JP5310817B2 - Heating furnace atmosphere control method - Google Patents

Heating furnace atmosphere control method Download PDF

Info

Publication number
JP5310817B2
JP5310817B2 JP2011219327A JP2011219327A JP5310817B2 JP 5310817 B2 JP5310817 B2 JP 5310817B2 JP 2011219327 A JP2011219327 A JP 2011219327A JP 2011219327 A JP2011219327 A JP 2011219327A JP 5310817 B2 JP5310817 B2 JP 5310817B2
Authority
JP
Japan
Prior art keywords
combustion
air ratio
furnace
heating furnace
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011219327A
Other languages
Japanese (ja)
Other versions
JP2012026718A (en
Inventor
智章 深谷
和幸 諸越
聡 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011219327A priority Critical patent/JP5310817B2/en
Publication of JP2012026718A publication Critical patent/JP2012026718A/en
Application granted granted Critical
Publication of JP5310817B2 publication Critical patent/JP5310817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)

Description

本発明は、低空気比燃焼が実施される加熱炉の雰囲気制御に関する。   The present invention relates to atmosphere control of a heating furnace in which low air ratio combustion is performed.

一対の蓄熱式バーナーを配置した加熱炉は、一方の蓄熱式バーナーで燃料ガス等を燃焼させているとき、他方の蓄熱式バーナーから排ガスを蓄熱体を通して排出させることによって蓄熱体を加熱している。そして、数十秒〜数分の間隔でその両蓄熱式バーナーの状態を頻繁に交代させることにより、燃焼と排ガスの排出とが交互に行われるようにし、排ガスにより加熱された蓄熱体を燃焼用空気が通過する際に予熱される。これにより、高い排熱回収効率が達成され、省エネルギー化を図っている。
しかし、このような加熱炉においては、被加熱物を加熱する場合に、燃料ガスと燃焼空気とが混合された状態で供給され、被加熱物の表面近傍で燃焼が行われると、被加熱物の表面が容易に酸化され、被加熱物の表面に酸化膜が残留して、品質が低下するという問題があった。このため、特に、ステンレス、チタン等の高価な鋼材を加熱処理する際には、低空気比(低酸素)で蓄熱式バーナーを燃焼させて、酸化膜の形成を避ける技術が提案されている。
A heating furnace in which a pair of regenerative burners is arranged heats the regenerator by discharging exhaust gas from the other regenerative burner through the regenerator when burning one of the regenerative burners. . Then, by frequently changing the state of both the regenerative burners at intervals of several tens of seconds to several minutes, combustion and exhaust gas discharge are alternately performed, and the heat storage body heated by the exhaust gas is used for combustion. Preheated when air passes. Thereby, high exhaust heat recovery efficiency is achieved and energy saving is achieved.
However, in such a heating furnace, when heating an object to be heated, fuel gas and combustion air are supplied in a mixed state, and combustion is performed near the surface of the object to be heated. The surface of the substrate is easily oxidized, and an oxide film remains on the surface of the object to be heated. For this reason, in particular, when heat-treating expensive steel materials such as stainless steel and titanium, a technique for avoiding the formation of an oxide film by burning a regenerative burner at a low air ratio (low oxygen) has been proposed.

特開2001−082736号公報(第3頁、第1図)Japanese Patent Laid-Open No. 2001-082736 (page 3, FIG. 1)

ところで、炉内の蓄熱式バーナーの燃焼を低空気比燃焼(空気比1未満の燃焼)から高空気比燃焼(空気比1以上の燃焼)に移行させる際、或いは、高空気比燃焼から低空気比燃焼への移行させる際に、空気比を短時間に変化させると、蓄熱式バーナーの燃焼が不安定になり、或いは酸素と一酸化炭素とが混合して急激に燃焼する可能性もある。しかしながら、従来の技術では、このような問題を解決する手段については、提案されていない。   By the way, when the combustion of the regenerative burner in the furnace is shifted from low air ratio combustion (combustion with an air ratio of less than 1) to high air ratio combustion (combustion with an air ratio of 1 or more), or from high air ratio combustion to low air If the air ratio is changed in a short time when shifting to specific combustion, combustion of the regenerative burner may become unstable, or oxygen and carbon monoxide may be mixed and burnt rapidly. However, in the conventional technology, no means for solving such a problem has been proposed.

本発明は、上述した事情に鑑みてなされたもので、炉内の蓄熱式バーナーの燃焼を低空気比燃焼から高空気比燃焼に移行させる際、或いは、高空気比燃焼から低空気比燃焼への移行させる際に、空気比を所定の比率で上昇或いは低下させることにより、蓄熱式バーナーの燃焼の安定化を図るとともに、急激な燃焼の発生を回避することができる加熱炉の雰囲気制御方法を提案することを目的とする。   The present invention has been made in view of the above-described circumstances. When the combustion of the regenerative burner in the furnace is shifted from low air ratio combustion to high air ratio combustion, or from high air ratio combustion to low air ratio combustion. The atmosphere control method of the heating furnace that can stabilize the combustion of the regenerative burner and avoid the occurrence of abrupt combustion by increasing or decreasing the air ratio at a predetermined ratio when shifting The purpose is to propose.

本発明に係る加熱炉の雰囲気制御方法では、上記課題を解決するために以下の手段を採用した。
本発明は、一対の蓄熱式バーナーを交互に燃焼させて被加熱物を加熱処理する加熱炉の雰囲気制御方法において、一対の蓄熱式バーナーを交互に切り替えて燃焼させると共に、一対の蓄熱式バーナーを燃焼させる燃焼空気の空気比に応じて、加熱炉内の一酸化炭素の許容濃度範囲を規定するようにした。
この発明によれば、炉内の一酸化炭素の適正濃度を空気比に連動させて求めるので、一酸化炭素の増加による急激な燃焼の発生を事前に回避することが可能となる。
また、一対の蓄熱式バーナーを燃焼させる燃焼空気の空気比に応じて、加熱炉内の酸素の許容濃度範囲を規定するものでは、空気比に変化に連動して適正酸素濃度を求めるので、酸素増加による急激な燃焼の発生を事前に回避することが可能となる。
また、炉内の一酸化炭素濃度或いは酸素濃度が許容濃度範囲を逸脱した場合には、警告を発する或いは加熱炉の運転を非常停止させるものでは、急激な燃焼の発生を早急に回避することができる。
In the heating furnace atmosphere control method according to the present invention, the following means are employed in order to solve the above problems.
The present invention relates to an atmosphere control method for a heating furnace in which a pair of regenerative burners are alternately burned to heat-treat an object to be heated, and the pair of regenerative burners are alternately switched and burned, and the pair of regenerative burners is The allowable concentration range of carbon monoxide in the heating furnace is regulated according to the air ratio of the combustion air to be burned.
According to the present invention, since the appropriate concentration of carbon monoxide in the furnace is determined in conjunction with the air ratio, it is possible to avoid the occurrence of rapid combustion due to an increase in carbon monoxide in advance.
Also, in the case where the allowable concentration range of oxygen in the heating furnace is specified according to the air ratio of the combustion air for burning the pair of regenerative burners, the appropriate oxygen concentration is obtained in conjunction with the change in the air ratio. It is possible to avoid sudden combustion due to the increase in advance.
Also, if the carbon monoxide concentration or oxygen concentration in the furnace deviates from the allowable concentration range, a warning is issued or the operation of the heating furnace is emergency stopped, so that sudden combustion can be avoided immediately. it can.

本発明によれば、炉内の一酸化炭素の適正濃度を空気比に連動させて求めるので、一酸化炭素の増加による急激な燃焼の発生を事前に回避することが可能となる。   According to the present invention, since the appropriate concentration of carbon monoxide in the furnace is determined in conjunction with the air ratio, it is possible to avoid the occurrence of rapid combustion due to an increase in carbon monoxide in advance.

均熱炉のシステム構成を示す概念図である。It is a conceptual diagram which shows the system configuration | structure of a soaking furnace. 空気比の変化の割合を示す図である。It is a figure which shows the ratio of the change of air ratio. 適正一酸化炭素濃度及び適正酸素濃度を示す図である。It is a figure which shows a proper carbon monoxide concentration and a proper oxygen concentration. 適正酸素濃度を示す図Diagram showing proper oxygen concentration

以下、本発明の加熱炉の実施形態について図面を参照して説明する。図1は、均熱炉のシステム構成を示す概念図である。
均熱炉10は、四側面及び床面を耐熱性コンクリート等の耐火物で形成された炉壁で囲まれた炉体12と、炉体12の上方に形成された開口を開閉する炉蓋20とを備える。炉体12の側壁には、内部に蓄熱体32A,32Bを備える一対のバーナー30A,30Bから構成される蓄熱式バーナー(リジェネレイティブバーナー:regenerative burner)30が備えられる。
蓄熱式バーナー30は、エアーとガスの廃熱を利用して加熱圧送するバーナーであって、ガス使用量を削減することができるものである。なお、蓄熱体32A,32Bは、ハニカム状に形成されたセラミックスから構成される。
そして、各バーナー30A,30Bには、燃料ガスを供給する燃料ガスライン50及び燃焼空気を供給する燃焼空気ライン60が連結される。なお、燃焼空気は、給気ファン64から蓄熱体32A,32Bを通過して各バーナー30A,30Bに供給されように配管される。
これにより、各バーナー30A,30Bは、供給された燃焼ガスと燃焼空気とを混合して燃焼させるとともに、燃料ガスライン50に設けられた燃料ガス用流調弁52A,52B及び燃焼空気ライン60に設けられた燃焼空気用流調弁62A,62Bの流量調整によって燃焼状態及び炉内温度を制御する。
また、各バーナー30A,30Bには、炉内で発生した排ガスを排気する排ガスライン70が連結され、炉内の排ガスが蓄熱体32A,32Bを通過して排気ファン74に吸引されて、外部に放出されるように配管される。なお、排ガスライン70には、排ガス用流調弁72A,72Bが設けられる。
なお、炉体12には、炉内の排ガスを各バーナー30A,30Bを通さずに、外部に排気する排気バイパス80が設けられ、排ガスを冷却する排ガスクーラー82及びバイパス流調弁84を介して、排気ファン74の直前で排ガスライン70に連結される。
更に、炉内には、一酸化炭素濃度センサ92、酸素濃度センサ94、炉圧センサ96、温度センサ98(いずれも不図示)が設けられ、その計測情報は、制御部90(不図示)に送られる。そして、制御部90は、各ファン64,74、各流調弁52,62,72,84、及び各バーナー30A,30Bに指令して、均熱炉10の燃焼運転及び雰囲気等を制御する。
Hereinafter, embodiments of the heating furnace of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing a system configuration of a soaking furnace.
The soaking furnace 10 includes a furnace body 12 having four sides and a floor surface surrounded by a furnace wall formed of a refractory such as heat-resistant concrete, and a furnace lid 20 that opens and closes an opening formed above the furnace body 12. With. The side wall of the furnace body 12 is provided with a regenerative burner (regenerative burner) 30 composed of a pair of burners 30A and 30B including heat storage bodies 32A and 32B therein.
The regenerative burner 30 is a burner that heats and pressurizes using waste heat of air and gas, and can reduce the amount of gas used. The heat storage bodies 32A and 32B are composed of ceramics formed in a honeycomb shape.
A fuel gas line 50 that supplies fuel gas and a combustion air line 60 that supplies combustion air are connected to the burners 30A and 30B. The combustion air is piped so as to pass through the heat storage bodies 32A and 32B from the air supply fan 64 and to be supplied to the burners 30A and 30B.
Thereby, each burner 30A, 30B mixes the supplied combustion gas and combustion air and burns them, and also supplies the fuel gas flow control valves 52A, 52B and the combustion air line 60 provided in the fuel gas line 50 to each other. The combustion state and the furnace temperature are controlled by adjusting the flow rate of the provided combustion air flow control valves 62A and 62B.
Further, an exhaust gas line 70 for exhausting exhaust gas generated in the furnace is connected to each burner 30A, 30B, and the exhaust gas in the furnace passes through the heat storage bodies 32A, 32B and is sucked into the exhaust fan 74 to the outside. Piped to be released. The exhaust gas line 70 is provided with exhaust gas flow control valves 72A and 72B.
The furnace body 12 is provided with an exhaust bypass 80 for exhausting the exhaust gas in the furnace to the outside without passing through the burners 30A and 30B, and through an exhaust gas cooler 82 and a bypass flow control valve 84 for cooling the exhaust gas. The exhaust gas is connected to the exhaust gas line 70 immediately before the exhaust fan 74.
Further, a carbon monoxide concentration sensor 92, an oxygen concentration sensor 94, a furnace pressure sensor 96, and a temperature sensor 98 (all not shown) are provided in the furnace, and the measurement information is sent to the control unit 90 (not shown). Sent. And the control part 90 commands each fan 64,74, each flow control valve 52,62,72,84, and each burner 30A, 30B, and controls the combustion operation, atmosphere, etc. of the soaking furnace 10. FIG.

次に、均熱炉10及び蓄熱式バーナー30の作用について説明する。
まず、炉内にステンレス等の鋼材が搬入されると、制御部90からの指令に基づいて、燃料ガス用流調弁52A及び燃焼空気用流調弁62Aが開放されて、バーナー30Aを燃焼させる。この際、燃料ガス用流調弁52B及び燃焼空気用流調弁62Bは、閉鎖される。
そして、バーナー30Aを燃焼させることにより、炉内が加熱され、その排ガスは、バーナー30Bに吸引されて、蓄熱体32Bを加熱する。バーナー30Bに吸引された排ガスは、蓄熱体32Bにより熱を奪われて、約200℃程度まで冷やされて、外部に放出される。この際、排ガス用流調弁72Bは開放され、一方、排ガス用流調弁72A及びバイパス流調弁84は封鎖される。
そして、設定時間(例えば、30秒)が経過すると、バーナー30Aからバーナー30Bに燃焼を切り替えられる。すなわち、燃料ガス用流調弁52A及び燃焼空気用流調弁62Aを封鎖し、一方、燃料ガス用流調弁52B及び燃焼空気用流調弁62Bを開放する。
また、排ガス用流調弁72Aを開放し、排ガス用流調弁72Bを封鎖する。
そして、バーナー30Bに供給される燃焼用空気は、蓄熱体32Bを通過する際に余熱されて、炉温に近い温度まで上昇させられる。一方、バーナー30Aは、排ガスを吸引し、蓄熱体32Aを過熱する。
このような燃焼サイクルを繰り返し継続することにより、炉内は、約1300℃に加熱され、その状態を維持するように燃焼運転が継続される。
Next, the operation of the soaking furnace 10 and the regenerative burner 30 will be described.
First, when a steel material such as stainless steel is carried into the furnace, the fuel gas flow regulating valve 52A and the combustion air flow regulating valve 62A are opened based on a command from the control unit 90, and the burner 30A is burned. . At this time, the fuel gas flow regulating valve 52B and the combustion air flow regulating valve 62B are closed.
Then, by burning the burner 30A, the inside of the furnace is heated, and the exhaust gas is sucked into the burner 30B to heat the heat storage body 32B. The exhaust gas sucked into the burner 30B is deprived of heat by the heat storage body 32B, cooled to about 200 ° C., and discharged to the outside. At this time, the exhaust gas flow control valve 72B is opened, while the exhaust gas flow control valve 72A and the bypass flow control valve 84 are blocked.
And when setting time (for example, 30 seconds) passes, combustion can be switched from burner 30A to burner 30B. That is, the fuel gas flow regulating valve 52A and the combustion air flow regulating valve 62A are blocked, while the fuel gas flow regulating valve 52B and the combustion air flow regulating valve 62B are opened.
Further, the exhaust gas flow control valve 72A is opened, and the exhaust gas flow control valve 72B is blocked.
Then, the combustion air supplied to the burner 30B is preheated when passing through the heat storage body 32B, and is raised to a temperature close to the furnace temperature. On the other hand, the burner 30A sucks the exhaust gas and superheats the heat storage body 32A.
By repeating such a combustion cycle repeatedly, the inside of the furnace is heated to about 1300 ° C., and the combustion operation is continued so as to maintain the state.

図2は、炉内の空気比の変化を示す図である。
燃焼運転(燃焼サイクル)が進行するとともに、燃焼空気ライン60から各バーナー30A,30Bに供給される燃焼空気の空気比を、図2(a)に示すように、1.0以上から1.0未満に低下させる。
具体的には、空気比を1.2〜1.3程度から0.7〜0.8程度に変化させる。これにより、各バーナー30A,30Bの燃焼が、空気比が1.0以上の高空気比燃焼(或いは通常燃焼)から、空気比が1.0未満の低空気比燃焼に移行する。
なお、空気比(空気過剰率ともいう)とは、燃焼に際して理論上必要な空気に対する、実際に燃焼に際して供給される空気の比(割合)である。
このため、空気比が0.7〜0.8程度の低空気比燃焼は、いわゆる不完全燃焼(低酸素燃焼)となるが、ステンレス鋼等の表面に形成される酸化層を最低限に抑えられるので、製品のスケールロスが少なくなるという利点がある。
そして、均熱処理を終了させる際には、図2(b)に示すように、低空気比燃焼から再び高空気比燃焼に戻してから各バーナー30A,30Bの燃焼を停止させる。
FIG. 2 is a diagram showing changes in the air ratio in the furnace.
As the combustion operation (combustion cycle) proceeds, the air ratio of the combustion air supplied from the combustion air line 60 to each burner 30A, 30B is changed from 1.0 or more to 1.0 as shown in FIG. Reduce to less than.
Specifically, the air ratio is changed from about 1.2 to 1.3 to about 0.7 to 0.8. Thereby, combustion of each burner 30A, 30B shifts from high air ratio combustion (or normal combustion) with an air ratio of 1.0 or more to low air ratio combustion with an air ratio of less than 1.0.
The air ratio (also referred to as excess air ratio) is a ratio (ratio) of air actually supplied during combustion to air theoretically required for combustion.
For this reason, low air ratio combustion with an air ratio of about 0.7 to 0.8 results in so-called incomplete combustion (low oxygen combustion), but minimizes an oxide layer formed on the surface of stainless steel or the like. Therefore, there is an advantage that the scale loss of the product is reduced.
When the soaking process is terminated, as shown in FIG. 2B, the combustion of each burner 30A, 30B is stopped after returning from the low air ratio combustion to the high air ratio combustion again.

ところで、高空気比燃焼から低空気比燃焼への移行、及び低空気比燃焼から高空気比燃焼への移行の際には、その移行時間(空気比の変化にかかる時間)に注意しなければならない。すなわち、高空気比燃焼から低空気比燃焼への移行の際には、完全燃焼から不完全燃焼に移行するので、燃焼が不安定となりやすく、最悪の場合、燃焼が停止してしまう虞がある。
また、低空気比燃焼からの高空気比燃焼への移行時には、炉内に充満した一酸化炭素と流入した空気(酸素)とが混合し、急激な燃焼が生じるからである。特に、低空気比燃焼から高空気比燃焼に移行せず、そのままで各バーナー30A,30Bの燃焼を停止させると、炉蓋20を開けた途端に燃焼する可能性がある。
そのため、以下のように、燃焼空気ライン60から各バーナー30A,30Bに供給される燃焼空気の空気比を以下に示すように変化させて、炉内の雰囲気を制御する。
By the way, when transitioning from high air ratio combustion to low air ratio combustion, and transition from low air ratio combustion to high air ratio combustion, attention must be paid to the transition time (time required for air ratio change). Don't be. That is, when shifting from high air ratio combustion to low air ratio combustion, since complete combustion shifts to incomplete combustion, combustion tends to become unstable, and in the worst case, combustion may stop. .
In addition, at the time of transition from low air ratio combustion to high air ratio combustion, carbon monoxide filled in the furnace and the inflowing air (oxygen) are mixed and abrupt combustion occurs. In particular, if the combustion of each burner 30A, 30B is stopped as it is without shifting from the low air ratio combustion to the high air ratio combustion, there is a possibility of burning as soon as the furnace lid 20 is opened.
Therefore, the atmosphere in the furnace is controlled by changing the air ratio of the combustion air supplied from the combustion air line 60 to the burners 30A and 30B as follows.

まず、高空気比燃焼から低空気比燃焼への移行時について説明する。
高空気比燃焼から低空気比燃焼への移行の際には、燃焼の安定性が問題となる。そこで、燃焼の安定性を監視しながら空気比を低下させる。具体的には、実験等により、燃焼空気及び燃料ガスの流量、炉内の温度や圧力が急激に変化しないような空気比の低下率を求める。すなわち、空気比が急激に変化して燃焼が不安定になると、それに伴い、炉内の温度や圧力変化も急激に変化し、また、燃焼空気及び燃料ガスの流量も変動するからである。
これにより、各バーナー30A,30Bの燃焼の安定化を図りつつ、空気比を低下させることができる。
First, the transition from high air ratio combustion to low air ratio combustion will be described.
In the transition from high air ratio combustion to low air ratio combustion, combustion stability becomes a problem. Therefore, the air ratio is lowered while monitoring the stability of combustion. Specifically, the reduction rate of the air ratio is determined by experiments or the like so that the flow rates of the combustion air and fuel gas, the temperature and pressure in the furnace do not change rapidly. That is, if the air ratio changes suddenly and combustion becomes unstable, the temperature and pressure changes in the furnace also change abruptly, and the flow rates of the combustion air and fuel gas also change.
Thereby, air ratio can be reduced, aiming at stabilization of combustion of each burner 30A, 30B.

次に、低空気比燃焼から高空気比燃焼への移行時について説明する。
低空気比燃焼から高空気比燃焼への移行の際には、一酸化炭素と酸素との反応による急激な燃焼の発生が問題となる。そこで、空気比の変化にかける時間(すなわち、空気比を約0.7から約1.3に変化させる時間)を、各バーナー30A,30Bを最小燃焼量で燃焼させた際に、炉内のガスが完全に置換される時間以上に設定する。
最小燃焼量とは、各バーナー30A,30Bが安定して燃焼することができる最小の燃焼量(燃焼ガス使用量)であり、例えば、最高燃焼量の約1/10程度の燃焼量である。
そして、炉内のガスが完全に置換される時間とは、燃焼に伴う排ガスで炉内のガスを置換するために要する時間であり、炉の大きさやバーナーの能力より異なる。
これにより、各バーナー30A,30Bが最小燃焼量で燃焼している場合であっても、増加させた空気(酸素)を確実に消費(燃焼)させるので、酸素と炉内の一酸化炭素とが混合されることによる急激な燃焼の発生が回避できる。
なお、空気比の変化にかける時間は、炉の大きさやバーナーの能力により求めることができ、例えば、5分程度である。したがって、5分以上かけて燃焼空気用流調弁62A,62Bの開放角を徐々に広げて、空気比を上昇させる。
なお、上述したように、燃焼空気用流調弁62A,62Bの開放角を時間を設定して、徐々に開放させることにより空気比を制御する、いわゆるオープン制御を行う場合に限らず、炉内の一酸化炭素濃度及び酸素濃度を一酸化炭素濃度センサ92及び酸素濃度センサ94で計測して、フィードバック制御を行ってもよい。
Next, the transition from low air ratio combustion to high air ratio combustion will be described.
In the transition from low air ratio combustion to high air ratio combustion, the occurrence of rapid combustion due to the reaction between carbon monoxide and oxygen becomes a problem. Therefore, the time required for the change in the air ratio (that is, the time required for changing the air ratio from about 0.7 to about 1.3) is determined when the burners 30A and 30B are burned with the minimum combustion amount. Set it longer than the time when the gas is completely replaced.
The minimum combustion amount is the minimum combustion amount (combustion gas usage amount) that each burner 30A, 30B can stably burn, and is, for example, a combustion amount of about 1/10 of the maximum combustion amount.
The time for completely replacing the gas in the furnace is the time required to replace the gas in the furnace with the exhaust gas accompanying combustion, and differs depending on the size of the furnace and the capability of the burner.
As a result, even if each burner 30A, 30B burns at the minimum combustion amount, the increased air (oxygen) is surely consumed (combusted), so oxygen and carbon monoxide in the furnace are The occurrence of rapid combustion due to mixing can be avoided.
The time taken for the change in the air ratio can be determined by the size of the furnace and the capability of the burner, and is, for example, about 5 minutes. Therefore, the open angle of the combustion air flow regulating valves 62A and 62B is gradually widened over 5 minutes to increase the air ratio.
As described above, the opening angle of the combustion air flow regulating valves 62A and 62B is set not only to the so-called open control in which the air ratio is controlled by setting the opening time, but gradually opening the combustion air. The carbon monoxide concentration and the oxygen concentration may be measured by the carbon monoxide concentration sensor 92 and the oxygen concentration sensor 94 to perform feedback control.

更に、一酸化炭素濃度センサ92及び酸素濃度センサ94を用いて、急激な燃焼の発生を回避することができる。すなわち、燃焼ガスの組成、燃焼中の空気比、炉内温度により、炉内の一酸化炭素濃度を求めることができるので、計算値と実測値との差が大きい場合には、急激な燃焼であると判断することができる。
そこで、燃焼運転時(高空気比燃焼、低空気比燃焼、低空気比燃焼或いは高空気比燃焼への移行時、消火時等の全ての運転時)に一酸化炭素濃度の監視を行う。
Furthermore, sudden combustion can be avoided by using the carbon monoxide concentration sensor 92 and the oxygen concentration sensor 94. That is, the concentration of carbon monoxide in the furnace can be determined from the composition of the combustion gas, the air ratio during combustion, and the temperature in the furnace, so if there is a large difference between the calculated value and the measured value, rapid combustion will occur. It can be judged that there is.
Therefore, the carbon monoxide concentration is monitored during the combustion operation (all operations such as high air ratio combustion, low air ratio combustion, low air ratio combustion, transition to high air ratio combustion, and fire extinguishing).

図3は、適正一酸化炭素濃度を示す図である。
代表して、空気比0.7で燃焼運転している場合について説明する。空気比0.7で燃焼運転し、排ガス温度が1200℃の場合には、その解離平衡一酸化炭素濃度を計算すると、約10%となる。したがって、一酸化炭素濃度が10%を大きく上回る或いは下回る場合には、急激な燃焼であると判断できる。
急激な燃焼であると判断するための閾値としては、例えば、上限は空気比0.6で燃焼運転している際の解離平衡一酸化炭素濃度、下限は空気比0.8で燃焼運転している際の解離平衡一酸化炭素濃度とすることができる。
更に、燃焼運転(急激な燃焼)を非常停止させるための閾値としては、空気比5で燃焼運転している際の解離平衡一酸化炭素濃度とすることができる。
このように、燃焼時の空気比等に基づいて、急激な燃焼であると判断される一酸化炭素濃度の計算値と実測値との差(即ち、閾値)を規定する。非常停止させる閾値も同様に規定する。
なお、閾値の規定の仕方は、上記方法に限らない。例えば、計算で求められる解離平衡一酸化炭素濃度の上下2%を閾値とする等してもよい。
FIG. 3 is a diagram showing an appropriate carbon monoxide concentration.
As a representative example, a case where the combustion operation is performed at an air ratio of 0.7 will be described. When the combustion operation is performed at an air ratio of 0.7 and the exhaust gas temperature is 1200 ° C., the dissociation equilibrium carbon monoxide concentration is calculated to be about 10%. Therefore, when the carbon monoxide concentration greatly exceeds or falls below 10%, it can be determined that the combustion is abrupt.
For example, the upper limit is a dissociation equilibrium carbon monoxide concentration when the combustion operation is performed at an air ratio of 0.6, and the lower limit is a combustion operation at an air ratio of 0.8. The dissociation equilibrium carbon monoxide concentration can be obtained.
Furthermore, as a threshold value for emergency stop of the combustion operation (rapid combustion), the dissociation equilibrium carbon monoxide concentration when the combustion operation is performed at an air ratio of 5 can be used.
In this way, the difference (that is, the threshold value) between the calculated value of the carbon monoxide concentration that is determined to be rapid combustion and the actually measured value is defined based on the air ratio at the time of combustion. The threshold value for emergency stop is defined similarly.
Note that the method of defining the threshold is not limited to the above method. For example, the upper and lower 2% of the dissociation equilibrium carbon monoxide concentration obtained by calculation may be set as a threshold value.

また、炉内の酸素濃度も、排ガス温度、空気比により求めることができる。
そこで、燃焼運転時に酸素濃度の監視を行う。そして、一酸化炭素の場合と同様に、燃焼時の空気比等に基づいて、急激な燃焼であると判断される酸素濃度の計算値と実測値との差(即ち、閾値)を規定する。
図4(a)は、空気比0.5の場合の適正酸素濃度を示す図である。図4(b)は、適正一酸素濃度を示す図である。
図4(a)に示す許容範囲内(ハッチング内)では、酸素が燃焼しない。すなわち、急激な燃焼の発生がない。したがって、炉内の酸素濃度が図のハッチング内にあるように燃焼運転を行う。適正酸素濃度は、空気比により変化するので、空気比及び排ガス温度に基づいて許容酸素濃度を規定する。なお、排ガス温度は、排ガスライン70等の耐熱温度が400℃であるので、実際には排ガス温度が400℃の時を基準として、空気比にのみ基づいて許容酸素濃度を規定することができる。
そして、排ガス温度が400℃の時を基準として、空気比にのみ基づいて許容酸素濃度を規定すると、図4(b)のようになる。
Further, the oxygen concentration in the furnace can also be obtained from the exhaust gas temperature and the air ratio.
Therefore, the oxygen concentration is monitored during the combustion operation. As in the case of carbon monoxide, the difference (that is, the threshold value) between the calculated value of the oxygen concentration determined to be rapid combustion and the actual measurement value is defined based on the air ratio at the time of combustion.
FIG. 4A is a diagram showing an appropriate oxygen concentration when the air ratio is 0.5. FIG. 4B is a diagram showing an appropriate oxygen concentration.
Within the allowable range shown in FIG. 4A (within hatching), oxygen does not burn. That is, there is no sudden combustion. Therefore, the combustion operation is performed so that the oxygen concentration in the furnace is within the hatching in the figure. Since the appropriate oxygen concentration varies depending on the air ratio, the allowable oxygen concentration is defined based on the air ratio and the exhaust gas temperature. Since the heat resistance temperature of the exhaust gas line 70 and the like is 400 ° C., the exhaust gas temperature can actually define the allowable oxygen concentration based only on the air ratio with the exhaust gas temperature being 400 ° C. as a reference.
And when an allowable oxygen concentration is prescribed | regulated based only on an air ratio on the basis of the time when exhaust gas temperature is 400 degreeC, it will become like FIG.4 (b).

なお、排ガスの温度は、バーナーの後端、すなわち、燃料ガスライン50と燃焼空気ライン60とが連結される部分で測定される。この位置で急激な燃焼が発生するからである。
このように、燃焼運転中の一酸化炭素濃度及び酸素濃度の適正値を空気比に連動させて規定し、監視することにより、急激な燃焼の発生を回避することができる。なお、一酸化炭素濃度及び酸素濃度に異常があった場合には、警告アラームを発したり、上述したように燃焼運転を非常停止させたりすることが考えられる。
The exhaust gas temperature is measured at the rear end of the burner, that is, at the portion where the fuel gas line 50 and the combustion air line 60 are connected. This is because rapid combustion occurs at this position.
Thus, by defining and monitoring appropriate values of the carbon monoxide concentration and the oxygen concentration during the combustion operation in conjunction with the air ratio, it is possible to avoid sudden combustion. In addition, when there is an abnormality in the carbon monoxide concentration and the oxygen concentration, it is conceivable that a warning alarm is issued or the combustion operation is stopped as described above.

なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲においてプロセス条件や設計要求等に基づき種々変更可能である。   Note that the operation procedures shown in the above-described embodiment, or the shapes and combinations of the components are examples, and can be variously changed based on process conditions, design requirements, and the like without departing from the gist of the present invention. is there.

10…均熱炉(加熱炉)
30A,30B…バーナー(蓄熱式バーナー)
50…燃料ガスライン
60…燃焼空気ライン
70…排ガスライン
90…制御部
92…一酸化炭素濃度センサ
94…酸素濃度センサ
10 ... soaking furnace (heating furnace)
30A, 30B ... Burner (Regenerative burner)
DESCRIPTION OF SYMBOLS 50 ... Fuel gas line 60 ... Combustion air line 70 ... Exhaust gas line 90 ... Control part 92 ... Carbon monoxide concentration sensor 94 ... Oxygen concentration sensor

Claims (3)

一対の蓄熱式バーナーを交互に燃焼させて被加熱物を加熱処理する加熱炉の雰囲気制御方法において、
前記一対の蓄熱式バーナーを交互に切り替えて燃焼させると共に、
前記一対の蓄熱式バーナーを燃焼させる燃焼空気の空気比に応じて、前記加熱炉内の一酸化炭素の許容濃度範囲を規定することを特徴とする加熱炉の雰囲気制御方法。
In an atmosphere control method for a heating furnace in which a heated object is heated by alternately burning a pair of regenerative burners,
While alternately switching and burning the pair of heat storage burners,
An atmosphere control method for a heating furnace, wherein an allowable concentration range of carbon monoxide in the heating furnace is defined according to an air ratio of combustion air for burning the pair of regenerative burners.
前記一対の蓄熱式バーナーを燃焼させる燃焼空気の空気比に応じて、前記加熱炉内の一酸化炭素の許容濃度範囲と、さらに、前記加熱炉内の酸素の許容濃度範囲と、を規定することを特徴とする請求項1に記載の加熱炉の雰囲気制御方法。
Defining an allowable concentration range of carbon monoxide in the heating furnace and an allowable concentration range of oxygen in the heating furnace according to an air ratio of combustion air for burning the pair of regenerative burners. The atmosphere control method for a heating furnace according to claim 1.
炉内の一酸化炭素濃度或いは酸素濃度が前記許容濃度範囲を逸脱した場合には、警告を発する或いは加熱炉の運転を非常停止させることを特徴とする請求項1又は請求項2に記載の加熱炉の雰囲気制御方法。   The heating according to claim 1 or 2, wherein when the carbon monoxide concentration or the oxygen concentration in the furnace deviates from the allowable concentration range, a warning is issued or the operation of the heating furnace is stopped. The furnace atmosphere control method.
JP2011219327A 2011-10-03 2011-10-03 Heating furnace atmosphere control method Expired - Fee Related JP5310817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219327A JP5310817B2 (en) 2011-10-03 2011-10-03 Heating furnace atmosphere control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219327A JP5310817B2 (en) 2011-10-03 2011-10-03 Heating furnace atmosphere control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006089675A Division JP4910450B2 (en) 2006-03-29 2006-03-29 Heating furnace atmosphere control method

Publications (2)

Publication Number Publication Date
JP2012026718A JP2012026718A (en) 2012-02-09
JP5310817B2 true JP5310817B2 (en) 2013-10-09

Family

ID=45779856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219327A Expired - Fee Related JP5310817B2 (en) 2011-10-03 2011-10-03 Heating furnace atmosphere control method

Country Status (1)

Country Link
JP (1) JP5310817B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210753A1 (en) * 2012-06-25 2014-01-02 Software & Technologie Glas Gmbh (Stg) Method for determining a carbon monoxide component in an exhaust gas stream, in particular a control device and a regeneratively fired industrial furnace
CN105547000A (en) * 2016-02-02 2016-05-04 上海策立工程技术有限公司 Routing inspection type flue gas adjusting system and method of rolled steel based double-heat-accumulation type heating furnace
CN106322429A (en) * 2016-08-19 2017-01-11 上海策立工程技术有限公司 Intelligent combustion control method based on online optimization of air-fuel ratio and used for heating furnace
JP7210125B2 (en) * 2022-08-29 2023-01-23 中外炉工業株式会社 Combustion equipment
JP7210126B2 (en) * 2022-08-29 2023-01-23 中外炉工業株式会社 Combustion equipment
JP7220971B2 (en) * 2022-08-31 2023-02-13 中外炉工業株式会社 Combustion control method for combustion equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176424A (en) * 1987-01-13 1988-07-20 Kobe Steel Ltd Heat treatment of metallic material
JP3096911B2 (en) * 1990-10-30 2000-10-10 バブコツク日立株式会社 Combustion equipment
JPH04316919A (en) * 1991-04-15 1992-11-09 Nippon Steel Corp Ignition control method of combustion furnace
JP2001026815A (en) * 1999-07-14 2001-01-30 Kawasaki Steel Corp Operation of continuous heating furnace

Also Published As

Publication number Publication date
JP2012026718A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5310817B2 (en) Heating furnace atmosphere control method
JP4910450B2 (en) Heating furnace atmosphere control method
JP4910449B2 (en) Regenerative burner, heating furnace and soaking furnace
JP4750174B2 (en) Diffusion combustion equipment
JP2005501966A (en) How to improve furnace temperature profile
JP7029277B2 (en) Manufacturing method for regenerative burners, industrial furnaces and fired products
JP2006349281A (en) Continuous heating furnace and method for controlling its combustion
JP2019520542A (en) How to preheat the fluid upstream of the furnace
JP7115995B2 (en) Furnace pressure control method for continuous heating furnace, furnace pressure control device, and continuous heating furnace
JP6685632B1 (en) Heat storage type combustion equipment
JP5175485B2 (en) Heating furnace internal pressure control method
WO2011065477A1 (en) Gas supply device and exhaust gas power generation system
JP4838527B2 (en) Combustion control method for combustion zone of heating furnace with regenerative burner
JP3952529B2 (en) Double cylinder type indirect heating furnace and operation method thereof
JP5903828B2 (en) Heating medium boiler
JP3491444B2 (en) How to use a regenerative preheater
CN104350330A (en) Circulating-type multi-layer furnace
JP7210125B2 (en) Combustion equipment
JP4903083B2 (en) Combustion control method for regenerative burner furnace
JPH1026340A (en) Heating furnace and operating method thereof
JP5321665B2 (en) Control method of regenerative burner, heating furnace and soaking furnace
JP3491443B2 (en) Pilot burner ignition method for non-oxidizing heating device
JP3767414B2 (en) Operation method of regenerative burner furnace and regenerative burner furnace
JP3912061B2 (en) Regenerative burner and combustion method thereof
JPH07103433A (en) Combustiion method for heating furnace using regenerative burner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5310817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees