JP2020118357A - Oxygen ratio control system - Google Patents

Oxygen ratio control system Download PDF

Info

Publication number
JP2020118357A
JP2020118357A JP2019009609A JP2019009609A JP2020118357A JP 2020118357 A JP2020118357 A JP 2020118357A JP 2019009609 A JP2019009609 A JP 2019009609A JP 2019009609 A JP2019009609 A JP 2019009609A JP 2020118357 A JP2020118357 A JP 2020118357A
Authority
JP
Japan
Prior art keywords
flow rate
combustion air
oxygen
rate adjusting
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019009609A
Other languages
Japanese (ja)
Inventor
俊久 志賀
Toshihisa Shiga
俊久 志賀
亮太 河井
Ryota Kawai
亮太 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2019009609A priority Critical patent/JP2020118357A/en
Publication of JP2020118357A publication Critical patent/JP2020118357A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

To provide an oxygen ratio control system which can prevent an oxygen ratio of an air-fuel mixture from being largely disordered from a prescribed value when adjusting an opening of a flow rate regulation valve so that the oxygen ratio of the air-fuel mixture reaches the prescribed value.SOLUTION: An oxygen ratio control system comprises fuel gas supply means 2 having a fuel gas flow rate regulation valve 5, combustion air supply means 10 having a combustion air flow rate regulation valve 13, and a control device 25. The control device 25 comprises: an opening calculation part 26 for calculating target openings of the fuel gas flow rate regulation valve 5 whose oxygen ratio reaches a prescribed value, and the combustion air flow rate regulation valve 13; and a regulation valve control part 28 for controlling motions of the fuel gas flow rate regulation valve 5 and the combustion air flow rate regulation valve 13 so that opening times from prescribed openings up to the respective target openings coincide with one another.SELECTED DRAWING: Figure 1

Description

本発明は、混合気を燃焼する燃焼機器に付設され、混合気の酸素比を制御する酸素比制御システムに関する。 The present invention relates to an oxygen ratio control system that is attached to a combustion device that burns an air-fuel mixture and controls the oxygen ratio of the air-fuel mixture.

従来から、混合気を燃焼するバーナなどの燃焼機器に供給される混合気の酸素比を調整する種々の方法が提案されており、その一つとして、燃焼機器に供給する燃料ガスや燃焼用空気、酸素などの供給流量を流量調整弁によって調整する方法がある。 Conventionally, various methods of adjusting the oxygen ratio of the air-fuel mixture supplied to a combustion device such as a burner that combusts the air-fuel mixture have been proposed. As one of them, fuel gas or combustion air supplied to the combustion device has been proposed. There is a method of adjusting the supply flow rate of oxygen, etc. by a flow rate adjusting valve.

例えば、特許文献1には、バーナに供給される燃料ガスの流量を調整可能な燃料流量調整弁及び酸素含有ガスの流量を調整可能な空気流量調整弁を備えた複合管状火炎バーナが開示されており、当該複合管状火炎バーナにおいては、燃料流量調整弁及び空気流量調整弁の開度を適宜選択して調整することで各ガスの流量を変化させ、混合気中に含まれる酸素比を調整できるようになっている。 For example, Patent Document 1 discloses a composite tubular flame burner including a fuel flow rate control valve capable of controlling the flow rate of fuel gas supplied to the burner and an air flow rate control valve capable of controlling the flow rate of oxygen-containing gas. In the composite tubular flame burner, the flow rate of each gas can be changed by appropriately selecting and adjusting the openings of the fuel flow rate adjusting valve and the air flow rate adjusting valve, and the oxygen ratio contained in the air-fuel mixture can be adjusted. It is like this.

特開2014−1910号公報JP, 2014-1910, A

ところが、燃焼機器に供給される気体の供給流量を流量調整弁によって調整する場合、流量調整弁ごとに流量特性(開度に応じた流量)が異なったり、流量調整弁ごとに目標開度に到達するまでに要する時間が異なったりすることが要因となって、以下のような問題が生じる。 However, when the flow rate of the gas supplied to the combustion equipment is adjusted by the flow rate adjusting valve, the flow rate characteristics (flow rate according to the opening) differ for each flow rate adjusting valve, and the target opening degree is reached for each flow rate adjusting valve. The following problems occur due to the difference in the time required to do so.

例えば、ある2つのガス種からなる混合気の酸素比が所定の値となるような2つの流量調整弁の目標開度が大きく異なる場合、これら2つの流量調整弁をそれぞれ目標開度まで同じように開動作させると、一方の流量調整弁が目標開度に達し、他方の流量調整弁が目標開度に達していないという状態になり得る。この場合、一方の気体は所定の流量で供給された状態であるにもかかわらず、他方の気体は未だ所定の流量で供給されていない状態となる。そのため、他方の流量調整弁が目標開度に達するまでの間は、一方の気体が過剰に供給された状態となって混合気の酸素比が所定の値から大きく乱れることになり、更に、流量調整弁ごとの流量特性に違いがある場合には、酸素比が所定の値からより一層大きく乱れる場合もある。このような問題は、燃焼用空気に加えて酸素を供給する酸素富化を行う場合にも同様に起こり得る。 For example, when the target opening degrees of the two flow rate adjusting valves are so different that the oxygen ratio of the air-fuel mixture of two certain gas species becomes a predetermined value, these two flow rate adjusting valves are set to the same target opening degree. When the opening operation is performed on one side, one of the flow rate adjusting valves may reach the target opening degree and the other flow rate adjusting valve may not reach the target opening degree. In this case, one gas is supplied at a predetermined flow rate, but the other gas is not yet supplied at a predetermined flow rate. Therefore, until the other flow rate adjusting valve reaches the target opening, one gas is excessively supplied and the oxygen ratio of the air-fuel mixture is largely disturbed from the predetermined value. When there is a difference in the flow rate characteristic of each regulating valve, the oxygen ratio may be disturbed more greatly than the predetermined value. Such a problem may similarly occur when performing oxygen enrichment in which oxygen is supplied in addition to combustion air.

したがって、例えば、燃焼機器を利用して加熱炉内を昇温する場合、混合気の酸素比が所定の値となるように複数のガスを供給しているにもかかわらず、昇温中に酸素比が所定の値から大きく乱れることになり、その結果、炉内温度の変化による処理物への悪影響や設備自体の劣化速度が速まるといった問題が生じる。 Therefore, for example, when the temperature inside the heating furnace is raised using a combustion device, oxygen is supplied during the temperature rise even though a plurality of gases are supplied so that the oxygen ratio of the mixture becomes a predetermined value. The ratio is greatly disturbed from a predetermined value, and as a result, there arises a problem that a change in the temperature inside the furnace adversely affects the processed material and accelerates the deterioration rate of the equipment itself.

本発明は以上の実情に鑑みなされたものであり、混合気の酸素比が所定の値となるように流量調整弁の開度を調整する際に、混合気の酸素比が所定の値から大きく乱れるのを抑制できる酸素比制御システムの提供を、その目的とする。 The present invention has been made in view of the above circumstances, and when adjusting the opening of the flow rate adjusting valve so that the oxygen ratio of the air-fuel mixture becomes a predetermined value, the oxygen ratio of the air-fuel mixture becomes larger than the predetermined value. It is an object of the present invention to provide an oxygen ratio control system capable of suppressing disturbance.

