JPS63105321A - Combustion control - Google Patents

Combustion control

Info

Publication number
JPS63105321A
JPS63105321A JP61252586A JP25258686A JPS63105321A JP S63105321 A JPS63105321 A JP S63105321A JP 61252586 A JP61252586 A JP 61252586A JP 25258686 A JP25258686 A JP 25258686A JP S63105321 A JPS63105321 A JP S63105321A
Authority
JP
Japan
Prior art keywords
combustion
average value
difference
deviation
moving average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61252586A
Other languages
Japanese (ja)
Inventor
Shuji Iida
修司 飯田
Akihiko Kishida
岸田 晃彦
Yasuo Takeuchi
竹内 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61252586A priority Critical patent/JPS63105321A/en
Publication of JPS63105321A publication Critical patent/JPS63105321A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To permit combustion control prominent in response property, by a method wherein the difference of the average values of upward and downward movements during a predetermined time is obtained from the light power of the flame of a burner and the obtained difference is compared with a difference with respect to a proper O2 %, obtained previously, to operate a deviation therebetween. CONSTITUTION:An A/D converter 17 converts a light signal from a light sensor 15, converting a light power emitted from the flame 14 of combustion into the light signal, into digital. A combustion air corrector 19 integrates electric signals from the converter 17 for an unit time to obtain the average value of movement and obtains the average value of upward movements, which is upper than the average value of movement, as well as the average value of downward movement, which is lower than the average value of upper movement. Subsequently, a difference between the average values of upward and downward movements is operated to compare it with a deviation with respect to the optimum O2 %, previously obtained, then, an output for eliminating the deviation is outputted to a combustion air flow rate regulating valve 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼火炎の光パワーの振幅が排ガス中の0.
96と比例関係にあることを利用し、燃焼器の稼動中に
得る光パワーの振幅に関する信号を適正なO!%に対応
した光パワーの振幅に関する信号と対比してその偏差を
解消するように燃焼用空気の流量をコントロールする燃
焼制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to a method in which the amplitude of the optical power of a combustion flame is 0.0000000000000000000000000000000000000000000000000000000.
96, the signal related to the amplitude of the optical power obtained during operation of the combustor can be adjusted to an appropriate O! The present invention relates to a combustion control method in which the flow rate of combustion air is controlled so as to eliminate the deviation by comparing a signal regarding the amplitude of optical power corresponding to %.

従来の技術 従来、燃焼を制御する方法としては、特開昭59−13
8811号公報、同58−146124号公報で開示さ
れるものがある。
Conventional technology Conventionally, a method for controlling combustion has been disclosed in Japanese Patent Application Laid-open No. 59-13.
Some of these are disclosed in Japanese Patent No. 8811 and Japanese Patent No. 58-146124.

前者の特開昭59−138811号のものは、半導体か
らなる燃焼センサを炎中に配置し、その電気抵抗の変化
で燃焼状態を監視し、酸欠及び失火を検知したときに燃
焼を停止させようとするものである。
The former, JP-A No. 59-138811, places a combustion sensor made of a semiconductor in the flame, monitors the combustion state based on changes in its electrical resistance, and stops combustion when oxygen deficiency or misfire is detected. This is what we are trying to do.

後者の特開昭58−146124号のものは、光学的測
定器で火炎の発光スペクトルを分光分析し、これから火
炎の温度分布を求め、これを最適燃焼状態時の火炎の温
度分布と比較して制御信号を出力するもので、この出力
によって火炎の形を一定にコントロールしようとするも
のである。
The latter, published in JP-A No. 58-146124, uses an optical measuring device to spectrally analyze the emission spectrum of the flame, determine the temperature distribution of the flame from this, and compare this with the temperature distribution of the flame under optimal combustion conditions. It outputs a control signal, and uses this output to control the shape of the flame.

しかし、前者は燃焼のON・OFFを行なうのみで、炉
内の燃焼火炎自体の制御を行なうものでない。また後者
は発光スペクトルを分光分析するので、検出部、制御部
が複雑化するという欠点がある。
However, the former only turns combustion on and off, but does not control the combustion flame itself in the furnace. Furthermore, since the latter spectroscopically analyzes the emission spectrum, it has the disadvantage that the detection section and control section become complicated.

このような欠点がない燃焼制御方法として昭和60年1
月25日付熱産業経済新聞で開示されるものがある。
In 1985, 1 was developed as a combustion control method that does not have such drawbacks.
There is something disclosed in the Netsu Sangyo Keizai Shimbun dated February 25th.

これはジルコニアO,センサを煙道中に設置してこの煙
道を通る排ガス中の0,96を測定し、このO2%を指
標として燃焼用押込空気量が負荷条件に応じた最適な量
となるよう送風機の回転数をインバータで制御するもの
である。
This is achieved by installing a zirconia O sensor in the flue and measuring 0.96 in the exhaust gas passing through the flue, and using this O2% as an index, the amount of forced air for combustion is determined to be the optimal amount according to the load conditions. The rotation speed of the blower is controlled by an inverter.

なお、燃焼状態の検出に光パワーを利用する点について
は特開昭59−137719号、同59−109715
号、同59−12227号、同5B−143274号で
開示されている。
Regarding the use of optical power to detect the combustion state, see JP-A-59-137719 and JP-A-59-109715.
No. 59-12227 and No. 5B-143274.

発明が解決しようとする問題点 上記ジルコニアo2センサを用いた燃焼制御は炉中での
燃焼状態を簡易に制御しうるちのであるが、次のような
欠点がある。
Problems to be Solved by the Invention Although combustion control using the zirconia O2 sensor described above allows easy control of the combustion state in the furnace, it has the following drawbacks.

■ 煙道中にセンサを設置しなければならないので、燃
焼室出口から測定部までの間に存在する点検口あるいは
構造上化じた隙間より外気が侵入した場合、燃焼室内で
のα濃度が高くなったものと誤って判断してしまう。
■ Since the sensor must be installed in the flue, if outside air enters through the inspection port or structural gap between the combustion chamber outlet and the measurement part, the α concentration inside the combustion chamber will increase. I mistakenly think that it is.

■ 燃焼室出口から測定部までのガスの流れに起因し、
タイムラグが生じる。
■ Due to the flow of gas from the combustion chamber outlet to the measuring section,
A time lag occurs.

■ ジルコニアO,センサには30〜40秒の応答遅れ
がある。このためよりスピーディな制御を行なう場合の
ネックとなる。
■ Zirconia O sensor has a response delay of 30 to 40 seconds. This becomes a bottleneck in performing faster control.

上記ジルコニア0.センサの代わり、に前記特開昭59
−137719号等に記載の光センサを用いることも考
えられるが、これらの光センサは単に光パワーを検出す
るのみであるので、直ちに適用することはできない。
The above zirconia 0. Instead of a sensor, the above-mentioned Japanese Patent Application Laid-open No. 1983
Although it is conceivable to use the optical sensors described in Japanese Patent Application No. 137719, etc., these optical sensors simply detect optical power and cannot be immediately applied.

問題点を解決するための手段 燃焼状態は、燃料と空気との混合比率によって大きく変
化しその比率は、一般に空気比(又は排ガス中の03濃
度)として燃焼管理上の重要なポイントとなっている。
Means to solve the problem Combustion conditions vary greatly depending on the mixture ratio of fuel and air, and that ratio is generally referred to as the air ratio (or 03 concentration in exhaust gas) and is an important point in combustion management. .

例えば、その空気比を大きくし過ぎた場合には、排ガス
損失が増加し、熱効率の低下及びNO!の増大が起り燃
焼状態としては良くない状態となる。また逆に空気比を
小さくし過ぎた場合には不完全燃焼となり黒煙が発生し
、また失火にもつながり、これもまた燃焼状態としては
良くない状態となる。よって良い燃焼状態とは、不完、
全燃焼が起こらない最少の空気比での燃焼である。
For example, if the air ratio is made too large, exhaust gas loss increases, thermal efficiency decreases, and NO! This results in an increase in combustion conditions, resulting in poor combustion conditions. On the other hand, if the air ratio is made too small, incomplete combustion will occur, producing black smoke, and may also lead to misfire, which is also not a good combustion condition. Therefore, good combustion state means incomplete,
This is combustion at the lowest air ratio that does not result in total combustion.

なお、空気比と排ガス中の02濃度とは次の関係にある
Note that the air ratio and the 02 concentration in the exhaust gas have the following relationship.

((燃焼用エア中の02濃度)−(排ガス中のα濃度)
)ところで、旋回力によって保炎するタイプのバーナに
おいて、そのバーナの火炎より発生する光強度は燃焼量
(燃料流量)を一定とした場合空気比(又は排ガス中の
O1濃度)の違いによって第2図の曲線工に示す様な変
化を示し、その光パワー信号は第3図に示すような常時
振動したノコギリ状の波型を示す。そしてその光パワー
信号レベルは第2図に示す様に山型の変化を示し、ピー
ク値より0.濃度の高い領域(イ)では、O2濃度の増
加に伴い光パワー信号レベルは低下し、またピーク値よ
りもO3濃度の低い領域(ロ)では、0.濃度の減少に
伴い光パワー信号レベルも低下する特性を持っている。
((02 concentration in combustion air) - (α concentration in exhaust gas)
) By the way, in a type of burner that holds the flame by swirling force, the light intensity generated by the flame of the burner will vary depending on the difference in air ratio (or O1 concentration in exhaust gas) when the combustion amount (fuel flow rate) is constant. It shows a change as shown in the curved line in the figure, and the optical power signal shows a constantly vibrating sawtooth waveform as shown in Fig. 3. The optical power signal level shows a mountain-shaped change as shown in FIG. 2, with 0. In the high concentration region (A), the optical power signal level decreases as the O2 concentration increases, and in the region (B) where the O3 concentration is lower than the peak value, the optical power signal level decreases to 0. It has a characteristic that the optical power signal level also decreases as the concentration decreases.

しかるに光パワー信号の振動に関しては、第3図に示す
様に02濃度が減少するに従いその振動幅は大きくなる
特性を示す。
However, as for the vibration of the optical power signal, as shown in FIG. 3, the width of the vibration increases as the 02 concentration decreases.

また以上の様な特性は、燃焼量を変化させた場合にも変
らないが、燃焼量を増加させると、光パワー信号の振動
幅が太き(なり逆に燃焼量を減少させると小さくなる。
Further, the characteristics described above do not change even when the combustion amount is changed, but when the combustion amount is increased, the oscillation width of the optical power signal increases (on the contrary, when the combustion amount is decreased, it becomes smaller).

また、コーン状保炎器を持つタイプのバーナについてみ
ると、その光強度は第2図の曲線■に示すような変化を
する。しかし、光パワー信号の振動に関しては第3図と
は逆に0.濃度が減少するに従い振動幅は小さくなる。
In addition, when looking at a type of burner with a cone-shaped flame holder, its light intensity changes as shown by curve 2 in Figure 2. However, regarding the vibration of the optical power signal, contrary to FIG. 3, the vibration is 0. As the concentration decreases, the vibration amplitude becomes smaller.

本発明者等は以上のような知見に基づき旋回力により保
炎するタイプのバーナについて第4図で示されるような
データを得た。
Based on the above findings, the present inventors obtained data as shown in FIG. 4 regarding a type of burner that holds flame by swirling force.

この図によって、縦軸は光パワーの振幅に関する値を示
し、第3図(ロ)で示されるように光パワーの単位時間
△を内の平均値Xよりも上の値の上移動平均値Yと下の
値の上移動平均値2との差である光パワーの移動平均差
Bが目盛られている。横軸は排ガス中のo、96を示し
ている。
In this figure, the vertical axis indicates the value related to the amplitude of the optical power, and as shown in FIG. The moving average difference B of optical power, which is the difference between the upper moving average value 2 of the lower value and the lower value, is graduated. The horizontal axis indicates o, 96 in the exhaust gas.

曲線a r b + Cは燃料の各種燃焼量についての
排ガスO8%と移動平均差との関係を夫々示しており、
曲線dは前述の不完全燃焼が生じない最適空気比の排ガ
ス08%と移動平均差との関係を示している。
The curve a r b + C shows the relationship between the exhaust gas O8% and the moving average difference for various combustion amounts of fuel, respectively.
Curve d shows the relationship between the moving average difference and the optimum air ratio of 08% for the exhaust gas at which incomplete combustion does not occur.

従って、例えば燃焼量を6OA’/hに設定している場
合バーナの火炎から検出される光パワーの移動平均差が
Bであるとしたならばその対応ot%(ハ)は妥当なO
,%(ニ)とずれ(ホ)を生じており、このずれ(ホ)
は移動平均差のずれDに対応する、と上図から読み取る
ことができる。
Therefore, for example, if the combustion amount is set to 6OA'/h and the moving average difference in optical power detected from the burner flame is B, then the corresponding ot% (c) is a reasonable O
,% (d) and deviation (e), and this deviation (e)
It can be read from the above figure that corresponds to the shift D of the moving average difference.

また、本発明器等はコーン状保炎器をもつタイプのバー
ナについては第5図で示されるデータを得た。
In addition, the present invention obtained the data shown in FIG. 5 for a type of burner having a cone-shaped flame holder.

本発明に係る燃焼制御方法は上記第4図又は第5図で示
されるようなデータを利用し、このデータと検出信号と
の対比から得られる偏差りに基づきその偏差りを解消す
るための制御信号を出力しようとするものである。
The combustion control method according to the present invention utilizes data as shown in FIG. 4 or 5 above, and performs control to eliminate the deviation based on the deviation obtained from comparing this data with the detection signal. It is intended to output a signal.

すなわち、本発明は上記問題点を解決するため、燃焼器
に供給される燃料の流量信号及び該燃焼器の排ガス中の
0,96信号を得て該α%が該燃料の流量に対し妥当な
O2%とずれているときにその偏差を演算し、その偏差
を解消するための出力を上記燃焼用空気の流量調節部に
対して行なう燃焼制御方法において、上記排ガス中の0
1%は光パワーとして上記燃焼器の火炎から検出し、該
光パワーからその移動平均値を求めると共にそれよりも
上の値の上移動平均値及び下の値の上移動平均値を求め
、次いで上下両移動平均値の差を求めてこれを予め求め
た該燃料流量に対する妥当なO2%に対応した差と比較
してその偏差を演算し、該偏差を解消する出力を燃焼用
空気流量調節部に対して行なう手段を採用している。
That is, in order to solve the above problems, the present invention obtains the flow rate signal of the fuel supplied to the combustor and the 0.96 signal in the exhaust gas of the combustor, and determines that the α% is appropriate for the flow rate of the fuel. In a combustion control method in which the deviation is calculated when there is a deviation from O2%, and an output for eliminating the deviation is provided to the combustion air flow rate adjustment section, the O2% in the exhaust gas is
1% is detected from the flame of the combustor as optical power, and the moving average value is determined from the optical power, and the upper moving average value of the values above it and the upper moving average value of the values below it are determined. The difference between the upper and lower moving average values is calculated, and this is compared with the difference corresponding to the appropriate O2% for the fuel flow rate determined in advance. We have adopted methods to do so.

作用 燃焼器で形成された火炎から光パワーを検出し、この光
パワーを処理して制御出力を得る。
Optical power is detected from the flame formed in the active combustor and processed to provide a control output.

従って、排ガス中の0.96を直接検出せずとも0.9
6のコントロールが可能となる。そして、その結果高価
なジルコニア08センサでなく比較的安価な光センサを
用いることができる。
Therefore, without directly detecting 0.96 in exhaust gas, 0.9
6 controls are possible. As a result, a relatively inexpensive optical sensor can be used instead of the expensive zirconia 08 sensor.

また、燃焼器がバーナであるときは、炉中で燃焼状態を
検出することに他ならないので、従来における煙道で検
出する方式に比し、タイムラグを生じることなく燃焼制
御を行なうことができる。
Furthermore, when the combustor is a burner, the combustion state is detected in the furnace, so combustion control can be performed without a time lag compared to the conventional method of detecting in the flue.

上記制御出力を得るには、光パワーからその所定時間内
の移動平均値を求めると共に該移動平均値よりも上の値
の上移動平均値及び下の値の上移動平均値を求め、次い
で上下両移動平均値の差を求めてこれを予め求めた妥当
な01%に係る差と比較しその偏差を演算する。
To obtain the above control output, find the moving average value within a predetermined time from the optical power, find the upper moving average value of the values above the moving average value, and the upper moving average value of the values below the moving average value, and then The difference between the two moving average values is determined and compared with a predetermined reasonable difference of 01% to calculate the deviation.

このように上下両移動平均値の差を用いて演算するので
適正な制御出力を得ることができ、従って応答性に優れ
た燃焼制御を行なうことができる。
Since the calculation is performed using the difference between the upper and lower moving average values in this way, an appropriate control output can be obtained, and therefore combustion control with excellent responsiveness can be performed.

実施例 第1図ないし第4図及び第6図に基づき本発明の一実施
例を説明する。
Embodiment An embodiment of the present invention will be explained based on FIGS. 1 to 4 and FIG. 6.

第6図は本発明に係る燃焼制御方法を使用する熱処理炉
を示している。
FIG. 6 shows a heat treatment furnace using the combustion control method according to the present invention.

第6図において符号1は炉本体を示し、該炉、 本体1
の壁には金属製品等を装入するための扉2及び排ガスを
排出するための煙道3が夫々設けられている。
In FIG. 6, reference numeral 1 indicates a furnace main body, and the furnace, main body 1
A door 2 for charging metal products and the like and a flue 3 for discharging exhaust gas are provided on the wall of the chamber.

炉本体1に設けられた燃焼器たるバーナ4はこの場合旋
回気流により保炎するタイプのものである。
In this case, the burner 4, which is a combustor provided in the furnace body 1, is of a type that maintains flame by swirling airflow.

バーナ4には燃料を供給する管5及び燃焼用空気を供給
する管6が接続され、管5には流量調節弁7及び流量計
8が設けられ、管6には流量調節弁9が設けられている
A pipe 5 for supplying fuel and a pipe 6 for supplying combustion air are connected to the burner 4, the pipe 5 is provided with a flow rate control valve 7 and a flow meter 8, and the pipe 6 is provided with a flow rate control valve 9. ing.

燃料の流量調節弁7は燃料制御装置により制御されるよ
うになっている。
The fuel flow control valve 7 is controlled by a fuel control device.

該装置は炉1内の温度を検知する熱電対からなる温度セ
ンサ10及び燃料制御部11を備えている。
The device includes a temperature sensor 10 consisting of a thermocouple that detects the temperature inside the furnace 1 and a fuel control section 11.

燃料制御部11は温度変換器12及び燃焼量調節器13
を備えており、温度センサ10からの信号を温度変換器
12で所定の出力信号に変換し、これを燃焼量調節器1
3で受けて所定の設定温度と比較演算し、設定温度を維
持しうる燃料がバーナ4に至るよう調節弁7の開度を調
節するための制御信号を出力するようになっている。
The fuel control unit 11 includes a temperature converter 12 and a combustion amount regulator 13.
The signal from the temperature sensor 10 is converted into a predetermined output signal by the temperature converter 12, and this is sent to the combustion amount regulator 1.
3, the temperature is compared with a predetermined set temperature, and a control signal is output for adjusting the opening degree of the control valve 7 so that the fuel that can maintain the set temperature reaches the burner 4.

燃焼用空気の流量調節弁9は燃焼用空気制御装置により
制御されるようになっている。
The combustion air flow control valve 9 is controlled by a combustion air control device.

該装置は、バーナ4の燃焼火炎14から発せられる光パ
ワーを電気信号に変換する光センサ15及び該信号等を
受けて制御信号を作り燃焼用空気の流量調節弁9に出力
する燃焼用空気制御部16を備えている。
The device includes an optical sensor 15 that converts the optical power emitted from the combustion flame 14 of the burner 4 into an electrical signal, and a combustion air control device that receives the signal, generates a control signal, and outputs it to the combustion air flow control valve 9. 16.

光センサ15はGeフォトダイオード、Siフォトダイ
オード、フォトトランジスタ、太陽電池等で構成され火
炎14に対向する箇所に固定されている。
The optical sensor 15 is composed of a Ge photodiode, a Si photodiode, a phototransistor, a solar cell, etc., and is fixed at a location facing the flame 14.

燃焼用空気制御部16は光センサ15からの光信号デジ
タルに変換するA/D変換器17と、該変換器17から
の電気信号を単位時間積算し移動平均値を求めると共に
該移動平均値よりも上の値の上移動平均値及び下の値の
上移動平均値を求め、次いで上下両移動平均値の差を求
めてこれを予め求めた最適02%に係る差と比較し、そ
の偏差を解消するための出力を燃焼用空気の流量調節弁
9に対して行なう燃焼用空気流量補正器19とから成っ
ている。
The combustion air control unit 16 includes an A/D converter 17 that converts the optical signal from the optical sensor 15 into a digital signal, and an A/D converter 17 that integrates the electric signal from the converter 17 over a unit time to obtain a moving average value. Find the upper moving average value of the upper value and the upper moving average value of the lower value, then find the difference between the upper and lower moving average values, compare this with the difference related to the optimal 02% found in advance, and calculate the deviation. The combustion air flow rate corrector 19 provides an output to the combustion air flow rate control valve 9 to eliminate the problem.

この燃焼用空気制御部16の動作を第1図のフローチャ
ートに基づいて説明する。
The operation of this combustion air control section 16 will be explained based on the flowchart shown in FIG.

A/D変換器17からの光パワー信号Xoを燃焼用空気
流量補正器19に読み込み(ステップエ)、次いで△を
秒間の全信号の移動平均Xを求める(ステップ2,3)
The optical power signal Xo from the A/D converter 17 is read into the combustion air flow rate corrector 19 (Step E), and then △ is calculated as the moving average X of all the signals per second (Steps 2 and 3).
.

すなわち、ステップ2において過去△を秒間に計測した
n個のデータのうち最も過去のデータXnを消去し、そ
の代わりに現在の信号Xoを入力する。そしてステップ
3でX□〜Xnのn個のデータの総和をnで割り移動平
均Xを算出している。
That is, in step 2, the oldest data Xn of the n pieces of data measured in the past Δ per second is deleted, and the current signal Xo is input in its place. Then, in step 3, the moving average X is calculated by dividing the sum of n pieces of data from X□ to Xn by n.

次に、現在の光パワー信号x0と移動平均Xとの差Aを
求める(ステップ4)。
Next, the difference A between the current optical power signal x0 and the moving average X is determined (step 4).

そして、差Aの符号が十であるか−であるかによりXO
が又より大きい値であるか小さい値であるかを判別する
(ステップ5)。Aが十のときはXよりも上の値の上移
動平均値Yを求め(ステップ6.7)、−のときは又よ
りも小さい値の上移動平均値2を求める(ステップ8゜
9)。
Then, depending on whether the sign of the difference A is 10 or -, XO
It is also determined whether the value is larger or smaller (step 5). When A is 10, find the upward moving average Y of the values above X (step 6.7), and when it is -, find the upward moving average 2 of the values smaller than X (step 8.9). .

次いでYと2との差である移動平均差Bを求める(ステ
ップ10)。
Next, a moving average difference B, which is the difference between Y and 2, is determined (step 10).

ここまで(ステップ1〜ステツプ10)が、光パワー信
号を制御信号として取り扱えるようにするための処理手
順である。
The steps up to this point (steps 1 to 10) are the processing procedure for handling the optical power signal as a control signal.

次のステップでは燃料流量計8の出力信号Q(例えば6
01/h )を読み(ステップ11)、 Qに対応した
曲線(例えばa)を選択すると共にQにつき最適な(ニ
)02%に対応する移動平均差Cを求め(ステップ12
)、さらに現在の移動平均差Bと上記Cとのずれである
偏差りを求める(ステップ13)。
In the next step, the output signal Q of the fuel flow meter 8 (for example, 6
01/h) (Step 11), select a curve (for example, a) corresponding to Q, and find the moving average difference C corresponding to (d)02%, which is optimal for Q (Step 12).
), and further, the deviation, which is the difference between the current moving average difference B and the above C, is determined (step 13).

しかる後、Dが0となるようにDに比例した制御量とD
の積分値に比例した制御量を加えた制御量Eを算出する
(ステップ14)。
After that, the control amount proportional to D and D so that D becomes 0
A control amount E is calculated by adding a control amount proportional to the integral value of (step 14).

現在の燃料流量Qに対する最適な空気流量を求め、その
場合の弁9の開度と現在の開度とを比較し、現在よりも
開くか閉めるか及びその程度を空気流量調節信号Fとし
て求める。Fは燃焼量調節器13で求められ、燃焼用空
気流量補正器19に出力される(ステップ15)。
The optimal air flow rate for the current fuel flow rate Q is determined, and the opening degree of the valve 9 in that case is compared with the current opening degree, and the air flow rate adjustment signal F is determined as to whether the valve 9 should be opened or closed more than the current degree and to what degree. F is determined by the combustion amount regulator 13 and output to the combustion air flow rate corrector 19 (step 15).

上記補正器19はE、Fを得て次の補正式から空気流量
調節信号Gを求め(ステップ16)、これを弁9に出力
し、その開度を調節する(ステップ17)。
The corrector 19 obtains E and F and obtains an air flow rate adjustment signal G from the following correction equation (step 16), outputs this to the valve 9, and adjusts its opening degree (step 17).

この式において、Eは%データであり、0〜100%の
範囲内の値である。
In this formula, E is % data and is a value within the range of 0 to 100%.

E=O〜50%のときを弁開度の減少、E=50〜10
096のときを弁開度の増加とし、例えば、E=409
6のときはG=0.8F、E=6096のときはG =
 1.2 Fとなる。
When E=O~50%, the valve opening degree decreases, E=50~10
096 is considered as an increase in the valve opening degree, for example, E=409
When 6, G = 0.8F, when E = 6096, G =
1.2 F.

これにより、計算1求められたFはEによって増又は減
の補正を受けてGとして弁9に出力されることになる。
As a result, F obtained by calculation 1 is corrected by E to increase or decrease, and is output as G to the valve 9.

かくて炉1は最適燃焼状態で常時稼動し、02%が(ニ
)(第4図)の排ガスは煙道3から炉外へ排出されるこ
とになる。
In this way, the furnace 1 is constantly operated in the optimum combustion state, and 02% of the exhaust gas (d) (FIG. 4) is discharged from the flue 3 to the outside of the furnace.

なお、扉2から新たに材料の出し入れが行なわれること
により02%が一時的に増大することがあるが、その0
,96の変化は直ちに光センサ15によって検知される
ので、即座に調節弁9の調節がなされ適正なo96に速
やかに復帰する。
Note that 02% may temporarily increase due to new material being taken in and taken out from door 2, but that 02% may increase temporarily.
, 96 is immediately detected by the optical sensor 15, so that the control valve 9 is immediately adjusted to quickly return to the proper o96.

上記実施例は熱処理炉を対象としたがボイラ等を対象と
する場合は、燃料制御部11の温度センサ10に代えて
圧力センサを設け、燃焼量調節器13は蒸気圧力の設定
方式に代えればよいものである。
Although the above embodiment is intended for a heat treatment furnace, if the target is a boiler or the like, a pressure sensor may be provided in place of the temperature sensor 10 of the fuel control unit 11, and the combustion amount regulator 13 may be replaced with a steam pressure setting method. It's good.

発明の効果 本発明は以上のように燃焼器で形成された火炎から光パ
ワーを検出し、この光パワーを処理して制御出力を得る
ので、排ガス中のα%を直接検出せずとも0296のコ
ントロールが可能になる。従って、センサとして高価な
O!センサでな(比較的安価な光センサを使用すること
ができ、炉、ガスタービン等の燃焼制御上有益である。
Effects of the Invention As described above, the present invention detects optical power from the flame formed in the combustor and processes this optical power to obtain a control output. Control becomes possible. Therefore, O! is expensive as a sensor! It is possible to use a relatively inexpensive optical sensor (without a sensor), which is useful for combustion control in furnaces, gas turbines, etc.

また燃焼器がバーナであるときは炉中で燃焼状態を検出
するので、従来の排ガスを煙道に通しつつ検出する方式
に比し、炉の開閉に伴う01%の急変が生じても迅速に
対処でき、また煙道の隙間からの空気漏れが生じても検
出結果に影響を受けることがなくなる。従って、大気開
放型燃焼装置(型加熱装置、トリベ予熱装置等)の燃焼
管理も可能になる。
In addition, when the combustor is a burner, the combustion state is detected in the furnace, so compared to the conventional method of detecting exhaust gas while passing it through the flue, even if there is a sudden change of 0.1% due to opening and closing of the furnace, it can be detected quickly. Moreover, even if air leaks from the gap in the flue, the detection results will not be affected. Therefore, it is also possible to manage the combustion of combustion devices that are open to the atmosphere (mold heating device, ladle preheating device, etc.).

さらに、光パワーから稼動平均の差を求めることにより
出力を演算するので、適正な制御出力を得ることができ
る。
Furthermore, since the output is calculated by calculating the difference between the running averages from the optical power, an appropriate control output can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る燃焼制御方法の制御出力を得る手
順を示すフローチャート、第2図は一定燃焼量下の光パ
ワーと排ガス0296との関係を示すグラフ、第3図は
燃焼量を一定にしO,LX)を変化させた場合の光パワ
ーと時間との関係を示すグラフ、第4図は光パワー移動
平均差と01%との関係を、燃焼量をパラメータとして
表わしたグラフ、第5図は異なるタイプのバーナについ
て表わした第4図と同様なグラフ、第6図は本発明を使
用した熱処理炉の制御システム図である。 1:炉、4:バーナ、8:燃料流量計、9:燃焼用空気
流量調節弁、13:燃焼量調節器、15:光センサ、1
6:燃焼用空気制御部、17 : A/D変換器、19
:燃焼用空気流量補正器。
Fig. 1 is a flowchart showing the procedure for obtaining the control output of the combustion control method according to the present invention, Fig. 2 is a graph showing the relationship between optical power and exhaust gas 0296 under a constant combustion amount, and Fig. 3 is a graph showing the relationship between the optical power and exhaust gas 0296 under a constant combustion amount. Figure 4 is a graph showing the relationship between optical power and time when changing O, L The figure is a graph similar to FIG. 4 for different types of burners, and FIG. 6 is a diagram of a control system for a heat treatment furnace using the present invention. 1: Furnace, 4: Burner, 8: Fuel flow meter, 9: Combustion air flow control valve, 13: Combustion amount regulator, 15: Optical sensor, 1
6: Combustion air control section, 17: A/D converter, 19
:Combustion air flow compensator.

Claims (1)

【特許請求の範囲】[Claims]  燃焼器に供給される燃料の流量信号及び該燃焼器の排
ガス中のO_2%信号を得て該O_2%が該燃料の流量
に対し妥当なO_2%とずれているときにその偏差を演
算し、その偏差を解消するための出力を上記燃焼用空気
の流量調節部に対して行なう燃焼制御方法において、上
記排ガス中のO_2%は光パワーとして上記燃焼器の火
炎から検出し、該光パワーからその移動平均値を求める
と共にそれよりも上の値の上移動平均値及び下の値の下
移動平均値を求め、次いで上下両移動平均値の差を求め
てこれを予め求めた該燃料流量に対する妥当なO_2%
に対応した差と比較してその偏差を演算し、該偏差を解
消する出力を燃焼用空気流量調節部に対して行なうこと
を特徴とする上記燃焼制御方法。
Obtaining the flow rate signal of the fuel supplied to the combustor and the O_2% signal in the exhaust gas of the combustor, and calculating the deviation when the O_2% deviates from a reasonable O_2% with respect to the flow rate of the fuel, In a combustion control method that outputs an output to the combustion air flow rate adjustment section to eliminate the deviation, O_2% in the exhaust gas is detected from the flame of the combustor as optical power, and the O_2% in the exhaust gas is detected from the flame of the combustor from the optical power. Find the moving average value, find the upper moving average value of the value above it, and the lower moving average value of the lower value, then find the difference between the upper and lower moving average values, and calculate this as appropriate for the fuel flow rate found in advance. O_2%
The above-mentioned combustion control method is characterized in that the deviation is calculated by comparing it with the difference corresponding to the above, and an output for eliminating the deviation is provided to the combustion air flow rate adjusting section.
JP61252586A 1986-10-23 1986-10-23 Combustion control Pending JPS63105321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61252586A JPS63105321A (en) 1986-10-23 1986-10-23 Combustion control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61252586A JPS63105321A (en) 1986-10-23 1986-10-23 Combustion control

Publications (1)

Publication Number Publication Date
JPS63105321A true JPS63105321A (en) 1988-05-10

Family

ID=17239430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61252586A Pending JPS63105321A (en) 1986-10-23 1986-10-23 Combustion control

Country Status (1)

Country Link
JP (1) JPS63105321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665941A1 (en) * 1990-08-20 1992-02-21 Carrier Corp METHOD AND DEVICE FOR ADJUSTING THE COMBUSTIBLE-AIR RATIO OF THE FLAMMABLE GAS SUPPLY OF A RADIATION BURNER.
US5263851A (en) * 1991-05-10 1993-11-23 Toyota Jidosha Kabushiki Kaisha Combustion control system for burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665941A1 (en) * 1990-08-20 1992-02-21 Carrier Corp METHOD AND DEVICE FOR ADJUSTING THE COMBUSTIBLE-AIR RATIO OF THE FLAMMABLE GAS SUPPLY OF A RADIATION BURNER.
US5263851A (en) * 1991-05-10 1993-11-23 Toyota Jidosha Kabushiki Kaisha Combustion control system for burner

Similar Documents

Publication Publication Date Title
US5037291A (en) Method and apparatus for optimizing fuel-to-air ratio in the combustible gas supply of a radiant burner
RU2397408C2 (en) Method and equipment to monitor and control furnace heater torch stability
US7728736B2 (en) Combustion instability detection
US5049063A (en) Combustion control apparatus for burner
US6247416B1 (en) Method of operating a furnace and device for implementing the method
US9727061B2 (en) Method and apparatus for controlling a furnace pressure of a continuous annealing furnace
JPH01244214A (en) Method and device for monitoring and controlling air ratio of burner in operation
EP0621938B1 (en) A method and apparatus for fuel/air control of surface combustion burners
US5263851A (en) Combustion control system for burner
EP2385321A2 (en) A method for regulating the combustion process in solid fuel central heating boilers
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
JPS63105321A (en) Combustion control
KR20030016715A (en) Mtehod and apparatus for automatic control of gas combustion in the hot stove for operating blast furnace
JPH0826988B2 (en) Combustion control method and combustion control device using the method
JPS63105322A (en) Combustion control
JPH0579622A (en) Method for controlling combustion by control of oxygen concentration in combustion furnace
JPS63105323A (en) Combustion control
JPS63105324A (en) Combustion control
JPS63105315A (en) Combustion control method
JPS63108116A (en) Control of combustion
JPS63105316A (en) Combustion control method
JP2550688B2 (en) Burner combustion controller
JPS63123921A (en) Combustion control method
JPH0833196B2 (en) Burner combustion controller
JPS63105320A (en) Method and apparatus for combustion control