JP4653689B2 - Continuous steel heating furnace and method of heating steel using the same - Google Patents

Continuous steel heating furnace and method of heating steel using the same Download PDF

Info

Publication number
JP4653689B2
JP4653689B2 JP2006111824A JP2006111824A JP4653689B2 JP 4653689 B2 JP4653689 B2 JP 4653689B2 JP 2006111824 A JP2006111824 A JP 2006111824A JP 2006111824 A JP2006111824 A JP 2006111824A JP 4653689 B2 JP4653689 B2 JP 4653689B2
Authority
JP
Japan
Prior art keywords
exhaust gas
oxygen concentration
combustion
combustion control
air ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006111824A
Other languages
Japanese (ja)
Other versions
JP2007285564A (en
Inventor
俊明 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006111824A priority Critical patent/JP4653689B2/en
Publication of JP2007285564A publication Critical patent/JP2007285564A/en
Application granted granted Critical
Publication of JP4653689B2 publication Critical patent/JP4653689B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Gas Burners (AREA)
  • Air Supply (AREA)
  • Tunnel Furnaces (AREA)

Description

本発明は、蓄熱式切替燃焼バーナを備えた連続熱間圧延用の鋼材を加熱するための連続鋼材加熱炉の空気比制御装置および制御方法に関するものである。特に、蓄熱式切替燃焼バーナを備えた燃焼制御帯が少なくとも二つ以上ある連続鋼材加熱炉において、省エネルギーや低NOxや鋼材酸化制御のために蓄熱式切替燃焼バーナを備えた燃焼制御帯を適切な空気比にて燃焼させることができる連続鋼材加熱炉およびこれを用いた鋼材の加熱方法である。   The present invention relates to an air ratio control device and control method for a continuous steel heating furnace for heating a steel material for continuous hot rolling provided with a regenerative switching combustion burner. In particular, in a continuous steel furnace with at least two combustion control zones equipped with a regenerative switching combustion burner, a combustion control zone equipped with a regenerative switching combustion burner is appropriate for energy saving, low NOx and steel material oxidation control. A continuous steel material heating furnace capable of burning at an air ratio and a method of heating a steel material using the same.

従来技術による連続鋼材加熱炉および加熱方法の概略を図5を用いて説明する。
図5は連続鋼材加熱炉の一つの燃焼制御帯を示しており、蓄熱式切替燃焼バーナ1a、1b、1c、1d、1e、1fが備えられている。これら蓄熱式切替燃焼バーナ1は二台一組で動作するが、一般的には隣接する二台または対向する二台を一組に選ぶ。ここでは対向する二台を組とした場合を例に説明する。バーナ1aが燃焼状態のときは、燃料ガス用切替弁2aおよび燃焼空気用切替弁3aは開状態であり、誘引排ガス用切替弁4aは閉状態である。一方で、対向するバーナ1dは排ガス誘引状態であり、燃料ガス用切替弁2dおよび燃焼空気用切替弁3dは閉状態であり、誘引排ガス用切替弁4dは開状態である。その他のバーナにおいてもそのバーナが燃焼状態もしくは排ガス誘引状態であるかで前記バーナ1aもしくは1dと同様な弁の開閉状態をとる。
An outline of a conventional continuous steel heating furnace and heating method will be described with reference to FIG.
FIG. 5 shows one combustion control zone of the continuous steel heating furnace, which is provided with heat storage type switching combustion burners 1a, 1b, 1c, 1d, 1e, and 1f. These regenerative switching combustion burners 1 operate as a set of two units, but generally two adjacent units or two opposing units are selected as one set. Here, a case where two opposing units are used as a group will be described as an example. When the burner 1a is in the combustion state, the fuel gas switching valve 2a and the combustion air switching valve 3a are in the open state, and the induced exhaust gas switching valve 4a is in the closed state. On the other hand, the opposing burner 1d is in the exhaust gas attracting state, the fuel gas switching valve 2d and the combustion air switching valve 3d are in the closed state, and the induced exhaust gas switching valve 4d is in the open state. Also in the other burners, the valve open / close state similar to that of the burner 1a or 1d is taken depending on whether the burner is in a combustion state or an exhaust gas induction state.

誘引排ガスは燃焼制御帯から蓄熱式切替燃焼バーナ、たとえば1dと1eと1fとを通り、当該燃焼制御帯用の誘引排ガスヘッダ管19を通り、誘引排ガス本管22を通り、排ガス誘引ファン13を通り、煙突14を通して大気空間に排出される。このとき誘引排ガスヘッダ管19に設置されている誘引排ガス用流量検出器9と誘引排ガス用流量調節弁10により所望の誘引排ガス流量に制御される。一般的には、誘引排ガスヘッダ管19に設置される排ガス温度計(図示省略)指示値に基づいて誘引排ガス流量は制御される。   The induced exhaust gas passes from the combustion control zone through a regenerative switching combustion burner, for example, 1d, 1e, and 1f, through the induced exhaust gas header pipe 19 for the combustion control zone, through the induced exhaust gas main pipe 22, and through the exhaust gas induction fan 13 And is discharged into the atmospheric space through the chimney 14. At this time, the flow rate is controlled to a desired induced exhaust gas flow rate by the induced exhaust gas flow rate detector 9 and the induced exhaust gas flow rate control valve 10 installed in the induced exhaust gas header pipe 19. In general, the flow rate of the induced exhaust gas is controlled based on an instruction value of an exhaust gas thermometer (not shown) installed in the induced exhaust gas header pipe 19.

燃料ガスは燃料ガス本管20を通り、当該燃焼制御帯用の燃料ガスヘッダ管17を通り、燃焼状態のバーナ、たとえば1aと1bと1cに供給される。このとき燃料ガスヘッダ管17に設置されている燃料ガス用流量検出器5と燃料ガス用流量調節弁6により所望の燃料ガス流量に制御される。一般的には、燃料ガス流量は当該燃焼制御帯の設定炉温を満たすように、または、設定された燃料ガス流量になるように制御される。   The fuel gas passes through the fuel gas main pipe 20, passes through the fuel gas header pipe 17 for the combustion control zone, and is supplied to the burner, for example, 1a, 1b and 1c. At this time, the fuel gas flow rate detector 5 and the fuel gas flow rate control valve 6 installed in the fuel gas header pipe 17 are controlled to a desired fuel gas flow rate. In general, the fuel gas flow rate is controlled so as to satisfy the set furnace temperature of the combustion control zone or to be a set fuel gas flow rate.

燃焼空気は燃焼空気ブロア12より供給され、燃焼空気本管21を通り、当該燃焼制御帯用の燃焼空気ヘッダ管18を通り、燃焼状態のバーナ、たとえば1aと1bと1cに供給される。このとき燃焼空気ヘッダ管18に設置されている燃焼空気用流量検出器7と燃焼空気用流量調節弁8により所望の燃焼空気流量に制御される。従来技術による燃焼空気流量の制御装置および制御方法は以下のようである。   Combustion air is supplied from the combustion air blower 12, passes through the combustion air main pipe 21, passes through the combustion air header pipe 18 for the combustion control zone, and is supplied to the burner in the combustion state, for example, 1 a, 1 b and 1 c. At this time, the combustion air flow rate detector 7 and the combustion air flow rate control valve 8 installed in the combustion air header pipe 18 are controlled to a desired combustion air flow rate. The control device and control method of the combustion air flow rate according to the prior art are as follows.

空気比制御装置は、燃料ガス用流量検出器5、燃焼空気用流量検出器7、燃焼空気用流量調節弁8および演算機能を有する燃焼制御装置16を含んでいる。燃焼制御装置16は、入力として次の3つを受け取る。すなわち、加熱炉運転者または加熱炉用プロコン23からの当該燃焼制御帯の設定空気比または設定排ガス中酸素濃度、燃料ガス用流量検出器5からの当該燃焼制御帯に供給されている燃料ガス流量、および、燃焼空気用流量検出器7からの当該燃焼制御帯に供給されている燃焼空気流量である。そして、燃焼制御装置16は燃焼空気流量が前記設定空気比になるように、または、前記設定排ガス中酸素濃度もしくは前記設定空気比と燃料種とから算出される相当の排ガス中酸素濃度になるように、燃焼空気流量調節弁8を制御する。   The air ratio control device includes a fuel gas flow rate detector 5, a combustion air flow rate detector 7, a combustion air flow rate control valve 8, and a combustion control device 16 having a calculation function. The combustion control device 16 receives the following three as inputs. That is, the set air ratio or oxygen concentration in the set exhaust gas from the heating furnace operator or the heating furnace control computer 23, the fuel gas flow rate supplied to the combustion control zone from the fuel gas flow rate detector 5 And the combustion air flow rate supplied to the combustion control zone from the combustion air flow rate detector 7. Then, the combustion control device 16 adjusts the combustion air flow rate to the set air ratio, or the set exhaust gas oxygen concentration or the equivalent exhaust gas oxygen concentration calculated from the set air ratio and the fuel type. Then, the combustion air flow rate control valve 8 is controlled.

しかしながら、実際の加熱炉では、扉や炉下からの侵入空気の影響や種々流量検出器の誤差などから、炉内では必ずしも設定空気比で燃焼していないことがある。そこで、燃料ガス成分と空気比とが決まれば、排ガス中の酸素濃度が理論的に算出できることを利用して、空気比を制御する技術がある。   However, in an actual heating furnace, due to the influence of intruding air from the door or the bottom of the furnace or errors of various flow rate detectors, the furnace may not necessarily burn at the set air ratio. Therefore, there is a technique for controlling the air ratio by utilizing the fact that if the fuel gas component and the air ratio are determined, the oxygen concentration in the exhaust gas can be theoretically calculated.