上記目的を達成するための本発明に係る酸素比制御システムの特徴構成は、
少なくとも燃料ガスと燃焼用空気とを含む混合気を燃焼する燃焼機器に付設され、前記混合気の酸素比を制御する酸素比制御システムであって、
供給流量を調整する燃料ガス流量調整弁を有し、前記燃焼機器に前記燃料ガスを供給する燃料ガス供給手段と、
供給流量を調整する燃焼用空気流量調整弁を有し、前記燃焼機器に前記燃焼用空気を供給する燃焼用空気供給手段と、
制御手段とを備えており、
前記制御手段は、
前記酸素比が所定の値となる前記燃料ガス流量調整弁及び前記燃焼用空気流量調整弁の各目標開度を算出する開度算出部と、
所定開度から前記各目標開度までの開時間が同じとなるように、前記燃料ガス流量調整弁及び前記燃焼用空気流量調整弁の動作を制御する調整弁制御部とを備えている点にある。
Characteristic configuration of the oxygen ratio control system according to the present invention to achieve the above object,
An oxygen ratio control system, which is attached to a combustion device for burning an air-fuel mixture containing at least fuel gas and combustion air, and which controls an oxygen ratio of the air-fuel mixture,
A fuel gas flow rate adjusting valve for adjusting the supply flow rate, and a fuel gas supply means for supplying the fuel gas to the combustion device,
Combustion air flow rate adjusting valve for adjusting the supply flow rate, the combustion air supply means for supplying the combustion air to the combustion equipment,
And a control means,
The control means is
An opening degree calculation unit that calculates each target opening degree of the fuel gas flow rate adjustment valve and the combustion air flow rate adjustment valve where the oxygen ratio is a predetermined value,
It is provided with an adjustment valve control unit that controls the operations of the fuel gas flow rate adjustment valve and the combustion air flow rate adjustment valve so that the opening times from a predetermined opening degree to each of the target opening degrees are the same. is there.

上記特徴構成によれば、燃料ガスと燃焼用空気を燃焼機器に供給する際に、酸素比が所定の値となる燃料ガス流量調整弁の目標開度及び燃焼用空気流量調整弁の目標開度を開度算出部にて算出し、各流量調整弁が所定開度から各目標開度に到達するまでの開時間が同じとなるように、調整弁制御部によって各流量調整弁の動作を制御するようにしていることで、例えば、酸素比が所定の値となる燃料ガス流量調整弁の目標開度が燃焼用空気流量調整弁の目標開度より小さい場合であっても、燃料ガス流量調整弁と燃焼用空気流量調整弁とを同じタイミングで各目標開度に到達させることができる。 According to the above characteristic configuration, when the fuel gas and the combustion air are supplied to the combustion equipment, the target opening of the fuel gas flow rate adjusting valve and the target opening of the combustion air flow rate adjusting valve are set so that the oxygen ratio becomes a predetermined value. Is calculated by the opening degree calculation unit, and the operation of each flow rate adjustment valve is controlled by the adjustment valve control unit so that the opening time of each flow rate adjustment valve from the predetermined opening to the respective target opening becomes the same. By doing so, for example, even if the target opening of the fuel gas flow rate adjusting valve where the oxygen ratio becomes a predetermined value is smaller than the target opening of the combustion air flow rate adjusting valve, the fuel gas flow rate adjustment is performed. The valve and the combustion air flow rate adjusting valve can reach each target opening at the same timing.

したがって、燃料ガス流量調整弁及び燃焼用空気流量調整弁の開度を調整して混合気の酸素比が所定の値となるように調整する際に、その調整途中で燃料ガス及び燃焼用空気のいずれか一方が他方に対して極端に流量が多くなり、酸素比が所定の値から大きく乱れるという問題の発生を抑制できる。 Therefore, when adjusting the openings of the fuel gas flow rate adjusting valve and the combustion air flow rate adjusting valve to adjust the oxygen ratio of the air-fuel mixture to a predetermined value, the fuel gas and combustion air It is possible to suppress the occurrence of the problem that one of the flow rates becomes extremely large compared to the other, and the oxygen ratio is greatly disturbed from a predetermined value.

尚、本願において、「酸素比」とは、理論酸素量に対する供給酸素量の比である。 In the present application, the "oxygen ratio" is the ratio of the supplied oxygen amount to the theoretical oxygen amount.

また、本発明に係る酸素比制御システムの更なる特徴構成は、供給流量を調整する酸素流量調整弁を有し、前記燃焼機器に酸素を供給する酸素供給手段を更に備え、
前記開度算出部は、前記酸素比が所定の値となる前記酸素流量調整弁の目標開度を更に算出し、
前記調整弁制御部は、所定開度から前記各目標開度までの開時間が同じとなるように、前記燃料ガス流量調整弁、前記燃焼用空気流量調整弁、及び前記酸素流量調整弁の動作を制御する点にある。
Further, a further characteristic configuration of the oxygen ratio control system according to the present invention has an oxygen flow rate adjusting valve for adjusting the supply flow rate, and further comprises oxygen supply means for supplying oxygen to the combustion equipment,
The opening degree calculation unit further calculates a target opening degree of the oxygen flow rate adjusting valve where the oxygen ratio is a predetermined value,
The adjustment valve control unit operates the fuel gas flow rate adjustment valve, the combustion air flow rate adjustment valve, and the oxygen flow rate adjustment valve so that the opening times from a predetermined opening to each of the target openings are the same. Is in the point of controlling.

上記特徴構成においては、燃料ガス、燃焼用空気及び酸素を燃焼機器に供給する際に、酸素比が所定の値となる燃料ガス流量調整弁の目標開度、燃焼用空気流量調整弁の目標開度、及び酸素流量調整弁の目標開度を開度算出部にて算出し、各流量調整弁が所定開度から各目標開度に到達するまでの開時間が同じとなるように、調整弁制御部によって各流量調整弁の動作を制御するようにしている。これにより、酸素比が所定の値となる各燃料調整弁の目標開度が異なる場合であっても、各燃料調整弁の全てを同じタイミングで各目標開度に到達させることができる。 In the above characteristic configuration, when the fuel gas, the combustion air and oxygen are supplied to the combustion equipment, the target opening of the fuel gas flow rate adjusting valve and the target opening of the combustion air flow rate adjusting valve are set so that the oxygen ratio becomes a predetermined value. Degree, and the target opening degree of the oxygen flow rate adjusting valve is calculated by the opening degree calculating unit, and the adjusting valve is adjusted so that each flow rate adjusting valve has the same opening time from the predetermined opening degree to the respective target opening degree. The controller controls the operation of each flow rate adjusting valve. As a result, even when the target opening of each fuel adjusting valve where the oxygen ratio becomes a predetermined value is different, all of the fuel adjusting valves can reach each target opening at the same timing.

したがって、燃料ガス流量調整弁、燃焼用空気流量調整弁、及び酸素流量調整弁の開度を調整して混合気の酸素比が所定の値となるように調整している途中で、燃料ガス、燃焼用空気及び酸素のいずれか一又は二のガスの流量が他のガスの流量と比較して極端に多くなり、酸素比が所定の値から大きく乱れるという問題の発生を抑制できる。 Therefore, while adjusting the openings of the fuel gas flow rate control valve, the combustion air flow rate control valve, and the oxygen flow rate control valve so that the oxygen ratio of the mixture becomes a predetermined value, the fuel gas, It is possible to suppress the problem that the flow rate of any one or two gases of combustion air and oxygen becomes extremely large as compared with the flow rates of other gases, and the oxygen ratio is greatly disturbed from a predetermined value.

ところで、燃焼機器に供給する燃焼用空気は、例えば燃焼機器によって加熱炉内を所定の目標温度まで昇温させるのに使用する場合に予め加熱する場合がある。燃焼用空気流量調整弁の前後での差圧は燃焼用空気の温度によって変動し、差圧が変われば燃焼用空気流量調整弁の開度に応じた流量も変化する。そのため、ある一定の温度において所定の酸素比となるように燃焼用空気流量調整弁の目標開度を算出し、この算出した目標開度となるように燃焼用空気流量調整弁を動作させたのでは、最終的に目標開度に到達しているにもかかわらず、燃焼用空気の過不足が生じて酸素比が所定の値から乱れる虞がある。そこで、酸素比が所定の値から乱れるのを極力抑制するためには、燃焼用空気の温度に応じて燃焼用空気流量調整弁の目標開度を補正することが好ましい。 By the way, the combustion air supplied to the combustion equipment may be preheated, for example, when it is used to raise the temperature in the heating furnace to a predetermined target temperature by the combustion equipment. The differential pressure before and after the combustion air flow rate adjusting valve changes depending on the temperature of the combustion air, and if the differential pressure changes, the flow rate corresponding to the opening degree of the combustion air flow rate adjusting valve also changes. Therefore, the target opening of the combustion air flow rate adjusting valve is calculated so that a predetermined oxygen ratio is obtained at a certain temperature, and the combustion air flow rate adjusting valve is operated so as to reach the calculated target opening. Then, although the target opening is finally reached, excess or deficiency of the combustion air may occur and the oxygen ratio may be disturbed from the predetermined value. Therefore, in order to suppress the disturbance of the oxygen ratio from the predetermined value as much as possible, it is preferable to correct the target opening degree of the combustion air flow rate adjusting valve according to the temperature of the combustion air.

即ち、本発明に係る酸素比制御システムの更なる特徴構成は、前記制御手段は、前記燃焼用空気の温度に応じて、前記燃焼用空気流量調整弁の前記目標開度を補正する開度補正部を備えている点にある。 That is, a further characteristic configuration of the oxygen ratio control system according to the present invention is that the control unit corrects the target opening of the combustion air flow rate adjusting valve according to the temperature of the combustion air. The point is that it has a section.

上記特徴構成によれば、開度補正部において、開度算出部で算出された燃焼用空気流量調整弁の目標開度を、燃焼用空気の温度に応じた目標開度に補正することができる。 According to the above characteristic configuration, the opening degree correction unit can correct the target opening degree of the combustion air flow rate adjustment valve calculated by the opening degree calculation unit to the target opening degree according to the temperature of the combustion air. ..

したがって、燃焼用空気の温度に応じた目標開度となるように燃焼用空気流量調整弁を動作させることで、燃焼用空気の過不足が発生し難くなり、混合気の酸素比が所定の値から大きく乱れるのを抑制できる。 Therefore, by operating the combustion air flow rate adjusting valve so that the target opening degree according to the temperature of the combustion air is reached, excess or deficiency of the combustion air is less likely to occur, and the oxygen ratio of the air-fuel mixture has a predetermined value. It is possible to suppress a large disturbance from.

ところで、燃料ガスと燃焼用空気とを混合気の酸素比が所定の値となるように燃焼機器に供給する際に、又は、燃料ガスと燃焼用空気と酸素とを混合気の酸素比が所定の値となるように燃焼機器に供給する際に、混合気の酸素比が所定の値から乱れる度合いは、開動作を開始した時点での各流量調整弁の開度によって変化する。即ち、例えば、一の流量調整弁の開動作開始時の開度が40%であり、他の流量調整弁の開動作開始時の開度が0%であった場合、一の流量調整弁に対応する気体が所定の流量で供給されている状態であるにもかかわらず、他の流量調整弁に対応する気体が未だ所定の流量で供給されていない状態となる時間が長くなり、その結果、混合気の酸素比が所定の値から大きく乱れることになる。したがって、混合気の酸素比が所定の値から大きく乱れるのを抑制するという観点からすると、各流量調整弁の開動作開始時の開度が0%であることが好ましい。 By the way, when the fuel gas and the combustion air are supplied to the combustion equipment so that the oxygen ratio of the air-fuel mixture becomes a predetermined value, or the oxygen ratio of the air-fuel mixture of the fuel gas, the combustion air and the oxygen is predetermined. The degree to which the oxygen ratio of the air-fuel mixture is disturbed from a predetermined value when it is supplied to the combustion device so as to have a value of is changed by the opening of each flow rate adjusting valve at the time when the opening operation is started. That is, for example, when the opening degree of one flow rate adjusting valve at the start of the opening operation is 40% and the opening degree of the other flow rate adjusting valve at the start of the opening operation is 0%, Although the corresponding gas is being supplied at the predetermined flow rate, the time during which the gas corresponding to the other flow rate adjusting valve is not yet supplied at the predetermined flow rate becomes long, and as a result, The oxygen ratio of the air-fuel mixture will be greatly disturbed from the predetermined value. Therefore, from the viewpoint of suppressing the oxygen ratio of the air-fuel mixture from being greatly disturbed from the predetermined value, it is preferable that the opening degree of each flow rate adjusting valve at the start of the opening operation is 0%.

即ち、本発明に係る酸素比制御システムの更なる特徴構成は、前記調整弁制御部は、0%から前記各目標開度までの開時間が同じとなるように、前記各流量調整弁の動作を制御する点にある。 That is, as a further characteristic configuration of the oxygen ratio control system according to the present invention, the adjustment valve control unit operates the flow rate adjustment valves so that the opening times from 0% to the target opening degrees are the same. Is in the point of controlling.

上記特徴構成によれば、燃料ガスと燃焼用空気とを燃焼機器に供給する際に、又は、燃料ガスと燃焼用空気と酸素とを燃焼機器に供給する際に、各流量調整弁が0%から各目標開度に到達するまでの開時間が同じとなるように、調整弁制御部によって各流量調整弁の動作を制御できるため、混合気の酸素比が所定の値から大きく乱れるという問題の発生をより抑制することができる。 According to the above characteristic configuration, when the fuel gas and the combustion air are supplied to the combustion device, or when the fuel gas, the combustion air and oxygen are supplied to the combustion device, each flow rate control valve is 0%. Since the operation of each flow rate adjusting valve can be controlled by the adjusting valve control unit so that the opening time from reaching to each target opening becomes the same, there is a problem that the oxygen ratio of the air-fuel mixture is greatly disturbed from a predetermined value. The generation can be further suppressed.

実施形態に係る酸素比制御システムの概略構成を示した図である。It is a figure showing the schematic structure of the oxygen ratio control system concerning an embodiment. 燃料ガス流量調整弁の流量特性を示すグラフである。It is a graph which shows the flow characteristic of a fuel gas flow control valve. 燃焼用空気流量調整弁の流量特性を示すグラフである。It is a graph which shows the flow characteristic of the combustion air flow control valve. 酸素流量調整弁の流量特性を示すグラフである。It is a graph which shows the flow characteristic of an oxygen flow control valve. 酸素比を調整する態様を説明するための図である。It is a figure for demonstrating the aspect which adjusts an oxygen ratio. 酸素比を調整する態様を説明するための図である。It is a figure for demonstrating the aspect which adjusts an oxygen ratio. 酸素比を調整する態様を説明するための図である。It is a figure for demonstrating the aspect which adjusts an oxygen ratio.

以下、図面を参照して本発明の一実施形態に係る酸素比制御システムについて説明する。尚、本実施形態では、加熱炉内を加熱するバーナ(燃焼機器)に付設された場合を例示して説明する。 Hereinafter, an oxygen ratio control system according to an embodiment of the present invention will be described with reference to the drawings. In addition, in the present embodiment, a case where the burner (combustion device) for heating the inside of the heating furnace is attached will be described as an example.

図1に示すように、本実施形態における酸素比制御システム1は、加熱炉Rにおける複数の炉壁の1つに内外に貫通して設けられたバーナBに燃料ガス(13A)を供給する燃料ガス供給手段2と、バーナBに燃焼用空気を供給する燃焼用空気供給手段10と、バーナBに酸素を供給する酸素供給手段20と、制御装置(制御手段)25とを備えている。 As shown in FIG. 1, the oxygen ratio control system 1 according to the present embodiment is a fuel for supplying a fuel gas (13A) to a burner B provided inside and outside one of a plurality of furnace walls in a heating furnace R. A gas supply unit 2, a combustion air supply unit 10 for supplying combustion air to the burner B, an oxygen supply unit 20 for supplying oxygen to the burner B, and a control device (control unit) 25 are provided.

尚、本実施形態において、バーナBには、点火用のパイロットバーナB1が設けられており、当該パイロットバーナB1には、燃料ガス及び燃焼用空気が供給されるようになっている。また、本実施形態では、供給された燃料ガス、燃焼用空気及び酸素からなる混合気をバーナBで燃焼させることで、加熱炉R内を加熱できるようになっており、加熱炉R内の温度を炉内温度計Tによって計測できるようになっている。 Incidentally, in the present embodiment, the burner B is provided with a pilot burner B1 for ignition, and the fuel gas and the combustion air are supplied to the pilot burner B1. Further, in the present embodiment, the inside of the heating furnace R can be heated by burning the mixture of the supplied fuel gas, combustion air, and oxygen in the burner B, and the temperature inside the heating furnace R can be increased. Can be measured by the in-furnace thermometer T.

燃料ガス供給手段2は、燃料ガスを供給する燃料ガス供給部3、一端が燃料ガス供給部3に接続し、他端がバーナBの燃料噴射部B2に接続した主燃料ガス供給路4、及び主燃料ガス供給路4に設けられ、バーナBに供給される燃料ガスの供給流量を調整する燃料ガス流量調整弁5を備えている。 The fuel gas supply means 2 includes a fuel gas supply unit 3 for supplying a fuel gas, a main fuel gas supply passage 4 having one end connected to the fuel gas supply unit 3 and the other end connected to a fuel injection unit B2 of the burner B, and A fuel gas flow rate adjusting valve 5 that is provided in the main fuel gas supply path 4 and adjusts the supply flow rate of the fuel gas supplied to the burner B is provided.

また、燃料ガス供給手段2は、主燃料ガス供給路4における燃料ガス供給部3と燃料ガス流量調整弁5との間から分岐し、パイロットバーナB1に接続した副燃料ガス供給路6を備えており、当該副燃料ガス供給路6には、パイロットバーナB1への燃料ガスの供給流量を調整するための調整弁7が設けられている。 Further, the fuel gas supply means 2 is provided with a sub fuel gas supply path 6 which is branched from the fuel gas supply section 3 and the fuel gas flow rate adjusting valve 5 in the main fuel gas supply path 4 and which is connected to the pilot burner B1. The auxiliary fuel gas supply passage 6 is provided with an adjusting valve 7 for adjusting the supply flow rate of the fuel gas to the pilot burner B1.

燃焼用空気供給手段10は、燃焼用空気を供給する給気ブロア11、及び一端が給気ブロア11に接続し、他端がバーナBに接続した主燃焼用空気供給路12を備えており、主燃焼用空気供給路12は、第1主燃焼用空気供給路12aと当該第1主燃焼用空気供給路12aを迂回する状態で接続された第2主燃焼用空気供給路12bとからなる。また、第1主燃焼用空気供給路12aには、給気ブロア11側から順に、バーナBに供給される燃焼用空気の供給流量を調整する燃焼用空気流量調整弁13、第1主燃焼用空気供給路12a内を流通する燃焼用空気を加熱する熱交換器14、及び主燃焼用空気供給路12内を流通する燃焼用空気の温度を計測する空気用温度計15が設けられており、燃焼用空気流量調整弁13と熱交換器14との間には、熱交換器14よりも下流へ流れる燃焼用空気の流量を調整するための調整弁16が設けられている。 The combustion air supply means 10 includes a supply air blower 11 for supplying combustion air, and a main combustion air supply passage 12 having one end connected to the supply air blower 11 and the other end connected to the burner B. The main combustion air supply passage 12 is composed of a first main combustion air supply passage 12a and a second main combustion air supply passage 12b connected so as to bypass the first main combustion air supply passage 12a. Further, in the first main combustion air supply passage 12a, a combustion air flow rate adjusting valve 13 for adjusting the supply flow rate of the combustion air supplied to the burner B in order from the air supply blower 11 side, a first main combustion air supply valve 12a A heat exchanger 14 for heating the combustion air flowing in the air supply passage 12a and an air thermometer 15 for measuring the temperature of the combustion air flowing in the main combustion air supply passage 12 are provided. An adjusting valve 16 for adjusting the flow rate of the combustion air flowing downstream of the heat exchanger 14 is provided between the combustion air flow rate adjusting valve 13 and the heat exchanger 14.

尚、第2主燃焼用空気供給路12bは、一端が燃焼用空気流量調整弁13と調整弁16との間に接続し、他端が熱交換器14と空気用温度計15との間に接続しており、第2主燃焼用空気供給路12bには、当該第2主燃焼用空気供給路12bを通して下流へ流れる燃焼用空気の流量を調整するための調整弁17が設けられている。 The second main combustion air supply passage 12b has one end connected between the combustion air flow rate adjusting valve 13 and the adjustment valve 16 and the other end between the heat exchanger 14 and the air thermometer 15. An adjusting valve 17 for adjusting the flow rate of the combustion air flowing downstream through the second main combustion air supply passage 12b is provided in the second main combustion air supply passage 12b.

燃焼用空気供給手段10において、第1主燃焼用空気供給路12aを流通する燃焼用空気は、加熱炉R内から排出された高温の排気ガス等を加熱媒体として利用した熱交換器14で加熱されてバーナBに供給される一方、第2主燃焼用空気供給路12bを流通する燃焼用空気は、熱交換器14により加熱されることなくバーナBに供給される。したがって、第1主燃焼用空気供給路12aに流通する燃焼用空気の量と第2主燃焼用空気供給路12bに流通する燃焼用空気の量とを調整、即ち、調整弁16,17の開度を調整することで、バーナBに供給される燃焼用空気の温度を調整することができる。 In the combustion air supply means 10, the combustion air flowing through the first main combustion air supply passage 12a is heated by the heat exchanger 14 using the high temperature exhaust gas discharged from the heating furnace R as a heating medium. The combustion air flowing through the second main combustion air supply passage 12b is supplied to the burner B without being heated by the heat exchanger 14, while being supplied to the burner B. Therefore, the amount of combustion air flowing through the first main combustion air supply passage 12a and the amount of combustion air flowing through the second main combustion air supply passage 12b are adjusted, that is, the adjustment valves 16 and 17 are opened. By adjusting the degree, the temperature of the combustion air supplied to the burner B can be adjusted.

更に、燃焼用空気供給手段10は、主燃焼用空気供給路12における給気ブロア11と燃焼用空気流量調整弁13との間から分岐し、パイロットバーナB1に接続した副燃焼用空気供給路18を備えており、当該副燃焼用空気供給路18には、パイロットバーナB1への燃焼用空気の供給流量を調整するための調整弁19が設けられている。 Further, the combustion air supply means 10 is branched from between the air supply blower 11 and the combustion air flow rate adjusting valve 13 in the main combustion air supply passage 12, and is connected to the pilot burner B1 as the auxiliary combustion air supply passage 18. The auxiliary combustion air supply passage 18 is provided with an adjusting valve 19 for adjusting the supply flow rate of the combustion air to the pilot burner B1.

酸素供給手段20は、酸素を供給する酸素供給部21、一端が酸素供給部21に接続し、他端が主燃焼用空気供給路12におけるバーナBと温度計15との間に接続した酸素供給路22、及び酸素供給路22に設けられ、バーナBに供給される酸素の供給流量を調整する酸素流量調整弁23を備えている。 The oxygen supply means 20 is an oxygen supply unit 21 for supplying oxygen, one end of which is connected to the oxygen supply unit 21, and the other end of which is connected between the burner B in the main combustion air supply passage 12 and the thermometer 15. The channel 22 and the oxygen supply channel 22 are provided with an oxygen flow rate adjusting valve 23 that adjusts the supply flow rate of oxygen supplied to the burner B.

制御装置25は、混合気の空気比及び/又は酸素富化率が所定の値となる(言い換えれば、混合気の酸素比が所定の値となる)燃料ガス流量調整弁5、燃焼用空気流量調整弁13及び酸素流量調整弁23の各目標開度を算出する開度算出部26と、バーナBへ供給する燃焼用空気の温度に応じて、燃焼用空気流量調整弁13の目標開度を補正する開度補正部27と、0%から各目標温度までの開時間が同じとなるように、燃料ガス流量調整弁5、燃焼用空気流量調整弁13及び酸素流量調整弁23の動作を制御する調整弁制御部28とを有している。また、制御装置25は、作業者が加熱炉R内の目標温度などを入力する操作部29や、操作部29から入力された目標温度に応じた空気比・酸素富化率及び供給する燃焼用空気の温度を決定する条件決定部30、有線又は無線でバーナBや各流量調整弁5,13,23、温度計15,Tなどとデータを送受信可能な通信機等からなる通信部(図示せず)を有している。尚、空気比とは、理論空気量に対する、燃焼用空気及び酸素の混合気体の供給量であり、酸素富化率とは、燃焼用空気及び酸素の混合気体の酸素濃度である。 The control device 25 controls the fuel gas flow rate adjusting valve 5 and the combustion air flow rate in which the air ratio and/or the oxygen enrichment ratio of the air-fuel mixture have a predetermined value (in other words, the oxygen ratio of the air-fuel mixture has a predetermined value). The target opening degree of the combustion air flow rate adjusting valve 13 is set in accordance with the opening degree calculating unit 26 that calculates the target opening degree of each of the adjustment valve 13 and the oxygen flow rate adjusting valve 23, and the temperature of the combustion air supplied to the burner B. The operations of the fuel gas flow rate adjusting valve 5, the combustion air flow rate adjusting valve 13, and the oxygen flow rate adjusting valve 23 are controlled so that the opening degree correction unit 27 for correction and the opening time from 0% to each target temperature are the same. The adjusting valve control unit 28 is provided. Further, the control device 25 includes an operating unit 29 for the operator to input a target temperature in the heating furnace R, an air ratio/oxygen enrichment ratio according to the target temperature input from the operating unit 29, and the combustion for supply. A condition determining unit 30 for determining the temperature of the air, a communication unit including a communicator capable of transmitting and receiving data to and from the burner B, the flow rate adjusting valves 5, 13, 23, the thermometers 15 and T, etc. by wire or wireless (not shown). Have). The air ratio is the supply amount of the mixed gas of combustion air and oxygen with respect to the theoretical air amount, and the oxygen enrichment ratio is the oxygen concentration of the mixed gas of combustion air and oxygen.

また、制御装置25は、バーナBの作動や調整弁7,16,17,19の開閉を制御する各種制御部(図示せず)を備えており、調整弁7の開度を調整することで、パイロットバーナB1への燃料ガスの供給流量の調整や供給の開始・停止を切り換えたり、調整弁16の開度を調整することで、パイロットバーナB1への燃焼用空気の供給流量の調整や供給の開始・停止を切り換えたり、調整弁16,17の開度を調整することで、バーナBへ供給する燃焼用空気の温度を調整したりすることができる。 Further, the control device 25 includes various control units (not shown) that control the operation of the burner B and the opening/closing of the adjusting valves 7, 16, 17, 19, and adjust the opening degree of the adjusting valve 7. By adjusting the supply flow rate of the fuel gas to the pilot burner B1, switching the start/stop of the supply, and adjusting the opening degree of the adjusting valve 16, the supply flow rate of the combustion air to the pilot burner B1 is adjusted or supplied. It is possible to adjust the temperature of the combustion air to be supplied to the burner B by switching the start/stop of the above, or adjusting the opening of the adjusting valves 16 and 17.

開度算出部26は、まず、混合気の空気比及び/又は酸素富化率が所定の値となる燃料ガス、燃焼用空気及び酸素の供給流量を基に、下記数式1又は数式2によりCv値を算出する。尚、数式1及び数式2において、Qは、標準状態(15℃、0.1013MPa)における気体の流量[m/h]、Gは、空気を1としたときの気体の比重、tは流体の温度[℃]、Pは、1次側(流量調整弁5,13,23の上流側)の絶対圧力[MPa]、Pは、2次側(流量調整弁5,13,23の下流側)の絶対圧力[MPa]である。P>(P/2)の場合には数式1によりCv値を算出でき、P≦(P/2)の場合には数式2によりCv値を算出できる。 The opening degree calculation unit 26 first calculates Cv according to the following formula 1 or formula 2 based on the supply flow rates of the fuel gas, the combustion air, and the oxygen at which the air ratio and/or the oxygen enrichment ratio of the mixture become predetermined values. Calculate the value. In Formula 1 and Formula 2, Q G is the flow rate [m 3 /h] of the gas in the standard state (15° C., 0.1013 MPa), G G is the specific gravity of the gas when air is 1, and t Is the temperature of the fluid [° C.], P 1 is the absolute pressure [MPa] on the primary side (upstream side of the flow rate adjusting valves 5, 13, 23), and P 2 is the secondary side (flow rate adjusting valves 5, 13, 23). 23 (downstream side) is an absolute pressure [MPa]. When P 2 >(P 1 /2), the Cv value can be calculated by Expression 1, and when P 2 ≦(P 1 /2), the Cv value can be calculated by Expression 2.

Figure 2020118357
Figure 2020118357

Figure 2020118357
Figure 2020118357

ついで、算出したCv値を基に、燃料ガス流量調整弁5、燃焼用空気流量調整弁13及び酸素流量調整弁23に関するCv値と開度との関係(流量特性)から目標開度を算出する。尚、一例として、図2に燃料ガス流量調整弁5、図3に燃焼用空気流量調整弁13、図4に酸素流量調整弁23に関する流量特性のグラフを示した。 Then, based on the calculated Cv value, the target opening degree is calculated from the relationship (flow rate characteristic) between the Cv value and the opening degree regarding the fuel gas flow rate adjusting valve 5, the combustion air flow rate adjusting valve 13 and the oxygen flow rate adjusting valve 23. .. As an example, FIG. 2 shows a graph of the flow rate characteristics of the fuel gas flow rate adjusting valve 5, FIG. 3 showing the combustion air flow rate adjusting valve 13, and FIG. 4 showing the oxygen flow rate adjusting valve 23.

ところで、燃焼用空気流量調整弁13の前後での差圧は燃焼用空気の温度によって変動し、差圧が変われば、燃焼用空気流量調整弁13の開度が同じであっても実際の流量が変化するため、燃焼用空気流量調整弁13の目標開度は、バーナBに供給する燃焼用空気の温度を考慮したものであることが好ましい。 By the way, the differential pressure before and after the combustion air flow rate adjusting valve 13 varies depending on the temperature of the combustion air, and if the differential pressure changes, the actual flow rate will change even if the opening degree of the combustion air flow rate adjusting valve 13 is the same. Therefore, it is preferable that the target opening degree of the combustion air flow rate adjusting valve 13 considers the temperature of the combustion air supplied to the burner B.

そこで、開度補正部27は、燃焼用空気の温度に応じた開度補正係数がまとめられた係数テーブルを参照して、条件決定部30において決定された燃焼用空気の温度に対応する開度補正係数を抽出し、開度補正係数を開度算出部26で算出された燃焼用空気流量調整弁13の目標開度に掛けることで、燃焼用空気の温度が考慮された目標開度に補正する。尚、係数テーブルは、例えば、予め実験等を行い、その結果を基に作成しておくことができ、燃焼用空気の温度が50℃のときは開度補正係数が1.00、100℃のときは1.10、150℃のときは1.20というように、燃焼用空気の温度が50℃高くなるごとに開度補正係数が0.10ずつ増加する場合を例示できる。 Therefore, the opening degree correction unit 27 refers to the coefficient table in which the opening degree correction coefficients according to the temperature of the combustion air are summarized, and the opening degree corresponding to the temperature of the combustion air determined by the condition determination unit 30. The correction coefficient is extracted, and the target opening degree of the combustion air flow rate adjusting valve 13 calculated by the opening degree calculation unit 26 is multiplied by the correction coefficient to correct the target opening degree in consideration of the temperature of the combustion air. To do. The coefficient table can be created, for example, by conducting an experiment in advance and based on the result. When the temperature of the combustion air is 50°C, the opening correction coefficient is 1.00 or 100°C. For example, when the temperature of the combustion air increases by 50° C., the opening degree correction coefficient increases by 0.10, such as 1.10 when the temperature is 1.10 and when the temperature is 150° C. is 1.20.

調整弁制御部28は、燃料ガス流量調整弁5の開度が0%から開度算出部26で算出された目標開度に到達するまでの時間(開時間)と、燃焼用空気流量調整弁13の開度が0%から開度補正部27で補正された目標開度に到達するまでの時間(開時間)と、酸素流量調整弁23の開度が0%から開度算出部26で算出された目標開度に到達するまでの時間(開時間)とが全て同じ時間となるように、燃料ガス流量調整弁5、燃焼用空気流量調整弁13及び酸素流量調整弁23の動作を制御する。そのような制御の方法としては、ある所定時間で目標開度に到達するように、各流量調整弁5,13,23の動作速度(例えば、一定の動作速度)を決定し、決定した動作速度で各流量調整弁5,13,23を動作させる方法を例示できる。 The adjustment valve control unit 28 determines the time (open time) from when the opening degree of the fuel gas flow rate adjustment valve 5 reaches the target opening degree calculated by the opening degree calculation unit 26 (open time), and the combustion air flow rate adjustment valve. The time (opening time) from when the opening degree of 13 reaches 0% to the target opening degree corrected by the opening degree correction unit 27, and when the opening degree of the oxygen flow rate adjusting valve 23 changes from 0% to the opening degree calculation unit 26. The operations of the fuel gas flow rate adjusting valve 5, the combustion air flow rate adjusting valve 13, and the oxygen flow rate adjusting valve 23 are controlled so that the time (opening time) until reaching the calculated target opening is all the same time. To do. As such a control method, the operating speed (for example, a constant operating speed) of each flow rate adjusting valve 5, 13, 23 is determined so that the target opening is reached in a predetermined time, and the determined operating speed is determined. The method of operating the flow rate adjusting valves 5, 13, 23 can be exemplified by.

