JP4145469B2 - Side fired furnace equipped with a regenerative alternating combustion device - Google Patents

Side fired furnace equipped with a regenerative alternating combustion device Download PDF

Info

Publication number
JP4145469B2
JP4145469B2 JP2000228790A JP2000228790A JP4145469B2 JP 4145469 B2 JP4145469 B2 JP 4145469B2 JP 2000228790 A JP2000228790 A JP 2000228790A JP 2000228790 A JP2000228790 A JP 2000228790A JP 4145469 B2 JP4145469 B2 JP 4145469B2
Authority
JP
Japan
Prior art keywords
furnace
combustion
regenerative
burner
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000228790A
Other languages
Japanese (ja)
Other versions
JP2002039525A (en
Inventor
利生 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2000228790A priority Critical patent/JP4145469B2/en
Publication of JP2002039525A publication Critical patent/JP2002039525A/en
Application granted granted Critical
Publication of JP4145469B2 publication Critical patent/JP4145469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱式交番燃焼装置を備えたサイド焚加熱炉に関するものである。
【0002】
【従来の技術】
従来、両側壁に直火バーナを配設するサイド焚加熱炉は、燃焼火炎を炉内中央部に向けて噴出することから炉内中央部の炉温が炉内側壁部の炉温に比べて高くなり、鋼片等の被加熱材が炉幅方向で偏加熱されるという問題を有する。
【0003】
したがって、実公昭61−38905号公報にて、前記直火バーナの炉内前方に、炉長方向に延びる耐火物壁を配設し、直火バーナからの燃焼火炎の一部を前記耐火物壁に衝突させ、燃焼ガスの流れ方向を変化させることにより炉内幅方向の温度分布を改善させることが提案されている。なお、前記直火バーナの燃焼用空気としては400〜500℃の予熱空気が使用されている。
【0004】
【発明が解決しようとする課題】
前記方法においては、炉内幅方向の温度分布を均一化させることができるが、耐火物壁を設置しない場合に比べてNOxが大幅に増加(場合によっては約3倍)するという新たな課題を有する。
【0005】
このNOxの大幅増加の原因について検討したところ、火炎が耐火物壁に衝突すると、その部分で燃料と燃焼用空気が撹拌混合して急速燃焼するため局部的に火炎温度が上昇してNOxが増加し、特に、可視化炎中に耐火物壁が存在すると、この耐火物壁の表面が触媒として働き、さらにNOxが増加することが判明した。
【0006】
したがって、本発明は、前記耐火物壁を設けて炉内幅方向での偏加熱の発生を防止するもののNOxの増加のない蓄熱式交番燃焼装置を備えたサイド焚加熱炉を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、前記目的を達成するために、一対の蓄熱式直火バーナで燃焼と排気とを交互に行なう蓄熱式交番燃焼装置を対向する炉壁に複数基配設し、前記蓄熱式直火バーナの炉内前方の燃焼火炎形成位置以遠に炉壁面に対して略平行で、その先端面が前記蓄熱式直火バーナの略中心に位置する耐火物壁を配設したものである。
【0008】
【発明の実施の形態】
つぎに、本発明の実施の形態について図にしたがって説明する。
図1において、Tはサイド焚ウォーキングビーム式加熱炉で、炉内には炉内搬送手段4として固定ビーム4aと移動ビーム4bが設置され、移動ビーム4bの矩形運動により被処理材を炉内搬送する。
【0009】
また、対向する炉側壁2,2の上部帯には一対の蓄熱式直火バーナBra1,Bra2からなる蓄熱式交番燃焼装置Braを少なくとも1基以上、下部帯にも一対の蓄熱式直火バーナBrb1,Brb2からなる蓄熱式交番燃焼装置Brbを少なくとも1基以上所定間隔をもって配設するとともに、前記各蓄熱式直火バーナBra1,Bra2,Brb1、Brb2の炉内前方に耐火物壁5が配設されている。より詳しくは、上部帯では天井1から炉両側壁2に対して平行に上部耐火物壁5aが設けられ、一方、下部帯では炉床3より炉両側壁2に対して平行に下部耐火物壁5bが設けられる。
【0010】
なお、前記上部耐火物壁5aの下端および下部耐火物壁5bの上端は前記蓄熱式直火バーナの略中心BCに位置し、また前記両耐火物壁5a,5bの炉側壁内面からの距離Lは前記蓄熱式バーナBra1,Bra2,Brb1、Brb2の燃焼火炎形成位置(たとえば0.5〜2m)以遠である。
【0011】
ところで、前記蓄熱式直火バーナBra1,Bra2,Brb1,Brb2は周知のとおり、バーナ部6と蓄熱室7とからなり、一方の蓄熱式直火バーナ、たとえばBra1,Brb2の燃焼中には、他方の蓄熱式直火バーナBra2,Brb1ではBra1,Brb2からの燃焼排ガスを吸引し、高温の燃焼排ガスはBra2,Brb1の蓄熱室7を通って排気され、その間に蓄熱室7内の蓄熱体に該燃焼排ガスの顕熱が蓄熱される。そして、所定時間が経過すると排気中の蓄熱式直火バーナが燃焼状態に、燃焼状態にあった蓄熱式直火バーナが排気状態にと交互に切り換えられるものである。
【0012】
したがって、燃焼状態にある蓄熱式直火バーナにあっては、燃焼用空気は、蓄熱体により約1000℃に予熱されて燃焼に供される。
【0013】
なお、前記蓄熱体としては、セラミック製のハニカム構造を有する蓄熱材を複数段積層したもの、セラミック製あるいは金属製の球状の蓄熱材を所定高さ積層したもの、さらには、複数本のセラミック製または金属製のパイプを所定長さに切断したもの等で構成されている。
【0014】
前記構成からなる蓄熱式交番燃焼装置を備えたサイド焚ウォーキングビーム式加熱炉Tにおいては、図1に示すように、蓄熱式直火バーナBra1,Brb2を燃焼状態、蓄熱式直火バーナBra2,Brb1を排気状態とし、所定時間経過すると、前記燃焼、排気状態が切り換わり、以後、これを繰り返し、図示しない被処理材を炉内搬送手段4で搬送しつつ加熱処理する。
【0015】
ところで、燃焼中の蓄熱式直火バーナの燃焼火炎の一部は、前記従来のものと同様前記耐火物壁5に衝突し、高温の燃焼ガスが炉側壁2側に流れるとともに炉長方向にも流れるため、図2に示すように、炉幅方向での温度差は20℃以内となって、つまり、被処理材は均一に加熱されることになる。
【0016】
一方、NOxの発生についてみれば、一般に、ある空間内に燃料と、前記のように約1000℃の高温の燃焼用空気とが近傍に存在すると瞬間的に燃焼反応が生じ、その時点でNOxのピークが決定される。
【0017】
しかしながら、前記したように、燃焼用空気が約1000℃の高温である場合、その炉内噴出流速は、100〜130m/sec(前記従来の400〜500℃の燃焼用空気を使用するものでは約50〜60m/sec)と非常に速く、よって、この燃焼用空気の運動量によりバーナ近傍の低酸素濃度である炉内排ガスが大量に吸引再循環され、この低酸素濃度である炉内排ガスの再循環流が燃料を拡散させ、この低酸素場の燃焼は、温度そのものは高温ではあるが、燃焼火炎の体積が大きく、かつ、温度勾配および濃度勾配(火炎中に介在する酸素、排ガスおよび未反応の燃料)の小さい均一化された燃焼である。
