
谷本 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59115833A priority Critical patent/JPH061122B2/en
Publication of JPS60259823A publication Critical patent/JPS60259823A/en
Publication of JPH061122B2 publication Critical patent/JPH061122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners

Abstract

PURPOSE:To balance the burning characteristics among burners so as to optimize the burning at a targeted air-fuel ratio by controlling the amount of fuel based on the difference between the measured furnace temperature and the set furnace temperature, and controlling the amount of air based on the difference between the set air-fuel ratio and the oxygen concentration. CONSTITUTION:Burners are burnt with the amount of fuel controlled based on the difference between the measured furnace temperature and the set furnace temperature, and controlling the ejector air amount based on the relationship between the predetermined amount of fuel and the ejector air amount. Meanwhile, an oxygen concentration gauge 20 is provided to measure the oxygen concentration in the burnt exhaust gas. If its measured value is excessive, an ejector air regulating valve 12 disposed in a branched ejecctor air tube 21 of burner A. The measured values from respective oxygen concentration gauges 20 are inputted to a computer 22 to compute the average oxygen concentration of the burnt exhaust gas, which is then compared with the oxygen concentration at the set air-fuel ratio. If there is a difference, a correction signal is outputted to a digital computer 15 to solve the difference so that the ejector air amount is corrected to requlate the air for burning and the burning conditions are balanced among burners 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸引式ラジアントチューブバーナー炉の最適
燃焼制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optimal combustion control method for a suction type radiant tube burner furnace.

熱処理炉、例えば連続焼鈍炉の加熱帯、均熱帯には加熱
手段として吸引式ラジアントチューブバーナーが設けら
れる。該吸引式ラジアントチューブバーナーは第1a図
(平面図)および第1b図(側面図)に示す如く、ラジ
アントチューブ1の−fiにバーナー2が、他端にエゼ
クタ3が設けられ、エゼクタ3で吸引された燃焼用空気
がエゼクタ管31を通ってバーナ2に流通して燃焼せし
め、ラジアントチューブ1で加熱作用をするものである
A suction type radiant tube burner is provided as a heating means in the heating zone and soaking zone of a heat treatment furnace, for example, a continuous annealing furnace. As shown in Fig. 1a (top view) and Fig. 1b (side view), the suction type radiant tube burner is provided with a burner 2 at -fi of a radiant tube 1 and an ejector 3 at the other end. The combustion air thus generated flows through the ejector pipe 31 to the burner 2, where it is combusted, and the radiant tube 1 produces a heating effect.

該吸引式ラジアントチューブは、炉内の雰囲気ガスを所
定の状態、例えば露点や雰囲気ガス組成、を厳しく制御
する必要のある熱処理炉に設けられる。そのわけは、吸
引式ラジアントチューブは燃焼時にラジアントチューブ
1内が負圧となり、もし例えばラジアントチューブ1の
一部に″やぶれ″が生じても、該ラジアントチューブ1
内の燃焼ガスは外部に掘出せず、炉内雰囲気ガスの汚染
が生じないからである。
The suction type radiant tube is installed in a heat treatment furnace where it is necessary to strictly control the atmospheric gas within the furnace to a predetermined state, such as the dew point and atmospheric gas composition. The reason for this is that in the suction type radiant tube, the inside of the radiant tube 1 becomes negative pressure during combustion, and even if a "break" occurs in a part of the radiant tube 1,
This is because the combustion gas inside the furnace cannot be excavated to the outside, and the atmospheric gas inside the furnace is not contaminated.

吸引式ラジアントチューブで燃焼効率よく加熱するには
、空燃比を所定範囲内に制御することが重要である。こ
の燃焼効率を高めるのに空燃比を制御することが重要で
あるのは、吸引式ラジアントチューブバーナーに限らす
、バーナーによる直火加熱の場合でも同様である。
In order to heat with efficient combustion using a suction type radiant tube, it is important to control the air-fuel ratio within a predetermined range. The importance of controlling the air-fuel ratio in order to increase combustion efficiency is not limited to suction type radiant tube burners, and is the same even in the case of direct heating by burners.

〔従来技術〕[Prior art]

従来から熱処理炉における空燃比の制御については提案
がある。例えば、特開昭55−110823号では、温
度設定調節器からの信号で、予め設定した比率により空
気量を設定して燃焼用バーナーに送る。そして、実際に
測定した空気量と設定空気量との偏差がなくなるように
制御する。一方、炉内圧力を振動信号として検出し、該
検出値と予め設定した炉内圧力に応じた周波数との偏差
により、空燃比を補正して燃焼せしめる。
There have been proposals for controlling the air-fuel ratio in heat treatment furnaces. For example, in Japanese Patent Application Laid-Open No. 55-110823, the amount of air is set according to a preset ratio using a signal from a temperature setting controller and sent to a combustion burner. Control is then performed so that there is no deviation between the actually measured air amount and the set air amount. On the other hand, the furnace pressure is detected as a vibration signal, and the air-fuel ratio is corrected based on the deviation between the detected value and a preset frequency corresponding to the furnace pressure to cause combustion.

これによると、燃焼状態が良好になるとのことである。According to this, the combustion condition will be improved.

しかし吸引式ラジアントチューブバーナーは。But the suction type radiant tube burner.

雰囲気ガスを使用する熱処理炉に設けられ、炉内圧力と
は独立した圧力状態にあるから、この方法によって空燃
比を制御することは困難である。
It is difficult to control the air-fuel ratio by this method because it is installed in a heat treatment furnace that uses atmospheric gas and is in a pressure state independent of the pressure inside the furnace.

吸引式ラジアントチューブバーナーの従来の燃焼制御方
法は、燃料量、例えば可燃ガス量と吸引用のエゼクタ空
気量を一定の空燃比で制御しており、エゼクタ空気量と
燃焼空気量の相関が、−次回部であれば十分であるが、
実際にはラジアントチューブ自体の使用による燃焼スス
などの付着堆積、詰まり、変形等により、その相関は第
2図の曲線aで示す様に非線形となり、一定の空燃比制
御では全負荷域で最適燃焼は得られない。
Conventional combustion control methods for suction type radiant tube burners control the amount of fuel, such as the amount of combustible gas, and the amount of ejector air for suction at a constant air-fuel ratio, and the correlation between the amount of ejector air and the amount of combustion air is - It will be enough for the next part, but
In reality, due to adhesion of combustion soot, clogging, deformation, etc. due to the use of the radiant tube itself, the correlation becomes non-linear as shown by curve a in Figure 2, and with a constant air-fuel ratio control, optimal combustion is achieved over the entire load range. cannot be obtained.

また、吸引式ラジアントチューブバーナーは熱処理炉に
複数個設けられるのであるが、その空燃比制御は炉単位
に行なわれている。さらに、吸引式ラジアントチューブ
のバーナーは、使用経年により燃焼特性が変化すること
が多々みられ、かつ、その変化の程度はバーナーの個々
によって異なる。
Furthermore, although a plurality of suction type radiant tube burners are installed in a heat treatment furnace, the air-fuel ratio is controlled for each furnace. Furthermore, the combustion characteristics of suction type radiant tube burners often change over time, and the extent of the change varies depending on the burner.

このようなことから、熱処理炉に設けられた吸引式ラジ
アントチューブを所定の空燃比で安定して、3− かつ、長期にわたって燃焼せしめることは難しかった。
For this reason, it has been difficult to stably burn the suction type radiant tube provided in the heat treatment furnace at a predetermined air-fuel ratio over a long period of time.

〔発明の目的〕[Purpose of the invention]

本発明は燃料量と燃焼空気量とを常に適正空燃比で制御
し、かつ、各々の吸引式ラジアントチューブのバーナー
の燃焼特性を均衡させ、目標とする空燃比での最適燃焼
を可能とする、を目的とする。
The present invention constantly controls the amount of fuel and the amount of combustion air at an appropriate air-fuel ratio, balances the combustion characteristics of the burner of each suction type radiant tube, and enables optimal combustion at the target air-fuel ratio. With the goal.

〔発明の構成・作用〕[Structure and operation of the invention]

次に、本発明を一実施例にもとづき、図面を参照して詳
細に説明する。
Next, the present invention will be explained in detail based on one embodiment with reference to the drawings.

第3図は、本発明を一態様で実施する装置構成を示すブ
ロック図である。第3図において、4は熱処理炉で、前
記第1a図および第1b図に示した如くの吸引式ラジア
ントチューブバーナー人が複数個設けられている。5は
燃料管で、例えば可燃ガスを吸引式ラジアントチューブ
バーナー人のバーナー2(第1a図参照)に供給する。
FIG. 3 is a block diagram showing the configuration of an apparatus that implements one aspect of the present invention. In FIG. 3, numeral 4 denotes a heat treatment furnace, which is provided with a plurality of suction type radiant tube burners as shown in FIGS. 1a and 1b. A fuel pipe 5 supplies, for example, combustible gas to the burner 2 of the suction type radiant tube burner (see Fig. 1a).

6はエゼクタ空気供給管でエゼクタ3(第1a図参照)
に空気を供給する。
6 is the ejector air supply pipe and the ejector 3 (see Figure 1a)
supply air to.

=4− 7は燃料流量計、例えばオリフィスであり、8は燃料流
量調節弁、9はエゼクタ空気流量計、10はエゼクタ空
気流量調節弁である。
=4- 7 is a fuel flow meter, for example an orifice, 8 is a fuel flow control valve, 9 is an ejector air flow meter, and 10 is an ejector air flow control valve.

11は各吸引式ラジアントチューブバーナー人に設けら
れた燃料調整バルブで、12は同様に各々に設けられた
エゼクタ空気調整バルブである。
Numeral 11 is a fuel adjustment valve provided on each suction type radiant tube burner, and 12 is an ejector air adjustment valve similarly provided on each suction type radiant tube burner.

13は温度計で、炉温を測定しその温度信号を温度調節
器14に入力する。
A thermometer 13 measures the furnace temperature and inputs the temperature signal to the temperature controller 14.

温度調節器14では、温度計13で測定した温度を設定
温度と比較し、その偏差がなくなるように温度制御信号
を制御演算器1例えばディジタル演算器15に出力する
The temperature controller 14 compares the temperature measured by the thermometer 13 with a set temperature, and outputs a temperature control signal to the control calculator 1, for example, the digital calculator 15, so that the deviation is eliminated.

ディジタル演算器15は、燃料流量とエゼクタ空気量を
制御し、空燃比を所定範囲にするものであり、該演算器
15には、第2図に示した如くのエゼクタ3における吸
引用のエゼクタ空気量と、エゼクタ作用により吸引され
る燃焼用空気量が非線形になるのを補正し、全燃焼域に
わたって一定の空燃比で燃焼すべく、燃料量とエゼクタ
空気量の関係式が予め定められ、記憶されている。
The digital calculator 15 controls the fuel flow rate and ejector air amount to keep the air-fuel ratio within a predetermined range. In order to correct the non-linearity of the amount of combustion air sucked in by the ejector action and to burn at a constant air-fuel ratio over the entire combustion range, a relational expression between the amount of fuel and the amount of ejector air is determined in advance and stored. has been done.

しかして、前記温度制御信号を入力された該ディジタル
演算器15は、燃料流量調節器16に燃料量指令信号を
出力する。この信号で変換器17を介して燃料流量調節
弁8の開閉度を制御し燃料量が制御される。
The digital arithmetic unit 15, which has received the temperature control signal, outputs a fuel amount command signal to the fuel flow rate regulator 16. This signal controls the opening/closing degree of the fuel flow control valve 8 via the converter 17, thereby controlling the amount of fuel.

なお、燃料流量計7にて測定された燃料流量は差圧発信
器18.変換器19を介し、流量信号として燃料流量調
節器16に入力され、前記燃料指令信号と比較され、こ
の偏差がなくなるように燃料量を調節する。
Note that the fuel flow rate measured by the fuel flow meter 7 is measured by the differential pressure transmitter 18. The signal is input as a flow rate signal to the fuel flow regulator 16 via the converter 19, compared with the fuel command signal, and the fuel amount is adjusted so as to eliminate this deviation.

一方、ディジタル演算器15は所定の空燃比で燃焼制御
すべく、予め定めた燃料量とエゼクタ空気量の関係式に
よって、燃料量指令信号の値に応じたエゼクタ空気量信
号を得て、変換器191を介してエゼクタ空気量調節弁
10に出力し、エゼクタ空気量を制御する。
On the other hand, in order to perform combustion control at a predetermined air-fuel ratio, the digital calculator 15 obtains an ejector air amount signal according to the value of the fuel amount command signal using a predetermined relational expression between the fuel amount and the ejector air amount, and outputs the ejector air amount signal to the converter. 191 to the ejector air amount control valve 10 to control the ejector air amount.

なお、空気流量計9で、エゼクタ空気量を測定し、差圧
発信器181を介してディジタル演算器15に入力して
、ディジタル演算器15においてエゼクタ空気量信号と
比較し、その偏差がなくなるようにエゼクタ空気量を調
節する。
The ejector air amount is measured with the air flow meter 9, inputted to the digital calculator 15 via the differential pressure transmitter 181, and compared with the ejector air amount signal in the digital calculator 15 to ensure that the deviation is eliminated. Adjust the ejector air amount.

これにより、吸引式ラジアントチューブバーナ人はエゼ
クタ空気量とエゼクタ作用により吸引される燃焼用空気
量が非線形であっても、所定の空燃比で燃焼される。
As a result, the suction type radiant tube burner burns at a predetermined air-fuel ratio even if the amount of ejector air and the amount of combustion air sucked by the ejector action are non-linear.

ところで、バーナー2はそれぞれの特性が必ずしも同じ
でなく、また使用経年により燃焼特性が変化するので、
これに対処するように本発明では次のようにする。
By the way, the burner 2 does not necessarily have the same characteristics, and the combustion characteristics change depending on the age of use.
In order to cope with this problem, the present invention takes the following steps.

各々の吸引式ラジアントチューブバーナー八には、酸素
濃度測定計20を設けて、燃焼排ガス中における酸素濃
度を測定し、その測定値が不適、例えば多過ぎれば空気
過多であるので、各々の吸引式ラジアントチューブバー
ナー人の分岐エゼクタ空気管21に設けたエゼクタ空気
調節バルブ12を調整する。さらに各々の酸素濃度測定
計20からの測定値は演算器22に入力し、演算器22
で燃焼排ガスの平均酸素濃度値を算出し、設定空燃比に
おける酸素濃度と比較し、偏差があれば、その偏差がな
くなるように補正信号をディジ7− タル演算器15に出力し、エゼクタ空気量を補正して燃
焼用空気を調整し、各バーナー2(第1a図参照)の燃
焼状態を均衡させる。
Each suction type radiant tube burner 8 is equipped with an oxygen concentration measuring meter 20 to measure the oxygen concentration in the combustion exhaust gas. Adjust the ejector air adjustment valve 12 provided on the branch ejector air pipe 21 of the radiant tube burner. Furthermore, the measured values from each oxygen concentration measuring meter 20 are input to the computing unit 22, and
calculates the average oxygen concentration value of the combustion exhaust gas, compares it with the oxygen concentration at the set air-fuel ratio, and if there is a deviation, outputs a correction signal to the digital calculator 15 so as to eliminate the deviation, and adjusts the ejector air amount. is corrected to adjust the combustion air and balance the combustion state of each burner 2 (see FIG. 1a).

〔発明の効果〕〔Effect of the invention〕

第4図は吸引式ラジアントチューブバーナーにおいて、
本発明方法でバーナーの燃焼を行なったさいの燃料量と
、燃焼用空気量の関係を概略的に示すものである。
Figure 4 shows the suction type radiant tube burner.
This figure schematically shows the relationship between the amount of fuel and the amount of combustion air when combustion is performed in a burner according to the method of the present invention.

この図中の直線す、c間は、エゼクタ3のエゼクタ空気
量と燃焼用空気量との非線形を補正して燃焼した場合で
あり、直線d、e間は、さらに燃焼排ガス中の酸素濃度
を測定し、燃焼用空気を調整して燃焼した場合であり、
直線dは空燃比1.3を、直線eは空燃比1.1を示し
、所定の空燃比で燃焼されることがわかる。
The line between straight lines S and C in this figure shows the case where combustion is performed by correcting the non-linearity between the ejector air amount of the ejector 3 and the combustion air amount, and the line between straight lines d and e shows the case where the oxygen concentration in the combustion exhaust gas is further corrected. This is when combustion is performed by measuring and adjusting the combustion air.
The straight line d indicates an air-fuel ratio of 1.3, and the straight line e indicates an air-fuel ratio of 1.1, indicating that combustion is performed at a predetermined air-fuel ratio.

本発明は、以上のようにして吸引式ラジアントチューフ
ハーナーの空燃比が制御されるので、全燃焼域にわたっ
て最適状態で燃焼され、燃焼効率が非常にすぐれる。
In the present invention, since the air-fuel ratio of the suction type radiant tube burner is controlled as described above, combustion is performed in an optimal state over the entire combustion range, and combustion efficiency is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

8− 第1a図は吸引式ラジアントチューブバーナーの構造の
一例を示す平面図、第会す図は側面図である。 第2図は吸引式ラジアントチューブバーナーにおける燃
料量とエゼクタ空気量の関係を示すグラフである。 第3図は本発明を一態様で実施する装置構成を示すブロ
ック図である。 第4図は本発明の一実施例の燃料量と燃焼用空気量との
関係を示すグラフである。 八ツラジアントチューブバーナー 1:ラジアントチューブ 2:バーナー3:エゼクタ 
31:エゼクタ管 4:熱処理炉 5:燃料管 6;エゼクタ空気供給管 7:燃料流量計8=燃料流量
調節弁 9:エゼクタ空気流量計10=工ゼクタ空気流
量調節弁 11:燃料調整バルブ 12:エゼクタ空気調整バルブ 13:温度計 14:温度調節器 15:ディジタル演算器 16:燃料流量調節器17:
変換器 18:差圧発信器 19:変換器 20:酸素濃度測定M121:分岐エゼ
クタ空気管22:演算器1l− )1’−)’へ慇[l厭−
8- Figure 1a is a plan view showing an example of the structure of a suction type radiant tube burner, and the second figure is a side view. FIG. 2 is a graph showing the relationship between the amount of fuel and the amount of ejector air in a suction type radiant tube burner. FIG. 3 is a block diagram showing the configuration of an apparatus that implements one embodiment of the present invention. FIG. 4 is a graph showing the relationship between the amount of fuel and the amount of combustion air in one embodiment of the present invention. Yatsu Radiant Tube Burner 1: Radiant Tube 2: Burner 3: Ejector
31: Ejector pipe 4: Heat treatment furnace 5: Fuel pipe 6; Ejector air supply pipe 7: Fuel flow meter 8 = Fuel flow control valve 9: Ejector air flow meter 10 = Engineer air flow control valve 11: Fuel adjustment valve 12: Ejector air adjustment valve 13: Thermometer 14: Temperature controller 15: Digital calculator 16: Fuel flow controller 17:
Converter 18: Differential pressure transmitter 19: Converter 20: Oxygen concentration measurement M121: Branch ejector air pipe 22: Calculator 1l-)1'-)' to [l-

Claims (1)

【特許請求の範囲】[Claims] 吸引式ラジアントチューブバーナーを設けた炉にて燃焼
するにあたり、測定された炉温と設定炉温との偏差より
燃料量を制御するとともに、予じめ定めた燃料量とエゼ
クタ空気量との関係によりエゼクタ空気量を制御してバ
ーナーを燃焼せしめ、一方、バーナーからの燃焼排ガス
中の酸素濃度を測定し、その測定値が所定偏差を超えた
ときには各々のバーナーに設けた調整弁を制御するとと
もに、各バーナーの酸素濃度より平均酸素濃度を得て、
設定空燃比に対応する酸素濃度と比較し、その偏差によ
りエゼクタ空気量を補正し燃焼せしめることを特徴とす
る吸引式ラジアントチューブバーナー炉の最適燃焼制御
方法。
When burning in a furnace equipped with a suction type radiant tube burner, the amount of fuel is controlled based on the deviation between the measured furnace temperature and the set furnace temperature, and the amount of fuel is controlled based on the relationship between the predetermined amount of fuel and the amount of ejector air. The amount of air in the ejector is controlled to cause the burner to burn, while the oxygen concentration in the combustion exhaust gas from the burner is measured, and when the measured value exceeds a predetermined deviation, the control valve provided in each burner is controlled. Obtain the average oxygen concentration from the oxygen concentration of each burner,
An optimal combustion control method for a suction type radiant tube burner furnace characterized by comparing the oxygen concentration corresponding to a set air-fuel ratio and correcting the ejector air amount based on the deviation to cause combustion.
JP59115833A 1984-06-06 1984-06-06 Optimal Combustion Control Method for Suction Radiant Tube Burner Furnace Expired - Lifetime JPH061122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59115833A JPH061122B2 (en) 1984-06-06 1984-06-06 Optimal Combustion Control Method for Suction Radiant Tube Burner Furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59115833A JPH061122B2 (en) 1984-06-06 1984-06-06 Optimal Combustion Control Method for Suction Radiant Tube Burner Furnace

Publications (2)

Publication Number Publication Date
JPS60259823A true JPS60259823A (en) 1985-12-21
JPH061122B2 JPH061122B2 (en) 1994-01-05

Family

ID=14672244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59115833A Expired - Lifetime JPH061122B2 (en) 1984-06-06 1984-06-06 Optimal Combustion Control Method for Suction Radiant Tube Burner Furnace

Country Status (1)

Country Link
JP (1) JPH061122B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015149A1 (en) * 1992-12-25 1994-07-07 Kawasaki Seitetsu Kabushiki Kaisha Heater including a plurality of heat accumulation type burner units and operation method therefor
EP0641393A1 (en) * 1991-04-25 1995-03-08 Asarco Incorporated Method for melting copper
FR2953280A1 (en) * 2009-11-30 2011-06-03 Fives Stein METHOD FOR CORRECTING COMBUSTION SETTINGS OF A COMBUSTION CHAMBER ASSEMBLY AND INSTALLATION USING THE METHOD
CN103438479A (en) * 2013-07-24 2013-12-11 无锡圣恩铜业有限公司 Adjustable smelting furnace
JP2018537649A (en) * 2015-12-17 2018-12-20 フィブ スタン Electronic control module and method for controlling operation and safety of at least one radiant tube burner
JP2020094773A (en) * 2018-12-14 2020-06-18 大同特殊鋼株式会社 Method for detecting combustion failure in radiant tube burner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482897U (en) * 1971-05-21 1973-01-13
JPS5735423U (en) * 1980-08-08 1982-02-24
JPS59115833U (en) * 1983-01-26 1984-08-04 川崎重工業株式会社 Overrun prevention device for small boats

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735423B2 (en) * 1975-02-12 1982-07-29

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482897U (en) * 1971-05-21 1973-01-13
JPS5735423U (en) * 1980-08-08 1982-02-24
JPS59115833U (en) * 1983-01-26 1984-08-04 川崎重工業株式会社 Overrun prevention device for small boats

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641393A1 (en) * 1991-04-25 1995-03-08 Asarco Incorporated Method for melting copper
EP0641393A4 (en) * 1991-04-25 1996-08-14 Asarco Inc Method for melting copper.
WO1994015149A1 (en) * 1992-12-25 1994-07-07 Kawasaki Seitetsu Kabushiki Kaisha Heater including a plurality of heat accumulation type burner units and operation method therefor
US5520534A (en) * 1992-12-25 1996-05-28 Kawasaki Seitetsu Kabushiki Kaisha Heating apparatus including plurality of regenerative burner units and operating method
JP3673860B2 (en) * 1992-12-25 2005-07-20 Jfeスチール株式会社 Heating apparatus including a plurality of regenerative burner units and its operating method
FR2953280A1 (en) * 2009-11-30 2011-06-03 Fives Stein METHOD FOR CORRECTING COMBUSTION SETTINGS OF A COMBUSTION CHAMBER ASSEMBLY AND INSTALLATION USING THE METHOD
WO2011064752A1 (en) * 2009-11-30 2011-06-03 Fives Stein Method for correcting the combustion settings of a set of combustion chambers and apparatus implementing the method
CN102686946A (en) * 2009-11-30 2012-09-19 法孚斯坦因公司 Method for correcting the combustion settings of a set of combustion chambers and apparatus implementing the method
CN103438479A (en) * 2013-07-24 2013-12-11 无锡圣恩铜业有限公司 Adjustable smelting furnace
JP2018537649A (en) * 2015-12-17 2018-12-20 フィブ スタン Electronic control module and method for controlling operation and safety of at least one radiant tube burner
JP2020094773A (en) * 2018-12-14 2020-06-18 大同特殊鋼株式会社 Method for detecting combustion failure in radiant tube burner

Also Published As

Publication number Publication date
JPH061122B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
CN106766883B (en) Optimal combustion control system and method for regenerative heating furnace
EP0322132B1 (en) Fuel burner apparatus and a method of control
CN110207392A (en) Method for correcting current function relationship between fan and proportional valve
CN111468709A (en) Automatic baking system and method of ladle roaster
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
JP7110497B2 (en) Coke oven positive pressure preheating system and temperature control method
JPH0577926B2 (en)
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPH0826988B2 (en) Combustion control method and combustion control device using the method
JPH028213B2 (en)
JP7220971B2 (en) Combustion control method for combustion equipment
JP2619044B2 (en) Temperature control device
JP3020328B2 (en) Flow control method in mixing ratio control device
JPS6113531B2 (en)
JPH10245632A (en) Method for controlling combustion of radiant tube burner in continuous annealing furnace
JPS61272509A (en) Catalytic burning apparatus
JPS6051606B2 (en) Air-fuel ratio control device for heating furnace for exhaust gas denitrification
JPH05280869A (en) Controlling method for in-furnace gas flow in rotary hearth type heating furnace
JPH0942766A (en) Combustion appliance having hot water supply function and correction data input device
JPS6334419A (en) Method of controlling combustion of suction type radiant tube burner
JPS6021639Y2 (en) Furnace pressure control device for combustion equipment
JPS62206320A (en) Air-fuel ratio control device of furnace
SU885158A1 (en) Method of stabilizing temperature condition of glass smelting furnace
JP2022176423A (en) Combustion facility
JPS5817373B2 (en) Combustion control method using oxygen concentration control in combustion furnace