JP2009068774A - Method for controlling combustion of fuel gas - Google Patents

Method for controlling combustion of fuel gas Download PDF

Info

Publication number
JP2009068774A
JP2009068774A JP2007238141A JP2007238141A JP2009068774A JP 2009068774 A JP2009068774 A JP 2009068774A JP 2007238141 A JP2007238141 A JP 2007238141A JP 2007238141 A JP2007238141 A JP 2007238141A JP 2009068774 A JP2009068774 A JP 2009068774A
Authority
JP
Japan
Prior art keywords
fuel gas
amount
gas
combustion
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007238141A
Other languages
Japanese (ja)
Inventor
Takashi Matsukuma
隆 松隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007238141A priority Critical patent/JP2009068774A/en
Publication of JP2009068774A publication Critical patent/JP2009068774A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling combustion of a fuel gas suitably applied when a by-product gas recovered from a coke oven, a blast furnace, a converter and the like and including moisture, is burned. <P>SOLUTION: The substantial amount of fuel gas is obtained by subtracting the moisture as the amount of saturated water vapor at a gas temperature of the fuel gas, from the amount of fuel gas, preferably, the by-product gas, and a theoretical amount of air is determined to the substantial amount of fuel gas. Preferably, the moisture in the fuel gas is the amount of saturated water vapor determined on the basis of an atmospheric air temperature around a combustion furnace. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、燃料ガスの燃焼制御方法に関し、コークス炉、高炉、転炉等から回収され、湿分を含む副生ガスを燃焼させる場合に好適なものに関する。   The present invention relates to a fuel gas combustion control method, and more particularly to a fuel gas combustion control method suitable for burning a by-product gas containing moisture from a coke oven, a blast furnace, a converter, or the like.

LPG、LNG等の燃料ガスを燃焼させる場合、最適燃焼が得られるように空燃比(空気と燃料の割合)を設定する。燃料ガス1Nmを完全燃焼させる場合、理論酸素量を更に空気換算して求めた理論空気量TNmの割合を空気比1(理論空気比)とし、実際には更に過剰の空気を加えて空気比1.1〜1.2で燃焼が行われている。 When fuel gas such as LPG and LNG is burned, the air-fuel ratio (ratio of air and fuel) is set so that optimum combustion is obtained. When the fuel gas 1Nm 3 is completely burned, the ratio of the theoretical air amount TNm 3 obtained by further converting the theoretical oxygen amount into air is the air ratio 1 (theoretical air ratio). Combustion is performed at a ratio of 1.1 to 1.2.

燃焼制御においては理論空気量と、理論空気量に過剰空気量を足した供給空気量の比である、空気比を適宜設定し完全燃焼させるが、その場合、燃料ガス中に含まれる湿分も含めて空気比の設定がなされている。LPG、LNG等では燃料ガス中に含まれる湿分が極めて低いことからその影響は少ない。   In combustion control, the air ratio, which is the ratio of the theoretical air volume and the supply air volume that is the theoretical air volume plus the excess air volume, is set appropriately, and complete combustion is performed, but in this case, the moisture contained in the fuel gas is also Including the air ratio is set. LPG, LNG, and the like have little influence because the moisture contained in the fuel gas is extremely low.

しかし、製鉄所やごみ処理場などから発生する副生ガスを燃料ガスに用いる場合は、ガス中に含まれる湿分が多く、見掛けの流量に対して実際の燃料ガス量は少ないことから、見掛けの流量を基に燃焼制御を行うと過剰空気燃焼となり燃焼効率が低下する。   However, when using by-product gas generated from steelworks or waste treatment plants as fuel gas, the amount of moisture contained in the gas is high, and the actual amount of fuel gas is small relative to the apparent flow rate. If the combustion control is performed based on the flow rate, excess air combustion occurs and the combustion efficiency decreases.

燃料ガスから湿分を除去する為には冷却、再加熱のプロセスが必要で、製鉄所のような大規模な製造所の場合は、設備的負荷が大きく、湿分除去は実施されていない事が多い。   In order to remove moisture from the fuel gas, a cooling and reheating process is required. For large-scale factories such as steelworks, the equipment load is large and moisture removal is not performed. There are many.

特許文献1は燃焼制御における湿分補正に関し、ボイラー等の工業炉の燃焼制御で、空気と同じ機能を有する助燃ガスである酸素の湿り酸素濃度を乾き酸素濃度とする湿分補正をして最適燃焼化を達成することが記載されている。
特開平3−87513号公報
Patent Document 1 relates to moisture correction in combustion control, and is optimal by performing moisture correction in which the wet oxygen concentration of oxygen, which is an auxiliary combustion gas having the same function as air, is set to dry oxygen concentration in combustion control of an industrial furnace such as a boiler. Achieving combustion is described.
Japanese Patent Laid-Open No. 3-87513

ところで、製鉄所において、夏場は、放散熱が少なく燃料、空気、被加熱体の顕熱が大きいことから燃料使用量が少なくなるものと想定されるところ、燃料ガスの使用量が冬場に少なく夏場に多い加熱炉等の燃焼設備が多く見られ、夏場に対応する適切な燃焼制御により、燃料ガスの使用量を削減することが要望されている。   By the way, in the steelworks, it is assumed that the amount of fuel used is reduced in the summertime because there is little radiated heat and the sensible heat of the fuel, air, and heated object is small. There are many combustion facilities such as heating furnaces, and it is desired to reduce the amount of fuel gas used by appropriate combustion control corresponding to the summer.

図3は、製鉄所における加熱炉の年間を通じた燃料使用量を示し、7月から10月の夏場の燃料使用量は、11月から3月の冬場の燃料使用量より多くなっている。尚、年間を通じて各月ごとの熱処理量はほぼ一定で、夏場の燃焼効率が低下していることが認められる。図4に、同じ加熱炉での燃料使用量を大気温(℃)で整理した結果を示す。   FIG. 3 shows the amount of fuel used throughout the year for the heating furnace at the steel works. The amount of fuel used in the summer from July to October is higher than the amount of fuel used in the winter from November to March. It should be noted that the amount of heat treatment per month throughout the year is almost constant, and it is recognized that the combustion efficiency in summer is decreasing. FIG. 4 shows the result of arranging the fuel consumption in the same heating furnace at the atmospheric temperature (° C.).

そこで、本発明は、製鉄所などで使用される、副生ガスを、年間を通じて燃焼効率良く燃焼させる燃焼制御方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a combustion control method for burning by-product gas used in steelworks and the like with good combustion efficiency throughout the year.

本発明の課題は以下の手段で達成可能である。
1.燃焼炉における燃料ガスの燃焼制御方法であって、燃料ガス量から、前記燃料ガスのガス温度における飽和水蒸気量となる湿分を減じて実質燃料ガス量とし、当該実質燃料ガス量に対して求めた理論空気量を用いて燃焼制御を行うことを特徴とする燃料ガスの燃焼制御方法。
2.1記載の燃料ガスの燃焼制御方法において、燃料ガス中の湿分を、燃焼炉周辺の大気温度を用いて求めた飽和水蒸気量とすることを特徴とする燃料ガスの燃焼制御方法。
3.燃料ガスが副生ガスであることを特徴とする1または2記載の燃料ガスの燃焼制御方法。
The object of the present invention can be achieved by the following means.
1. A method for controlling the combustion of fuel gas in a combustion furnace, wherein the amount of fuel gas is obtained by subtracting the moisture that becomes the amount of saturated water vapor at the gas temperature of the fuel gas to obtain the amount of actual fuel gas, and obtained from the amount of actual fuel gas. A combustion control method for fuel gas, wherein combustion control is performed using the theoretical air amount.
2.1. The fuel gas combustion control method according to 2.1, wherein the moisture content in the fuel gas is a saturated water vapor amount obtained by using the atmospheric temperature around the combustion furnace.
3. 3. The fuel gas combustion control method according to 1 or 2, wherein the fuel gas is a by-product gas.

本発明によれば、副生ガスを燃料ガスとする製鉄所の工業炉の燃焼制御において年間を通じて適切な燃焼制御が可能となり、夏場の燃料ガスの使用量が、冬場より多くなることが防止され、産業上極めて有用である。   ADVANTAGE OF THE INVENTION According to this invention, in the combustion control of the steel furnace industrial furnace which uses by-product gas as fuel gas, appropriate combustion control is attained throughout the year, and it is prevented that the amount of fuel gas used in summer is higher than that in winter. It is extremely useful in industry.

本発明では、副生ガスなど湿分を含むガスを燃料ガスとする燃焼炉の燃焼制御において、燃料ガス量から湿分を減じて実質燃料ガス量とし、当該実質燃料ガス量に対して空気量の設定を行うことを特徴とする。   In the present invention, in combustion control of a combustion furnace that uses a gas containing moisture such as a by-product gas as a fuel gas, the moisture is subtracted from the fuel gas amount to obtain a real fuel gas amount, and an air amount relative to the real fuel gas amount. It is characterized by setting.

燃焼炉では、目標温度になるように燃焼負荷が自動調整され、燃料ガスの流量に対して空気の流量が比例計算されている。   In the combustion furnace, the combustion load is automatically adjusted to reach the target temperature, and the flow rate of air is proportionally calculated with respect to the flow rate of fuel gas.

以下に、本発明を実施例を用いて説明する。図2は、加熱炉1の燃焼制御フローの一例を示し、加熱炉1の炉温を炉温計T1で計測して温度調節計(TIC1)3に入力し、目標炉温の達成に必要な目標燃料ガス量を燃料ガス流量調節計(FIC2)4により制御する。   Hereinafter, the present invention will be described with reference to examples. FIG. 2 shows an example of a combustion control flow of the heating furnace 1. The furnace temperature of the heating furnace 1 is measured by the furnace thermometer T1 and input to the temperature controller (TIC1) 3, which is necessary for achieving the target furnace temperature. The target fuel gas amount is controlled by a fuel gas flow rate controller (FIC2) 4.

目標炉温にするように(TIC1)3からの出力に基づき燃料ガス流量センサ9が検出する燃料ガス流量が前記目標燃料ガス流量に一致するように燃料ガス流量調節計(FIC2)4の出力に基づき燃料ガス流量調節弁6を調整する。本発明に係る燃焼制御方法では、当該燃料ガス中の湿分を補正して空気量を設定することを特徴とする。   Based on the output from (TIC1) 3 so as to achieve the target furnace temperature, the output of the fuel gas flow rate controller (FIC2) 4 is adjusted so that the fuel gas flow rate detected by the fuel gas flow rate sensor 9 matches the target fuel gas flow rate. Based on this, the fuel gas flow control valve 6 is adjusted. The combustion control method according to the present invention is characterized in that the air amount is set by correcting the moisture in the fuel gas.

空気量の設定は演算制御器5により以下のように計算を行う。まず、燃料ガス温度を炉周辺の大気温度T2とみなして、当該大気温度T2における飽和水蒸気量を湿分量とし、燃料ガス流量センサ9が検出する燃料ガス量から前記湿分量を減じて実質燃料ガス量とし、前記実質燃料ガス量に対して理論空気量を求める。   The air amount is set by the arithmetic controller 5 as follows. First, the fuel gas temperature is regarded as the atmospheric temperature T2 around the furnace, the saturated water vapor amount at the atmospheric temperature T2 is set as the moisture amount, and the moisture amount is subtracted from the fuel gas amount detected by the fuel gas flow rate sensor 9 to obtain a substantial fuel gas. The theoretical air amount is obtained with respect to the actual fuel gas amount.

演算制御器5で求めた前記理論空気量と、前記理論空気量に過剰空気量を足した供給空気量の比である空気比を比率設定器(R1)11で所望の値に設定し、空気流量センサ8で検出される供給空気量が、設定された前記空気比を満足する供給空気量になるように供給空気流量調節計(FIC3)10で空気流量調節弁7を調整する。   An air ratio, which is the ratio of the theoretical air amount obtained by the arithmetic controller 5 and the supplied air amount obtained by adding the excess air amount to the theoretical air amount, is set to a desired value by the ratio setter (R1) 11, and the air The air flow rate adjustment valve 7 is adjusted by the supply air flow rate controller (FIC3) 10 so that the supply air amount detected by the flow rate sensor 8 becomes the supply air amount that satisfies the set air ratio.

図1は、燃料ガスとして用いる副生ガスの構成を説明する図で、ある測定流量の副生ガス(燃料ガス)Gは、実質燃料ガス(実ガスG´)、湿分(水蒸気分)および温度補正による膨張分の和とされ、湿分(水蒸気分)は副生ガスのガス温度における飽和水蒸気量となる。   FIG. 1 is a diagram for explaining the structure of a by-product gas used as a fuel gas. A by-product gas (fuel gas) G having a certain measurement flow rate includes a real fuel gas (actual gas G ′), moisture (water vapor), and The sum of expansion due to temperature correction is used, and moisture (water vapor) is the amount of saturated water vapor at the gas temperature of the by-product gas.

但し、夏場など、副生ガスが、発生源のコークス炉等から燃焼炉1へ、地表に敷設された鋼製ガス管で流送される等副生ガスが加熱される場合、副生ガスが高温となってもガス管内では水分は補給されないので副生ガス中の湿分が飽和状態とならない場合も生じる。   However, when the by-product gas is heated, such as in summer, when the by-product gas is fed from the coke oven or the like of the source to the combustion furnace 1 through a steel gas pipe laid on the ground surface, Even when the temperature is high, moisture is not replenished in the gas pipe, so that moisture in the by-product gas may not be saturated.

図5はガス中の湿分量(飽和水蒸気量)とガス温度との関係を示し、ガス温度が高温となるとガス中の湿分量(飽和水蒸気量)も増加する。夏場において、地表に敷設された鋼製ガス管で流送された副生ガスを燃焼炉で燃焼させる場合、副生ガスは鋼製ガス管内で太陽熱により加熱されて生成時より高温となり、一方、鋼製ガス管内では水分は補給されない状態となる。   FIG. 5 shows the relationship between the amount of moisture in the gas (saturated water vapor amount) and the gas temperature. When the gas temperature becomes high, the amount of moisture in the gas (saturated water vapor amount) also increases. In the summer, when the by-product gas sent by the steel gas pipe laid on the ground surface is burned in the combustion furnace, the by-product gas is heated by the solar heat in the steel gas pipe and becomes hotter than the production time, Moisture is not replenished in the steel gas pipe.

このような場合、副生ガス中の湿分を、鋼製ガス管内での副生ガスの温度における飽和水蒸気量とすると、実際より多い値となる。   In such a case, if the moisture in the by-product gas is the amount of saturated water vapor at the temperature of the by-product gas in the steel gas pipe, the value is greater than the actual value.

例えば、20℃で生成された副生ガスが、鋼製ガス管内で40℃に加熱されると、飽和水蒸気量は、見掛け上、5.3%上昇することになる。実際には水分は補給されないので、40℃に加熱された副生ガス中の飽和水蒸気量は20℃での値のままである。   For example, when a by-product gas generated at 20 ° C. is heated to 40 ° C. in a steel gas pipe, the amount of saturated water vapor is apparently increased by 5.3%. In practice, since water is not replenished, the amount of saturated water vapor in the byproduct gas heated to 40 ° C. remains at the value at 20 ° C.

従って、夏場に副生ガス中の実質燃料ガス量を副生ガスの測定流量から飽和水蒸気量を減じて求める場合、副生ガスの生成時の温度、例えば、燃焼炉周辺の大気温度、における飽和水蒸気量を用いると、より適切な燃焼制御が可能となり好ましい。副生ガスとしては製鉄所で発生する高炉ガス、コークス炉ガス、転炉ガスやその混合ガスやごみ焼却炉からの発生するガス等が挙げられる。   Therefore, when the amount of real fuel gas in the by-product gas is calculated by subtracting the saturated water vapor amount from the measured flow rate of the by-product gas in summer, saturation at the temperature when the by-product gas is generated, for example, the atmospheric temperature around the combustion furnace Use of the water vapor amount is preferable because more appropriate combustion control is possible. Examples of by-product gas include blast furnace gas, coke oven gas, converter gas, mixed gas thereof, and gas generated from a waste incinerator.

以上の説明は燃料ガスを副生ガスとして説明を行ったが、本発明は湿分を含む燃料ガスであれば作用効果が得られ、燃料ガスを副生ガスに限定するものではない。   In the above description, the fuel gas has been described as a by-product gas. However, the present invention can provide an effect as long as the fuel gas contains moisture, and the fuel gas is not limited to the by-product gas.

副生ガス(燃料ガス)の一構成を示す図。The figure which shows one structure of byproduct gas (fuel gas). 本発明における加熱炉の燃焼制御フロー図。The combustion control flowchart of the heating furnace in this invention. 年間の燃料使用量の変化を示す図。The figure which shows the change of an annual fuel consumption. 燃料使用量に及ぼす大気温の影響を示す図。The figure which shows the influence of the atmospheric temperature on fuel consumption. 飽和水蒸気量と大気温の関係を示す図。The figure which shows the relationship between saturated water vapor amount and atmospheric temperature.

符号の説明Explanation of symbols

1 加熱炉
3 温度調節計(TIC1)
4 燃料ガス流量調節計(FIC2)
5 演算制御器
6 燃料ガス流量調節弁
7 空気流量調節弁
8 空気流量センサ
9 燃料ガス流量センサ
10 供給空気流量調節計
11 空気比の比率設定器(R1)
T1 炉温計
T2 大気温度
1 Heating furnace 3 Temperature controller (TIC1)
4 Fuel gas flow controller (FIC2)
5 Arithmetic Controller 6 Fuel Gas Flow Control Valve 7 Air Flow Control Valve 8 Air Flow Sensor 9 Fuel Gas Flow Sensor 10 Supply Air Flow Controller 11 Air Ratio Ratio Setter (R1)
T1 Furnace thermometer T2 Atmospheric temperature

Claims (3)

燃焼炉における燃料ガスの燃焼制御方法であって、燃料ガス量から、前記燃料ガスのガス温度における飽和水蒸気量となる湿分を減じて実質燃料ガス量とし、当該実質燃料ガス量に対して求めた理論空気量を用いて燃焼制御を行うことを特徴とする燃料ガスの燃焼制御方法。   A method for controlling the combustion of fuel gas in a combustion furnace, wherein the amount of fuel gas is obtained by subtracting the moisture that becomes the amount of saturated water vapor at the gas temperature of the fuel gas to obtain the amount of actual fuel gas, and obtained from the amount of actual fuel gas. A combustion control method for fuel gas, wherein combustion control is performed using the theoretical air amount. 請求項1記載の燃料ガスの燃焼制御方法において、燃料ガス中の湿分を、燃焼炉周辺の大気温度を用いて求めた飽和水蒸気量とすることを特徴とする燃料ガスの燃焼制御方法。   2. The fuel gas combustion control method according to claim 1, wherein a moisture content in the fuel gas is set to a saturated water vapor amount obtained by using an atmospheric temperature around the combustion furnace. 燃料ガスが副生ガスであることを特徴とする請求項1または2記載の燃料ガスの燃焼制御方法。   3. The fuel gas combustion control method according to claim 1, wherein the fuel gas is a by-product gas.
JP2007238141A 2007-09-13 2007-09-13 Method for controlling combustion of fuel gas Pending JP2009068774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238141A JP2009068774A (en) 2007-09-13 2007-09-13 Method for controlling combustion of fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238141A JP2009068774A (en) 2007-09-13 2007-09-13 Method for controlling combustion of fuel gas

Publications (1)

Publication Number Publication Date
JP2009068774A true JP2009068774A (en) 2009-04-02

Family

ID=40605223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238141A Pending JP2009068774A (en) 2007-09-13 2007-09-13 Method for controlling combustion of fuel gas

Country Status (1)

Country Link
JP (1) JP2009068774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011010A1 (en) 2009-03-19 2010-10-07 Sony Corp. Method for producing an electronic device and display device
CN112538360A (en) * 2020-12-21 2021-03-23 中冶焦耐(大连)工程技术有限公司 Combined adjustable rich gas heating coke oven

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127493A (en) * 1979-03-27 1980-10-02 Sumitomo Metal Ind Ltd Control of flow rate of moisture-containing fuel gas
JPS604724A (en) * 1983-06-23 1985-01-11 Kawasaki Steel Corp Combustion method by oxygen-enriched air for combustion
JPS62255722A (en) * 1986-04-30 1987-11-07 Fuji Electric Co Ltd Control of combustion
JPH0387513A (en) * 1989-08-31 1991-04-12 Ngk Insulators Ltd Method for controlling combustion in industrial furnace
JP2000074332A (en) * 1998-08-26 2000-03-14 Nkk Corp Method for increasing heating amount of combustion system
JP2007139260A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Flow rate correction method for fuel gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127493A (en) * 1979-03-27 1980-10-02 Sumitomo Metal Ind Ltd Control of flow rate of moisture-containing fuel gas
JPS604724A (en) * 1983-06-23 1985-01-11 Kawasaki Steel Corp Combustion method by oxygen-enriched air for combustion
JPS62255722A (en) * 1986-04-30 1987-11-07 Fuji Electric Co Ltd Control of combustion
JPH0387513A (en) * 1989-08-31 1991-04-12 Ngk Insulators Ltd Method for controlling combustion in industrial furnace
JP2000074332A (en) * 1998-08-26 2000-03-14 Nkk Corp Method for increasing heating amount of combustion system
JP2007139260A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Flow rate correction method for fuel gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011010A1 (en) 2009-03-19 2010-10-07 Sony Corp. Method for producing an electronic device and display device
CN112538360A (en) * 2020-12-21 2021-03-23 中冶焦耐(大连)工程技术有限公司 Combined adjustable rich gas heating coke oven

Similar Documents

Publication Publication Date Title
Gölles et al. Model based control of a small-scale biomass boiler
US20110011315A1 (en) Oxyfuel Boiler and Control Method for Oxyfuel Boiler
JP2011099608A (en) Boiler combustion control device
JP6013458B2 (en) Organic waste processing apparatus, processing method and control apparatus
CN103471393B (en) Blast furnace gas double preheating and ignition furnace temperature control method and device
CN108870438A (en) A kind of burning optimization technology for measuring and statisticalling analyze based on flue gas CO
JP2009068774A (en) Method for controlling combustion of fuel gas
CN116499272B (en) Intelligent kiln control method for tracking multi-energy combustion carbon emission
CN112239797A (en) Large blast furnace top combustion type hot blast furnace vault temperature control technology
JP4948184B2 (en) Industrial furnace combustion method
TW202122947A (en) Heating method for inhibiting generation of nitrogen oxide performing pretreatment according to the electric heater parameter, the combustor parameter, and the preset workpiece parameter to generate a first pretreatment result
JP2008001816A (en) Combustion-controlling method in coke oven
JP5640689B2 (en) Combustion control device for hot stove and combustion control method for hot stove
JP5685899B2 (en) Combustion control device for hot stove and combustion control method for hot stove
CN109579044B (en) Air-fuel ratio dynamic feedforward combustion control method for walking beam furnace
JP2006226674A (en) Combustion control system of refuse incinerator without boiler facility
JP2007119641A (en) Solid fuel derived from organic sludge
JP5772455B2 (en) Combustion control device for hot stove and combustion control method for hot stove
JP5359384B2 (en) Operation control method and operation control device for circulating fluidized bed boiler
JP3839304B2 (en) Waste pyrolysis apparatus and control method thereof
CN109489065A (en) Based on the optimized control method of combustion under the conditions of discharged nitrous oxides Index Constraints
JPS58168814A (en) Air-fuel ratio control for combustion equipment
JPH0251089B2 (en)
Ahmad et al. Waste heat recovery from furnace flue gases using waste heat recovery boiler
US10001274B2 (en) Method for conducting combustion in a furnace in order to limit the production of nitrogen oxides, and installation for implementing said method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Effective date: 20120720

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514