たとえば、特許文献1には安定した酸素濃度を検出するために排ガス誘引系に酸素濃度検出器15を設けて、この検出した酸素濃度が目標値に収斂するようにフィードバック回路を組み、炉内の実質的な空気比が狙い通りになるように燃焼空気流量調節弁8を制御する方法が記載されている。   For example, in Patent Document 1, an oxygen concentration detector 15 is provided in the exhaust gas induction system in order to detect a stable oxygen concentration, and a feedback circuit is assembled so that the detected oxygen concentration converges to a target value. A method is described in which the combustion air flow rate control valve 8 is controlled so that the substantial air ratio is as intended.

また、特許文献2では加熱炉内の複数箇所に酸素濃度検出器の検出端を直接挿入して酸素濃度を測定する技術が開示されている。   Patent Document 2 discloses a technique for measuring an oxygen concentration by directly inserting detection ends of an oxygen concentration detector at a plurality of locations in a heating furnace.

特開平7−103461号公報JP-A-7-103461 特開昭55−35837号公報JP 55-35837 A

連続加熱炉は複数の燃焼制御帯を備えているが、これら燃焼制御帯に供給される燃料ガス量は燃焼制御帯毎で異なっていることが一般的である。たとえば、各3〜4の燃焼制御帯を有する一般的な連続加熱炉では、最も装入側に近い燃焼制御帯に供給される燃料ガス量は、最も抽出側に近い燃焼制御帯に供給される燃料ガス量にくらべて5〜20倍程度多いのが普通である。このため燃料ガス流量が相対的に少ない燃焼制御帯の空気比の影響は、相対的に燃料ガス量が多い燃焼制御帯の状態に埋没してしまい、燃焼制御帯ごとに適正な空気比に調整することが困難であった。   Although the continuous heating furnace includes a plurality of combustion control zones, the amount of fuel gas supplied to these combustion control zones is generally different for each combustion control zone. For example, in a general continuous heating furnace having 3 to 4 combustion control zones, the amount of fuel gas supplied to the combustion control zone closest to the charging side is supplied to the combustion control zone closest to the extraction side. Usually, it is about 5 to 20 times larger than the amount of fuel gas. For this reason, the influence of the air ratio in the combustion control zone where the fuel gas flow rate is relatively small is buried in the state of the combustion control zone where the fuel gas amount is relatively large, and is adjusted to an appropriate air ratio for each combustion control zone. It was difficult to do.

相対的に燃料ガス量の供給が少ない抽出側の燃焼制御帯では、一般に鋼材表面の温度が高くなっており、鋼材の酸化が進みやすい温度条件であり、これによる鋼材酸化による鉄損失低減および粒界酸化による表面品質悪化を防止するという観点から、空気比制御の精度は重要である。さらに、最も抽出側の帯では抽出扉の開閉のたびに空気の炉内侵入が避けられないことも、これら抽出側の燃焼制御帯の空気比制御精度の重要性を増大させている。   In the extraction-side combustion control zone, where the supply of fuel gas is relatively small, the temperature of the steel material is generally high, and this is a temperature condition where the steel material is likely to oxidize. From the viewpoint of preventing surface quality deterioration due to field oxidation, the accuracy of air ratio control is important. Furthermore, the fact that the intrusion of air into the furnace is unavoidable every time the extraction door is opened and closed in the most extraction side belt increases the importance of the air ratio control accuracy of these extraction side combustion control zones.

省エネルギーや低NOxや鋼材酸化抑制を実現するためには、未燃が発生しない範囲でできるだけ1に近い低い空気比で燃焼させる必要がある。未燃が発生している状態では燃料の燃焼熱量を有効に使いきらないことを意味しており、省エネルギー上問題がある。燃焼空気の供給量が当量であると完全に混合がなされないことがあるため、通常加熱炉では空気比を1より高く設定している。一方で、空気比が1を超えることは余剰の酸素が発生することを意味しており、その酸素が燃焼空気中の窒素や鋼材と反応してNOx生成や鋼材酸化につながる。そのため、余剰の酸素はできるだけ少ないことが望ましい。   In order to realize energy saving, low NOx, and steel material oxidation suppression, it is necessary to burn at a low air ratio as close to 1 as possible without causing unburned. In the state where unburned has occurred, it means that the amount of combustion heat of the fuel cannot be used effectively, and there is a problem in terms of energy saving. When the supply amount of combustion air is equivalent, mixing may not be performed completely. Therefore, in an ordinary heating furnace, the air ratio is set higher than 1. On the other hand, if the air ratio exceeds 1, it means that excess oxygen is generated, and the oxygen reacts with nitrogen and steel in the combustion air, leading to NOx generation and steel oxidation. Therefore, it is desirable that the excess oxygen is as small as possible.

このようなことから、加熱炉においては空気比を1.2以下に設定することが一般的であり、1.05程度まで下げることが望ましい。しかし、加熱炉全体の排ガス酸素濃度から、燃料ガス量が著しく異なる複数の燃焼制御帯の空気比を決定する特許文献1等の従来技術では、各燃焼制御帯に適した空気比設定が困難であり、これに基づいて、省エネルギーや低NOx化の促進することには限界がある。   For this reason, it is common to set the air ratio to 1.2 or less in a heating furnace, and it is desirable to lower it to about 1.05. However, it is difficult to set an air ratio suitable for each combustion control zone in the conventional technology such as Patent Document 1 in which the air ratio of a plurality of combustion control zones having significantly different amounts of fuel gas is determined from the exhaust gas oxygen concentration of the entire heating furnace. There is a limit to promoting energy saving and NOx reduction based on this.

また、加熱炉に直接検出端を挿入して酸素濃度を測定する特許文献2等の従来技術では、蓄熱式切替燃焼バーナの特徴である緩慢燃焼の影響により未燃成分を含んだガスをサンプリングすることとなり、適正な酸素濃度を検出できないという問題がある。そのため、有効な空気比制御を実現することができない。また、サンプリング管を炉内に挿入して使用すると詰まの発生が不可避であることから、従来技術では計装設備の保守上の不都合も生じる。   Further, in the conventional technique such as Patent Document 2 in which the oxygen concentration is measured by directly inserting the detection end into the heating furnace, a gas containing unburned components is sampled due to the slow combustion that is a feature of the regenerative switching combustion burner. Therefore, there is a problem that an appropriate oxygen concentration cannot be detected. Therefore, effective air ratio control cannot be realized. In addition, since the clogging is unavoidable when the sampling tube is inserted into the furnace, the conventional technology also causes inconvenience in maintenance of the instrumentation equipment.

本発明は、少なくとも二つの燃焼制御帯に蓄熱式切替燃焼バーナを有する連続鋼材加熱炉において、燃料ガス流量が大きく異なる燃焼制御帯が混在していても、高い精度で適正空気比に制御できる連続鋼材加熱炉およびこれを用いた鋼材の加熱方法であり、従来よりも省エネルギー性と低NOx排出性に優れるとともに、鋼材酸化による鉄損失の低減も同時に達成できる技術を提供することを目的とする。   The present invention is a continuous steel furnace having a regenerative switching combustion burner in at least two combustion control zones, and can continuously control with high accuracy to an appropriate air ratio even if combustion control zones having greatly different fuel gas flow rates are mixed. A steel material heating furnace and a method for heating a steel material using the same, and an object of the present invention is to provide a technique that is superior in energy saving and low NOx emission than before, and that can simultaneously reduce iron loss due to steel material oxidation.

本発明は、少なくとも二つの燃焼制御帯に蓄熱式切替燃焼バーナを有し、前記燃焼制御帯の排ガス誘引系に排ガス中の酸素濃度を検出する検出器を備えた、連続熱間圧延用鋼材を所定の温度に加熱する連続多帯式のウォーキングビームを用いた連続鋼材加熱炉であって、前記蓄熱式切替燃焼バーナを有する燃焼制御帯毎の誘引排ガスヘッダ管に酸素濃度を検出する前記酸素濃度検出器と、当該検出器の検出値に基づいて炉内の空気比を制御する制御手段を設置することを特徴とする連続鋼材加熱炉である。   The present invention provides a steel material for continuous hot rolling comprising a regenerative switching combustion burner in at least two combustion control zones, and a detector for detecting an oxygen concentration in the exhaust gas in an exhaust gas induction system of the combustion control zone. A continuous steel heating furnace using a continuous multi-band type walking beam that is heated to a predetermined temperature, wherein the oxygen concentration is detected in an induced exhaust gas header pipe for each combustion control zone having the regenerative switching combustion burner A continuous steel heating furnace comprising a detector and a control means for controlling an air ratio in the furnace based on a detection value of the detector.

また、本発明は、少なくとも二つの燃焼制御帯に蓄熱式切替燃焼バーナを有し、前記燃焼制御帯の排ガス誘引系に排ガス中の酸素濃度を検出する検出器を備えた、連続熱間圧延用鋼材を所定の温度に加熱する連続多帯式のウォーキングビームを用いた連続鋼材加熱炉であって、蓄熱式切替燃焼バーナを有する燃焼制御帯の誘引排ガスが集合する誘引排ガス本管の、前記蓄熱式切替燃焼バーナを有する燃焼制御帯毎の誘引排ガスヘッダ管との合流部の下流側に、少なくとも2箇所以上の排ガス中の酸素濃度を検出する前記酸素濃度検出器と、当該検出器の検出値に基づいて炉内の空気比を制御する制御手段を設置することを特徴とする連続鋼材加熱炉である。   Further, the present invention is for continuous hot rolling, comprising a regenerative switching combustion burner in at least two combustion control zones, and having a detector for detecting an oxygen concentration in the exhaust gas in the exhaust gas induction system of the combustion control zone. A continuous steel heating furnace using a continuous multi-band type walking beam that heats a steel material to a predetermined temperature, wherein the stored heat of the induced exhaust gas main in which the induced exhaust gas of the combustion control zone having a regenerative switching combustion burner collects The oxygen concentration detector that detects the oxygen concentration in at least two or more exhaust gas downstream of the merged portion with the induced exhaust gas header pipe for each combustion control zone having the type switching combustion burner, and the detection value of the detector It is a continuous steel heating furnace characterized by installing a control means for controlling the air ratio in the furnace based on the above.

また、本発明は、前記前者の連続鋼材加熱炉を用いた鋼材加熱方法であって、前記燃焼制御装置の設定値が前記誘引排ガス中の酸素濃度の場合は、前記酸素濃度検出器により検出した前記燃焼制御帯の誘引排ガス中の酸素濃度が、設定した酸素濃度になるように、前記燃焼制御帯に供給する燃焼空気流量を前記燃焼制御帯毎に調整し前記燃焼制御装置の設定値が前記燃焼制御帯の空気比の場合は、燃料ガス種により定まるあらかじめ設定された理論空気量および理論排ガス量の値から前記設定された空気比に相当する前記誘引排ガス中の酸素濃度を演算により算出して、前記酸素濃度検出器により検出した前記燃焼制御帯毎の誘引排ガス中の酸素濃度が、この演算によって算出された誘引排ガス中酸素濃度になるように、前記燃焼制御帯に供給する燃焼空気流量を前記燃焼制御帯毎に調整することによって空気比を制御することを特徴とする鋼材加熱方法である
また、本発明は、前記後者の連続鋼材加熱炉を用いた鋼材加熱方法であって、前記誘引排ガス本管の最上流側の酸素濃度検出器よりも上流側に前記誘引排ガスヘッダ管との合流部があるすべての燃焼制御帯は一つの空気比制御対象範囲を構成し、且つ、隣り合う前記酸素濃度検出器の間に前記誘引排ガスヘッダ管との合流部があるすべての燃焼制御帯は、隣り合う前記酸素濃度検出器の間毎にそれぞれ別の一つの空気比制御対象範囲を構成し、前記燃焼制御装置の設定値が前記誘引排ガス中の酸素濃度の場合は、前記酸素濃度検出器により検出した前記空気比制御対象範囲毎の誘引排ガス中の酸素濃度が、設定した酸素濃度になるように、前記燃焼制御帯に供給する燃焼空気流量を前記燃焼制御帯毎に調整し、前記燃焼制御装置の設定値が前記燃焼制御帯の空気比の場合は、燃料ガス種により定まるあらかじめ設定された理論空気量および理論排ガス量の値から前記設定された空気比に相当する前記誘引排ガス中の酸素濃度を演算により算出して、前記酸素濃度検出器により検出した空気比制御対象範囲毎の誘引排ガス中の酸素濃度が、この演算によって算出された誘引排ガス中酸素濃度になるように、前記燃焼制御帯に供給する燃焼空気流量を前記燃焼制御帯毎に調整することによって空気比を制御することを特徴とする鋼材加熱方法である。
Further, the present invention is a steel material heating method using the former continuous steel material heating furnace, wherein when the set value of the combustion control device is an oxygen concentration in the induced exhaust gas, the oxygen concentration detector detects the oxygen concentration of attraction in the exhaust gas of each of the combustion control zones, so that the oxygen concentration set, the combustion of the combustion air flow rate supplied to the control zone to adjust for each of the combustion control zone, the combustion control device When the set value is the air ratio of the combustion control zone, the oxygen concentration in the induced exhaust gas corresponding to the set air ratio is determined from the preset theoretical air amount and theoretical exhaust gas amount determined by the fuel gas type. The combustion control zone is calculated such that the oxygen concentration in the induced exhaust gas for each combustion control zone detected by the oxygen concentration detector is the oxygen concentration in the induced exhaust gas calculated by this computation. A steel heating method characterized by controlling the air ratio by adjusting the supply combustion air flow rate for each of the combustion control zone.
Further, the present invention is a steel material heating method using the latter continuous steel material heating furnace, and is joined with the induced exhaust gas header pipe upstream from the oxygen concentration detector on the most upstream side of the induced exhaust gas main pipe. All combustion control zones with a portion constitute one air ratio control target range, and all combustion control zones with a junction with the induced exhaust gas header pipe between the adjacent oxygen concentration detectors, A separate air ratio control target range is configured for each adjacent oxygen concentration detector, and when the set value of the combustion control device is the oxygen concentration in the induced exhaust gas, the oxygen concentration detector The combustion air flow supplied to the combustion control zone is adjusted for each combustion control zone so that the oxygen concentration in the induced exhaust gas for each detected air ratio control target range becomes the set oxygen concentration, and the combustion control is performed. The set value of the device is In the case of the air ratio of the combustion control zone, the oxygen concentration in the induced exhaust gas corresponding to the set air ratio is calculated by calculation from the preset theoretical air amount and theoretical exhaust gas amount determined by the fuel gas type. Combustion air supplied to the combustion control zone so that the oxygen concentration in the induced exhaust gas for each air ratio control target range detected by the oxygen concentration detector becomes the oxygen concentration in the induced exhaust gas calculated by this calculation. The steel material heating method is characterized in that the air ratio is controlled by adjusting the flow rate for each combustion control zone.

本発明により、少なくとも二つの燃焼制御帯に蓄熱式切替燃焼バーナを有する連続鋼材加熱炉において、燃料ガス流量が著しく不均衡な燃焼制御帯が混在していても、従来よりも高い省エネルギー性と低NOx排出性が得られ、かつ、鋼材酸化による鉄損失の低減も同時に可能となる。   According to the present invention, in a continuous steel heating furnace having a regenerative switching combustion burner in at least two combustion control zones, even if there is a mixture of combustion control zones in which the fuel gas flow rate is significantly unbalanced, higher energy saving and lower than conventional ones. NOx emission properties can be obtained, and iron loss due to steel material oxidation can be simultaneously reduced.

本発明の実施の形態を図1および図2を用いて説明する。
図1に、本発明による連続鋼材加熱炉のうち、第一の発明の一例を示す。以下では四つの蓄熱式切替燃焼バーナを有する燃焼制御帯を持つ連続鋼材加熱炉を例に説明するが、本発明の適用は蓄熱式切替燃焼バーナを有する燃焼制御帯の数が四つに限られるものでなく、二つ以上であればいくつあってもよい。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows an example of the first invention among the continuous steel heating furnaces according to the present invention. In the following, a continuous steel furnace having a combustion control zone having four regenerative switching combustion burners will be described as an example, but the application of the present invention is limited to four combustion control zones having a regenerative switching combustion burner. It is not a thing and any number of two or more may be used.

蓄熱式切替燃焼バーナを有する燃焼制御帯からの誘引排ガスは、蓄熱式切替燃焼バーナを有する燃焼制御帯に一つずつ設けられるそれぞれの誘引排ガスヘッダ管19−a〜dを通り、誘引排ガス本管22にてすべての誘引排ガスが合流し、排ガス誘引ファン13を通り、煙突14より大気雰囲気に排出される。   The attraction exhaust gas from the combustion control zone having the regenerative switching combustion burner passes through the attraction exhaust gas header pipes 19-ad provided in the combustion control zone having the regenerative switching combustion burner one by one, and the attraction exhaust gas main pipe At 22, all the induced exhaust gases merge, pass through the exhaust gas induction fan 13, and are discharged from the chimney 14 to the atmosphere.

本発明のうち第一の発明は以下によって構成される。すなわち、誘引排ガスヘッダ管19a〜dに設置された酸素濃度検出器15a〜d、並びに、これら酸素濃度検出器15a〜dからの入力信号、燃料ガス用流量検出器5(図示省略)の入力信号、燃焼空気用流量検出器7(図示省略)からの入力信号及び燃焼空気用流量調節弁8(図示省略)への出力信号を送信することができてかつ、それらの演算機能を有する燃焼制御装置16から構成される。   The first invention of the present invention is constituted as follows. That is, the oxygen concentration detectors 15a to 15d installed in the induced exhaust gas header pipes 19a to 19d, the input signals from these oxygen concentration detectors 15a to 15d, and the input signal of the fuel gas flow rate detector 5 (not shown). A combustion control apparatus capable of transmitting an input signal from the combustion air flow rate detector 7 (not shown) and an output signal to the combustion air flow rate adjusting valve 8 (not shown) and having an arithmetic function thereof 16 is composed.

燃焼制御装置16は加熱炉運転者または加熱炉用プロコンから空気比の設定値または誘引排ガス中酸素濃度の設定値を受け取る。この設定値は燃焼制御帯毎に異なる値を設定してもよいし、すべての燃焼制御帯で同じ値を設定してもよい。燃焼制御装置16は酸素濃度検出器15a〜dの値がこれら設定された誘引排ガス中酸素濃度になるように、酸素濃度検出器15a〜dと同一の燃焼制御帯の燃焼空気用流量調節弁8を調整する。燃焼制御装置16に空気比が設定された場合には、燃料ガス種により定まるあらかじめ設定された理論空気量および理論排ガス量の値から設定された空気比に相当する排ガス中酸素濃度を演算により算出して、酸素濃度検出器15a〜dの値がこの演算によって算出された誘引排ガス中酸素濃度になるように、酸素濃度検出器15a〜dと組み合わせられた燃焼制御帯の燃焼空気用流量調節弁10a〜dを調整する。   The combustion control device 16 receives the set value of the air ratio or the set value of the oxygen concentration in the induced exhaust gas from the furnace operator or the heating furnace control computer. A different value may be set for each combustion control zone, or the same value may be set for all combustion control zones. The combustion controller 16 controls the combustion air flow rate control valve 8 in the same combustion control zone as the oxygen concentration detectors 15a to 15d so that the values of the oxygen concentration detectors 15a to 15d become the oxygen concentration in the induced exhaust gas thus set. Adjust. When the air ratio is set in the combustion control device 16, the oxygen concentration in the exhaust gas corresponding to the air ratio set based on the theoretical air amount and theoretical exhaust gas amount set in advance determined by the fuel gas type is calculated by calculation. Then, the flow rate control valve for the combustion air in the combustion control zone combined with the oxygen concentration detectors 15a to 15d so that the value of the oxygen concentration detectors 15a to 15d becomes the oxygen concentration in the induced exhaust gas calculated by this calculation. Adjust 10a-d.

上記に説明した本発明のうち第一の発明によれば、蓄熱式切替燃焼バーナを有する複数の燃焼制御帯の空気比を個別に所望の値に制御することができるため、従来技術では困難であった燃料ガス流量が著しく不均衡な燃焼制御帯が混在している場合の空気比制御が容易になる。そのため、省エネルギー性と低NOx排出性に優れるとともに、鋼材酸化による鉄損失の低減同時に達成できる。   According to the first aspect of the present invention described above, the air ratio of the plurality of combustion control zones having the regenerative switching combustion burner can be individually controlled to a desired value. The air ratio control is facilitated when there is a mixture of combustion control zones in which the fuel gas flow rate is significantly unbalanced. Therefore, it is excellent in energy saving property and low NOx emission property, and at the same time, reduction of iron loss due to steel material oxidation can be achieved.

続いて、図2を用いて本発明による連続鋼材加熱炉における空気比制御装置の第二の発明の一例を示す。以下では四つの蓄熱式切替燃焼バーナを有する燃焼制御帯を持つ連続鋼材加熱炉であり、誘引排ガス本管22に二つの酸素濃度検出器15a、15bを設置した例について説明する。第二の発明の適用は蓄熱式切替燃焼バーナを有する燃焼制御帯の数が四つに限られるものでなく、二つ以上であればいくつあってもよい。また、酸素濃度検出器も二つに限られるものではなく、二つ以上であればいくつあってもよく、合流部に一つずつ設置してもよい。ただし、酸素濃度検出器の数は蓄熱式切替燃焼バーナを有する燃焼制御帯と同数でもよいがその数を超える必要はない。   Then, an example of the 2nd invention of the air ratio control apparatus in the continuous steel material heating furnace by this invention is shown using FIG. Hereinafter, an example in which a continuous steel heating furnace having a combustion control zone having four regenerative switching combustion burners and two oxygen concentration detectors 15a and 15b installed in the induced exhaust gas main pipe 22 will be described. The application of the second invention is not limited to four combustion control zones having a regenerative switching combustion burner, and any number of combustion control zones may be used as long as it is two or more. Also, the number of oxygen concentration detectors is not limited to two, and any number of oxygen concentration detectors may be used as long as there are two or more, and one oxygen concentration detector may be provided at the junction. However, the number of oxygen concentration detectors may be the same as the number of combustion control zones having the regenerative switching combustion burner, but it is not necessary to exceed that number.

蓄熱式切替燃焼バーナを有する燃焼制御帯からの誘引排ガスは、蓄熱式切替燃焼バーナを有する燃焼制御帯に一つずつ設けられる誘引排ガスヘッダ管19a、19b、19c、19dを通り、誘引排ガス本管22にてすべての誘引排ガスが合流し、排ガス誘引ファン13を通り、煙突14より大気雰囲気に排出される。   The induced exhaust gas from the combustion control zone having the regenerative switching combustion burner passes through the induced exhaust gas header pipes 19a, 19b, 19c, 19d provided one by one in the combustion control zone having the regenerative switching combustion burner, and the induced exhaust gas main pipe At 22, all the induced exhaust gases merge, pass through the exhaust gas induction fan 13, and are discharged from the chimney 14 to the atmosphere.

本発明による空気比制御装置は以下によって構成される。すなわち、誘引排ガスヘッダ管19a、19b、19c、19dにそれぞれ設置される誘引排ガス用流量検出器9a、9b、9c、9d、誘引排ガス本管22に複数設置された酸素濃度検出器15a、15b、並びに、これら酸素濃度検出器15a、15bからの入力信号、燃料ガス用流量検出器5(図示省略)の入力信号、燃焼空気用流量検出器7(図示省略)からの入力信号および燃焼空気用流量調節弁8(図示省略)への出力信号を送信することができてかつ、それらの演算機能を有する燃焼制御装置16、から構成される。   The air ratio control device according to the present invention is constituted as follows. That is, the flow rate detectors 9a, 9b, 9c, 9d for induced exhaust gas installed in the induced exhaust gas header pipes 19a, 19b, 19c, 19d, respectively, and the oxygen concentration detectors 15a, 15b installed in the induced exhaust gas main pipe 22 in a plurality. In addition, input signals from the oxygen concentration detectors 15a and 15b, input signals from the fuel gas flow rate detector 5 (not shown), input signals from the combustion air flow rate detector 7 (not shown), and combustion air flow rate. The combustion control device 16 is configured to be able to transmit an output signal to the control valve 8 (not shown) and to have a calculation function thereof.

第二の発明の連続鋼材加熱炉では、蓄熱式切替燃焼バーナを有する複数の燃焼制御帯の誘引排ガスが合流した後に、誘引排ガス中の酸素濃度を検出する構成になっているため、すべての蓄熱式切替燃焼バーナを有する燃焼制御帯を個別に制御することはできないが、燃料ガス流量レベルが均衡している蓄熱式切替燃焼バーナを有する燃焼制御帯を同一の制御対象範囲となるように酸素濃度検出器を配置することで、蓄熱式切替燃焼バーナを有する燃焼制御帯のすべての誘引排ガスヘッダに酸素濃度検出器を設置した場合と同等の空気比制御が可能となる。   In the continuous steel heating furnace according to the second aspect of the present invention, since the induced exhaust gas of the plurality of combustion control zones having the regenerative switching combustion burner is joined, the oxygen concentration in the induced exhaust gas is detected. Although the combustion control zone with the combustion switching burner cannot be individually controlled, the oxygen concentration is set so that the combustion control zone with the regenerative switching combustion burner in which the fuel gas flow rate level is balanced is within the same control target range. By disposing the detector, the air ratio control equivalent to the case where the oxygen concentration detectors are installed in all the induced exhaust gas headers in the combustion control zone having the regenerative switching combustion burner becomes possible.

空気比制御対象範囲は次のように定義される。誘引排ガス本管22の最上流側の酸素濃度検出器よりも上流側に誘引排ガスヘッダ管との合流部があるすべての燃焼制御帯は一つの空気比制御対象範囲を構成する。また、最上流側の酸素濃度検出器と最上流側から二番目の酸素濃度検出器との間に誘引排ガスヘッダ管との合流部があるすべての燃焼制御帯は別の一つの空気比制御対象範囲を構成する。最上流側から二番目の酸素濃度検出器と最上流側から三番目の酸素濃度検出器との間に誘引排ガスヘッダ管との合流部があるすべての燃焼制御帯はさらにまた別の一つの空気比制御対象範囲を構成し、以下同様である。図2においては、空気比制御対象範囲は二つであり、誘引排ガスヘッダ管19aと19bに接続されている燃焼制御帯が一つの空気比制御対象範囲を構成し、誘引排ガスヘッダ管19cと19dに接続されている燃焼制御帯がもう一つの空気比制御対象範囲を構成している。   The air ratio control target range is defined as follows. All combustion control zones in which the joining portion with the attraction exhaust gas header pipe is upstream of the oxygen concentration detector on the most upstream side of the attraction exhaust gas main pipe 22 constitutes one air ratio control target range. In addition, all combustion control zones that have a junction with the induced exhaust gas header pipe between the oxygen concentration detector on the most upstream side and the oxygen concentration detector on the second most upstream side are separate air ratio control targets. Configure the range. All combustion control zones with a junction with the induced exhaust gas header pipe between the second oxygen concentration detector from the uppermost stream side and the third oxygen concentration detector from the uppermost stream side are still another one air The ratio control target range is configured, and so on. In FIG. 2, the air ratio control target range is two, and the combustion control zone connected to the induced exhaust gas header pipes 19a and 19b constitutes one air ratio control target range, and the induced exhaust gas header pipes 19c and 19d. The combustion control zone connected to the other part constitutes another air ratio control target range.

燃焼制御装置16は加熱炉運転者または加熱炉用プロコンから空気比の設定値または誘引排ガス中酸素濃度の設定値を受け取る。この設定値は空気比制御対象範囲毎に異なる値を設定してもよいし、すべての空気比制御対象範囲で同じ値を設定してもよい。燃焼制御装置16は酸素濃度検出器15aおよび15bの値がこれら設定された誘引排ガス中酸素濃度から算出される各酸素濃度検出器の狙い値になるように、燃焼空気用流量調節弁8を調整する。燃焼制御装置16に空気比が設定された場合には、燃料ガス種により定まるあらかじめ設定された理論空気量および理論排ガス量の値から設定された空気比に相当する排ガス中酸素濃度を演算により算出して、酸素濃度検出器15aおよび15bの値がこの演算によって算出された誘引排ガス中酸素濃度になるように、燃焼空気用流量調節弁8を調整する。   The combustion control device 16 receives the set value of the air ratio or the set value of the oxygen concentration in the induced exhaust gas from the furnace operator or the heating furnace control computer. A different value may be set for each air ratio control target range, or the same value may be set for all air ratio control target ranges. The combustion control device 16 adjusts the combustion air flow control valve 8 so that the values of the oxygen concentration detectors 15a and 15b become the target values of the oxygen concentration detectors calculated from the set oxygen concentrations in the induced exhaust gas. To do. When the air ratio is set in the combustion control device 16, the oxygen concentration in the exhaust gas corresponding to the air ratio set based on the theoretical air amount and theoretical exhaust gas amount set in advance determined by the fuel gas type is calculated by calculation. Then, the combustion air flow rate control valve 8 is adjusted so that the values of the oxygen concentration detectors 15a and 15b become the oxygen concentration in the induced exhaust gas calculated by this calculation.

以下に、各酸素濃度検出器における狙い値の算出方法を説明する。説明に際して次の記号を定義する。誘引排ガス用流量検出器9a、9b、9c、9dによって検出される誘引排ガス流量をそれぞれVa、Vb、Vc、Vdとし、酸素濃度検出器15a、15bでの検出値をO2a、O2bとし、酸素濃度検出器15a、15bでの狙い酸素濃度値をO2a’、O2b’とし、誘引排ガスヘッダ管19aと19bに接続される燃焼制御帯の狙い酸素濃度値をO2a’’、誘引排ガスヘッダ管19cと19dに接続される燃焼制御帯の狙い酸素濃度値をO2b’’とする。   Below, the calculation method of the target value in each oxygen concentration detector is demonstrated. In the explanation, the following symbols are defined. The induced exhaust gas flow rates detected by the induced exhaust gas flow rate detectors 9a, 9b, 9c, and 9d are Va, Vb, Vc, and Vd, respectively, and the detected values at the oxygen concentration detectors 15a and 15b are O2a and O2b, respectively. The target oxygen concentration values at the detectors 15a and 15b are O2a ′ and O2b ′, the target oxygen concentration value of the combustion control zone connected to the induced exhaust gas header pipes 19a and 19b is O2a ″, and the induced exhaust gas header pipes 19c and 19d. The target oxygen concentration value of the combustion control zone connected to is O2b ″.

まず、誘引排ガス本管22の最上流側の酸素濃度検出器15aの狙い酸素濃度値O2a’は、
O2a’=O2a’’ ・・・(1)
となる。この空気比制御対象範囲の誘引排ガスは誘引排ガス本管22の最上流側に合流しているため、他の空気比制御対象範囲の誘引排ガスと合流することなく酸素濃度検出器15aにて誘引排ガス中の酸素濃度を検出できるため、燃焼制御帯の狙い酸素濃度値O2a’’そのものに狙い値O2a’を近づけるように当該空気比制御対象範囲の燃焼空気流量調節弁8を制御すればよい。
First, the target oxygen concentration value O2a ′ of the oxygen concentration detector 15a on the most upstream side of the induced exhaust gas main pipe 22 is:
O2a ′ = O2a ″ (1)
It becomes. Since the induced exhaust gas in the air ratio control target range is merged with the most upstream side of the induced exhaust main 22, the oxygen concentration detector 15 a does not attract the induced exhaust gas in the other air ratio control target range. Therefore, the combustion air flow rate adjustment valve 8 in the air ratio control target range may be controlled so that the target value O2a ′ approaches the target oxygen concentration value O2a ″ itself of the combustion control zone.

次に、誘引排ガス本管22の最上流側から二番目の酸素濃度検出器15bの狙い酸素濃度値O2b’は、
O2b’=((Va+Vb)×O2a+(Vc+Vd)×O2b’’)
/(Va+Vb+Vc+Vd) ・・・(2)
となる。この空気比制御対象範囲の誘引排ガスは誘引排ガス本管22の中間部に合流しているため、他の空気比制御対象範囲の誘引排ガスと混合された状態で酸素濃度検出器15bにて誘引排ガス中の酸素濃度を検出しているため、当該空気比制御対象範囲の誘引排ガスの酸素濃度を制御するためには、この上流側の空気比制御対象範囲の誘引排ガスの酸素濃度を考慮した狙い値設定が必要となる。
Next, the target oxygen concentration value O2b ′ of the second oxygen concentration detector 15b from the most upstream side of the induced exhaust gas main pipe 22 is
O2b ′ = ((Va + Vb) × O2a + (Vc + Vd) × O2b ″)
/ (Va + Vb + Vc + Vd) (2)
It becomes. Since the induced exhaust gas in the air ratio control target range merges in the middle part of the induced exhaust gas main pipe 22, the oxygen concentration detector 15 b causes the induced exhaust gas to be mixed with the induced exhaust gas in the other air ratio control target range. In order to control the oxygen concentration of the induced exhaust gas in the air ratio control target range, the target value in consideration of the oxygen concentration of the induced exhaust gas in the upstream air ratio control target range is detected. Setting is required.

誘引排ガス本管22に酸素濃度検出器15が三つ以上設置されている場合の各酸素濃度検出器での狙い酸素濃度値の算出方法は式(2)と同様に算出することができる。すなわち、一つ上流側の酸素濃度検出器を通過する誘引排ガスの流量と同じく一つ上流側の酸素濃度検出器を通過する誘引排ガス中の酸素濃度との積に、制御対象である空気比制御対象範囲の誘引排ガス流量と同じく制御対象である空気比制御対象範囲の誘引排ガス中酸素濃度の狙い値との積を加え、それを当該酸素濃度検出器を通過する全誘引排ガス量を除した値が狙い値となる。   The calculation method of the target oxygen concentration value in each oxygen concentration detector when three or more oxygen concentration detectors 15 are installed in the induced exhaust gas main pipe 22 can be calculated in the same manner as Equation (2). That is, the air ratio control that is the object of control is the product of the flow rate of the induced exhaust gas passing through one upstream oxygen concentration detector and the oxygen concentration in the induced exhaust gas passing through one upstream oxygen concentration detector. The value obtained by adding the product of the target exhaust gas flow rate in the target range and the target value of the oxygen concentration in the target exhaust gas in the target air ratio control range, which is the control target, and dividing the product by the total amount of the exhaust gas that passes through the oxygen concentration detector. Is the target value.

上記に説明した本発明によれば、蓄熱式切替燃焼バーナを有する複数の燃焼制御帯の空気比を空気比制御対象範囲別に所望の値に制御することができるため、燃料ガス流量が同レベルの燃焼制御帯により一つの空気比制御対象範囲を構成させることで、従来技術では困難であった燃料ガス流量が著しく不均衡な燃焼制御帯が混在している場合の空気比制御が容易になる。そのため、省エネルギー性と低NOx排出性に優れるとともに、鋼材酸化による鉄損失の低減も同時に達成できる。   According to the present invention described above, since the air ratio of the plurality of combustion control zones having the regenerative switching combustion burner can be controlled to a desired value for each air ratio control target range, the fuel gas flow rate is the same level. By configuring one air ratio control target range by the combustion control zone, it becomes easy to control the air ratio when there is a mixture of combustion control zones in which the fuel gas flow rate is extremely unbalanced, which was difficult in the prior art. Therefore, it is excellent in energy saving property and low NOx emission property, and at the same time, reduction of iron loss due to steel material oxidation can be achieved.

以下に、第一の発明として実施例1、第二の発明として実施例2、並びに、比較例1および2を用いて本発明を説明し、これらの実施条件および評価結果を表1〜3において比較して示す。   Hereinafter, the present invention will be described using Example 1 as the first invention, Example 2 as the second invention, and Comparative Examples 1 and 2, and these implementation conditions and evaluation results are shown in Tables 1 to 3. Shown in comparison.

(実施例1)
実施例1では第一の発明に準じて連続鋼材加熱炉として、それぞれ予熱帯、第一加熱帯、第二加熱帯および均熱帯を有する連続多帯式のウォーキングビーム加熱炉を用いた。燃焼バーナはすべて蓄熱式切替燃焼バーナであり、加熱炉の側壁に配置されている。燃料ガスにはコークス炉ガスを用いた。
Example 1
In Example 1, a continuous multi-zone walking beam heating furnace having a pre-tropical zone, a first heating zone, a second heating zone, and a soaking zone was used as the continuous steel heating furnace in accordance with the first invention. The combustion burners are all regenerative switching combustion burners and are arranged on the side walls of the heating furnace. Coke oven gas was used as the fuel gas.

加熱される鋼材は長さが5.5m〜12m、幅が0.8m〜2.0m、厚みが220mm〜250mmのスラブ群であり、それらの装入温度の範囲は常温〜600℃、目標とする抽出時の加熱温度の範囲は1150℃〜1220℃であった。また、これらスラブ群の加熱時間は120分〜180分の範囲であった。   The steel material to be heated is a slab group having a length of 5.5 to 12 m, a width of 0.8 to 2.0 m, and a thickness of 220 to 250 mm. The range of the heating temperature during extraction was 1150 ° C to 1220 ° C. Moreover, the heating time of these slab groups was in the range of 120 minutes to 180 minutes.

各燃焼制御帯からの各誘引排ガスヘッダには、各誘引排ガス用流量調節弁の下流側に、それぞれジルコニア式の酸素濃度検出器15a〜dが取り付けられ、その出力信号は燃焼制御装置16に入力されている。燃焼制御装置16はこのほかにも、各燃焼制御帯に燃料ガスを供給する燃料ガスヘッダに取り付けられた燃料ガス用流量検出器からの出力信号、各燃焼制御帯に燃焼空気を供給する燃焼空気用ヘッダに取り付けられた燃料空気用流量検出器からの出力信号、および、各燃焼制御帯から誘引排ガスを排気する誘引排ガス用ヘッダに取り付けられた誘引排ガス用流量検出器からの出力信号が、入力されている。さらに、燃焼制御装置16は燃焼制御帯毎の空気比および炉温の設定値が入力されており、これら入力と前記入力信号に基づいて、燃料ガスを供給する燃料ガスヘッダに取り付けられた燃料ガス用流量調節弁を調節して炉温を設定値になるように、かつ、燃焼空気を供給する燃焼空気用ヘッダに取り付けられた燃料空気用流量調節弁を調節して空気比を設定値になるように制御する。ここでの制御にはパラメータ調整された一般的なPID制御を用いた。   Zirconia-type oxygen concentration detectors 15a to 15d are respectively attached to the induced exhaust gas headers from the combustion control zones on the downstream side of the flow control valves for the induced exhaust gas, and output signals thereof are input to the combustion control device 16. Has been. In addition to this, the combustion control device 16 outputs an output signal from a fuel gas flow detector attached to a fuel gas header that supplies fuel gas to each combustion control zone, and combustion air that supplies combustion air to each combustion control zone. The output signal from the flow detector for fuel air attached to the header and the output signal from the flow detector for induced exhaust gas that is attached to the header for induced exhaust gas that exhausts the induced exhaust gas from each combustion control zone are input. ing. Further, the combustion control device 16 receives the set values of the air ratio and the furnace temperature for each combustion control zone, and for the fuel gas attached to the fuel gas header that supplies the fuel gas based on these inputs and the input signal. Adjust the flow rate control valve to set the furnace temperature to the set value, and adjust the fuel air flow rate control valve attached to the combustion air header that supplies the combustion air to set the air ratio to the set value To control. For this control, general PID control with parameter adjustment was used.

各燃焼制御帯の設定空気比を1.05とし、前述の空気比制御装置を用いて空気比制御を施した加熱操業を約50時間実施して、250本の鋼材を加熱した。各燃焼制御帯の実績の空気比は1.03〜1.08の範囲で制御され、概ね設定空気比で加熱することができた。そのときの各燃焼制御帯に供給された燃料ガス量は図3の通りであった。予熱帯と均熱帯の燃料ガス流量の比は12倍程度であった。この間の燃料原単位は0.921MJ/kgであった。鋼材の酸化スケール層厚みは鉄換算厚みで580μmであり、表面品質上の欠陥は発生しなかった。また、この間に煙突部でNOx濃度を測定した結果、平均で45ppm(酸素濃度11%換算値)であった。   The set air ratio of each combustion control zone was set to 1.05, and the heating operation in which the air ratio control was performed using the above-described air ratio control apparatus was carried out for about 50 hours to heat 250 steel materials. The actual air ratio of each combustion control zone was controlled in the range of 1.03 to 1.08, and it was possible to heat at a set air ratio. The amount of fuel gas supplied to each combustion control zone at that time was as shown in FIG. The ratio of the fuel gas flow rate between the pre-tropical zone and the soaking zone was about 12 times. The fuel consumption rate during this period was 0.921 MJ / kg. The thickness of the oxide scale layer of the steel material was 580 μm in terms of iron, and no defects on the surface quality occurred. Moreover, as a result of measuring NOx density | concentration in a chimney part during this, it was 45 ppm (oxygen concentration 11% conversion value) on the average.

(実施例2)
連続鋼材加熱炉には、実施例1と同じ鋼材の搬送ラインをはさんで上下にそれぞれ予熱帯、第一加熱帯、第二加熱帯および均熱帯を有する連続多帯式のウォーキングビーム加熱炉を用いた。燃焼バーナはすべて蓄熱式切替燃焼バーナであり、加熱炉の側壁に配置されている。燃料ガスにはコークス炉ガスを用いた。
(Example 2)
The continuous steel heating furnace includes a continuous multi-zone walking beam heating furnace having a pre-tropical zone, a first heating zone, a second heating zone, and a soaking zone above and below the same steel material conveyance line as in Example 1. Using. The combustion burners are all regenerative switching combustion burners and are arranged on the side walls of the heating furnace. Coke oven gas was used as the fuel gas.

加熱される鋼材は長さが5.5m〜12m、幅が0.8m〜2.0m、厚みが220mm〜250mmのスラブ群であり、それらの装入温度の範囲は常温〜600℃、目標とする抽出時の加熱温度の範囲は1150℃〜1220℃であった。また、これらスラブ群の加熱時間は120分〜180分の範囲であった。   The steel material to be heated is a slab group having a length of 5.5 to 12 m, a width of 0.8 to 2.0 m, and a thickness of 220 to 250 mm. The range of the heating temperature during extraction was 1150 ° C to 1220 ° C. Moreover, the heating time of these slab groups was in the range of 120 minutes to 180 minutes.

誘引排ガス本管には二つのジルコニア式の酸素濃度検出器が取り付けられている。各燃焼制御帯からの誘引排ガスヘッダと誘引排ガス本管の合流点と酸素濃度検出器との位置関係は図4に示す通りである。すなわち、本実施例における空気比制御対象範囲は二つであり、予熱帯と第一加熱帯が一つの空気比制御対象範囲を構成し、また、第二加熱帯と均熱帯がもう一つの空気比制御対象範囲を構成する。   Two zirconia-type oxygen concentration detectors are attached to the induced exhaust gas main. FIG. 4 shows the positional relationship between the invitation exhaust gas header from each combustion control zone, the junction of the induction exhaust gas main, and the oxygen concentration detector. That is, there are two air ratio control target ranges in this embodiment, the pre-tropical zone and the first heating zone constitute one air ratio control target range, and the second heating zone and the soaking zone are another air. The ratio control target range is configured.

燃焼制御装置は、二つの酸素濃度検出器からの出力信号が入力され、かつ、各燃焼制御帯に燃料ガスを供給する燃料ガスヘッダに取り付けられた燃料ガス用流量検出器からの出力信号が入力され、かつ、各燃焼制御帯に燃焼空気を供給する燃焼空気用ヘッダに取り付けられた燃料空気用流量検出器からの出力信号が入力され、かつ、各燃焼制御帯から誘引排ガスを排気する誘引排ガス用ヘッダに取り付けられた誘引排ガス用流量検出器からの出力信号が入力されている。さらに、燃焼制御装置は空気比制御対象範囲毎の空気比および炉温の設定値が入力されており、これら入力と前記入力信号に基づいて、燃料ガスを供給する燃料ガスヘッダに取り付けられた燃料ガス用流量調節弁を調節して炉温を設定値になるように制御し、かつ、燃焼空気を供給する燃焼空気用ヘッダに取り付けられた燃料空気用流量調節弁を調節して空気比を設定値になるように制御する。ここでの制御にも実施例1と同様にパラメータ調整された一般的なPID制御を用いた。   The combustion control device receives the output signals from the two oxygen concentration detectors and the output signals from the fuel gas flow rate detectors attached to the fuel gas header that supplies the fuel gas to each combustion control zone. And for the induced exhaust gas that receives the output signal from the flow detector for fuel air that is attached to the header for combustion air that supplies the combustion air to each combustion control zone, and exhausts the induced exhaust gas from each combustion control zone An output signal is input from the flow rate detector for attracting exhaust gas attached to the header. Further, the combustion control device is inputted with set values of the air ratio and the furnace temperature for each air ratio control target range, and based on these inputs and the input signal, the fuel gas attached to the fuel gas header for supplying the fuel gas Adjust the flow rate control valve to control the furnace temperature to the set value, and adjust the fuel air flow rate control valve attached to the combustion air header that supplies the combustion air to set the air ratio Control to become. For this control, general PID control in which parameters were adjusted as in the first embodiment was used.

各燃焼制御帯の設定空気比を1.05とし、前述の空気比制御装置を用いて空気比制御を施した加熱操業を約70時間実施して、350本の鋼材を加熱した。各燃焼制御帯の実績の空気比はどちらの酸素濃度検出器の値も1.03〜1.07の範囲で制御され、概ね設定空気比で加熱することができた。そのときの各燃焼制御帯に供給された燃料ガス量は実施例1と同様に図3の通りであった。それぞれの空気比制御対象範囲内での燃料ガス流量の比は6倍程度であった。この間の燃料原単位は0.925MJ/kgであった。鋼材の酸化スケール層厚みは鉄換算厚みで590μmであり、表面品質上の欠陥は発生しなかった。また、この間に煙突部でNOx濃度を測定した結果、平均で47ppm(酸素濃度11%換算値)であった。   The set air ratio of each combustion control zone was set to 1.05, and the heating operation in which the air ratio control was performed using the above-described air ratio control apparatus was carried out for about 70 hours to heat 350 steel materials. The actual air ratio of each combustion control zone was controlled within the range of 1.03 to 1.07 for both oxygen concentration detectors, and it was possible to heat at a set air ratio. The amount of fuel gas supplied to each combustion control zone at that time was as shown in FIG. The ratio of the fuel gas flow rate within each air ratio control target range was about 6 times. During this time, the fuel consumption rate was 0.925 MJ / kg. The thickness of the oxide scale layer of the steel material was 590 μm in terms of iron, and no defects on the surface quality occurred. Moreover, as a result of measuring NOx density | concentration in a chimney during this period, it was 47 ppm (oxygen concentration 11% conversion value) on average.

(比較例1)
一方、実施例と同様のスラブ群条件で同一の加熱炉において従来技術による燃焼制御方法を実施した。従来技術による空気比制御装置では、誘引排ガス本管にすべて燃焼制御帯の誘引排ガスヘッダ管が合流した位置よりも下流に一つの酸素濃度検出器を設けて、すべての燃焼制御帯を一つの空気比制御対象範囲として空気比制御した。
(Comparative Example 1)
On the other hand, the combustion control method by a prior art was implemented in the same heating furnace on the same slab group conditions as the Example. In the air ratio control device according to the prior art, one oxygen concentration detector is provided downstream from the position where the induced exhaust gas header pipe of the combustion control zone is joined to the induced exhaust gas main pipe, and all the combustion control zones are made up of one air. The air ratio was controlled as the ratio control target range.

設定空気比を1.05とし、約30時間、150本の鋼材を対象に従来技術による空気比制御方法を実施したところ、実績の各燃焼制御帯の空気比は1.03〜1.15となり燃焼負荷が低下したときに空気比が高まる傾向が見られた。侵入空気などの影響による余剰の酸素があり空気比が高まる燃焼制御帯があっても、すべて燃焼制御帯の誘引排ガスが合流したあとの一点の酸素濃度で制御しているために、ガス量が相対的に少ない第二加熱帯と均熱帯の空気比を適正に制御できなかった。燃料原単位は0.984MJ/kgであった。鋼材の酸化スケール層厚みは鉄換算厚みで670μmとなった。加熱・圧延直後は表面品質上の欠陥は見られなかったものの、その後、鋼材表面酸化起因のめっき不良の表面欠陥が発生した。この間の煙突部でのNOx濃度の測定結果は平均で65ppm(酸素濃度11%換算値)であった。排出基準は満足したものの本発明に比べて排出濃度が高まった。   When the air ratio control method according to the prior art was performed on 150 steel materials for about 30 hours with a set air ratio of 1.05, the actual air ratio of each combustion control zone was 1.03 to 1.15. There was a tendency for the air ratio to increase when the combustion load decreased. Even if there is a combustion control zone where there is surplus oxygen due to the influence of the intruding air and the air ratio increases, all of the control is performed with the oxygen concentration at one point after the induced exhaust gas in the combustion control zone joins, so the amount of gas is The air ratio of the relatively few second heating zones and the soaking zone could not be controlled properly. The fuel consumption rate was 0.984 MJ / kg. The oxide scale layer thickness of the steel was 670 μm in terms of iron. Immediately after heating and rolling, no defects in surface quality were observed, but thereafter, surface defects due to poor plating due to steel surface oxidation occurred. During this time, the measurement result of the NOx concentration at the chimney was 65 ppm (oxygen concentration 11% conversion value) on average. Although the emission standard was satisfied, the emission concentration increased compared to the present invention.

(比較例2)
また、予熱帯、第一加熱帯、第二加熱帯および均熱帯の天井から各1本の酸素濃度計を炉内に挿入し、各燃焼帯の空気比制御を試みた。しかし、畜熱式切替燃焼バーナ特有の緩慢燃焼の影響により、未燃成分と酸素とが双方検出され、酸素濃度が時間的に大きく変動したため、空気比制御に至らなかった。
(Comparative Example 2)
In addition, one oxygen concentration meter was inserted into the furnace from the pretropical zone, the first heating zone, the second heating zone, and the soaking zone, and the air ratio control of each combustion zone was attempted. However, the unburned component and oxygen are both detected and the oxygen concentration fluctuates with time due to the slow combustion characteristic of the livestock heat switching combustion burner, so that the air ratio control cannot be achieved.

以上述べたように、本発明は、第1の発明、第二の発明ともに、従来よりも省エネルギー性と低NOx排出性に優れた結果が得られたとともに、鋼材酸化による鉄損失量も低減し、さらに鋼材酸化による表面欠陥を回避した。   As described above, according to the present invention, both the first invention and the second invention have obtained results superior in energy saving and low NOx emission than the conventional one, and the iron loss due to steel material oxidation is also reduced. Furthermore, surface defects due to steel material oxidation were avoided.

Figure 0004653689
Figure 0004653689

Figure 0004653689
Figure 0004653689

Figure 0004653689
Figure 0004653689

本発明の連続鋼材加熱炉における空気比制御装置の部分の一形態を示す図である。It is a figure which shows one form of the part of the air ratio control apparatus in the continuous steel material heating furnace of this invention. 本発明の連続鋼材加熱炉における空気比制御装置の部分の一形態を示す図である。It is a figure which shows one form of the part of the air ratio control apparatus in the continuous steel material heating furnace of this invention. 本発明の実施例において、各燃焼制御帯に供給した燃料ガス流量を示す図である。In the Example of this invention, it is a figure which shows the fuel gas flow volume supplied to each combustion control zone. 本発明の実施例である連続鋼材加熱炉を説明する図である。It is a figure explaining the continuous steel material heating furnace which is an Example of this invention. 従来技術による連続鋼材加熱炉を説明する図である。It is a figure explaining the continuous steel material heating furnace by a prior art.

符号の説明Explanation of symbols

1a、1b、1c、1d、1e、1f バーナ
2a、2b、2c、2d、2e、2f 燃料ガス用切替弁
3a、3b、3c、3d、3e、3f 燃焼空気用切替弁
4a、4b、4c、4d、4e、4f 誘引排ガス用切替弁
5 燃料ガス用流量検出器
6 燃料ガス用流量調節弁
7 燃焼空気用流量検出器
8 燃焼空気用流量調節弁
9、9a、9b、9c、9d 誘引排ガス用流量検出器
10、10a、10b、10c、10d 誘引排ガス用流量調節弁
11 くせとり弁
12 燃焼空気ブロア
13 排ガス誘引ファン
14 煙突
15、15a、15b、15c、15d 酸素濃度検出器
16 燃焼制御装置
17 燃料ガスヘッダ管
18 燃焼空気ヘッダ管
19、19a、19b、19c、19d 誘引排ガスヘッダ管
20 燃料ガス本管
21 燃焼空気本管
22 誘引排ガス本管
23 加熱炉用プロコン
1a, 1b, 1c, 1d, 1e, 1f Burner 2a, 2b, 2c, 2d, 2e, 2f Fuel gas switching valve 3a, 3b, 3c, 3d, 3e, 3f Combustion air switching valve 4a, 4b, 4c, 4d, 4e, 4f Induction exhaust gas switching valve 5 Fuel gas flow rate detector 6 Fuel gas flow rate adjustment valve 7 Combustion air flow rate detector 8 Combustion air flow rate adjustment valve 9, 9a, 9b, 9c, 9d For attraction exhaust gas Flow rate detector 10, 10a, 10b, 10c, 10d Flow control valve for induced exhaust gas 11 Kuseki valve 12 Combustion air blower 13 Exhaust gas induced fan 14 Chimney 15, 15a, 15b, 15c, 15d Oxygen concentration detector 16 Combustion control device 17 Fuel gas header pipe 18 Combustion air header pipe 19, 19a, 19b, 19c, 19d Attracted exhaust gas header pipe 20 Fuel gas main pipe 21 Combustion air main pipe 2 attractant exhaust gas main pipe 23 furnaces Programming Port

Claims (4)

少なくとも二つの燃焼制御帯に蓄熱式切替燃焼バーナを有し、前記燃焼制御帯の排ガス誘引系に排ガス中の酸素濃度を検出する検出器を備えた、連続熱間圧延用鋼材を所定の温度に加熱する連続多帯式のウォーキングビームを用いた連続鋼材加熱炉であって、前記蓄熱式切替燃焼バーナを有する燃焼制御帯毎の誘引排ガスヘッダ管に酸素濃度を検出する前記酸素濃度検出器と、当該検出器の検出値に基づいて炉内の空気比を制御する制御手段を設置することを特徴とする連続鋼材加熱炉。   A steel material for continuous hot rolling at a predetermined temperature having a regenerative switching combustion burner in at least two combustion control zones, and having a detector for detecting oxygen concentration in the exhaust gas in the exhaust gas induction system of the combustion control zone. A continuous steel heating furnace using a continuous multi-band type walking beam for heating, the oxygen concentration detector for detecting an oxygen concentration in an induced exhaust gas header pipe for each combustion control zone having the regenerative switching combustion burner; A continuous steel heating furnace comprising a control means for controlling an air ratio in the furnace based on a detection value of the detector. 少なくとも二つの燃焼制御帯に蓄熱式切替燃焼バーナを有し、前記燃焼制御帯の排ガス誘引系に排ガス中の酸素濃度を検出する検出器を備えた、連続熱間圧延用鋼材を所定の温度に加熱する連続多帯式のウォーキングビームを用いた連続鋼材加熱炉であって、蓄熱式切替燃焼バーナを有する燃焼制御帯の誘引排ガスが集合する誘引排ガス本管の、前記蓄熱式切替燃焼バーナを有する燃焼制御帯毎の誘引排ガスヘッダ管との合流部の下流側に、少なくとも2箇所以上の排ガス中の酸素濃度を検出する前記酸素濃度検出器と、当該検出器の検出値に基づいて炉内の空気比を制御する制御手段を設置することを特徴とする連続鋼材加熱炉。   A steel material for continuous hot rolling at a predetermined temperature having a regenerative switching combustion burner in at least two combustion control zones, and having a detector for detecting oxygen concentration in the exhaust gas in the exhaust gas induction system of the combustion control zone. A continuous steel heating furnace using a continuous multi-band type walking beam to be heated, having the regenerative switching combustion burner of the induced exhaust gas main body where the induced exhaust gas of the combustion control zone having the regenerative switching combustion burner is gathered The oxygen concentration detector for detecting oxygen concentration in at least two or more exhaust gases on the downstream side of the merged portion with the induced exhaust gas header pipe for each combustion control zone, and the inside of the furnace based on the detection value of the detector A continuous steel heating furnace comprising a control means for controlling an air ratio. 請求項1に記載の連続鋼材加熱炉を用いた鋼材加熱方法であって、
前記燃焼制御装置の設定値が前記誘引排ガス中の酸素濃度の場合は、前記酸素濃度検出器により検出した前記燃焼制御帯の誘引排ガス中の酸素濃度が、設定した酸素濃度になるように、前記燃焼制御帯に供給する燃焼空気流量を前記燃焼制御帯毎に調整し
前記燃焼制御装置の設定値が前記燃焼制御帯の空気比の場合は、燃料ガス種により定まるあらかじめ設定された理論空気量および理論排ガス量の値から前記設定された空気比に相当する前記誘引排ガス中の酸素濃度を演算により算出して、前記酸素濃度検出器により検出した前記燃焼制御帯毎の誘引排ガス中の酸素濃度が、この演算によって算出された誘引排ガス中酸素濃度になるように、前記燃焼制御帯に供給する燃焼空気流量を前記燃焼制御帯毎に調整することによって空気比を制御することを特徴とする鋼材加熱方法。
A steel material heating method using the continuous steel material heating furnace according to claim 1 ,
Wherein when the setting value of the combustion control device for an oxygen concentration in said attractant exhaust gas, so that the oxygen concentration of the attractant in the exhaust gas of the oxygen concentration detector by detecting said combustion control zone each becomes the oxygen concentration set, adjust the combustion air flow supplied to the combustion control zone for each of the combustion control zone,
When the set value of the combustion control device is the air ratio of the combustion control zone, the induced exhaust gas corresponding to the set air ratio from the values of the preset theoretical air amount and the theoretical exhaust gas amount determined by the fuel gas type The oxygen concentration in the induced exhaust gas for each combustion control zone detected by the oxygen concentration detector is calculated to be the oxygen concentration in the induced exhaust gas calculated by this calculation. A steel material heating method, wherein an air ratio is controlled by adjusting a flow rate of combustion air supplied to a combustion control zone for each combustion control zone .
請求項2に記載の連続鋼材加熱炉を用いた鋼材加熱方法であって、A steel material heating method using the continuous steel material heating furnace according to claim 2,
前記誘引排ガス本管の最上流側の酸素濃度検出器よりも上流側に前記誘引排ガスヘッダ管との合流部があるすべての燃焼制御帯は一つの空気比制御対象範囲を構成し、且つ、隣り合う前記酸素濃度検出器の間に前記誘引排ガスヘッダ管との合流部があるすべての燃焼制御帯は、隣り合う前記酸素濃度検出器の間毎にそれぞれ別の一つの空気比制御対象範囲を構成し、All combustion control zones that have a confluence with the induced exhaust gas header pipe upstream of the oxygen concentration detector on the most upstream side of the induced exhaust gas main pipe constitute one air ratio control target range and are adjacent to each other. All combustion control zones that have a confluence with the induced exhaust gas header pipe between the matching oxygen concentration detectors constitute a separate air ratio control range for each adjacent oxygen concentration detector And
前記燃焼制御装置の設定値が前記誘引排ガス中の酸素濃度の場合は、前記酸素濃度検出器により検出した前記空気比制御対象範囲毎の誘引排ガス中の酸素濃度が、設定した酸素濃度になるように、前記燃焼制御帯に供給する燃焼空気流量を前記燃焼制御帯毎に調整し、When the set value of the combustion control device is the oxygen concentration in the induced exhaust gas, the oxygen concentration in the induced exhaust gas for each air ratio control target range detected by the oxygen concentration detector is set to the set oxygen concentration. And adjusting the flow rate of combustion air supplied to the combustion control zone for each combustion control zone,
前記燃焼制御装置の設定値が前記燃焼制御帯の空気比の場合は、燃料ガス種により定まるあらかじめ設定された理論空気量および理論排ガス量の値から前記設定された空気比に相当する前記誘引排ガス中の酸素濃度を演算により算出して、前記酸素濃度検出器により検出した空気比制御対象範囲毎の誘引排ガス中の酸素濃度が、この演算によって算出された誘引排ガス中酸素濃度になるように、前記燃焼制御帯に供給する燃焼空気流量を前記燃焼制御帯毎に調整することによって空気比を制御することを特徴とする鋼材加熱方法。When the set value of the combustion control device is the air ratio of the combustion control zone, the induced exhaust gas corresponding to the set air ratio from the values of the preset theoretical air amount and the theoretical exhaust gas amount determined by the fuel gas type The oxygen concentration in the induced exhaust gas for each air ratio control target range detected by the oxygen concentration detector is calculated to be the oxygen concentration in the induced exhaust gas calculated by this calculation. A steel material heating method, wherein an air ratio is controlled by adjusting a flow rate of combustion air supplied to the combustion control zone for each combustion control zone.
JP2006111824A 2006-04-14 2006-04-14 Continuous steel heating furnace and method of heating steel using the same Expired - Fee Related JP4653689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111824A JP4653689B2 (en) 2006-04-14 2006-04-14 Continuous steel heating furnace and method of heating steel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111824A JP4653689B2 (en) 2006-04-14 2006-04-14 Continuous steel heating furnace and method of heating steel using the same

Publications (2)

Publication Number Publication Date
JP2007285564A JP2007285564A (en) 2007-11-01
JP4653689B2 true JP4653689B2 (en) 2011-03-16

Family

ID=38757518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111824A Expired - Fee Related JP4653689B2 (en) 2006-04-14 2006-04-14 Continuous steel heating furnace and method of heating steel using the same

Country Status (1)

Country Link
JP (1) JP4653689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377645B1 (en) 2012-07-30 2014-03-24 현대제철 주식회사 Heat exchanging apparatus of reheating furnacie and controlling method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221292B (en) * 2011-04-29 2015-06-17 宝钢工业炉工程技术有限公司 Dynamically regulating device of walking-type heating furnace plate blank discharging stop bit and using method thereof
JP6822435B2 (en) * 2018-03-26 2021-01-27 Jfeスチール株式会社 Elucidation device and elucidation method of the cause of deterioration of fuel intensity in the heating furnace
JP7107263B2 (en) * 2019-03-14 2022-07-27 Jfeスチール株式会社 Continuous steel heating furnace and air ratio control method for continuous steel heating furnace
JP7354988B2 (en) * 2019-12-25 2023-10-03 Jfeスチール株式会社 Continuous steel heating furnace, air ratio control method for continuous steel heating furnace, and steel manufacturing method
CN113154602A (en) * 2021-04-14 2021-07-23 青岛海尔空调器有限总公司 Air purifier and air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142335A (en) * 1976-05-24 1977-11-28 Nippon Steel Corp Process for controling combjstion in multi-stage continuous heating furnace
JPS5535837A (en) * 1978-09-05 1980-03-13 Nippon Steel Corp Combustion control method by oxygen concentration in polyzone system heating furnace
JPH07103461A (en) * 1993-10-12 1995-04-18 Nkk Corp Air ratio regulating method for furnace employing heat accumulation type burner
JP2001272028A (en) * 2000-03-24 2001-10-05 Kawasaki Steel Corp Method for operating continuous heating furnace
JP2002039525A (en) * 2000-07-28 2002-02-06 Chugai Ro Co Ltd Side-burning heating furnace having regenerative alternating combustion equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142335A (en) * 1976-05-24 1977-11-28 Nippon Steel Corp Process for controling combjstion in multi-stage continuous heating furnace
JPS5535837A (en) * 1978-09-05 1980-03-13 Nippon Steel Corp Combustion control method by oxygen concentration in polyzone system heating furnace
JPH07103461A (en) * 1993-10-12 1995-04-18 Nkk Corp Air ratio regulating method for furnace employing heat accumulation type burner
JP2001272028A (en) * 2000-03-24 2001-10-05 Kawasaki Steel Corp Method for operating continuous heating furnace
JP2002039525A (en) * 2000-07-28 2002-02-06 Chugai Ro Co Ltd Side-burning heating furnace having regenerative alternating combustion equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377645B1 (en) 2012-07-30 2014-03-24 현대제철 주식회사 Heat exchanging apparatus of reheating furnacie and controlling method thereof

Also Published As

Publication number Publication date
JP2007285564A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4653689B2 (en) Continuous steel heating furnace and method of heating steel using the same
CN107750320B (en) Method for controlling the operation of a combustion boiler
US20090308292A1 (en) Coal burning boiler apparatus
CN101876449A (en) Method of controlling oxygen air-flowing environment in heating furnace
US20160305655A1 (en) Method for reducing nitrogen oxide(s) and carbon monoxide from flue gases and flue gas composition
EP2260237B1 (en) Method of operating a furnace
JP7214940B2 (en) Heating furnace air volume control method
US9033704B2 (en) Flue gas recirculation method and system for combustion systems
SE532339C2 (en) Burner method and apparatus
TW200817638A (en) Combustion control system for stoker-type incinerator
TW505772B (en) Apparatus for controlling introduced air in metal oxide reducing furnace
US9448009B2 (en) Flue gas recirculation method and system for combustion systems
AU2007330307B2 (en) Batch waste gasification process
JP4987689B2 (en) Direct-fired type roller hearth continuous heat treatment furnace
JP2001343104A (en) Heating equipment and method for operating heating furnace
JP2007101128A (en) Heat storage type burner device and its operation method
JP2007254553A (en) Method of operating coke oven
JP6797084B2 (en) Gas supply method for secondary combustion, gas supply structure for secondary combustion, and waste incinerator
JP2009174741A (en) Ground flare and its combustion control method
JP7220971B2 (en) Combustion control method for combustion equipment
JP7156227B2 (en) Furnace pressure control device and furnace pressure control method for continuous heating furnace
JP2020118357A (en) Oxygen ratio control system
CN104748129A (en) Fire grate type incinerator
JP2002157023A (en) Furnace pressure control system
JP2001272028A (en) Method for operating continuous heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R151 Written notification of patent or utility model registration

Ref document number: 4653689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees