JPS6324359Y2 - - Google Patents

Info

Publication number
JPS6324359Y2
JPS6324359Y2 JP10978381U JP10978381U JPS6324359Y2 JP S6324359 Y2 JPS6324359 Y2 JP S6324359Y2 JP 10978381 U JP10978381 U JP 10978381U JP 10978381 U JP10978381 U JP 10978381U JP S6324359 Y2 JPS6324359 Y2 JP S6324359Y2
Authority
JP
Japan
Prior art keywords
load
air
combustion
flow rate
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10978381U
Other languages
Japanese (ja)
Other versions
JPS5815854U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10978381U priority Critical patent/JPS5815854U/en
Publication of JPS5815854U publication Critical patent/JPS5815854U/en
Application granted granted Critical
Publication of JPS6324359Y2 publication Critical patent/JPS6324359Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【考案の詳細な説明】 本考案は、ボイラ装置や各種燃焼炉などの燃焼
装置に係り、特にそれの燃焼制御装置に関する。
[Detailed Description of the Invention] The present invention relates to combustion devices such as boiler devices and various combustion furnaces, and particularly relates to a combustion control device thereof.

燃焼装置において、燃焼用空気と燃料との比率
(以下、過剰空気率と称す)によつて燃焼状態が
大きく左右される。すなわち燃料流量が空気流量
より大であれば、酸素不足のために不完全燃焼と
なり、燃焼効率が悪く、黒煙が発生し公害の点で
好ましくない。一方、燃料流量に対して空気流量
が多過ぎると、窒素酸化物やイオウ酸化物などの
生成が多くなり、しかも煙突からの熱損失も増大
する。このようなことから、燃焼装置の通常の運
転状態においてもまた負荷が変化する過渡状態に
おいても、燃料流量と空気流量との割合、すなわ
ち過剰空気率を燃焼装置の負荷に対応して適正に
調整し、最適な条件で燃焼が行なわれるように制
御しなければならない。
In a combustion device, the combustion state is greatly influenced by the ratio of combustion air to fuel (hereinafter referred to as excess air ratio). That is, if the fuel flow rate is larger than the air flow rate, incomplete combustion will occur due to lack of oxygen, combustion efficiency will be poor, and black smoke will be generated, which is undesirable in terms of pollution. On the other hand, if the air flow rate is too large relative to the fuel flow rate, nitrogen oxides, sulfur oxides, etc. will be produced in large quantities, and heat loss from the chimney will also increase. For this reason, the ratio between the fuel flow rate and the air flow rate, that is, the excess air rate, must be adjusted appropriately in response to the load of the combustion device, both in normal operating conditions of the combustion device and in transient conditions where the load changes. However, it must be controlled so that combustion occurs under optimal conditions.

従来の燃焼制御系統を第1図に示す。図中の1
は主蒸気圧伝送器、2は主蒸気圧調節器、3は酸
素濃度伝送器、4は酸素量調節器、5は燃料量調
節器、6は燃料量調節弁、7は燃料量伝送器、8
は空気量調節器、9は空気量調節弁、10は空気
量伝送器、11および18は高信号選択器、12
および17は低信号選択器、13および16は減
算器、14および15は加算器、19は乗算器、
20および24は比率演算器、21は低信号制限
器、22は開平演算器、23は除算器、25は燃
料、26は燃焼用空気、27はバーナである。
A conventional combustion control system is shown in Figure 1. 1 in the diagram
is a main steam pressure transmitter, 2 is a main steam pressure regulator, 3 is an oxygen concentration transmitter, 4 is an oxygen amount regulator, 5 is a fuel amount regulator, 6 is a fuel amount control valve, 7 is a fuel amount transmitter, 8
9 is an air amount regulator, 10 is an air amount transmitter, 11 and 18 are high signal selectors, 12
and 17 is a low signal selector, 13 and 16 are subtracters, 14 and 15 are adders, 19 is a multiplier,
20 and 24 are ratio calculators, 21 is a low signal limiter, 22 is a square root calculator, 23 is a divider, 25 is fuel, 26 is combustion air, and 27 is a burner.

この制御系統において、燃焼装置の負荷変化率
は主蒸気圧伝送器1で検出され、その信号は主蒸
気圧調節器2に入力される。主蒸気圧調節器2に
は基準値が予め設定されており、主蒸気圧伝送器
1からの実測値がその基準値と照合され、その結
果、偏差量があればそれが主蒸気圧調節器2から
出力されて、その出力信号は燃料系と空気系とに
分岐される。
In this control system, the load change rate of the combustion device is detected by the main steam pressure transmitter 1, and the signal thereof is input to the main steam pressure regulator 2. A reference value is preset in the main steam pressure regulator 2, and the actual measured value from the main steam pressure transmitter 1 is compared with the reference value, and as a result, if there is a deviation, it is determined that the main steam pressure regulator 2, and its output signal is branched to the fuel system and air system.

そして燃料系では信号を高信号選択器11なら
びに低信号選択器12に通すことにより空気系の
信号と区別され、それが設定信号として燃料量調
節器5に入力される。その燃料量調節器5には燃
料量伝送器7からの信号も入力され、前記主蒸気
圧調節器2からの信号と比較されて、偏差がある
場合にはそれに応じた信号が燃料量調節弁6に出
力されて負荷に適応した燃料流量に調節される。
In the fuel system, the signal is passed through a high signal selector 11 and a low signal selector 12 to be distinguished from the air system signal, and is input to the fuel amount regulator 5 as a setting signal. The signal from the fuel quantity transmitter 7 is also input to the fuel quantity regulator 5, which is compared with the signal from the main steam pressure regulator 2, and if there is a deviation, a corresponding signal is sent to the fuel quantity regulating valve. 6, and the fuel flow rate is adjusted to match the load.

一方、主蒸気圧調節器2から出力された空気系
への信号は、低信号選択器17および高信号選択
器18を通すことにより燃料系の信号と区別され
る。そして信号は乗算器19で空気過剰率が乗算
され、酸素量調節器4からの最終補正が比率演算
器20でなされ、低信号制限器21を経たのち空
気量調節器8の設定信号として入力される。空気
量調節器8には空気量伝送器10からの信号が開
平演算器22を介して入力され、前記設定信号と
比較されて、その結果偏差量があれば、それに応
じた信号が空気量調節弁9に出力されて負荷(燃
料流量)に適応した空気流量に調節される。
On the other hand, the signal output from the main steam pressure regulator 2 to the air system is distinguished from the fuel system signal by passing through a low signal selector 17 and a high signal selector 18. The signal is then multiplied by the excess air ratio in the multiplier 19, the final correction from the oxygen amount regulator 4 is made in the ratio calculator 20, and after passing through the low signal limiter 21, it is input as a setting signal for the air amount regulator 8. Ru. The signal from the air quantity transmitter 10 is input to the air quantity regulator 8 via the square root calculator 22, and is compared with the setting signal. If there is a deviation as a result, a signal corresponding to the deviation is used to adjust the air quantity. The air flow rate is output to the valve 9 and adjusted to an air flow rate suitable for the load (fuel flow rate).

なお、酸素量調節器4では乗算器19よりの設
定信号と酸素濃度伝送器3の測定値との偏差によ
つて、それに応じた補正信号が出力されて過剰空
気率を若干補正するようになつている。
In addition, in the oxygen amount regulator 4, depending on the deviation between the setting signal from the multiplier 19 and the measured value of the oxygen concentration transmitter 3, a corresponding correction signal is outputted to slightly correct the excess air ratio. ing.

第2図は、従来のこの燃焼制御系統における負
荷(燃料量)と過剰空気率(μ)との関係を示す
特性図で、空気系を例にとつている。図中の線A
は常用燃焼空気量、線Bは負荷減少時の上限空気
量、線Cは負荷増加時の下限空気量を示してい
る。
FIG. 2 is a characteristic diagram showing the relationship between load (fuel amount) and excess air ratio (μ) in this conventional combustion control system, taking an air system as an example. Line A in the diagram
indicates the normal combustion air amount, line B shows the upper limit air amount when the load decreases, and line C shows the lower limit air amount when the load increases.

この図において、例えば高負荷X点における負
荷変動時の過剰空気変動率は、負荷増加時では
x:(x−β)となり、負荷減少時ではx:(x+
α)となる。一方、低負荷Y点における負荷変動
時の過剰空気変動率は、負荷増加時ではy:(y
−β)となり、負荷減少時ではy:(y+α)と
なる。
In this figure, for example, the excess air fluctuation rate when the load changes at high load point X is x: (x-β) when the load increases, and x: (x + β) when the load decreases.
α). On the other hand, the excess air fluctuation rate during load fluctuation at low load point Y is y:(y
-β), and when the load decreases, it becomes y:(y+α).

ところで従来の燃焼制御方式ではこの図に示す
ように、過剰空気率μの許容幅α,βが負荷とは
無関係に常に一定である。このことは高負荷時に
は問題はないが、低負荷時になると実質的には過
剰空気率の変動幅が大となり、制御系の安定性が
悪く、しかも空気過剰気味になり燃焼性が低下
し、省エネ効果が得難いなどの欠点を有してい
る。
By the way, in the conventional combustion control system, as shown in this figure, the allowable ranges α and β of the excess air ratio μ are always constant regardless of the load. This is not a problem when the load is high, but when the load is low, the fluctuation range of the excess air ratio becomes large, making the control system unstable, and moreover, the air tends to be too much, reducing combustibility and reducing energy savings. It has the disadvantage that it is difficult to obtain an effect.

本考案の目的は、このような従来技術の欠点を
解消し、常に安定した燃焼制御が行なわれる燃焼
制御装置を提供するにある。
An object of the present invention is to eliminate the drawbacks of the prior art and provide a combustion control device that always performs stable combustion control.

この目的を達成するため、本考案は、燃焼装置
の負荷を検出する負荷検出手段と、過剰空気率を
設定する過剰空気率設定手段と、その過剰空気率
設定手段によつて設定された過剰空気率に従つて
燃焼装置に供給される燃料流量ならびに燃焼用空
気流量を調節する燃料流量調節手段ならびに空気
流量調節手段と、前記負荷検出手段からの検出信
号により負荷が減少するに従つて過剰空気率の許
容幅を小さくする許容幅変更手段とを備えている
ことを特徴とする。
In order to achieve this objective, the present invention provides a load detection means for detecting the load of a combustion device, an excess air rate setting means for setting an excess air rate, and an excess air rate set by the excess air rate setting means. A fuel flow rate adjustment means and an air flow rate adjustment means for adjusting the fuel flow rate and the combustion air flow rate supplied to the combustion device according to the rate, and the excess air rate as the load decreases based on a detection signal from the load detection means. and an allowable width changing means for reducing the allowable width of.

次に本考案の実施例を第3図および第4図とと
もに説明する。第3図は、燃焼制御系統を示す図
である。
Next, an embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is a diagram showing the combustion control system.

負荷変動に際し、ある幅の過剰空気率で燃焼が
可能なように、負荷増加時には燃料系において
は、主蒸気圧調節器2−低信号選択器12−加算
器14−燃料量調整器5−燃料量伝送器7−燃料
量調節弁6の系によつて空気流量に見合つて燃料
流量が増加する。また空気系においては、主蒸気
圧調節器2−減算器16−高信号選択器18−乗
算器19−比率演算器20−低信号制限器21−
空気量調節器8−空気量伝送器10−開平演算器
22−空気量調節弁9の系によつて燃料流量に見
合つて空気流量が増加する。
In order to enable combustion with a certain range of excess air ratio when the load fluctuates, in the fuel system when the load increases, the main steam pressure regulator 2 - low signal selector 12 - adder 14 - fuel quantity regulator 5 - fuel The quantity transmitter 7-fuel quantity control valve 6 system increases the fuel flow in proportion to the air flow. In the air system, main steam pressure regulator 2 - subtractor 16 - high signal selector 18 - multiplier 19 - ratio calculator 20 - low signal limiter 21 -
The air flow rate is increased in proportion to the fuel flow rate by the system of the air amount regulator 8, the air amount transmitter 10, the square root calculator 22, and the air amount adjustment valve 9.

一方、負荷減少時には燃料系においては、主蒸
気圧調節器2−減算器13−高信号選択器11−
燃料量調節器5−燃料量伝送器7−燃料量調節弁
6の系によつて空気流量に見合つて燃料流量が減
少する。また空気系においては、主蒸気圧調節器
2−加算器15−低信号選択器17−乗算器19
−比率演算器20−低信号制限器21−空気量調
節器8−空気量伝送器10−開平演算器22−空
気量調節弁9の系によつて燃料流量に見合つて空
気流量が減少する。
On the other hand, when the load decreases, the main steam pressure regulator 2 - subtractor 13 - high signal selector 11 -
The system of fuel quantity regulator 5 - fuel quantity transmitter 7 - fuel quantity regulating valve 6 reduces the fuel flow rate in proportion to the air flow rate. In the air system, main steam pressure regulator 2 - adder 15 - low signal selector 17 - multiplier 19
- Ratio calculator 20 - Low signal limiter 21 - Air amount regulator 8 - Air amount transmitter 10 - Square root calculator 22 - Air amount control valve 9 system reduces the air flow rate in proportion to the fuel flow rate.

なお、乗算器19,比率演算器20,除算器2
3,比率演算器24は、燃焼ガス中の酸素濃度に
よる過剰空気率の補正系である。
In addition, the multiplier 19, the ratio calculator 20, the divider 2
3. The ratio calculator 24 is a correction system for excess air ratio based on the oxygen concentration in the combustion gas.

28は、負荷に応じて過剰空気率(μ)の許容
幅が変更できる凾数演算器で、主蒸気圧調節器2
からの信号が入力されるようになつており、その
特性は第4図に示すように負荷が低くなるに従つ
て許容幅(α,βの値)は小さくなる。具体的に
は第3図において、減算器13,16における−
β値ならびに(あるいは)加算器14,15にお
ける+α値が負荷に応じて変えることになる。す
なわち、高負荷時は従来と同じような+α値なら
びに−β値であるが、負荷が下がるに従つて+α
値ならびに−β値は徐々に小さく設定されてい
る。
28 is a function calculator that can change the allowable range of excess air ratio (μ) according to the load, and the main steam pressure regulator 2
As shown in FIG. 4, the permissible range (values of α and β) decreases as the load decreases. Specifically, in FIG. 3, -
The β value and/or the +α value in adders 14 and 15 will change depending on the load. In other words, when the load is high, the +α and -β values are the same as before, but as the load decreases, the +α value increases.
The value and the -β value are set gradually smaller.

本考案は前述のような構成になつており、低負
荷時においても適正な過剰空気率が維持され、従
来のような低負荷時の高過剰空気による燃焼の不
安定、排ガスによる熱損失、黒煙の発生などが解
消されて、燃焼性ならびに制御性の安定した燃焼
制御装置が提供できる。
The present invention has the above-mentioned configuration, and maintains an appropriate excess air ratio even under low loads, eliminating the instability of combustion caused by high excess air at low loads, heat loss due to exhaust gas, and blackout. A combustion control device with stable combustibility and controllability can be provided by eliminating smoke generation and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃焼制御系統図、第2図は従来
の負荷と過剰空気率の補正幅との関係を示す特性
図、第3図は本考案の実施例に係る燃焼制御系統
図、第4図はその燃焼制御系における凾数演算器
の特性図である。 1……主蒸気圧伝送器、2……主蒸気圧調節
器、5……燃料量調節器、6……燃料量調節弁、
7……燃料量伝送器、8……空気量調節器、9…
…空気量調節弁、10……空気量伝送器、13,
16……減算器、14,15……加算器、19…
…乗算器、20,24……比率演算器、25……
燃料、26……燃焼用空気、27……バーナ、2
8……凾数演算器。
Fig. 1 is a conventional combustion control system diagram, Fig. 2 is a conventional characteristic diagram showing the relationship between load and excessive air ratio correction width, and Fig. 3 is a combustion control system diagram according to an embodiment of the present invention. Figure 4 is a characteristic diagram of the function calculator in the combustion control system. 1... Main steam pressure transmitter, 2... Main steam pressure regulator, 5... Fuel quantity regulator, 6... Fuel quantity control valve,
7...Fuel quantity transmitter, 8...Air quantity regulator, 9...
...Air amount control valve, 10...Air amount transmitter, 13,
16...Subtractor, 14, 15...Adder, 19...
... Multiplier, 20, 24 ... Ratio calculator, 25 ...
Fuel, 26... Combustion air, 27... Burner, 2
8...Kan number calculator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 燃焼装置の負荷を検出する負荷検出手段と、過
剰空気率を設定する過剰空気率設定手段と、その
過剰空気率設定手段によつて設定された過剰空気
率に従つて燃焼装置に供給される燃料流量ならび
に燃焼用空気流量を調節する燃料流量調節手段な
らびに空気流量調節手段と、前記負荷検出手段か
らの検出信号により負荷が減少するに従つて過剰
空気率の許容幅を小さくする許容幅変更手段とを
備えていることを特徴とする燃焼制御装置。
load detection means for detecting the load of the combustion device; excess air rate setting means for setting an excess air rate; and fuel supplied to the combustion device according to the excess air rate set by the excess air rate setting means. a fuel flow rate adjustment means and an air flow rate adjustment means for adjusting the flow rate and the combustion air flow rate; and an allowable range changing means for reducing the allowable range of excess air ratio as the load decreases based on a detection signal from the load detecting means. A combustion control device comprising:
JP10978381U 1981-07-25 1981-07-25 Combustion control device Granted JPS5815854U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10978381U JPS5815854U (en) 1981-07-25 1981-07-25 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10978381U JPS5815854U (en) 1981-07-25 1981-07-25 Combustion control device

Publications (2)

Publication Number Publication Date
JPS5815854U JPS5815854U (en) 1983-01-31
JPS6324359Y2 true JPS6324359Y2 (en) 1988-07-04

Family

ID=29904150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10978381U Granted JPS5815854U (en) 1981-07-25 1981-07-25 Combustion control device

Country Status (1)

Country Link
JP (1) JPS5815854U (en)

Also Published As

Publication number Publication date
JPS5815854U (en) 1983-01-31

Similar Documents

Publication Publication Date Title
US4309949A (en) Method of controlling the opacity of the exhaust of the combustion of solid fuel and air in a furnace
JP3178055B2 (en) Control device for gas turbine combustor and gas turbine
JPS6324359Y2 (en)
JPH0579622A (en) Method for controlling combustion by control of oxygen concentration in combustion furnace
JPS63286614A (en) Combustion control of boller
JPH0510505A (en) Air ratio controller of burner at start-up time of boiler
JPH0231287B2 (en)
JPS5813809B2 (en) Combustion control method using low excess air
JP2947677B2 (en) Exhaust gas concentration control device
JPS6014978B2 (en) Combustion control device
JPS6014973B2 (en) Combustion control device
JPH01266420A (en) Control device for excess air ratio
JPH0150805B2 (en)
JPH0321808B2 (en)
JPS63273724A (en) Cross limit circuit for low o2 combustion
JPH09329037A (en) Gas turbine limit-temperature controller
JP2749588B2 (en) Fuel control method for coal-fired boiler
JPS599281Y2 (en) Mixed combustion fuel control device
JPS6144208B2 (en)
JPH01230904A (en) Boiler control method
JPH056088B2 (en)
JPH0772613B2 (en) In-furnace denitration control method
JPS5830500B2 (en) Combustion control device and control method
JPS6124903A (en) Automatic controller for boiler
JPS58104418A (en) Automatic combustion control device for boiler