JPH028213B2 - - Google Patents

Info

Publication number
JPH028213B2
JPH028213B2 JP57050015A JP5001582A JPH028213B2 JP H028213 B2 JPH028213 B2 JP H028213B2 JP 57050015 A JP57050015 A JP 57050015A JP 5001582 A JP5001582 A JP 5001582A JP H028213 B2 JPH028213 B2 JP H028213B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
target value
flow rate
fuel
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57050015A
Other languages
Japanese (ja)
Other versions
JPS58168814A (en
Inventor
Atsushi Koishikawa
Shoji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5001582A priority Critical patent/JPS58168814A/en
Publication of JPS58168814A publication Critical patent/JPS58168814A/en
Publication of JPH028213B2 publication Critical patent/JPH028213B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は均熱炉、加熱炉、乾燥炉、反応炉等の
燃焼設備の空燃比制御方法に関し、主として熱交
率の優れた方法を提供することを目的とするもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for combustion equipment such as soaking furnaces, heating furnaces, drying furnaces, and reaction furnaces, and its main purpose is to provide a method with an excellent heat exchange rate. It is.

一般に燃焼設備において、燃料原単位の向上及
び窒素酸化物(NOx)の発生抑制の観点から排
ガス中の酸素濃度を測定し、その酸素濃度を空燃
比制御系へフイードバツクし、設定酸素濃度目標
値と一致するように制御することは有効な制御方
法として利用されている。而して、より以上の省
エネルギー効果を狙つて空燃比制御系の酸素濃度
目標値を低くすると、未燃焼ガスの発生が多くな
り燃料損失の増加、アフターバーニング、黒煙発
生等の悪影響がでてくる。このため排ガス中の一
酸化炭素濃度を測定し、あらかじめ設定された限
界一酸化炭素濃度以上となつた場合、空燃比調節
計の出力を修正する制御方法がある。
Generally, in combustion equipment, the oxygen concentration in exhaust gas is measured from the viewpoint of improving fuel consumption and suppressing the generation of nitrogen oxides (NOx), and the oxygen concentration is fed back to the air-fuel ratio control system, and the oxygen concentration is set as the target value. Controlling to match is used as an effective control method. Therefore, if the oxygen concentration target value of the air-fuel ratio control system is lowered in order to achieve even greater energy-saving effects, unburned gas will be generated, resulting in negative effects such as increased fuel loss, afterburning, and black smoke generation. come. For this reason, there is a control method in which the carbon monoxide concentration in the exhaust gas is measured, and when the carbon monoxide concentration exceeds a preset limit, the output of the air-fuel ratio controller is corrected.

ところが未燃焼ガスの発生は燃焼負荷によつて
異なるため、実測酸素濃度が酸素濃度目標値より
高い場合に、一酸化炭素濃度測定値が限界一酸化
炭素濃度以上となると、空燃比制御系が不安定と
なる。また、特開昭55−155184号公報に示された
排ガス温度を測定し、この排ガス温度から演算で
求めた限界酸素濃度及び限界一酸化炭素濃度を制
御目標値として排ガスの酸素濃度及び一酸化炭素
濃度を測定して両者を前記制御目標値と一致させ
るように空燃比制御と炉圧制御を行う制御方法も
ある。ところが燃焼プロセスは複雑であり、実際
のプロセスに合つた制御目標値を演算で求めるこ
とは困難である。また炉圧制御は炎の方向性にも
影響するため空燃比制御のみで変更することはで
きない。
However, since the generation of unburned gas varies depending on the combustion load, if the measured oxygen concentration is higher than the target oxygen concentration and the measured carbon monoxide concentration exceeds the limit carbon monoxide concentration, the air-fuel ratio control system will malfunction. It becomes stable. In addition, the exhaust gas temperature shown in JP-A No. 55-155184 is measured, and the limit oxygen concentration and limit carbon monoxide concentration calculated from this exhaust gas temperature are used as control target values for the oxygen concentration and carbon monoxide concentration of the exhaust gas. There is also a control method that measures the concentration and performs air-fuel ratio control and furnace pressure control so that both of them match the control target value. However, the combustion process is complex, and it is difficult to calculate a control target value that matches the actual process. Furnace pressure control also affects the directionality of the flame, so it cannot be changed by air-fuel ratio control alone.

さらに、特開昭56−130534号公報には排ガス分
析にて未燃焼成分濃度を測定し、この測定結果に
従つて排ガス中の酸素濃度の目標値を変更する技
術が開示されている。しかしながらこの手段でも
未だ充分な制御精度が得られないことが分かつ
た。即ち、一般的な鋼材加熱炉の場合、冷片また
は温片の被加熱材を加熱炉に装入した後、加熱段
階では燃料流量を増加させ、目標加熱温度に到達
すると燃料流量を漸減させ、均熱状態での燃料流
量は必要最小限の量に維持される。この均熱状態
は長時間にわたり、燃料流量が少なくなつたこと
により燃焼の制御性は極めて不安定となりやす
い。このような場合、未燃焼成分濃度による排ガ
ス中の酸素濃度の目標値変更のみでは、より精度
の高い空燃比制御は望めない。
Further, Japanese Patent Application Laid-Open No. 130534/1983 discloses a technique for measuring the concentration of unburned components through exhaust gas analysis and changing the target value of the oxygen concentration in the exhaust gas according to the measurement results. However, it was found that even with this method, sufficient control accuracy could not be obtained. That is, in the case of a general steel heating furnace, after charging the material to be heated in the form of cold pieces or hot pieces into the heating furnace, the fuel flow rate is increased in the heating stage, and when the target heating temperature is reached, the fuel flow rate is gradually decreased. The fuel flow rate in the soaking state is maintained at the minimum necessary amount. This soaking state lasts for a long time, and as the fuel flow rate decreases, combustion controllability tends to become extremely unstable. In such a case, more accurate air-fuel ratio control cannot be expected only by changing the target value of the oxygen concentration in the exhaust gas based on the concentration of unburned components.

前述の如き空燃比制御における技術的課題の解
決に努力した本発明者等は連続的に酸素濃度目標
値を更新すると云う新知見により前述の課題を解
決した。
The inventors of the present invention, who have made efforts to solve the technical problems in air-fuel ratio control as described above, have solved the above-mentioned problems with the new knowledge of continuously updating the oxygen concentration target value.

以下本発明を均熱炉の燃焼設備を例として詳細
に説明する。
The present invention will be explained in detail below using a combustion equipment of a soaking furnace as an example.

さて排ガス中の酸素濃度と未燃焼ガス濃度の測
定であるが、ここで未燃焼ガスとは一酸化炭素
(CO)、水素(H2)、炭化水素(CH4等)の燃料
の未燃焼成分であり、両者の測定は、燃焼状態を
代表する位置の必要があり、均熱炉ではダウンテ
イクがよい。この場合、略同一位置の排ガス中の
酸素濃度と未燃焼ガス濃度を測定するのが精度上
好ましく、たとえば同じサンプリングガスを同時
に分析できる検出器を使用するのがよい。測定位
置が異なる場合は、それぞれの測定値が同一の燃
焼状態を代表している必要がある。
Now, regarding the measurement of oxygen concentration and unburned gas concentration in exhaust gas, unburned gas is the unburned components of fuel such as carbon monoxide (CO), hydrogen (H 2 ), and hydrocarbons (CH 4, etc.). Both measurements need to be taken at a position representative of the combustion state, and downtake is better in a soaking furnace. In this case, it is preferable for accuracy to measure the oxygen concentration and unburned gas concentration in the exhaust gas at approximately the same position, and for example, it is preferable to use a detector that can simultaneously analyze the same sampling gas. If the measurement locations are different, each measurement must be representative of the same combustion condition.

以上のようにして測定された酸素濃度と未燃焼
ガス濃度とは当該燃焼設備毎にほぼ第1図のよう
な関係がある。ここで曲線M1は平均的特性を示
す。この平均特性では酸素濃度が低下するに従い
1%付近から未燃焼ガスが発生し始めて燃焼状態
が悪くなるため、従来は酸素濃度目標値を1%程
度の一定値に固定する方式としていた。ところが
実際には酸素と未燃焼ガスとの関係は一義的には
決まらず、燃焼負荷、燃料組成の変動によつて第
1図破線M2―M4のように変化するため、1%以
上で未燃焼ガスが発生し、燃焼状態の悪い場合も
あり、また、もつと低い酸素濃度目標値でも未燃
焼ガスが発生しない場合もある。このため、低い
酸素濃度でかつ未燃焼ガスの発生の少ない良好な
燃焼状態は酸素濃度目標値を固定する方式では得
られず、また演算で酸素濃度目標値を求めること
も困難である。そこで本発明は当該燃焼設備毎に
求められる酸素濃度と未燃焼ガスの相関に基づい
て実測未燃焼ガス濃度で酸素濃度目標値補正量を
求め設定酸素濃度目標値に加えることによつて、
未燃焼ガス濃度を常に限界値以内に抑える最高酸
素濃度目標値を自動的に設定できるようにした。
The oxygen concentration and unburned gas concentration measured as described above have a relationship as shown in FIG. 1 for each combustion facility. Here, the curve M 1 shows average characteristics. With this average characteristic, as the oxygen concentration decreases, unburned gas starts to be generated from around 1%, and the combustion condition worsens, so conventionally, the target oxygen concentration value was fixed at a constant value of about 1%. However, in reality, the relationship between oxygen and unburned gas is not determined unambiguously, and changes as shown by the broken line M 2 - M 4 in Figure 1 depending on the combustion load and fuel composition. There are cases where unburned gas is generated and the combustion condition is poor, and there are also cases where no unburned gas is generated even if the oxygen concentration target value is very low. For this reason, a good combustion state with low oxygen concentration and little generation of unburned gas cannot be achieved by a method that fixes the oxygen concentration target value, and it is also difficult to obtain the oxygen concentration target value by calculation. Therefore, the present invention calculates the oxygen concentration target value correction amount using the actually measured unburned gas concentration based on the correlation between the oxygen concentration and unburned gas determined for each combustion equipment, and adds it to the set oxygen concentration target value.
It is now possible to automatically set the maximum oxygen concentration target value that keeps the unburned gas concentration within the limit value.

その動作は次のようになる。第1図において、
点で良好に燃焼中のものが燃焼状態の変化で
点となつた場合、その時の未燃焼ガス濃度に応じ
て酸素濃度目標値が補正され点の良い燃焼状態
に戻る。つまり、自動的に最適酸素濃度目標値に
制御される。また次のような制御性の改善も得ら
れる。実測酸素濃度が酸素濃度目標値より低くな
つて未燃焼ガスが発生した場合、未燃焼ガス濃度
に応じて酸素濃度目標値が補正され、制御偏差が
大きくなり応答性が改善される。つまりプロセス
状態に応じた可変ゲイン特性を持つていることに
なる。
Its operation is as follows. In Figure 1,
If the combustion state changes to a point due to a change in the combustion state, the oxygen concentration target value is corrected according to the unburned gas concentration at that time, and the combustion state returns to a good point. In other words, the oxygen concentration is automatically controlled to the optimum oxygen concentration target value. Furthermore, the following improvements in controllability can also be obtained. When the measured oxygen concentration becomes lower than the oxygen concentration target value and unburned gas is generated, the oxygen concentration target value is corrected according to the unburned gas concentration, and the control deviation increases and responsiveness is improved. In other words, it has variable gain characteristics depending on the process state.

なお、第1図の酸素濃度と未燃焼ガス濃度との
関係は当該燃焼設備で使用する燃料の種類、例え
ばLNG、高炉廃ガス、転炉廃ガス等の種類およ
びこれらの燃料の成分組成、さらには複数種類の
燃料を混合使用する場合にはその配分比率等の操
業条件別に予め求めておく必要がある。本発明に
おいて設定操業条件とはこのような意味で用いる
ものである。
The relationship between the oxygen concentration and unburned gas concentration in Figure 1 depends on the type of fuel used in the combustion equipment, such as LNG, blast furnace waste gas, converter waste gas, etc., and the composition of these fuels. When using a mixture of multiple types of fuel, it is necessary to determine it in advance according to operating conditions such as the distribution ratio. In the present invention, the term "set operating conditions" is used in this sense.

第2図は前記未燃焼ガス濃度(ppm)と酸素濃
度目標値補正量O2S2(%)との相関を当該燃焼設
備について求めたグラフであり、このようなグラ
フは当該燃焼設備毎に前記設定操業条件から燃焼
理論を基盤として経験的に求めておけばよい。
Figure 2 is a graph that shows the correlation between the unburned gas concentration (ppm) and the oxygen concentration target value correction amount O 2 S 2 (%) for the combustion equipment in question. It may be determined empirically based on combustion theory from the set operating conditions.

また本発明では前記補正に加えて燃料流量によ
つても酸素濃度目標値補正を行う。これは燃料流
量が低くなると、計装装置の各種誤差が大きくな
つて、プロセスゲインも変化するため、酸素濃度
制御性が悪くなり、未燃焼ガス発生確率が高くな
ることを避けるためである。この特性は各燃焼設
備によつて異なるため、当該燃焼設備毎に経験値
から設定される燃料流量と酸素濃度の相関に基づ
く実測燃料流量から酸素濃度目標値補正量を求め
設定酸素濃度目標値に加えることによつて、未燃
焼ガス発生をフイードフオワード的に防止するよ
うにした。
Further, in the present invention, in addition to the above-mentioned correction, the oxygen concentration target value is corrected based on the fuel flow rate. This is to avoid that when the fuel flow rate becomes low, various errors in the instrumentation device become large and the process gain changes, which deteriorates the oxygen concentration controllability and increases the probability of unburned gas generation. Since this characteristic differs depending on each combustion equipment, the oxygen concentration target value correction amount is calculated from the actual fuel flow rate based on the correlation between the fuel flow rate and oxygen concentration, which is set from empirical values for each combustion equipment, and the set oxygen concentration target value is adjusted. By adding this, the generation of unburned gas is prevented in a feed forward manner.

第3図は燃料流量(Nm3/hr)と酸素濃度目標
値補正量O2S2(%)との相関を示すグラフであ
り、前述の如く当該燃焼設備毎に設定操業条件お
よび経験値に基づき予め求めておくものである。
Figure 3 is a graph showing the correlation between the fuel flow rate (Nm 3 /hr) and the oxygen concentration target value correction amount O 2 S 2 (%). It is determined in advance based on the

次に第4図は本発明の1実施例方法における装
置構成を示すブロツク図である。均熱炉の温度制
御系について説明する。1は均熱炉の排ガス流路
であり、該流路1に設けられた温度検出器2によ
り炉内温度を検出し炉内温度調節計3に入力す
る。炉内温度調節計3は設定炉内温度TSと検出
炉内温度から燃料流量を設定する。燃料流量調節
計4は燃料流量設定値となるように燃料流量検出
器5、燃料流量調節弁6によつて燃料流量を制御
する。
Next, FIG. 4 is a block diagram showing the configuration of an apparatus in one embodiment of the method of the present invention. The temperature control system of the soaking furnace will be explained. Reference numeral 1 designates an exhaust gas flow path of a soaking furnace, and a temperature detector 2 provided in the flow path 1 detects the temperature inside the furnace and inputs it to an inside temperature controller 3. The furnace temperature controller 3 sets the fuel flow rate based on the set furnace temperature T S and the detected furnace temperature. The fuel flow rate controller 4 controls the fuel flow rate using a fuel flow rate detector 5 and a fuel flow rate control valve 6 so that the fuel flow rate reaches a set value.

一方燃料流量設定信号は、空燃比乗算器7へも
入力され、空燃比乗算器7は燃料流量設定信号で
空燃比を乗算し、空気流量を設定する。空気流量
調節計8は空気流量設定値となるように空気流量
検出器9、空気流量調節弁10によつて空気流量
を制御する。以上のような温度制御系によつて炉
内温度を設定値に保つ。
On the other hand, the fuel flow rate setting signal is also input to the air-fuel ratio multiplier 7, and the air-fuel ratio multiplier 7 multiplies the air-fuel ratio by the fuel flow rate setting signal to set the air flow rate. The air flow rate controller 8 controls the air flow rate using an air flow rate detector 9 and an air flow rate control valve 10 so that the air flow rate reaches a set value. The temperature control system as described above maintains the temperature inside the furnace at a set value.

次に本発明にかかわる酸素濃度制御方法につい
て説明する。排ガス中の酸素濃度、未燃焼ガス濃
度検出器11で実測された酸素濃度は変換器12
でリニアライズ及び電流変換され空燃比調節計1
3に入力される。空燃比調節計13の酸素濃度目
標値O2Sは、設定酸素濃度目標値O2S1と実測未燃
焼ガス濃度から求めた補正量O2S2と実測燃料流
量から求めた補正量O2S3を加算器14で加算さ
れたものが入力される。空燃比調節計13は前記
酸素濃度目標値O2Sと実測酸素濃度との差異を少
なくするような空燃比を出力し、その出力は空燃
比乗算器7へ入力される。
Next, the oxygen concentration control method according to the present invention will be explained. The oxygen concentration in the exhaust gas, the oxygen concentration actually measured by the unburned gas concentration detector 11, is determined by the converter 12.
Linearized and current converted by air-fuel ratio controller 1
3 is input. The oxygen concentration target value O 2 S of the air-fuel ratio controller 13 is the correction amount O 2 S 2 obtained from the set oxygen concentration target value O 2 S 1 , the actually measured unburned gas concentration, and the correction amount O 2 obtained from the actually measured fuel flow rate . The result obtained by adding S 3 by the adder 14 is input. The air-fuel ratio controller 13 outputs an air-fuel ratio that reduces the difference between the oxygen concentration target value O 2 S and the measured oxygen concentration, and the output is input to the air-fuel ratio multiplier 7.

前記設定酸素濃度目標値O2S1は次のようにし
て設定する。即ち第3図の曲線M1のような低い
酸素濃度でも未燃焼ガス発生の少ない特性におい
て許容未燃焼ガス濃度を定め、該未燃焼ガス濃度
となるときの酸素濃度をO2S1とする。本発明に
おける1実施例としてO2S1は0.5%として良い結
果を得た。未燃焼ガス濃度による補正量O2S2
ついて説明する。未燃焼ガス濃度は酸素濃度、未
燃焼ガス濃度検出器11で実測され、変換器15
に入力され変換された出力は補正演算器16へ入
力される。補正演算器16では第2図のような補
正演算が行なわれ補正量O2S2が求められる。
The set oxygen concentration target value O 2 S 1 is set as follows. That is, the permissible unburned gas concentration is determined based on the characteristic that even a low oxygen concentration shows little generation of unburned gas, such as curve M 1 in FIG. 3, and the oxygen concentration at which the unburned gas concentration is reached is defined as O 2 S 1 . In one example of the present invention, good results were obtained when O 2 S 1 was set at 0.5%. The correction amount O 2 S 2 based on the unburned gas concentration will be explained. The unburned gas concentration is actually measured by the oxygen concentration and unburned gas concentration detector 11, and is measured by the converter 15.
The converted output is input to the correction calculator 16. The correction calculation unit 16 performs a correction calculation as shown in FIG. 2 to obtain a correction amount O 2 S 2 .

次に燃料流量による補正値O2S3について説明
する。燃料流量検出器5によつて実測された燃料
流量は補正演算器17へも入力され、補正演算器
17では第3図のような補正演算が行なわれ、補
正量O2S3が求められる。以上のように空燃比制
御系において、実測未燃焼ガス濃度と、実測燃料
流量とで設定酸素濃度目標値を補正することによ
つて、酸素濃度目標値が自動的に最適値に制御さ
れ、また応答性も改善でき、常に最適燃焼状態が
得られるため省エネルギー低NOx操業に大きな
効果が期待できる。
Next, the correction value O 2 S 3 based on the fuel flow rate will be explained. The fuel flow rate actually measured by the fuel flow rate detector 5 is also input to the correction calculator 17, and the correction calculator 17 performs a correction calculation as shown in FIG. 3 to determine the correction amount O 2 S 3 . As described above, in the air-fuel ratio control system, by correcting the set oxygen concentration target value using the actually measured unburned gas concentration and the actually measured fuel flow rate, the oxygen concentration target value is automatically controlled to the optimal value, and Responsiveness can also be improved, and optimum combustion conditions can always be obtained, which can be expected to have a significant effect on energy-saving, low-NOx operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸素濃度と未燃焼ガス濃度との関係を
示すグラフ、第2図は未燃焼ガス濃度と酸素濃度
目標値補正量との関係を示すグラフ、第3図は燃
料流量による酸素濃度目標値補正量との関係を示
すグラフ、第4図は本発明方法を実施するための
設備の概略ブロツク線図である。 1…均熱炉、2…温度検出器、3…炉内温度調
節計、4…燃料流量調節弁、5…燃料流量検出
器、6…燃料流量調節弁、7…空燃比乗算器、8
…空気流量調節計、9…空気流量検出器、10…
空気流量調節弁、11…酸素濃度、未燃焼ガス濃
度検出器、12…変換器、13…空燃比調節計、
14…加算器、15…変換器、16…補正演算
器、17…補正演算器。
Figure 1 is a graph showing the relationship between oxygen concentration and unburned gas concentration, Figure 2 is a graph showing the relationship between unburned gas concentration and oxygen concentration target value correction amount, and Figure 3 is a graph showing the oxygen concentration target based on fuel flow rate. A graph showing the relationship with the value correction amount, and FIG. 4 is a schematic block diagram of equipment for carrying out the method of the present invention. DESCRIPTION OF SYMBOLS 1... Soaking furnace, 2... Temperature detector, 3... Furnace temperature controller, 4... Fuel flow rate control valve, 5... Fuel flow rate detector, 6... Fuel flow rate control valve, 7... Air-fuel ratio multiplier, 8
...Air flow rate controller, 9...Air flow rate detector, 10...
Air flow rate control valve, 11...Oxygen concentration, unburned gas concentration detector, 12...Converter, 13...Air-fuel ratio controller,
14... Adder, 15... Converter, 16... Correction calculator, 17... Correction calculator.

Claims (1)

【特許請求の範囲】[Claims] 1 設定炉内温度を目標値として炉内温度を実測
し燃料流量および空気流量を制御する燃焼設備の
空燃比制御方法において、燃焼廃ガス流路で酸素
濃度と未燃焼ガス濃度を略同一位置でサンプリン
グ測定し、当該燃焼設備で使用する燃料の種類、
燃料成分組成および燃料混合の配分比率等の設定
操業条件毎にあらかじめ求められている酸素濃度
と未燃焼ガス濃度との相関に基づく酸素濃度目標
値補正量を前記実測未燃焼ガス濃度から求めると
共に、さらに当該燃焼設備毎に経験値および前記
設定操業条件毎に設定される燃料流量と酸素濃度
との相関に基づき実測燃料流量から酸素濃度目標
値補正量を求め、設定酸素濃度目標値に前記両補
正量を加えて連続的に酸素濃度目標値を更新し、
該目標値と前記実測酸素濃度との差異を少なくす
るように空燃比を制御することを特徴とする燃焼
設備の空燃比制御方法。
1 In an air-fuel ratio control method for combustion equipment in which the furnace temperature is actually measured using the set furnace temperature as a target value and the fuel flow rate and air flow rate are controlled, the oxygen concentration and unburned gas concentration are set at approximately the same position in the combustion waste gas flow path. The type of fuel sampled and used in the combustion equipment,
Determining an oxygen concentration target value correction amount based on the correlation between the oxygen concentration and the unburned gas concentration, which are determined in advance for each set operating condition such as the fuel component composition and the distribution ratio of the fuel mixture, from the actually measured unburned gas concentration; Furthermore, based on the empirical value for each combustion equipment and the correlation between the fuel flow rate and oxygen concentration set for each of the set operating conditions, the oxygen concentration target value correction amount is determined from the actual measured fuel flow rate, and both of the above corrections are added to the set oxygen concentration target value. The oxygen concentration target value is updated continuously by adding the
An air-fuel ratio control method for combustion equipment, characterized in that the air-fuel ratio is controlled so as to reduce the difference between the target value and the measured oxygen concentration.
JP5001582A 1982-03-30 1982-03-30 Air-fuel ratio control for combustion equipment Granted JPS58168814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001582A JPS58168814A (en) 1982-03-30 1982-03-30 Air-fuel ratio control for combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001582A JPS58168814A (en) 1982-03-30 1982-03-30 Air-fuel ratio control for combustion equipment

Publications (2)

Publication Number Publication Date
JPS58168814A JPS58168814A (en) 1983-10-05
JPH028213B2 true JPH028213B2 (en) 1990-02-22

Family

ID=12847165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001582A Granted JPS58168814A (en) 1982-03-30 1982-03-30 Air-fuel ratio control for combustion equipment

Country Status (1)

Country Link
JP (1) JPS58168814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162807A (en) * 1990-10-26 1992-06-08 Matsushita Electric Ind Co Ltd Mixer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082719A (en) * 1983-10-14 1985-05-10 Mitsubishi Electric Corp Combustion controller for exhaust gas with low oxygen from boiler
JPS62266318A (en) * 1986-05-13 1987-11-19 Rinnai Corp Burner
JPS62266319A (en) * 1986-05-14 1987-11-19 Rinnai Corp Burner
JP7220971B2 (en) * 2022-08-31 2023-02-13 中外炉工業株式会社 Combustion control method for combustion equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247926A (en) * 1985-08-27 1987-03-02 三菱電機株式会社 Circuit breaker
JPS6360287A (en) * 1986-08-29 1988-03-16 Dowa Teppun Kogyo Kk Method and device for producing spring steel for cold forming having excellent corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247926A (en) * 1985-08-27 1987-03-02 三菱電機株式会社 Circuit breaker
JPS6360287A (en) * 1986-08-29 1988-03-16 Dowa Teppun Kogyo Kk Method and device for producing spring steel for cold forming having excellent corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162807A (en) * 1990-10-26 1992-06-08 Matsushita Electric Ind Co Ltd Mixer

Also Published As

Publication number Publication date
JPS58168814A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
CN107561941B (en) Full-working-condition standard-reaching emission control method for thermal power generating unit denitration system
US6247416B1 (en) Method of operating a furnace and device for implementing the method
US4576570A (en) Automatic combustion control apparatus and method
US4516929A (en) Method for controlling oxygen density in combustion exhaust gas
CN112539661A (en) Ceramic kiln and dynamic control method for asymmetric characteristics of flue gas pipe network thereof
JPH028213B2 (en)
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
CN112555795A (en) Power plant boiler and dynamic control method for asymmetric characteristic of flue gas pipe network of power plant boiler
US4531905A (en) Optimizing combustion air flow
JPH0577926B2 (en)
KR101395508B1 (en) Apparatus for controlling combustion of furnace with oxygen lancing
JPS648243B2 (en)
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
CN112684835A (en) Glass melting furnace and dynamic control method for asymmetric characteristics of flue gas pipe network of glass melting furnace
KR101070065B1 (en) Hot stove combustion control apparatus capable of controlling carbon dioxide
JPS6051606B2 (en) Air-fuel ratio control device for heating furnace for exhaust gas denitrification
JPS61272509A (en) Catalytic burning apparatus
KR920008683B1 (en) System for controlling the atmosphere of the heat treatment furnace
JPS6056968B2 (en) Low oxygen combustion method for gaseous fuel
JPH06180116A (en) Exhaust gas concentration controller
JPH0842801A (en) Method for controlling quantity of exhaust gas from boiler
JP2017207255A (en) Heating furnace combustion control method, heating furnace and hot rolling line
JPS6030415B2 (en) Control method for preventing black smoke generation from combustion furnace