【0018】
したがって、蓄熱式直火バーナの燃焼は、局部的な高温域の発生を抑制した均一化された燃焼であるため、前記耐火物壁5を設置してもNOx増加の要因にならない。
【0019】
【発明の効果】
以上の説明で明らかなように、本発明によれば、炉側壁に設置するバーナとして、蓄熱式直火バーナを用い、かつ、前記蓄熱式直火バーナの炉内前方の燃焼火炎形成位置よりも以遠に炉壁面に対して略平行で、その先端面が前記蓄熱式直火バーナの略中心に位置する耐火物壁を配設したので、前記耐火物壁に衝突した高温燃焼ガスが炉壁側に流れるとともに、炉長方向にも流れることとなり炉幅方向の温度差が大きく改善される。
【0020】
しかも、前述のように、蓄熱式直火バーナにあっては、燃焼火炎中にバーナ近傍の低酸素濃度である炉内排ガスを巻き込み、つまり、強力な排ガス循環作用を行って燃料は均一に拡散され、局部的な高温域の発生を抑制してNOx生成量は低下する。また、耐火物壁を備えるにも拘らず、耐火物壁に至るまでにNOxの発生量が少ない燃焼排ガスが発生しているため、前記耐火物壁への衝突による撹拌作用によってNOxの発生が左右されることなく、NOx値は低いままである。
【図面の簡単な説明】
【図1】 本発明のサイド焚加熱炉の断面図。
【図2】 図1における炉内温度分布図。
【符号の説明】
1〜天井、2〜炉側壁、3〜炉床、4〜炉内搬送手段、5(5a,5b)〜耐火物壁、6〜バーナ部、7〜蓄熱室、Bra,Brb〜蓄熱式交番燃焼装置、Bra1,Bra2,Brb1,Brb2〜蓄熱式直火バーナ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a side-fired furnace equipped with a regenerative alternating combustion apparatus.
[0002]
[Prior art]
Conventionally, in a side-fired heating furnace in which a direct-fired burner is provided on both side walls, a combustion flame is ejected toward the center of the furnace, so the furnace temperature at the center of the furnace is higher than the furnace temperature at the side wall of the furnace. It becomes high and it has the problem that to-be-heated materials, such as a steel piece, are heated unevenly in the furnace width direction.
[0003]
Therefore, in Japanese Utility Model Publication No. 61-38905, a refractory wall extending in the furnace length direction is disposed in the furnace front of the direct fire burner, and a part of the combustion flame from the direct fire burner is disposed in the refractory wall. It has been proposed to improve the temperature distribution in the width direction of the furnace by changing the flow direction of the combustion gas. In addition, 400-500 degreeC preheated air is used as the combustion air of the said direct fire burner.
[0004]
[Problems to be solved by the invention]
In the above method, the temperature distribution in the width direction of the furnace can be made uniform, but a new problem that NOx significantly increases (in some cases about three times) as compared with the case where no refractory wall is installed. Have.
[0005]
When the cause of this significant increase in NOx was examined, when the flame collides with the refractory wall, the fuel and combustion air were stirred and mixed at that part and rapidly burned, so the flame temperature increased locally and NOx increased. In particular, it has been found that when a refractory wall is present in the visualization flame, the surface of the refractory wall acts as a catalyst, and further NOx increases.
[0006]
Accordingly, an object of the present invention is to provide a side-fired heating furnace provided with a regenerative alternating combustion apparatus in which the refractory wall is provided to prevent the occurrence of partial heating in the furnace width direction but NOx is not increased. And
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a plurality of regenerative alternating combustion devices that alternately perform combustion and exhaust with a pair of regenerative direct fire burners on opposing furnace walls, and the regenerative direct fire A refractory wall is provided which is substantially parallel to the furnace wall surface beyond the combustion flame formation position in front of the burner in the furnace and whose front end face is located at the approximate center of the regenerative direct fire burner.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, T is a side-fired walking beam type heating furnace, and a fixed beam 4a and a moving beam 4b are installed in the furnace as the in-furnace conveying means 4, and the workpiece is conveyed in the furnace by the rectangular motion of the moving beam 4b. To do.
[0009]
Further, at least one heat storage type alternating combustion device Bra composed of a pair of heat storage type direct combustion burners Bra 1 and Bra 2 is provided at the upper zone of the opposing furnace side walls 2 and 2, and a pair of heat storage type direct fires are also provided at the lower zone. At least one heat storage type alternating combustion device Brb composed of burners Brb 1 and Brb 2 is disposed at a predetermined interval, and in the furnace front of each of the heat storage type direct combustion burners Bra 1 , Bra 2 , Brb 1 , Brb 2. A refractory wall 5 is provided. More specifically, an upper refractory wall 5a is provided in parallel with the furnace side wall 2 from the ceiling 1 in the upper belt, while a lower refractory wall is provided in parallel with the furnace side wall 2 from the hearth 3 in the lower belt. 5b is provided.
[0010]
Note that the lower end of the upper refractory wall 5a and the upper end of the lower refractory wall 5b are positioned at the approximate center BC of the regenerative direct flame burner, and the distance L from the furnace side wall inner surface of both the refractory walls 5a and 5b. Is beyond the combustion flame formation position (for example, 0.5 to 2 m) of the heat storage type burners Bra 1 , Bra 2 , Brb 1 , and Brb 2 .
[0011]
Incidentally, as is well known, the heat storage direct fire burner Bra 1 , Bra 2 , Brb 1 , Brb 2 is composed of a burner portion 6 and a heat storage chamber 7, and one of the heat storage direct fire burners, for example, Bra 1 , Brb 2 , etc. During combustion, the other regenerative direct-burn burners Bra 2 and Brb 1 suck the combustion exhaust gas from Bra 1 and Brb 2 , and the high-temperature combustion exhaust gas is exhausted through the heat storage chamber 7 of Bra 2 and Brb 1. In the meantime, the sensible heat of the combustion exhaust gas is stored in the heat storage body in the heat storage chamber 7. When a predetermined time has elapsed, the regenerative direct burner in the exhaust is switched to the combustion state, and the regenerative direct burner in the combustion state is alternately switched to the exhaust state.
[0012]
Therefore, in the regenerative burner in the combustion state, the combustion air is preheated to about 1000 ° C. by the heat accumulator and used for combustion.
[0013]
Note that the heat storage body includes a plurality of stacked heat storage materials having a ceramic honeycomb structure, a stack of ceramic or metal spherical heat storage materials having a predetermined height, and a plurality of ceramic storage materials. Alternatively, it is configured by cutting a metal pipe into a predetermined length.
[0014]
In the side-fired walking beam furnace T having the regenerative alternating combustion apparatus having the above-described configuration, as shown in FIG. 1, the regenerative direct flame burners Bra 1 and Brb 2 are in a combustion state, and the regenerative direct flame burner Bra. 2 and Brb 1 are set in an exhaust state, and when a predetermined time elapses, the combustion and exhaust states are switched, and thereafter, this is repeated, and a heat treatment is performed while a material to be processed (not shown) is transported by the in-furnace transport means 4.
[0015]
By the way, a part of the combustion flame of the regenerative burner during combustion collides with the refractory wall 5 like the conventional one, and high-temperature combustion gas flows toward the furnace side wall 2 and also in the furnace length direction. Therefore, as shown in FIG. 2, the temperature difference in the furnace width direction is within 20 ° C., that is, the material to be treated is uniformly heated.
[0016]
On the other hand, regarding the generation of NOx, in general, when a fuel and a high-temperature combustion air of about 1000 ° C. exist in the vicinity in a certain space, a combustion reaction occurs instantaneously, and at that time, the NOx generation occurs. A peak is determined.
[0017]
However, as described above, when the combustion air is at a high temperature of about 1000 ° C., the flow velocity in the furnace is 100 to 130 m / sec (in the case of using the conventional combustion air at 400 to 500 ° C. 50-60 m / sec), which is very fast. Therefore, the exhaust gas in the furnace having a low oxygen concentration in the vicinity of the burner is sucked and recirculated in a large amount by the momentum of the combustion air, and the exhaust gas in the furnace having the low oxygen concentration is recirculated. The circulating flow diffuses the fuel, and the combustion of this low oxygen field is high in temperature, but the volume of the combustion flame is large, and the temperature gradient and concentration gradient (oxygen, exhaust gas and unreacted substances present in the flame) The fuel is a small and uniform combustion.
[0018]
Therefore, the combustion of the regenerative direct burner is a uniform combustion that suppresses the generation of a local high temperature region, and therefore, even if the refractory wall 5 is installed, it does not cause an increase in NOx.
[0019]
【The invention's effect】
As is apparent from the above description, according to the present invention, as the burner to be installed on the furnace side wall, a regenerative direct flame burner is used, and more than the combustion flame formation position in the front of the regenerative direct flame burner in the furnace. Since a refractory wall that is substantially parallel to the furnace wall and is located at the center of the regenerative direct flame burner is disposed far away, the high-temperature combustion gas that has collided with the refractory wall is on the furnace wall side. And the temperature difference in the furnace width direction is greatly improved.
[0020]
Moreover, as described above, in the case of a regenerative burner, the exhaust gas in the furnace with a low oxygen concentration in the vicinity of the burner is involved in the combustion flame, that is, the fuel diffuses uniformly by performing a powerful exhaust gas circulation action. Thus, the generation of a local high temperature region is suppressed and the NOx generation amount is reduced. In addition, although the refractory wall is provided, combustion exhaust gas with a small amount of NOx is generated up to the refractory wall, so that the generation of NOx is affected by the stirring action caused by the collision with the refractory wall. Without being done, the NOx value remains low.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a side-fired furnace according to the present invention.
2 is a furnace temperature distribution diagram in FIG. 1. FIG.
[Explanation of symbols]
1 to ceiling, 2 to furnace side wall, 3 to furnace hearth, 4 to in-furnace transport means, 5 (5a, 5b) to refractory wall, 6 to burner section, 7 to heat storage chamber, Bra, Brb to regenerative alternating combustion Apparatus, Bra 1 , Bra 2 , Brb 1 , Brb 2 ~ Regenerative burner.

Claims (1)

一対の蓄熱式直火バーナで燃焼と排気とを交互に行う蓄熱式交番燃焼装置を対向する炉壁に複数基配設し、前記蓄熱式直火バーナの炉内前方の燃焼火炎形成位置以遠に炉壁面に対して略平行で、その先端面が前記蓄熱式直火バーナの略中心に位置する耐火物壁を配設したことを特徴とする蓄熱式交番燃焼装置を備えたサイド焚加熱炉。A plurality of regenerative type alternating combustion devices that alternately perform combustion and exhaust with a pair of regenerative direct flame burners are arranged on the facing furnace wall, and beyond the position where the combustion flame is formed in front of the regenerative direct flame burner in the furnace. A side-fired heating furnace provided with a regenerative alternating combustion apparatus, characterized in that a refractory wall, which is substantially parallel to the furnace wall surface and whose front end surface is located at substantially the center of the regenerative direct burner, is disposed.
JP2000228790A 2000-07-28 2000-07-28 Side fired furnace equipped with a regenerative alternating combustion device Expired - Fee Related JP4145469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000228790A JP4145469B2 (en) 2000-07-28 2000-07-28 Side fired furnace equipped with a regenerative alternating combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000228790A JP4145469B2 (en) 2000-07-28 2000-07-28 Side fired furnace equipped with a regenerative alternating combustion device

Publications (2)

Publication Number Publication Date
JP2002039525A JP2002039525A (en) 2002-02-06
JP4145469B2 true JP4145469B2 (en) 2008-09-03

Family

ID=18722022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000228790A Expired - Fee Related JP4145469B2 (en) 2000-07-28 2000-07-28 Side fired furnace equipped with a regenerative alternating combustion device

Country Status (1)

Country Link
JP (1) JP4145469B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653689B2 (en) * 2006-04-14 2011-03-16 新日本製鐵株式会社 Continuous steel heating furnace and method of heating steel using the same

Also Published As

Publication number Publication date
JP2002039525A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
US9650304B2 (en) Tunnel kiln for firing ceramic porous bodies
KR100659678B1 (en) Combustion method and burner
UA109725C2 (en) APPARATUS AND METHOD FOR THE HEAT TREATMENT OF BREED OR AGGREGATED MATERIAL
WO2000022362A1 (en) Method and apparatus for uniformly heating a furnace
RU2606671C2 (en) Device for transferring metallurgical material
JPS5849791B2 (en) industrial furnace
JP4145469B2 (en) Side fired furnace equipped with a regenerative alternating combustion device
JP2006274432A (en) Continuous annealing furnace equipped with alternate regeneration burner
RU2602573C2 (en) Device for pre-heating of transported scrap
JP2010265529A (en) Walking-beam-type heat treatment furnace
JP7029277B2 (en) Manufacturing method for regenerative burners, industrial furnaces and fired products
JP2001073026A (en) Horizontal type bright continuous annealing furnace for metal strip
JP2742236B2 (en) Heating method of material by open flame burner
JPH0324592Y2 (en)
JP2008170050A (en) Heating furnace
JP3532062B2 (en) Heating apparatus and heating method for continuous annealing furnace for steel strip
JPH11302724A (en) Continuous heater for suppressing nitrogen oxide formation
JP2010060226A (en) Continuous heating furnace
JP2008240133A (en) Method for switching combustion and exhaust of heat storage type combustion burner of continuous heating furnace
JPH10185131A (en) Radiant tube heater and heating furnace
JPH0230720A (en) Method for heating steel sheet
JPS58176013A (en) Device for heating end part of ingot
JPH08291329A (en) Continuous heating method
JP2000088239A (en) Moving bed type heating furnace
TW202142306A (en) Heat radiated secondary combustion furnace including a furnace body, a heating source and a plurality of porous blocks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees