JPH09143565A - Method for controlling atmosphere in heating furnace - Google Patents

Method for controlling atmosphere in heating furnace

Info

Publication number
JPH09143565A
JPH09143565A JP30936095A JP30936095A JPH09143565A JP H09143565 A JPH09143565 A JP H09143565A JP 30936095 A JP30936095 A JP 30936095A JP 30936095 A JP30936095 A JP 30936095A JP H09143565 A JPH09143565 A JP H09143565A
Authority
JP
Japan
Prior art keywords
furnace
air
fuel ratio
door
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30936095A
Other languages
Japanese (ja)
Inventor
Mitsuru Yamamoto
満 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30936095A priority Critical patent/JPH09143565A/en
Publication of JPH09143565A publication Critical patent/JPH09143565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the development of scale on a steel material to be heated and to reduce burnt loss quantity by avoiding the rising of oxygen concn. in a furnace caused by the air entering from an ejecting hole. SOLUTION: At the time of outputting a door opening signal Ts1 by opening an ejecting door 2, air-fuel ratio manipulation variable Δm decided by the relation among a furnace pressure Po , oxygen concn. C0 in the furnace, fuel flow rate F0 and door opening time T0 is calculated with a calculating means 10, and this value is outputted to an air-fuel ratio control means 11. The air-fuel ratio control means 11 executes a changing operation so as to lower the air-fuel ratio according to the air-fuel ratio manipulation variable Δm calculated with the calculating means 10. At the time of outputting a door closing signal Ts2 by closing the ejecting door 2, the air-fuel ratio control means 11 executes a returning back operation for returning back the air-fuel ratio to the original air-fuel ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加熱炉、特に回転
炉床式加熱炉の雰囲気制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace, and more particularly, to an atmosphere control method for a rotary hearth type heating furnace.

【0002】[0002]

【従来の技術】継目無鋼管の素材である丸ビレットは、
通常、回転炉床式加熱炉(以下、回転炉床炉と略称す
る。)により約1250°Cまで加熱した後に、圧延ラ
インへ搬送され製管される。ところで、回転炉床炉に限
らず、一般の加熱炉においても被加熱鋼材のスケール発
生による焼き減りを少なくするために炉内の酸素濃度は
低い方がよいが、実際には炉内の酸素濃度上昇に起因す
る焼き減りが多いのが現状である。
2. Description of the Related Art Round billets, which are materials for seamless steel pipes,
Usually, after being heated up to about 1250 ° C. by a rotary hearth type heating furnace (hereinafter, abbreviated as rotary hearth furnace), it is transferred to a rolling line and made into a pipe. By the way, not only in rotary hearth furnaces but also in general heating furnaces, it is better that the oxygen concentration in the furnace is low in order to reduce the burnout due to the scale generation of the steel to be heated. The current situation is that there is a lot of burnout due to the rise.

【0003】炉内の酸素濃度が上昇する主な原因として
は、被加熱鋼材の抽出口等の開口部から外気が侵入する
ことが考えられるが、回転炉床炉の場合、特に大径サイ
ズの製管ラインにおいては、素材ビレットも大きいた
め、炉内へビレットを取りにいくマニピュレータも大き
くなって抽出口が必然的に大きなものとなり、また、マ
ニピュレータ自体も相当大きなものであるため、このマ
ニピュレータが炉内に押し込む空気量も無視できない。
従って、回転炉床炉では、抽出扉の開閉による大気の侵
入及び炉圧の低下が炉内酸素濃度上昇を引き起こす最も
大きな要因となっている。尚、抽出扉が開くと酸素濃度
が上昇するというメカニズムは、抽出扉開により炉内燃
焼ガスが炉外に漏洩することにより、炉圧が低下して大
気が炉内に侵入するものと考えられる。
The main cause of the increase in the oxygen concentration in the furnace is that the outside air enters through the openings such as the extraction port of the steel to be heated. In the pipe making line, since the material billet is also large, the manipulator for taking the billet into the furnace is also large, and the extraction port is necessarily large, and since the manipulator itself is also quite large, this manipulator is The amount of air pushed into the furnace cannot be ignored.
Therefore, in the rotary hearth furnace, the invasion of the atmosphere and the decrease of the furnace pressure due to the opening and closing of the extraction door are the most important causes of the increase of the oxygen concentration in the furnace. The mechanism by which the oxygen concentration rises when the extraction door opens is thought to be that the combustion pressure in the furnace leaks out of the furnace due to the opening of the extraction door, causing the furnace pressure to drop and the atmosphere to enter the furnace. .

【0004】抽出口からの大気侵入を防止して炉内酸素
濃度の上昇を抑制するための従来の技術としては、例え
ば、抽出口にエアカーテンを形成したり、或いは特開昭
62−139820号公報に開示されているように炉圧
を高めて抽出口からの大気侵入を防止することが行われ
ているが、前者では抽出口がある寸法以上に大きいもの
になればエアカーテンの効果は殆どなく、後者では炉圧
を高くすると炉扉の近くに設けられた材料検知用等のセ
ンサ類が炉扉を開けた時に炎等により焼損するため、炉
圧を一定圧力以上には上げられず、従って、この程度の
圧力設定では炉扉が開いた時の空気の侵入を良好に防止
できない。
As a conventional technique for preventing the invasion of the atmosphere from the extraction port and suppressing the increase of the oxygen concentration in the furnace, for example, an air curtain is formed at the extraction port, or JP-A-62-139820. As disclosed in the official gazette, the furnace pressure is increased to prevent atmospheric invasion from the extraction port, but in the former case, if the extraction port becomes larger than a certain size, the effect of the air curtain is almost eliminated. In the latter case, when the furnace pressure is increased in the latter, the sensors for material detection and the like provided near the furnace door are burned by flames when the furnace door is opened, so the furnace pressure cannot be raised above a certain pressure, Therefore, with such a pressure setting, it is not possible to satisfactorily prevent air from entering when the furnace door is opened.

【0005】その他、一般の加熱炉においては、炉内酸
素濃度を制御するための空燃比制御や炉圧制御について
は数多くのものが提案されているが、いずれも設定値と
実績値との偏差を基に炉内ダンパの開度をフィードバッ
ク制御して空燃比を上げ下げする等といったもので、抽
出扉の突発的或いは周期的な開閉による炉圧低下や大気
侵入に対して炉内酸素濃度を低レベルに維持できるもの
ではない。
In addition, in general heating furnaces, many air-fuel ratio controls and furnace pressure controls for controlling the oxygen concentration in the furnace have been proposed. Based on this, feedback control of the opening of the in-furnace damper is performed to raise or lower the air-fuel ratio, etc. It cannot be maintained at a level.

【0006】回転炉床炉においては、特開平1−162
718号公報に記載されているように、燃焼ガスと侵入
空気の割合が加熱に最も有効な状態となるように燃料総
供給量に対する煙道入口のドラフト圧力を設定すると共
に、燃料総供給量の急変時に生じる制御の乱れを炉内の
酸素濃度を変化させることにより補正する方法が提案さ
れているが、扉開閉による炉内の酸素濃度上昇を積極的
に抑制するものではなく、しかも、炉内の酸素濃度のサ
ンプルガス取り出し口は、通常、炉全体の燃焼管理に用
いられるため、燃焼ガスの最下流(炉尻)に設置される
ケースが殆どであり、これではスケールの発生する高温
均熱域での酸素濃度が不明であり、スケール発生を有効
に抑制することができない。
In the rotary hearth furnace, Japanese Patent Laid-Open No. 1-162 is used.
As described in Japanese Patent No. 718, the draft pressure at the flue inlet is set with respect to the total fuel supply amount so that the ratio of combustion gas and invading air becomes the most effective state for heating, and the total fuel supply amount A method has been proposed to correct the control disturbance caused by a sudden change by changing the oxygen concentration in the furnace, but it does not actively suppress the increase in oxygen concentration in the furnace due to opening and closing the door, and Since the sample gas outlet for the oxygen concentration is usually used for combustion management of the entire furnace, it is installed in the most downstream (furnace bottom) of the combustion gas in most cases. The oxygen concentration in the region is unknown, and scale generation cannot be effectively suppressed.

【0007】[0007]

【発明が解決しようとする課題】ところで、回転炉床炉
は有効炉長が長く、燃焼制御ゾーンは、通常、図5に示
すように、複数に分割されている。図6は各燃焼制御ゾ
ーンの内で最も抽出扉に近いゾーン(図5のNO.5ゾ
ーン)における炉内酸素濃度及び炉圧と、抽出扉の開閉
動作との関係を本発明者が実験により得たグラフ図であ
り、図6から明らかなように、NO.5ゾーンの炉内酸
素濃度及び炉圧の変動は抽出扉の開閉動作に因ることが
判る。そして、本発明者が更に検討を行ってNO.5ゾ
ーンの燃料流量(発生排ガス量)を測定したところ、該
燃料流量によって該炉内酸素濃度の変動の大小が変わる
ことを見いだした。
By the way, the rotary hearth furnace has a long effective furnace length, and the combustion control zone is usually divided into a plurality of zones as shown in FIG. FIG. 6 is a graph showing the relationship between the oxygen concentration in the furnace and the furnace pressure in the zone closest to the extraction door (NO. 5 zone in FIG. 5) in each combustion control zone and the opening / closing operation of the extraction door. 7 is a graph chart obtained, and as is clear from FIG. It can be seen that the fluctuations in the oxygen concentration and furnace pressure in the 5 zones are due to the opening / closing operation of the extraction door. Then, the present inventor further conducted a study to find out NO. When the fuel flow rate (generated exhaust gas amount) in the five zones was measured, it was found that the magnitude of the fluctuation of the oxygen concentration in the furnace changed depending on the fuel flow rate.

【0008】ここで、本発明者等がこれらの関係を整理
して鋭意検討した結果、抽出口付近における炉内酸素濃
度、炉圧、燃料流量及び抽出扉が開いている時間の関係
から空燃比制御系に対する空燃比操作量を算出し、抽出
扉が開いたときに該操作量に応じて空燃比を変更操作す
るフィードフォワード制御を行うことにより、抽出口か
らの侵入空気による炉内酸素濃度の上昇を回避すること
ができるという知見を得た。
Here, as a result of the inventors of the present invention having arranged these relations and conducted intensive studies, as a result, the air-fuel ratio was determined from the relations between the oxygen concentration in the reactor near the extraction port, the reactor pressure, the fuel flow rate, and the time when the extraction door was opened. By calculating the air-fuel ratio manipulated variable for the control system and performing feed-forward control to change the air-fuel ratio according to the manipulated variable when the extraction door is opened, the oxygen concentration in the furnace due to the intruding air from the extraction port We have found that the rise can be avoided.

【0009】本発明はかかる知見に基づいてなされたも
のであり、抽出扉の開閉時に炉内酸素濃度が上昇するの
を回避することにより、被加熱鋼材のスケール発生を抑
制して焼き減りを少なくすることができる加熱炉の雰囲
気制御方法を提供することを目的とする。
The present invention has been made on the basis of such knowledge, and by preventing the oxygen concentration in the furnace from increasing when the extraction door is opened and closed, it is possible to suppress the generation of scale of the steel material to be heated and reduce the burnout. It is an object of the present invention to provide a method for controlling an atmosphere of a heating furnace that can be performed.

【0010】[0010]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明に係る加熱炉の雰囲気制御方法は、抽出口
近傍の炉内酸素濃度を検出する酸素濃度検出手段、抽出
口近傍の炉圧を検出する炉圧検出手段、抽出口近傍の燃
料流量を検出する燃料流量検出手段及び抽出扉の開いて
いる時間を計時する計時手段を備え、前記抽出扉が開い
たときに、前記酸素濃度検出手段によって得られた炉内
酸素濃度検出値と、前記炉圧検出手段によって得られた
炉圧検出値と、前記燃料流量検出手段によって得られた
燃料流量検出値と、前記計時手段によって得られた時間
との関係によって定められる空燃比操作量を演算して該
演算値を空燃比制御系に出力することにより空燃比を変
更操作し、前記抽出扉が閉まったときに、前記空燃比を
復帰操作するようにしたことを特徴とする。
In order to achieve such an object, an atmosphere control method for a heating furnace according to the present invention is an oxygen concentration detecting means for detecting the oxygen concentration in the furnace near the extraction port, and a furnace near the extraction port. A furnace pressure detecting means for detecting the pressure, a fuel flow rate detecting means for detecting the fuel flow rate in the vicinity of the extraction port, and a time measuring means for measuring the opening time of the extraction door, and the oxygen concentration when the extraction door is opened. The in-furnace oxygen concentration detection value obtained by the detection means, the furnace pressure detection value obtained by the furnace pressure detection means, the fuel flow rate detection value obtained by the fuel flow rate detection means, and the time measurement means The air-fuel ratio manipulated variable determined by the relationship with the calculated time is calculated, and the calculated value is output to the air-fuel ratio control system to change the air-fuel ratio, and when the extraction door is closed, the air-fuel ratio is restored. To operate Characterized in that it was.

【0011】ここで、空燃比の変更・復帰操作は、加熱
炉の特性等に応じて、抽出扉の開閉信号に対して所定の
時間的ずれを設けてもよい。
Here, the air-fuel ratio changing / restoring operation may be provided with a predetermined time lag with respect to the opening / closing signal of the extraction door depending on the characteristics of the heating furnace.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図1及び図2を参照して説明する。図1は本発明の実
施の形態の一例である回転炉床炉の雰囲気制御方法を説
明するための模式図、図2は回転炉床炉の概略図であ
る。図1において符号4は回転炉床炉1の7つの燃焼制
御ゾーン3a〜3g(図2参照)の内で抽出扉2に最も
近いNO.7ゾーン3gに設けられて炉圧P0 を検出す
る炉圧計(炉圧検出手段)、5はゾーン3gに設けられ
て炉内酸素濃度C0を検出する酸素濃度計(酸素濃度検
出手段)、6はゾーン3gの壁部に設けられたバーナ、
7はゾーン3gの燃料流量F0 を検出する流量検出計
(燃料流量検出手段)、8は継目無鋼管の素材である丸
ビレットを炉1内に装入するための装入扉、9は抽出扉
2の開いた時にバーナ6の燃焼を制御するコントローラ
である。コントローラ9は、炉圧P0 ,炉内酸素濃度C
0 ,燃料流量F0 及び図示しない計時手段によって得ら
れる抽出扉2の開時間T0 に基づいて後述する空燃比操
作量Δmを算出する演算手段10と、空燃比操作量Δm
に応じて空燃比の制御を行う空燃比制御手段11とを備
える。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic diagram for explaining an atmosphere control method for a rotary hearth furnace which is an example of an embodiment of the present invention, and FIG. 2 is a schematic diagram for the rotary hearth furnace. In FIG. 1, reference numeral 4 indicates the NO. 3 closest to the extraction door 2 in the seven combustion control zones 3a to 3g (see FIG. 2) of the rotary hearth furnace 1. 7 Furnace pressure gauge (furnace pressure detecting means) provided in the zone 3g to detect the furnace pressure P 0 ; Reference numeral 5 is an oxygen concentration meter (oxygen concentration detecting means) provided in the zone 3g to detect the oxygen concentration C 0 in the furnace; 6 is a burner provided on the wall of the zone 3g,
7 is a flow rate detector (fuel flow rate detecting means) for detecting the fuel flow rate F 0 of the zone 3g, 8 is a charging door for charging the round billet, which is a material of the seamless steel tube, into the furnace 1, and 9 is an extraction. The controller controls combustion of the burner 6 when the door 2 is opened. The controller 9 controls the furnace pressure P 0 and the furnace oxygen concentration C
0 , the fuel flow rate F 0, and a calculation means 10 for calculating an air-fuel ratio manipulated variable Δm described later based on the opening time T 0 of the extraction door 2 obtained by a timer (not shown), and an air-fuel ratio manipulated variable Δm.
And an air-fuel ratio control means 11 for controlling the air-fuel ratio in accordance with the above.

【0013】次に、コントローラ9の作動を説明する。
例えば丸ビレットの抽出時に抽出扉2が開かれて扉開信
号Ts1 が出力されると、演算手段10が炉圧P0 ,炉
内酸素濃度C0 ,燃料流量F0 及び扉開時間T0 の関係
によって定められる空燃比操作量Δm=f(P0
0 ,F0 ,T0 )を算出し、これを空燃比制御手段1
1に出力する。そして、空燃比制御手段11は、演算手
段10によって算出された空燃比操作量Δmに応じて空
燃比を下げるように該空燃比の変更操作を行う。これに
より、抽出扉2が開いた時に抽出口2aから侵入する空
気によってゾーン3gの炉内酸素濃度が上昇するのを回
避する。抽出扉2が閉じられて扉閉信号Ts 2 が出力さ
れると、空燃比制御手段11は元の空燃比に戻すための
復帰操作を行う。
Next, the operation of the controller 9 will be described.
For example, when the round billet is extracted, the extraction door 2 is opened and the door is opened.
Issue Ts1Is output, the calculation means 10 causes the furnace pressure P0, Furnace
Internal oxygen concentration C0, Fuel flow rate F0And door opening time T0connection of
Air-fuel ratio manipulated variable Δm = f (P0,
C0, F0, T0) Is calculated, and this is used as the air-fuel ratio control means 1
Output to 1. Then, the air-fuel ratio control means 11 is
According to the air-fuel ratio manipulated variable Δm calculated by the stage 10, the
The operation of changing the air-fuel ratio is performed so as to reduce the fuel ratio. to this
The sky entering from the extraction port 2a when the extraction door 2 is opened
The oxygen concentration in the furnace in zone 3g is increased by the air.
Avoid. The extraction door 2 is closed and the door closing signal Ts TwoIs output
Then, the air-fuel ratio control means 11 returns the original air-fuel ratio.
Perform a return operation.

【0014】尚、上記実施の形態では、加熱炉として回
転炉床炉を例に採ったが、これに限定されず、その他一
般の加熱炉にも本発明を適用してもよい。
In the above embodiment, the rotary hearth furnace is taken as an example of the heating furnace, but the present invention is not limited to this, and the present invention may be applied to other general heating furnaces.

【0015】[0015]

【実施例】図3は本発明に係る回転炉床炉の雰囲気制御
を行わない場合の炉内酸素濃度、炉圧及び抽出扉の開閉
動作の関係を示すグラフ図、図4は本発明に係る雰囲気
制御を行った場合の炉内酸素濃度、炉圧及び抽出扉の開
閉動作の関係を示すグラフ図である。
EXAMPLE FIG. 3 is a graph showing the relationship among the oxygen concentration in the furnace, the furnace pressure and the opening / closing operation of the extraction door when the atmosphere of the rotary hearth furnace according to the present invention is not controlled, and FIG. 4 is related to the present invention. FIG. 6 is a graph showing the relationship between the oxygen concentration in the furnace, the furnace pressure, and the opening / closing operation of the extraction door when the atmosphere control is performed.

【0016】まず、雰囲気制御を行わない場合について
説明すると、図3に示すように、抽出扉2が開かなけれ
ば、炉内酸素濃度は1%前後と非常に良好な燃焼をして
いるが、抽出扉2を開いて抽出を開始すると、とたんに
炉圧P0 は+0.8mmH2Oから最低−0.5mmH
2 Oまで急激に減少し、同時に炉内酸素濃度C0 は最大
5%まで上昇した。
First, the case where the atmosphere control is not performed will be described. As shown in FIG. 3, if the extraction door 2 is not opened, the oxygen concentration in the furnace is about 1%, which means that the combustion is very good. When the extraction door 2 is opened and the extraction is started, the furnace pressure P 0 immediately changes from +0.8 mmH 2 O to a minimum of −0.5 mmH.
It rapidly decreased to 2 O, and at the same time, the oxygen concentration C 0 in the furnace rose to a maximum of 5%.

【0017】これに対し、本発明に係る雰囲気制御によ
り空燃比を扉開信号Ts1 に対して−0.7秒のタイミ
ングで変更し、扉閉信号Ts2 に対して+1.3秒のタ
イミングで元の空燃比に戻した時の結果を図4に示す。
図4から明らかなように、炉圧P0 は相変わらず抽出扉
2の開動作と共に急激に下がるが、炉内酸素濃度C0
従来の5%に対し最大でも2%とかなり低いレベルに制
御されていることが判る。また、かかる雰囲気制御によ
り、ビレット歩留りでΔ1%、外面スケールによる外面
疵の手入れ工数が半減した。
On the other hand, by the atmosphere control according to the present invention, the air-fuel ratio is changed at the timing of -0.7 seconds with respect to the door open signal Ts 1 , and the timing of +1.3 seconds with respect to the door close signal Ts 2 . Fig. 4 shows the result when the air-fuel ratio was restored to the original value by.
As is apparent from FIG. 4, the furnace pressure P 0 still sharply decreases with the opening operation of the extraction door 2, but the in-furnace oxygen concentration C 0 is controlled to a level as low as 2% at the maximum as compared with the conventional 5%. You can see that Further, such atmosphere control reduced the billet yield by Δ1%, and halved the number of maintenance steps for external surface flaws on the external scale.

【0018】因みに空燃比は変更前1.05、変更後は
0.75であり、また、抽出扉2の開時間T0 は10秒
であった。尚、この実施例はある燃焼流量の一例であ
り、空燃比の変更代は燃焼流量等により変わることは言
うまでもない。
Incidentally, the air-fuel ratio was 1.05 before the change and 0.75 after the change, and the opening time T 0 of the extraction door 2 was 10 seconds. Note that this embodiment is an example of a certain combustion flow rate, and it goes without saying that the change margin of the air-fuel ratio changes depending on the combustion flow rate and the like.

【0019】[0019]

【発明の効果】上記の説明から明らかなように、本発明
によれば、抽出口からの侵入空気によって炉内酸素濃度
が上昇するのを回避することができるので、被加熱鋼材
のスケール発生が良好に抑制されて焼き減り量を少なく
することができるという効果が得られる。
As is apparent from the above description, according to the present invention, it is possible to prevent the oxygen concentration in the furnace from rising due to the air entering from the extraction port, so that the scale of the steel to be heated is not generated. It is possible to obtain an effect that the amount of burn-off can be suppressed well and the amount of burn-off can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例である回転炉床炉の
雰囲気制御方法を説明するための模式図である。
FIG. 1 is a schematic diagram for explaining an atmosphere control method for a rotary hearth furnace that is an example of an embodiment of the present invention.

【図2】回転炉床炉の概略図である。FIG. 2 is a schematic view of a rotary hearth furnace.

【図3】本発明に係る回転炉床炉の雰囲気制御を行わな
い場合の炉内酸素濃度、炉圧及び抽出扉の開閉動作の関
係を示すグラフ図である。
FIG. 3 is a graph showing the relationship between the oxygen concentration in the furnace, the furnace pressure, and the opening / closing operation of the extraction door when the atmosphere control of the rotary hearth furnace according to the present invention is not performed.

【図4】本発明に係る回転炉床炉の雰囲気制御を行った
場合の炉内酸素濃度、炉圧及び抽出扉の開閉動作の関係
を示すグラフ図である。
FIG. 4 is a graph showing the relationship between the oxygen concentration in the furnace, the furnace pressure, and the opening / closing operation of the extraction door when the atmosphere control of the rotary hearth furnace according to the present invention is performed.

【図5】回転炉床炉を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining a rotary hearth furnace.

【図6】従来の回転炉床炉における炉内酸素濃度、炉圧
及び抽出扉の開閉動作の関係を示すグラフ図である。
FIG. 6 is a graph showing the relationship among the oxygen concentration in the furnace, the furnace pressure, and the opening / closing operation of the extraction door in the conventional rotary hearth furnace.

【符号の説明】[Explanation of symbols]

1…回転炉床炉 2…抽出扉 T0 …扉開時間 2a…抽出口 4…炉圧計(炉圧検出手段) P0 …炉圧 5…酸素濃度計(酸素濃度検出手段) C0 …炉内酸素濃度 7…流量検出計(燃料流量検出手段) F0 …燃料流量 Δm…空燃比操作量 10…演算手段 11…空燃比制御手段1 ... rotary hearth furnace 2 ... extraction door T 0 ... door opening time 2a ... spout 4 ... furnace pressure gauge (furnace pressure detecting means) P 0 ... furnace pressure 5 ... oximeter (oxygen concentration-detecting means) C 0 ... furnace Internal oxygen concentration 7 ... Flow rate detector (fuel flow rate detection means) F 0 ... Fuel flow rate Δm ... Air-fuel ratio manipulated variable 10 ... Calculation means 11 ... Air-fuel ratio control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 抽出口近傍の炉内酸素濃度を検出する酸
素濃度検出手段、抽出口近傍の炉圧を検出する炉圧検出
手段、抽出口近傍の燃料流量を検出する燃料流量検出手
段及び抽出扉の開いている時間を計時する計時手段を備
え、前記抽出扉が開いたときに、前記酸素濃度検出手段
によって得られた炉内酸素濃度検出値と、前記炉圧検出
手段によって得られた炉圧検出値と、前記燃料流量検出
手段によって得られた燃料流量検出値と、前記計時手段
によって得られた時間との関係によって定められる空燃
比操作量を演算して該演算値を空燃比制御系に出力する
ことにより空燃比を変更操作し、前記抽出扉が閉まった
ときに、前記空燃比を復帰操作するようにしたことを特
徴とする加熱炉の雰囲気制御方法。
1. An oxygen concentration detecting means for detecting an in-furnace oxygen concentration near the extraction port, a furnace pressure detecting means for detecting a furnace pressure near the extraction port, a fuel flow rate detecting means and an extraction for detecting a fuel flow rate near the extraction port. A timer provided with a time measuring means for measuring the time when the door is open, and when the extraction door is opened, the in-reactor oxygen concentration detection value obtained by the oxygen concentration detecting means, and the furnace obtained by the furnace pressure detecting means The air-fuel ratio control amount is calculated by calculating the air-fuel ratio manipulated variable determined by the relationship between the pressure detection value, the fuel flow rate detection value obtained by the fuel flow rate detection means, and the time obtained by the timing means. The method for controlling the atmosphere of a heating furnace is characterized in that the air-fuel ratio is changed by outputting to the air-fuel ratio, and when the extraction door is closed, the air-fuel ratio is restored.
JP30936095A 1995-11-28 1995-11-28 Method for controlling atmosphere in heating furnace Pending JPH09143565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30936095A JPH09143565A (en) 1995-11-28 1995-11-28 Method for controlling atmosphere in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30936095A JPH09143565A (en) 1995-11-28 1995-11-28 Method for controlling atmosphere in heating furnace

Publications (1)

Publication Number Publication Date
JPH09143565A true JPH09143565A (en) 1997-06-03

Family

ID=17992068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30936095A Pending JPH09143565A (en) 1995-11-28 1995-11-28 Method for controlling atmosphere in heating furnace

Country Status (1)

Country Link
JP (1) JPH09143565A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402748B1 (en) * 2012-12-21 2014-06-02 주식회사 포스코 Oxygen control apparatus and method of furnace
CN109891226A (en) * 2016-11-02 2019-06-14 Bsh家用电器有限公司 The calibration of the oxygen sensor of household appliance
CN113774207A (en) * 2021-08-31 2021-12-10 北京科技大学设计研究院有限公司 Method for controlling protective atmosphere in radiant tube heat treatment furnace
KR20220001659A (en) * 2020-06-30 2022-01-06 주식회사 포스코 Heating method and apparatus
WO2024048028A1 (en) * 2022-08-29 2024-03-07 中外炉工業株式会社 Combustion facility

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402748B1 (en) * 2012-12-21 2014-06-02 주식회사 포스코 Oxygen control apparatus and method of furnace
CN109891226A (en) * 2016-11-02 2019-06-14 Bsh家用电器有限公司 The calibration of the oxygen sensor of household appliance
US11340202B2 (en) 2016-11-02 2022-05-24 BSH Hausgeräte GmbH Calibrating an oxygen sensor of a domestic appliance
KR20220001659A (en) * 2020-06-30 2022-01-06 주식회사 포스코 Heating method and apparatus
CN113774207A (en) * 2021-08-31 2021-12-10 北京科技大学设计研究院有限公司 Method for controlling protective atmosphere in radiant tube heat treatment furnace
CN113774207B (en) * 2021-08-31 2022-11-11 北京科技大学设计研究院有限公司 Method for controlling protective atmosphere in radiant tube heat treatment furnace
WO2024048028A1 (en) * 2022-08-29 2024-03-07 中外炉工業株式会社 Combustion facility

Similar Documents

Publication Publication Date Title
JP5797764B2 (en) Method and apparatus for controlling furnace pressure in a continuous annealing furnace
JPH11325738A (en) Operation method and device
JPH09143565A (en) Method for controlling atmosphere in heating furnace
JP4653689B2 (en) Continuous steel heating furnace and method of heating steel using the same
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
KR20070059305A (en) Control device of inlet air flow rate for coke oven and control method thereof
US4314694A (en) Method for controlling exhaust gases in oxygen blown converter
EP3327351B1 (en) Method for operating a fan assisted, atmospheric gas burner appliance
JPH11172326A (en) Method for controlling atmosphere in furnace and device therefor
JP7156227B2 (en) Furnace pressure control device and furnace pressure control method for continuous heating furnace
JP7210125B2 (en) Combustion equipment
JP3339324B2 (en) Combustion control method for regenerative burners
KR101175438B1 (en) Apparatus for controlling combustion of hot stove and method thereof
JP3693203B2 (en) Incomplete combustion prevention device
WO2024048029A1 (en) Combustion control method for combustion facility
KR20100110235A (en) Apparatus and method of furnace pressure control in multitude reheating furnace
JPH0213230B2 (en)
SU711108A1 (en) Method of oxygen convertor process control
JP2653627B2 (en) Incomplete combustion detection device for combustion equipment
JPS63105321A (en) Combustion control
JP2022176423A (en) Combustion facility
JPH05280869A (en) Controlling method for in-furnace gas flow in rotary hearth type heating furnace
JPH07286723A (en) Controlling method for induced draught fan
JPS6145128B2 (en)
JP2000213370A (en) Gasification controller of gasification combined cycle power plant