JPH0579622A - Method for controlling combustion by control of oxygen concentration in combustion furnace - Google Patents

Method for controlling combustion by control of oxygen concentration in combustion furnace

Info

Publication number
JPH0579622A
JPH0579622A JP23783991A JP23783991A JPH0579622A JP H0579622 A JPH0579622 A JP H0579622A JP 23783991 A JP23783991 A JP 23783991A JP 23783991 A JP23783991 A JP 23783991A JP H0579622 A JPH0579622 A JP H0579622A
Authority
JP
Japan
Prior art keywords
oxygen concentration
furnace
concentration
flow rate
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23783991A
Other languages
Japanese (ja)
Inventor
Hidekazu Yamamoto
英一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23783991A priority Critical patent/JPH0579622A/en
Publication of JPH0579622A publication Critical patent/JPH0579622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To prevent pollution and realize an energy saving by a method wherein the most suitable oxygen concentration is set in reference to continuous measured values of NOx concentration in discharged gas in a chimney and an oxygen concentration, an air ratio is calculated in reference to a combustion area in a combustion furnace, a smoke passage and a difference in oxygen concentration in discharged gas in the chimney and a flow rate of air is controlled. CONSTITUTION:In the case that a temperature in a furnace 14 is set to become a temperature TSV, a temperature adjusting meter 1 takes a measured temperature signal TPV from a thermocouple 15 for use in measuring the temperature in the furnace 14 and gives a fuel flow rate set value FSV of the fuel flow rate adjusting meter 2 in such a way that a difference between it and the set temperature TSV becomes zero. The fuel flow rate adjusting meter 2 controls an adjusting valve 6 in such a way that the value becomes this set value. In turn, a NOx analyzer 11 and a CO analyzer 12 in a chimney measure each of concentrations of NOx and CO, respectively. The most suitable oxygen concentration O2SV2 is set through a CO analyzed value weight coefficient setting device 18, a NOx analyzed value weighing coefficient setting device 19, a subtractor 20, an integrator 22 and an adder 21. An amount of air is controlled by an oxygen concentration adjusting meter 10 in response to a difference between the most suitable oxygen concentration set valve O2SV2 and an oxygen concentration O2PV in the discharged gas in the furnace 14 detected by the oxygen analyzer 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼炉の燃焼制御方法に
関し、さらに詳しくは酸素濃度制御による燃焼制御方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method for a combustion furnace, and more particularly to a combustion control method by controlling oxygen concentration.

【0002】[0002]

【従来の技術】通常金属加熱炉などの温度制御について
は、製品により異なった加熱温度が要求されるため設定
温度変更が著しく、燃料量の変動も大きい。
2. Description of the Related Art Normally, in the temperature control of a metal heating furnace or the like, different heating temperatures are required for different products, so that the set temperature is remarkably changed and the amount of fuel varies greatly.

【0003】罹る炉に於ては、オペレーターが設定温度
を急に変更すると燃料流量制御系及び空気流量制御系の
応答時間の差によって、一時的に燃料過剰もしくは空気
過剰の状態となる。
In the affected furnace, when the operator suddenly changes the set temperature, the fuel flow rate control system and the air flow rate control system are temporarily in excess of fuel or in excess of air due to a difference in response time between the fuel flow rate control system and the air flow rate control system.

【0004】従来技術では、特許公報 昭58−17373 号
にあるように排ガス中の酸素濃度を測定して酸素濃度が
比較的低い設定値に調節されるような酸素濃度調節計を
もうけ、この調節計の演算出力により空燃比を制御する
事により、燃料過剰もしくは空気過剰の状態にならない
よう制御を行っていた。
In the prior art, as disclosed in Japanese Patent Publication No. 58-17373, an oxygen concentration controller for measuring the oxygen concentration in exhaust gas and adjusting the oxygen concentration to a relatively low set value is provided. By controlling the air-fuel ratio by the calculation output of the meter, control was performed so as not to cause excess fuel or excess air.

【0005】[0005]

【発明が解決しようとする課題】しかし、この従来方式
では、炉温の設定温度が変更された場合や、炉内の燃焼
状態の変化、による最適な酸素濃度をオペレーターがい
ちいち微調整してやらなければならない煩わしさが残っ
た。また最近では公害防止の見地から単純に黒煙発生防
止だけではなく、NOxやダイオキシンの発生も低く抑
える必要があり、これらにかかわる酸素濃度の設定も、
最適のポイントを設定する必要がありオペレーターの感
に頼るだけでは難しくなってきている。本発明は、かか
る欠点に鑑みてなされたものであり、その目的とすると
ころは、燃焼後の排ガスのNOx濃度やCO濃度を低く
最適な状態にする酸素濃度を自動的に計算し、公害防止
と省エネルギーに適した燃焼制御方法を提供することに
ある。
However, in this conventional method, the operator must finely adjust the optimum oxygen concentration due to the change of the set temperature of the furnace temperature and the change of the combustion state in the furnace. The annoyance that didn't happen remained. Recently, from the standpoint of pollution prevention, it is necessary not only to simply prevent the generation of black smoke but also to suppress the generation of NOx and dioxins to a low level.
It is becoming difficult to set the optimal points and relying on the feeling of the operator. The present invention has been made in view of such drawbacks, and an object of the present invention is to automatically calculate the oxygen concentration that makes the NOx concentration and the CO concentration of exhaust gas after combustion low and optimal, and prevent pollution. And to provide a combustion control method suitable for energy saving.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するため、燃焼炉からの排ガス中の酸素濃度に加え新た
にNOx濃度、CO濃度を連続測定して、NOx濃度,
CO濃度を低い最適の状態にする酸素濃度設定値を演算
出力し、この演算出力を設定値として酸素濃度調節を行
う酸素濃度調節計を持ち、該調節計演算出力により空燃
比を制御するようにしたものである。この時、NOx濃
度信号,CO濃度信号にそれぞれゲインを設定できるよ
うにし、炉毎に持っている、理想のNOx濃度,CO濃
度の割合を上記ゲインを調整することにより設定するこ
とができるようにした。
In order to achieve the above object, the present invention continuously measures NOx concentration and CO concentration in addition to oxygen concentration in exhaust gas from a combustion furnace to obtain NOx concentration,
It has an oxygen concentration controller for calculating and outputting an oxygen concentration set value that makes the CO concentration low and in an optimum state, and having an oxygen concentration controller that adjusts the oxygen concentration using the calculated output as a set value. It was done. At this time, gains can be set for the NOx concentration signal and the CO concentration signal, respectively, and the ideal ratio of NOx concentration and CO concentration possessed by each furnace can be set by adjusting the gain. did.

【0007】[0007]

【作用】炉内のO2 濃度に対する排ガス中のNOx濃
度,CO濃度は相反する関係がある。つまり、炉内O2
濃度が高ければ燃料が完全燃焼に近い形で燃焼するので
COの発生量は少なくなり、余ったO2 が燃焼空気中の
2 と反応してNOxの発生量が多くなり、またO2
度が低ければ、燃料が完全燃焼しない率が多くなりCO
の発生量が多く、余ったO2 が少ない分NOxの発生量
が少なくなる。この原理から排ガスのNOx濃度とCO
濃度を比較してNOx濃度が高くなれば炉内O2 濃度が
高すぎると判断でき、炉内O2 濃度を低くする様、つま
り燃焼空気量を少なくする様制御し、CO濃度が高くな
ければ炉内O2 濃度が低すぎると判断でき、同様にして
炉内O2 濃度を高くする様制御を行う事により安定した
燃焼を維持する事ができる。
The NOx concentration and the CO concentration in the exhaust gas have a contradictory relationship with the O 2 concentration in the furnace. That is, O 2 in the furnace
Since the higher the concentration of fuel burned in the form close to a complete combustion emissions of CO is reduced, excess O 2 is much generation of NOx reacts with N 2 in the combustion air, also O 2 concentration If is low, the rate at which the fuel does not completely burn increases and CO
Many of generation, generation of a small excess O 2 is divided NOx is reduced. From this principle, NOx concentration of exhaust gas and CO
If the NOx concentration becomes high by comparing the concentrations, it can be judged that the O 2 concentration in the furnace is too high, and the O 2 concentration in the furnace is controlled to be low, that is, the combustion air amount is controlled to be small, and the CO concentration is not high. It can be judged that the O 2 concentration in the furnace is too low, and in the same manner, stable combustion can be maintained by performing control to increase the O 2 concentration in the furnace.

【0008】[0008]

【実施例】以下、本発明を図により詳細に説明する。図
1では、本発明の燃焼制御方法を実施するための燃焼制
御装置の一実施例を示すもので、同図において1は炉1
4の温度を設定温度に保つための温度調節計、2は温度
調節計1からの指令により燃料流量を調節するための燃
料流量調節計、3は開閉演算器、4は発信器、5はオリ
フィス、6は流量調節弁、7は配管、8は空燃比設定
器、9は空燃比設定器8からの指令により燃焼空気流量
を調節するための空気流量調節計、10は炉14の排ガ
ス中の酸素濃度を設定濃度に押えるための酸素濃度調節
計、11はNOx分析計、12はCO分析計、13は燃
焼域、14は燃焼炉、15は熱電対、16は酸素分析
計、17はmV/I変換器である。
The present invention will be described in detail below with reference to the drawings. FIG. 1 shows an embodiment of a combustion control device for carrying out the combustion control method of the present invention. In FIG. 1, 1 is a furnace 1.
A temperature controller for keeping the temperature of 4 at a set temperature, 2 a fuel flow controller for adjusting the fuel flow rate according to a command from the temperature controller 1, 3 an opening / closing calculator, 4 an oscillator, 5 an orifice , 6 is a flow control valve, 7 is a pipe, 8 is an air-fuel ratio setter, 9 is an air flow controller for adjusting the combustion air flow rate according to a command from the air-fuel ratio setter 10, and 10 is an exhaust gas of the furnace 14. An oxygen concentration controller for controlling the oxygen concentration to a set concentration, 11 is a NOx analyzer, 12 is a CO analyzer, 13 is a combustion zone, 14 is a combustion furnace, 15 is a thermocouple, 16 is an oxygen analyzer, and 17 is mV. / I converter.

【0009】18は最適O2 濃度設定値演算用のCO分
析値の重み係数設定値、19は同様にNOx分析計重み
係数設定器、20はO2 濃度設定値に対する調整量演算
用の減算器、21は基本O2 濃度設定値とO2 濃度設定
値調整量から最適O2 濃度設定値を計算するための加算
器。22は調整量を積分演算する積分演算器。23はO
2 濃度設定値調整量の値をある一定の範囲に押えるため
のリミッター。
Reference numeral 18 is a CO analysis value weighting coefficient setting value for calculating the optimum O 2 concentration setting value, 19 is also a NOx analyzer weighting coefficient setting device, and 20 is a subtracter for calculating an adjustment amount for the O 2 concentration setting value. 21 is an adder for calculating the optimum O 2 concentration set value from the basic O 2 concentration set value and the O 2 concentration set value adjustment amount. Reference numeral 22 is an integral calculator for integrating the adjustment amount. 23 is O
2 Limiter for holding the value of the density setting value adjustment amount within a certain range.

【0010】上記構成からなる燃焼制御装置の動作を次
に説明する。今、炉14の温度がある温度Tsvになる
ように設定されると、温度調節計1は炉14の温度を測
定する熱電対15からの測定温度信号Tpvを受けて入
力偏差(Tsv−Tpv)がゼロになるように燃料流量
調節計2の燃料流量設定値Fsvを与える。燃料流量調
節計2はオリフィス5の差圧信号を流量信号に変換する
発信器4ならびに発信器4の出力を開平する開平演算器
3を介して得た燃料流量測定値Fpvが上記設定値Fs
vに一致するように調節弁6の開閉を制御する。
The operation of the combustion control device having the above structure will be described below. Now, when the temperature of the furnace 14 is set to a certain temperature Tsv, the temperature controller 1 receives the measured temperature signal Tpv from the thermocouple 15 for measuring the temperature of the furnace 14 and receives the input deviation (Tsv-Tpv). The fuel flow rate set value Fsv of the fuel flow rate controller 2 is given so that becomes zero. In the fuel flow rate controller 2, the fuel flow rate measurement value Fpv obtained through the transmitter 4 that converts the differential pressure signal of the orifice 5 into a flow rate signal and the square root calculator 3 that squares the output of the transmitter 4 is the set value Fs.
The opening / closing of the control valve 6 is controlled so as to coincide with v.

【0011】一方、空気流量調節計9は空燃比μと燃料
流量設定値Fsvとによって定まる空気流量設定値As
vを空燃比設定器8から受けて燃料流量調節計2の場合
と同様に、空気流量測定値Apvが設定値Asvに一致
するように調節弁6を制御する。
On the other hand, the air flow rate controller 9 has an air flow rate set value As determined by the air-fuel ratio μ and the fuel flow rate set value Fsv.
When v is received from the air-fuel ratio setter 8, the control valve 6 is controlled so that the measured air flow rate Apv matches the set value Asv as in the case of the fuel flow rate controller 2.

【0012】このようにして所望炉温に従い、燃料流量
ならびに空気流量が調節されるのであるが、空燃比設定
値が固定されたものであると炉14の設定温度Tsvが
変更されたとき、燃料流量の制御系と空気流量の制御系
の応答時間の差によって排ガスの酸素濃度が変わる。
In this way, the fuel flow rate and the air flow rate are adjusted according to the desired furnace temperature. However, if the air-fuel ratio set value is fixed, when the set temperature Tsv of the furnace 14 is changed, the fuel The oxygen concentration of the exhaust gas changes depending on the difference in response time between the flow rate control system and the air flow rate control system.

【0013】酸素濃度O2 %とNOxの発生量、COの
発生量ならびにエネルギーの損失の関係は図2に示すご
とくである。
The relationship between the oxygen concentration O 2 % and the NOx generation amount, CO generation amount and energy loss is as shown in FIG.

【0014】炉内排ガスの酸素濃度が低ければ、COの
発生量が増え、燃料未燃焼によるエネルギーロスが大き
くなり、酸素濃度が高ければ、NOxの発生量が多くな
り、また余分な空気により炉内を冷却することによりエ
ネルギーロスが大きくなる。従って炉内排ガスの酸素濃
度を最適値に保つために酸素濃度制御を行うわけであ
る。酸素濃度調節計10はその為のもので、比例及び積
分動作を連続して行うPI調節計で、酸素分析計16に
よって検出された排ガス中の酸素濃度測定値が設定値に
維持すべく入力偏差(O2pv−O2sv)に対して、比
例ならびに積分演算を施し、空燃比設定器8に対し空燃
比設定値μを与える。
If the oxygen concentration in the exhaust gas in the furnace is low, the amount of CO generated will increase, the energy loss due to unburned fuel will increase, and if the oxygen concentration is high, the amount of NOx generated will increase, and excess air will cause the furnace to burn. Energy loss increases by cooling the inside. Therefore, the oxygen concentration is controlled to keep the oxygen concentration of the exhaust gas in the furnace at the optimum value. The oxygen concentration controller 10 is for that purpose, and is a PI controller that continuously performs proportional and integral operations. The oxygen concentration measurement value in the exhaust gas detected by the oxygen analyzer 16 is an input deviation so as to be maintained at a set value. Proportional and integral calculations are performed on (O 2 pv−O 2 sv) to give the air-fuel ratio set value μ to the air-fuel ratio setter 8.

【0015】しかし、酸素濃度調節計10の設定値が固
定値に設定されていると、炉設定温度が変化して、炉内
温度が上昇し同一酸素量に対するNOxの発生量が変わ
っても、オペレーターが酸素濃度の設定値を再調整しな
いかぎりは、多めのNOxを発生し続けるか又は多めに
空気量を吹き込み続ける事によるエネルギーロスが発生
することになる。
However, if the set value of the oxygen concentration controller 10 is set to a fixed value, even if the set temperature of the furnace changes and the temperature in the furnace rises and the amount of NOx generated for the same amount of oxygen changes, Unless the operator re-adjusts the set value of the oxygen concentration, a large amount of NOx continues to be generated or a large amount of air continues to be blown, resulting in energy loss.

【0016】この不具合を解決するために本発明におい
ては排ガス中のCO濃度、NOx濃度に応じて酸素濃度
調節計の設定値を自動的に変更するようにしている。即
ち排ガス中のNOx量が増えれば、20減算器により計
算される調整量演算値はマイナス値となりこの値が22
積分演算器により積分され、基本酸素濃度設定値O2
v1 と21加算器を介して加算演算され、結果として
基本酸素濃度設定値からNOx量が増加した量に対する
酸素量が引かれた値、最適酸素濃度設定値O2 sv2が
計算され、酸素濃度調節計の設定値として設定される。
In order to solve this problem, in the present invention, the set value of the oxygen concentration controller is automatically changed according to the CO concentration and NOx concentration in the exhaust gas. That is, if the amount of NOx in the exhaust gas increases, the adjustment amount calculation value calculated by the 20 subtractor becomes a negative value and this value becomes 22
The oxygen concentration is set by the integral calculator, and the basic oxygen concentration setting value O 2 s
v1 and the adder 21 are added, and as a result, a value obtained by subtracting the oxygen amount with respect to the amount by which the NOx amount is increased from the basic oxygen concentration set value, the optimum oxygen concentration set value O 2 sv2 is calculated, and the oxygen concentration is adjusted. It is set as the setting value of the meter.

【0017】あるO2 濃度の増減におけるNOx濃度と
CO濃度の関係は、一般的に図2のように相反する関係
であることが知られている。ここでNOx濃度とCO濃
度がどのような割合であればよいのかは、炉の目的とす
る経済効率、及び環境として許される範囲から割り出す
ことができる。一般的には多少経済効率が悪くても、環
境問題を優先させる傾向にある。これらの割合から1
8,19係数設定器を用いて重み付けを行い、NOx濃
度とCO濃度の関係を自由に設定することができる。
It is known that the relationship between the NOx concentration and the CO concentration when the O 2 concentration is increased or decreased is generally a contradictory relationship as shown in FIG. The ratio between the NOx concentration and the CO concentration can be determined from the economical efficiency of the furnace and the range permitted as the environment. Generally, there is a tendency to prioritize environmental issues even if economic efficiency is somewhat poor. 1 from these ratios
It is possible to freely set the relationship between the NOx concentration and the CO concentration by performing weighting using the 8 and 19 coefficient setting devices.

【0018】[0018]

【発明の効果】このようにして酸素濃度調節計の設定値
をNOx濃度,CO濃度に応じて変化させてやり、これ
がフィードバックされ、良好なる燃焼状態が維持される
こととなる。
As described above, the set value of the oxygen concentration controller is changed in accordance with the NOx concentration and the CO concentration, and this is fed back to maintain a good combustion state.

【0019】上述した説明から明らかなように本発明に
よれば、排ガス中のNOx濃度,CO濃度を比較的低い
所望値に保持し得、酸素濃度の設定値をNOx濃度,C
O濃度に応じて調整するものであるから制御計の安定が
よく、未燃状態の発生を避け、低NOx化,省エネルギ
ーが実現できる。また炉の設定温度を変更する度に必要
であった、オペレーターによる酸素濃度の微調整操作を
不要のものとした。
As is apparent from the above description, according to the present invention, the NOx concentration and the CO concentration in the exhaust gas can be maintained at relatively low desired values, and the set value of the oxygen concentration can be the NOx concentration and the C value.
Since it is adjusted according to the O concentration, the control meter is stable, and it is possible to avoid the generation of an unburned state, reduce NOx, and save energy. Also, the fine adjustment of oxygen concentration by the operator, which was necessary every time the furnace temperature was changed, was eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃焼制御方法を実施するための燃
焼制御装置の一実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a combustion control device for carrying out a combustion control method according to the present invention.

【図2】排ガス中の酸素濃度とNOxの発生量及びエネ
ルギーの損失との関係を示す図である。
FIG. 2 is a diagram showing a relationship between oxygen concentration in exhaust gas, NOx generation amount, and energy loss.

【符号の説明】[Explanation of symbols]

1…温度調節計、2…燃料流量調節計、8…空燃比設定
器、9…空気流量調節計、10…酸素濃度調節計、11
…NOx分析計、12…CO分析計、13…燃焼域、1
4…燃焼炉、15…熱電対、16…酸素分析計、17…
mV/I変換器、18…CO分析値の重み係数設定値、
19…NOx分析値重み係数設定器、20…減算器、2
1加算器、22…積分器、23…リミッター。
1 ... Temperature controller, 2 ... Fuel flow controller, 8 ... Air-fuel ratio setter, 9 ... Air flow controller, 10 ... Oxygen concentration controller, 11
… NOx analyzer, 12… CO analyzer, 13… Combustion zone, 1
4 ... Combustion furnace, 15 ... Thermocouple, 16 ... Oxygen analyzer, 17 ...
mV / I converter, 18 ... Weighting coefficient setting value of CO analysis value,
19 ... NOx analysis value weighting coefficient setter, 20 ... Subtractor, 2
1 adder, 22 ... integrator, 23 ... limiter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃焼炉の燃焼域へ供給される燃料流量およ
び空気流量を所望の炉温に従って制御する際、前記流量
の一方を炉温度調節手段からの設定値に流量測定値が一
致するように制御する燃焼制御方法において、煙突にお
ける排ガス中のNOx濃度,CO濃度を連続的に測定
し、これらの値より炉の操業状態においての最適酸素濃
度設定値を求め、前記燃焼炉の燃焼域,煙道または煙突
における排ガス中の酸素濃度を連続的に測定し、該測定
値と所定の設定値との偏差に対して比例及び積分演算を
行って空気比を算出し、これにもとづいて前記流量の他
方を連続して制御するようにしたことを特徴とする燃料
炉に於ける酸素濃度制御による燃焼制御方法。
1. When controlling a fuel flow rate and an air flow rate supplied to a combustion zone of a combustion furnace according to a desired furnace temperature, one of the flow rates is set to a set value from a furnace temperature adjusting means so that a flow rate measurement value matches. In the combustion control method of controlling in accordance with the above, the NOx concentration and the CO concentration in the exhaust gas in the chimney are continuously measured, the optimum oxygen concentration set value in the operating state of the furnace is determined from these values, and the combustion range of the combustion furnace, Continuously measure the oxygen concentration in the exhaust gas in the flue or chimney, calculate the air ratio by performing proportional and integral calculations on the deviation between the measured value and a predetermined set value, and based on this, calculate the flow rate. The combustion control method by oxygen concentration control in a fuel furnace, characterized in that the other of the above is continuously controlled.
JP23783991A 1991-09-18 1991-09-18 Method for controlling combustion by control of oxygen concentration in combustion furnace Pending JPH0579622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23783991A JPH0579622A (en) 1991-09-18 1991-09-18 Method for controlling combustion by control of oxygen concentration in combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23783991A JPH0579622A (en) 1991-09-18 1991-09-18 Method for controlling combustion by control of oxygen concentration in combustion furnace

Publications (1)

Publication Number Publication Date
JPH0579622A true JPH0579622A (en) 1993-03-30

Family

ID=17021179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23783991A Pending JPH0579622A (en) 1991-09-18 1991-09-18 Method for controlling combustion by control of oxygen concentration in combustion furnace

Country Status (1)

Country Link
JP (1) JPH0579622A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646752A1 (en) * 1993-10-04 1995-04-05 Robert Bosch Gmbh Control system for a heating appliance heated with fuel, especially a water heater
US6790034B1 (en) * 1999-11-04 2004-09-14 Pretoria Portland Cement Company Limited Kiln plant control system
KR100925039B1 (en) * 2007-12-24 2009-11-03 주식회사 포스코 Control method of Air-fuel ratio in furnace
WO2018117625A1 (en) * 2016-12-20 2018-06-28 주식회사 포스코 Apparatus and method for controlling concentration of oxygen in heating furnace
CN108731025A (en) * 2018-06-05 2018-11-02 马鞍山钢铁股份有限公司 A kind of heater for rolling steel combustion control system and control method
JP2021514050A (en) * 2018-02-20 2021-06-03 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Systems and methods for operating the combustion chamber
KR20210078991A (en) * 2019-12-19 2021-06-29 재단법인 포항산업과학연구원 Apparatus and method for controlling oxygen concentration in a heating furnace to fine dust reduction
CN113502400A (en) * 2021-07-12 2021-10-15 上海环境工程设计研究院有限公司 Oxygen-enriched top-blown molten pool smelting furnace system and control method thereof
CN116771703A (en) * 2023-04-14 2023-09-19 华新水泥股份有限公司 Control method and system for high-temperature fan of cement firing system under RDF

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646752A1 (en) * 1993-10-04 1995-04-05 Robert Bosch Gmbh Control system for a heating appliance heated with fuel, especially a water heater
US6790034B1 (en) * 1999-11-04 2004-09-14 Pretoria Portland Cement Company Limited Kiln plant control system
KR100925039B1 (en) * 2007-12-24 2009-11-03 주식회사 포스코 Control method of Air-fuel ratio in furnace
CN110088551B (en) * 2016-12-20 2020-12-22 Posco公司 Oxygen concentration control device for heating furnace and control method thereof
CN110088551A (en) * 2016-12-20 2019-08-02 Posco公司 The oxygen concentration control device and its control method of heating furnace
WO2018117625A1 (en) * 2016-12-20 2018-06-28 주식회사 포스코 Apparatus and method for controlling concentration of oxygen in heating furnace
US11187463B2 (en) 2016-12-20 2021-11-30 Posco Apparatus and method for controlling concentration of oxygen in heating furnace
JP2021514050A (en) * 2018-02-20 2021-06-03 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Systems and methods for operating the combustion chamber
CN108731025A (en) * 2018-06-05 2018-11-02 马鞍山钢铁股份有限公司 A kind of heater for rolling steel combustion control system and control method
KR20210078991A (en) * 2019-12-19 2021-06-29 재단법인 포항산업과학연구원 Apparatus and method for controlling oxygen concentration in a heating furnace to fine dust reduction
CN113502400A (en) * 2021-07-12 2021-10-15 上海环境工程设计研究院有限公司 Oxygen-enriched top-blown molten pool smelting furnace system and control method thereof
CN116771703A (en) * 2023-04-14 2023-09-19 华新水泥股份有限公司 Control method and system for high-temperature fan of cement firing system under RDF
CN116771703B (en) * 2023-04-14 2024-02-02 华新水泥股份有限公司 Control method and system for high-temperature fan of cement firing system under RDF

Similar Documents

Publication Publication Date Title
CN107561941B (en) Full-working-condition standard-reaching emission control method for thermal power generating unit denitration system
US6247416B1 (en) Method of operating a furnace and device for implementing the method
JPH0579622A (en) Method for controlling combustion by control of oxygen concentration in combustion furnace
JPH0611277A (en) Method and device for adjusting quantity of combustion air of flue-gas recovery device for metallurgical reaction furnace and recovery device and metallurgical reaction furnace
JPS59195019A (en) Fluidized-bed type combustion furnace
JPS5817373B2 (en) Combustion control method using oxygen concentration control in combustion furnace
JPS62276322A (en) Nitrogen oxide reducing device
CN114367191B (en) Denitration control method
JPS58195707A (en) Combustion control method for refuse incinerator
JPH025222Y2 (en)
CN113739196B (en) Heating boiler furnace temperature fuel flow and air flow air-fuel ratio control system
JP2947677B2 (en) Exhaust gas concentration control device
JPH0510505A (en) Air ratio controller of burner at start-up time of boiler
JPH06180116A (en) Exhaust gas concentration controller
JPH08121730A (en) Sewage sludge fluidized bed type incinerator
JPS5813809B2 (en) Combustion control method using low excess air
JPH0152653B2 (en)
JPH0599411A (en) Dust incinerator
JPH0320505A (en) Control of nox in exhaust gas of boiler
JPS60263014A (en) Combustion controlling method
JPS6324359Y2 (en)
JPH0493501A (en) Method of controlling spray flow rate for boiler
JPH0432292B2 (en)
JP3717221B2 (en) Waste incinerator exhaust gas control system
JPH07117231B2 (en) Combustion control device