JPS5817373B2 - Combustion control method using oxygen concentration control in combustion furnace - Google Patents

Combustion control method using oxygen concentration control in combustion furnace

Info

Publication number
JPS5817373B2
JPS5817373B2 JP9469377A JP9469377A JPS5817373B2 JP S5817373 B2 JPS5817373 B2 JP S5817373B2 JP 9469377 A JP9469377 A JP 9469377A JP 9469377 A JP9469377 A JP 9469377A JP S5817373 B2 JPS5817373 B2 JP S5817373B2
Authority
JP
Japan
Prior art keywords
combustion
flow rate
oxygen concentration
furnace
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9469377A
Other languages
Japanese (ja)
Other versions
JPS5429133A (en
Inventor
岡利明
村島誠一郎
筒井清巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Azbil Corp
Original Assignee
Nippon Steel Corp
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Azbil Corp filed Critical Nippon Steel Corp
Priority to JP9469377A priority Critical patent/JPS5817373B2/en
Publication of JPS5429133A publication Critical patent/JPS5429133A/en
Publication of JPS5817373B2 publication Critical patent/JPS5817373B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は燃焼炉の燃焼制御方法に関し、更に詳しくは酸
素濃度制御による燃焼制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion control method for a combustion furnace, and more particularly to a combustion control method using oxygen concentration control.

通常、金属加熱炉などの温度制御については、異った加
熱温度が要求されるため設定温度変更が著しく、燃料指
令変化率が大きい。
Normally, when controlling the temperature of a metal heating furnace, etc., different heating temperatures are required, so the set temperature changes significantly and the rate of change in the fuel command is large.

かかる炉においては、オペレータが設定温度を急に変更
すると、燃料流量制御系および空気流量・制御系の応答
時間の差によって、一時的に燃料過剰もしくは空気過剰
の状態となる。
In such a furnace, when an operator suddenly changes the set temperature, a state of excess fuel or excess air temporarily occurs due to the difference in response time between the fuel flow rate control system and the air flow/control system.

従って、通常作業時には安全率を見込んで必要以上に高
い過剰空気率を設定するのが普通であった。
Therefore, during normal work, it has been common practice to set a higher excess air rate than necessary in consideration of the safety factor.

このため、燃焼空気量過大による炉温低下により燃料コ
ストはアップし、NOxの発生量が増え、環境上ならび
に省エネルギの点から好ましくなかった。
For this reason, the fuel cost increases due to a decrease in the furnace temperature due to the excessive amount of combustion air, and the amount of NOx generated increases, which is unfavorable from an environmental and energy saving point of view.

本発明はかかる欠点に鑑みてなされたもので、その目的
とするところは、燃焼後の炉排ガスの酸素濃度を適度に
低く抑え、すなわち、必要以上に高い過剰空気率を設定
することなく、かつ炉の温度の設定に変更があっても安
定した制御が得られ、以ってNOxの低減化と省エネル
ギに適した燃焼制御方法を提供するにある。
The present invention was made in view of these drawbacks, and its purpose is to suppress the oxygen concentration of the furnace exhaust gas after combustion to a moderately low level, that is, without setting an unnecessarily high excess air ratio. It is an object of the present invention to provide a combustion control method that can provide stable control even when the temperature setting of a furnace is changed, and is thus suitable for reducing NOx and saving energy.

本発明は上記目的を達成するために、燃焼炉からの排ガ
ス中の酸素濃度を測定し、酸素濃度測定値が比較的低い
酸素濃度設定値に調節されるように酸素濃度を調節し、
該調節演算出力により空燃比を制御すると共に、上記調
節演算の比例動作ならびに積分動作の演算定数である比
例ゲインおよび積分時間を燃料または空気流量の測定値
または設定値に応じて自動的に変更するようにしたもの
である。
In order to achieve the above object, the present invention measures the oxygen concentration in exhaust gas from a combustion furnace, adjusts the oxygen concentration so that the measured oxygen concentration value is adjusted to a relatively low oxygen concentration set value,
The air-fuel ratio is controlled by the output of the adjustment calculation, and the proportional gain and integral time, which are calculation constants of the proportional operation and integral operation of the adjustment calculation, are automatically changed according to the measured value or set value of the fuel or air flow rate. This is how it was done.

以下、本発明を図面により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の燃焼制御方法を実施するための燃焼
制御装置の一実施例を示すもので、同図において、1は
炉14の湿度を設定湿度に保つための湿度調節計、2は
湿度調節計1からの指令により燃料流量を調節するため
の燃料流量調節計、3は開平演算器、4は発信器、5は
オリフィス、6は流量調節弁、7は配管、8は空燃比設
定器、9は空燃比設定器8からの指令により燃焼空気流
量を調節するための空気流量調節計、10は炉14の排
ガス中の酸素濃度を設定濃度に抑えるための酸素濃度調
節計、11は選択スイッチ、12は比例ゲインならびに
積分時間発生器、13は燃焼域、14は燃焼炉、15は
熱電対、16は酸素分析計、17はmV/I変換器であ
る。
FIG. 1 shows an embodiment of a combustion control device for carrying out the combustion control method of the present invention, in which 1 is a humidity controller for maintaining the humidity of the furnace 14 at a set humidity; is a fuel flow rate controller for adjusting the fuel flow rate according to the command from the humidity controller 1, 3 is a square root calculator, 4 is a transmitter, 5 is an orifice, 6 is a flow rate control valve, 7 is a pipe, and 8 is an air-fuel ratio a setting device; 9, an air flow rate controller for adjusting the combustion air flow rate according to a command from the air-fuel ratio setting device 8; 10, an oxygen concentration controller for controlling the oxygen concentration in the exhaust gas of the furnace 14 to a set concentration; 11; 12 is a selection switch, 12 is a proportional gain and integral time generator, 13 is a combustion zone, 14 is a combustion furnace, 15 is a thermocouple, 16 is an oxygen analyzer, and 17 is an mV/I converter.

上記構成からなる燃焼制御装置の動作を次に説明する。The operation of the combustion control device having the above configuration will be explained next.

なお図においては説明の便宜上燃焼炉は燃焼域を1個も
ったものを示しである。
In addition, in the figure, for convenience of explanation, the combustion furnace is shown as having one combustion zone.

いま、炉14の温度がある湿度θspになるように設定
されると、湿度調節計1は炉14の湿度を測定する熱電
対15からの測定湿度信号θpvを受けて入力偏差(θ
sp−θpv)が零になるように燃料流量調節計2の燃
料流量設定値Gspを与える。
Now, when the temperature of the furnace 14 is set to a certain humidity θsp, the humidity controller 1 receives the measured humidity signal θpv from the thermocouple 15 that measures the humidity of the furnace 14 and calculates the input deviation (θ
The fuel flow rate setting value Gsp of the fuel flow rate controller 2 is given so that sp-θpv) becomes zero.

燃料流量調節計2はオリフィス5の差圧信号を空気信号
に変換する発信器4ならびに発信器4の出力を開・トす
る開平演算器3を介して得た燃料流量測定値Gpvが上
記設定値Gspに一致するように調節弁6の開閉を制御
する。
The fuel flow rate controller 2 has the fuel flow rate measurement value Gpv obtained through a transmitter 4 that converts the differential pressure signal of the orifice 5 into an air signal and a square root calculator 3 that opens the output of the transmitter 4 to the above set value. The opening and closing of the control valve 6 is controlled to match Gsp.

一方、空気流量調節計9は空燃比μと燃料流量設定値G
spとによって定まる空気流量設定(k s pを空燃
比設定器8から受けて燃料流量調節計2の場合と同様に
、空気流量測定値Apvが設定値Aspに一致するよう
に調節弁6を制御する。
On the other hand, the air flow controller 9 measures the air-fuel ratio μ and the fuel flow setting value G.
The air flow rate setting determined by sp (k sp) is received from the air-fuel ratio setting device 8 and the control valve 6 is controlled so that the measured air flow value Apv matches the set value Asp, as in the case of the fuel flow controller 2. do.

このようにして所望炉温に従い、燃料流量ならびに空気
流量が調節されるのであるが、空燃比設定値が固定され
たものであると炉14の設定温度θspが変更されたと
き、燃料流量の制御系と空気流量の制御系の応答時間の
差によって排ガス中の酸素濃度が変る。
In this way, the fuel flow rate and air flow rate are adjusted according to the desired furnace temperature, but if the air-fuel ratio set value is fixed, when the set temperature θsp of the furnace 14 is changed, the fuel flow rate cannot be controlled. The oxygen concentration in the exhaust gas changes due to the difference in response time between the system and the air flow rate control system.

酸素濃度02%とNOxの発生量ならびにエネルギの損
失の関係は第2図に示す如くである。
The relationship between the oxygen concentration of 02%, the amount of NOx generated, and energy loss is as shown in FIG.

従って炉内排ガスの酸素濃度を最適値に保つために酸素
濃度制御を行なうわけである。
Therefore, oxygen concentration control is performed to maintain the oxygen concentration of the in-furnace exhaust gas at an optimal value.

酸素濃度調節計10はそのためのもので、比例および積
分動作を連続して行なうPI調節計で、酸素分析計16
によって検出された排ガス中の酸素濃度測定値02 p
vが設定値02spに維持すべく入力偏差(02pv
−02sp)に対して、比例ならびに積分演算を施し、
空燃比設定器8に対し空燃比設定値μを与える。
The oxygen concentration controller 10 is for this purpose, and is a PI controller that continuously performs proportional and integral operations.
Oxygen concentration measurement value in exhaust gas detected by 02p
In order to maintain v at the set value 02sp, input deviation (02pv
-02sp), perform proportional and integral calculations,
An air-fuel ratio set value μ is given to the air-fuel ratio setter 8.

ここで、比例ならびに積分演算を行なう場合、次のよう
な周知の公式が用いられる。
Here, when performing proportional and integral calculations, the following well-known formulas are used.

y =Kp(Z+ −f Z a t )TI なお、上式において、yは空燃比設定値μ、Zは入力偏
差(02pv−02sp)に相当し、また、Kpは比例
ゲイン、TIは積分時間である。
y = Kp (Z+ - f Za t ) TI In the above equation, y corresponds to the air-fuel ratio setting value μ, Z corresponds to the input deviation (02pv-02sp), Kp is the proportional gain, and TI is the integral time It is.

しかし、酸素濃度調節計10の比例ゲインならびに積分
時間が固定値に設定されていると、燃料流量が増減した
場合、制御系の安定がくずれ、場合によっては未燃状態
(黒煙)が発生したりハンチングが生ずる。
However, if the proportional gain and integral time of the oxygen concentration controller 10 are set to fixed values, if the fuel flow rate increases or decreases, the stability of the control system will be disrupted, and in some cases, an unburned state (black smoke) may occur. or hunting occurs.

この不具合を解決するために本発明においては流量に応
じて酸素濃度調節計の比例ゲインならびに積分時間を自
動的に変更するようにしている。
In order to solve this problem, the present invention automatically changes the proportional gain and integration time of the oxygen concentration controller according to the flow rate.

すなわちスイッチ11を介して与えられる燃料流量測定
値Gpvにより予め設定された比例ゲインおよび積分時
間が比例ゲイン・積分時間発生器12から出力され、酸
素濃度調節計10に与えられる。
That is, the proportional gain and integral time preset by the fuel flow rate measurement value Gpv given via the switch 11 are outputted from the proportional gain/integral time generator 12 and given to the oxygen concentration controller 10.

第3図は燃料流量測定値Gpvに対して出力されるべき
比例ゲインおよび積分時間との関係を示すもので、燃料
流量が増大するにつれて小さな値が、また減少するにつ
れて大きな値が出力される。
FIG. 3 shows the relationship between the proportional gain and integration time that should be output with respect to the fuel flow rate measurement value Gpv; as the fuel flow rate increases, a smaller value is output, and as the fuel flow rate decreases, a larger value is output.

このような燃料流量に対する比例ゲインおよび積分時間
の関係は、実験にもとづいてあらかじめ例えば第3図の
ように決められており、測定した燃料流量値に応じて比
例ゲインおよび積分時間が変更するようになっている。
The relationship between the proportional gain and integral time with respect to the fuel flow rate is determined in advance based on experiments, as shown in Figure 3, for example, and the proportional gain and integral time are changed according to the measured fuel flow rate value. It has become.

なお、第1図の実施例ではスイッチ11によってGpv
が選択されたが、スイッチ11を切換えてGspを選択
することもできる。
In the embodiment shown in FIG.
is selected, but it is also possible to select Gsp by switching the switch 11.

GpvはGspに追従するように制御されるため、両者
はほぼ同じ値を示すものであるからどちらを選択しても
よい。
Since Gpv is controlled to follow Gsp, they both show almost the same value, so either one may be selected.

このようにして酸素濃度調節計の出力すなわち空燃比を
酸素濃度ならびに燃料流量に応じて変えるため、良好な
る燃焼状態が維持される。
In this way, the output of the oxygen concentration controller, that is, the air-fuel ratio, is changed according to the oxygen concentration and the fuel flow rate, so that a good combustion state is maintained.

なお、上述の実施例においては、燃料流量の信号により
、比例ゲインおよび積分時間を変更させるようにしたも
のであるが、燃料流量制御ループと空気流量制御ループ
を入れ替え、温度調節計1の出力で空気流量調節計の設
定値Aspを与え、空気流量測定値Apvまたは設定値
Aspで比例ゲイン・積分時間発生器12を駆動するよ
うにし、空燃比設定器8の出力で燃料流量調節計の設定
値Gspを与えるようにしてもよい。
In the above embodiment, the proportional gain and the integral time are changed according to the fuel flow rate signal, but the fuel flow rate control loop and the air flow rate control loop are replaced, and the output of the temperature controller 1 is changed. The set value Asp of the air flow controller is given, the measured air flow value Apv or the set value Asp is used to drive the proportional gain/integral time generator 12, and the output of the air-fuel ratio setting device 8 is used to set the set value of the fuel flow controller. Gsp may also be given.

上述した説明から明らかなように本発明によれば、排ガ
ス中の酸素濃度を比較的低い所望値に保持し得、酸素濃
度の比例・積分演算の演算定数を流量に応じて調整する
ものであるから制御系の安定がよく、未燃状態の発生を
避け、低NOx化、省エネルギが実現できる。
As is clear from the above description, according to the present invention, the oxygen concentration in the exhaust gas can be maintained at a relatively low desired value, and the calculation constant of the proportional/integral calculation of the oxygen concentration can be adjusted according to the flow rate. As a result, the control system is stable, the occurrence of unburned states can be avoided, and low NOx and energy savings can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による燃焼制御方法を実施するための燃
焼制御装置の一実施例を示す図、第2図は排ガス中の酸
素濃度とNOxの発生量およびエネルギーの損失との関
係を示す図、第3図aおよびbは燃料流量と比例ゲイン
ならびに積分時間の関係を示す図である。 1・・・温度調節計、2・・・燃料流量調節計、8・・
・空燃比設定器、9・・・空気流量調節計、10・・・
酸素濃度調節計、12・・・比例ゲイン・積分時間発生
器、13・・・燃焼域、14・・・燃焼炉、15・・・
熱電対、16・・・酸素分析計、17・・・mV/I変
換器。
FIG. 1 is a diagram showing an embodiment of a combustion control device for implementing the combustion control method according to the present invention, and FIG. 2 is a diagram showing the relationship between the oxygen concentration in exhaust gas, the amount of NOx generated, and energy loss. , FIGS. 3a and 3b are diagrams showing the relationship between fuel flow rate, proportional gain, and integration time. 1... Temperature controller, 2... Fuel flow controller, 8...
・Air-fuel ratio setting device, 9...Air flow rate controller, 10...
Oxygen concentration controller, 12... Proportional gain/integral time generator, 13... Combustion area, 14... Combustion furnace, 15...
Thermocouple, 16...Oxygen analyzer, 17...mV/I converter.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼炉の燃焼域へ供給される燃料流量および空気流
量を所望の炉温にしたがって制御する際、前記流体の一
方を炉温度調節手段からの設定値に流量測定値が一致す
るよ・)に制御する燃焼制御方法において、前記燃焼炉
の燃焼域、煙道、または煙突における排ガス中の酸素濃
度を連続的に測定し、該測定値と所定の設定値との偏差
に対して演算定数である比例ゲインおよび積分時間を用
いて比例および積分演算を行なって空燃比を算出し、か
つ該比例ゲインおよび積分時間は前記流量測定値または
炉温調節手段からの設定値との間であらかじめ決められ
た関係にしたがって流量測定値または設定値に応じて自
動的に変更し、前記空燃比にもとづいて前記流量の他方
を連続して制御するようにしたことを特徴とする燃焼炉
における酸素濃度制御による燃焼制御方法。
1. When controlling the fuel flow rate and air flow rate supplied to the combustion zone of a combustion furnace according to a desired furnace temperature, one of the fluids is controlled so that the measured flow rate matches the set value from the furnace temperature control means. In the combustion control method, the oxygen concentration in the exhaust gas in the combustion zone, flue, or chimney of the combustion furnace is continuously measured, and a calculation constant is calculated for the deviation between the measured value and a predetermined set value. The air-fuel ratio is calculated by performing proportional and integral calculations using a proportional gain and an integral time, and the proportional gain and integral time are predetermined between the flow rate measurement value or the set value from the furnace temperature adjustment means. Combustion by oxygen concentration control in a combustion furnace, characterized in that the flow rate is automatically changed according to a measured value or a set value according to a relationship, and the other of the flow rates is continuously controlled based on the air-fuel ratio. Control method.
JP9469377A 1977-08-09 1977-08-09 Combustion control method using oxygen concentration control in combustion furnace Expired JPS5817373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9469377A JPS5817373B2 (en) 1977-08-09 1977-08-09 Combustion control method using oxygen concentration control in combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9469377A JPS5817373B2 (en) 1977-08-09 1977-08-09 Combustion control method using oxygen concentration control in combustion furnace

Publications (2)

Publication Number Publication Date
JPS5429133A JPS5429133A (en) 1979-03-05
JPS5817373B2 true JPS5817373B2 (en) 1983-04-06

Family

ID=14117258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9469377A Expired JPS5817373B2 (en) 1977-08-09 1977-08-09 Combustion control method using oxygen concentration control in combustion furnace

Country Status (1)

Country Link
JP (1) JPS5817373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191564U (en) * 1984-11-22 1986-06-13

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182778U (en) * 1982-03-12 1983-12-06 株式会社総技研 ball launcher
KR100804233B1 (en) * 2001-12-21 2008-02-18 재단법인 포항산업과학연구원 Oxygen concentration control method in case of firing multiple fuels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191564U (en) * 1984-11-22 1986-06-13

Also Published As

Publication number Publication date
JPS5429133A (en) 1979-03-05

Similar Documents

Publication Publication Date Title
US8439667B2 (en) Oxygen trim controller tuning during combustion system commissioning
DK171860B1 (en) Method and apparatus for controlling fuel combustion
RU2553783C2 (en) Method and device of pressure control in continuous annealing furnace
JPS5817373B2 (en) Combustion control method using oxygen concentration control in combustion furnace
JPH0579622A (en) Method for controlling combustion by control of oxygen concentration in combustion furnace
JPS5638430A (en) Combustion control for walking beam type heating furnace
JPS63286614A (en) Combustion control of boller
JPS6025688B2 (en) Combustion furnace air-fuel ratio control device
CN112555795A (en) Power plant boiler and dynamic control method for asymmetric characteristic of flue gas pipe network of power plant boiler
CN113739196B (en) Heating boiler furnace temperature fuel flow and air flow air-fuel ratio control system
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPH06174381A (en) Controlling equipment of atmosphere of furnace
JP2947677B2 (en) Exhaust gas concentration control device
JPS5813809B2 (en) Combustion control method using low excess air
JPH04314835A (en) Melt temperature controlling device for aluminum melting furnace
SU1339383A1 (en) Method of controlling combustion of fuel in multizone continuous furnace
CN112524940A (en) Rotary kiln and dynamic control method for asymmetric characteristics of flue gas pipe network thereof
JPH06180116A (en) Exhaust gas concentration controller
SU1204877A1 (en) Method of automatic regulation of air-to-gas ratio
SU1698583A1 (en) Automatic control system of boiler total air flow rate
JPS5919857Y2 (en) Furnace pressure control device in combustion furnace
SU785631A1 (en) System for automatic control of heat condition of heating furnace
JPH03137415A (en) Combustion controller
JPH04138543U (en) Combustion control device
SU1686265A1 (en) Automatic method of firing into the kiln process control