次に、本実施形態に係る酸素比制御システム1において、酸素富化率を所定の値に調整する過程について、図5に示すように、操作部29で入力された加熱炉Rの目標温度に応じて、混合気の空気比を理論空気比λsに保ったまま酸素富化率をある特定の酸素富化率Hから酸素富化率Hへ増加させるとともに、所定温度に加熱した燃焼用空気をバーナBへ供給する状態に変更する場合を例にとって説明する。尚、図5中の各流量調整弁5,13,23の開度は一例である。 Next, in the oxygen ratio control system 1 according to the present embodiment, regarding the process of adjusting the oxygen enrichment rate to a predetermined value, as shown in FIG. 5, the target temperature of the heating furnace R input by the operation unit 29 is set. Accordingly, while maintaining the air ratio of the air-fuel mixture at the theoretical air ratio λs, the oxygen enrichment rate is increased from a specific oxygen enrichment rate H 1 to the oxygen enrichment rate H 2 , and the combustion is performed at a predetermined temperature. An example of changing the state of supplying air to the burner B will be described. The openings of the flow rate adjusting valves 5, 13, 23 in FIG. 5 are examples.

この場合、まず、開度算出部26において、混合気の空気比を理論空気比λsに保ったまま酸素富化率HとなるようにバーナBに供給するために必要な燃料ガス、燃焼用空気及び酸素の供給流量を基にして、各流量調整弁5,13,23についてCv値を算出し、算出したCv値及び図2〜図4に示す流量特性のグラフを基に、各流量調整弁5,13,23の目標開度を算出する。 In this case, first, in the opening degree calculation unit 26, the fuel gas necessary for supplying the burner B with the oxygen enrichment rate H 2 while keeping the air ratio of the mixture at the theoretical air ratio λs Based on the supply flow rates of air and oxygen, the Cv value was calculated for each flow rate adjusting valve 5, 13, 23, and each flow rate adjustment was performed based on the calculated Cv value and the flow rate characteristic graphs shown in FIGS. 2 to 4. The target opening degree of the valves 5, 13, 23 is calculated.

ついで、開度補正部27において、開度算出部26で算出された燃焼用空気流量調整弁13の目標開度に、バーナBに供給する燃焼用空気の温度(操作部29に入力された目標温度に応じて条件決定部30で決定された燃焼用空気の温度)に対応した開度補正係数を掛けることで、供給する燃焼用空気の温度が考慮された目標開度に補正する。しかる後、調整弁制御部28は、所定時間で各流量調整弁5,13,23が0%から各目標開度に到達するように、各流量調整弁5,13,23の動作速度を決定する。 Then, in the opening degree correction unit 27, the temperature of the combustion air supplied to the burner B is set to the target opening degree of the combustion air flow rate adjusting valve 13 calculated by the opening degree calculation unit 26 (the target input to the operation unit 29. By multiplying the opening degree correction coefficient corresponding to the temperature of the combustion air determined by the condition determining unit 30 according to the temperature, the target opening degree in which the temperature of the supplied combustion air is taken into consideration is corrected. Thereafter, the adjusting valve control unit 28 determines the operating speed of each of the flow rate adjusting valves 5, 13, 23 so that each of the flow rate adjusting valves 5, 13, 23 reaches the target opening degree from 0% in a predetermined time. To do.

しかる後、調整弁制御部28は、所定時間(例えば、8秒)で各流量調整弁5,13,23が0%から目標開度(図5において燃料ガス流量調整弁5は70%、燃焼用空気流量調整弁13は80%、酸素流量調整弁23は60%)に到達するように、各流量調整弁5,13,23の動作速度を決定する。その後、開状態(図5において燃料ガス流量調整弁5は70%、燃焼用空気流量調整弁13は70%、酸素流量調整弁23は50%)となっている各流量調整弁5,13,23を閉状態(開度が0%)にし、決定した動作速度で各流量調整弁5,13,23を各目標開度となるように動作させる。即ち、各流量調整弁5,13,23を開度が0%の状態から同時に開動作を開始し、各流量調整弁5,13,23を同じ所定時間で各目標開度に到達させる。 After that, the adjusting valve control unit 28 determines that the flow rate adjusting valves 5, 13, and 23 are at 0% to a target opening degree (fuel gas flow rate adjusting valve 5 is 70% in FIG. 5) at a predetermined time (for example, 8 seconds). The operating speed of each flow rate adjusting valve 5, 13, 23 is determined so that the air flow rate adjusting valve 13 reaches 80% and the oxygen flow rate adjusting valve 23 reaches 60%. Thereafter, the flow rate adjusting valves 5, 13, which are in the open state (in FIG. 5, the fuel gas flow rate adjusting valve 5 is 70%, the combustion air flow rate adjusting valve 13 is 70%, and the oxygen flow rate adjusting valve 23 is 50%). 23 is closed (the opening is 0%), and the flow rate adjusting valves 5, 13, and 23 are operated so as to reach the respective target openings at the determined operation speed. That is, the opening operation of each of the flow rate adjusting valves 5, 13, 23 is started simultaneously from the state where the opening degree is 0%, and each of the flow rate adjusting valves 5, 13, 23 is made to reach each target opening degree in the same predetermined time.

これにより、各流量調整弁5,13,23の目標開度が異なるにもかかわらず、各流量調整弁5,13,23の全てを同じタイミングで各目標開度に到達させることができる。 This allows all of the flow rate adjusting valves 5, 13, 23 to reach the target opening degree at the same timing, although the target opening degree of each of the flow rate adjusting valves 5, 13, 23 is different.

したがって、本実施形態に係る酸素比制御システム1によれば、混合気の空気比又は酸素富化率が所定の値となるように調整する際に、その調整途中で燃料ガス、燃焼用空気及び酸素のいずれか一又は二のガスの流量が他のガスの流量と比較して極端に多くなり、空気比又は酸素富化率が所定の値から大きく乱れる、言い換えれば、酸素比が所定の値から大きく乱れるという問題の発生を抑制できる。 Therefore, according to the oxygen ratio control system 1 of the present embodiment, when the air ratio or the oxygen enrichment ratio of the air-fuel mixture is adjusted to a predetermined value, the fuel gas, the combustion air, and the The flow rate of any one or two gases of oxygen becomes extremely large compared to the flow rates of other gases, and the air ratio or the oxygen enrichment ratio is largely disturbed from a predetermined value, in other words, the oxygen ratio is a predetermined value. Therefore, it is possible to suppress the occurrence of the problem of large disturbance.

〔別実施形態〕
〔1〕上記実施形態においては、操作部29で入力された加熱炉Rの目標温度に応じて、混合気の空気比を理論空気比λsに保ったまま酸素富化率を増加させるとともに、バーナBへ加熱した燃焼用空気を供給する状態に変更する場合を例示したが、例えば、図6に示すように、操作部29で入力された加熱炉Rの目標温度に応じて、混合気の空気比を理論空気比λsに保ったまま酸素富化率を酸素富化率Hから酸素富化率Hに増加させ、燃焼用空気は常温のものを使用する場合もある。
この場合、まず、開度算出部26において、混合気の空気比を理論空気比λsに保ったまま酸素富化率HとなるようにバーナBに供給するために必要な燃料ガス、燃焼用空気及び酸素の供給流量を基に、各流量調整弁5,13,23についてCv値を算出し、算出したCv値及び図2〜図4に示す流量特性のグラフを基に、各流量調整弁5,13,23の目標開度を算出する。
ついで、調整弁制御部28において、所定時間(例えば、8秒)で各流量調整弁5,13,23が目標開度(図6において、燃料ガス流量調整弁5は70%、燃焼用空気流量調整弁13は60%、酸素流量調整弁23は60%)に到達するように、各流量調整弁5,13,23の動作速度を決定する。その後、開状態(図6において燃料ガス流量調整弁5は70%、燃焼用空気流量調整弁13は70%、酸素流量調整弁23は50%)となっている各流量調整弁5,13,23を閉状態(開度が0%)にし、決定した動作速度で各流量調整弁5,13,23を動作させる。
これにより、各流量調整弁5,13,23の目標開度が異なるにもかかわらず、各流量調整弁5,13,23の全てを同じタイミングで各目標開度に到達させることができる。
[Another embodiment]
[1] In the above embodiment, the oxygen enrichment rate is increased while the air ratio of the air-fuel mixture is kept at the theoretical air ratio λs in accordance with the target temperature of the heating furnace R input by the operation unit 29, and the burner is Although the case where the state of supplying the combustion air heated to B is changed has been illustrated, for example, as shown in FIG. 6, the air of the air-fuel mixture is changed according to the target temperature of the heating furnace R input by the operation unit 29. The oxygen enrichment rate may be increased from the oxygen enrichment rate H 1 to the oxygen enrichment rate H 2 while maintaining the ratio at the theoretical air ratio λs, and the combustion air may be normal temperature.
In this case, first, in the opening degree calculation unit 26, the fuel gas necessary for supplying the burner B with the oxygen enrichment rate H 2 while keeping the air ratio of the mixture at the theoretical air ratio λs Based on the supply flow rates of air and oxygen, Cv values were calculated for the respective flow rate adjusting valves 5, 13, 23, and based on the calculated Cv values and the flow rate characteristic graphs shown in FIGS. The target opening degrees of 5, 13, and 23 are calculated.
Next, in the adjusting valve control unit 28, the flow rate adjusting valves 5, 13 and 23 are set to the target opening degree in a predetermined time (for example, 8 seconds) (in FIG. 6, the fuel gas flow rate adjusting valve 5 is 70%, the combustion air flow rate is 70%). The operation speed of each flow rate adjusting valve 5, 13, 23 is determined so that the adjusting valve 13 reaches 60% and the oxygen flow rate adjusting valve 23 reaches 60%. Thereafter, the flow rate adjusting valves 5, 13, which are in the open state (70% for the fuel gas flow rate adjusting valve 5, 70% for the combustion air flow rate adjusting valve 13 and 50% for the oxygen flow rate adjusting valve 23 in FIG. 6), 23 is closed (the opening is 0%), and the flow rate adjusting valves 5, 13, 23 are operated at the determined operation speed.
This allows all of the flow rate adjusting valves 5, 13, 23 to reach the target opening degree at the same timing, although the target opening degree of each of the flow rate adjusting valves 5, 13, 23 is different.

〔2〕上記実施形態において、例えば、図7に示すように、操作部29で入力された加熱炉Rの目標温度に応じて、混合気の空気比を理論空気比λsとし、且つ酸素富化燃焼を行うことなく(酸素富化率0%)、所定温度に加熱した燃焼用空気をバーナBへ供給する状態に変更する場合もある。
この場合、まず、開度算出部26において、混合気の空気比が理論空気比λsとなるようにバーナBに供給するために必要な燃料ガス、燃焼用空気の供給流量を基にして、各流量調整弁5,13についてCv値を算出し、算出したCv値並びに図2及び図3に示す流量特性のグラフを基に、各流量調整弁5,13の目標開度を算出する。
ついで、開度補正部27において、開度算出部26で算出された燃焼用空気流量調整弁13の目標開度に、バーナBに供給する燃焼用空気の温度(操作部29に入力された目標温度に応じて条件決定部30で決定された燃焼用空気の温度)に対応した開度補正係数を掛けることで、供給する燃焼用空気の温度が考慮された目標開度に補正する。
しかる後、調整弁制御部28において、所定時間(例えば、8秒)で各流量調整弁5,13が目標開度(図7において、燃料ガス流量調整弁5は70%、燃焼用空気流量調整弁13は90%)に到達するように、各流量調整弁5,13の動作速度を決定する。その後、開状態(図7において燃料ガス流量調整弁5は70%、燃焼用空気流量調整弁13は80%)となっている各流量調整弁5,13を閉状態(開度が0%)にし、決定した動作速度で各流量調整弁5,13を動作させる。
これにより、各流量調整弁5,13の目標開度が異なるにもかかわらず、各流量調整弁5,13の全てを同じタイミングで各目標開度に到達させることができる。
[2] In the above embodiment, for example, as shown in FIG. 7, the air ratio of the air-fuel mixture is set to the theoretical air ratio λs and the oxygen enrichment is performed in accordance with the target temperature of the heating furnace R input by the operation unit 29. In some cases, the combustion air heated to a predetermined temperature may be supplied to the burner B without combustion (oxygen enrichment rate 0%).
In this case, first, in the opening degree calculation unit 26, based on the supply flow rates of the fuel gas and the combustion air necessary to supply the burner B so that the air ratio of the air-fuel mixture becomes the theoretical air ratio λs, The Cv value is calculated for the flow rate adjusting valves 5 and 13, and the target opening degree of each flow rate adjusting valve 5 and 13 is calculated based on the calculated Cv value and the graphs of the flow rate characteristics shown in FIGS. 2 and 3.
Then, in the opening degree correction unit 27, the temperature of the combustion air supplied to the burner B is set to the target opening degree of the combustion air flow rate adjusting valve 13 calculated by the opening degree calculation unit 26 (the target input to the operation unit 29. By multiplying the opening degree correction coefficient corresponding to the temperature of the combustion air determined by the condition determining unit 30 according to the temperature, the target opening degree in which the temperature of the supplied combustion air is taken into consideration is corrected.
After that, in the adjusting valve control unit 28, the flow rate adjusting valves 5 and 13 are set to the target opening degree in a predetermined time (for example, 8 seconds) (in FIG. 7, the fuel gas flow rate adjusting valve 5 is 70%, and the combustion air flow rate is adjusted). The operation speed of each flow rate adjusting valve 5, 13 is determined so that the valve 13 reaches 90%. Thereafter, the flow rate adjusting valves 5 and 13 that are in the open state (70% for the fuel gas flow rate adjusting valve 5 and 80% for the combustion air flow rate adjusting valve 13 in FIG. 7) are closed (the opening is 0%). Then, the flow rate adjusting valves 5 and 13 are operated at the determined operation speed.
This allows all of the flow rate adjusting valves 5 and 13 to reach the target opening degree at the same timing, although the target opening degrees of the flow rate adjusting valves 5 and 13 are different.

〔3〕上記実施形態においては、酸素供給手段20を設けた構成としたが、酸素供給手段20を設けていない構成を採用しても良い。 [3] In the above-described embodiment, the oxygen supply means 20 is provided, but the oxygen supply means 20 may not be provided.

〔4〕上記実施形態においては、燃焼用空気流量調整弁13の目標開度を補正する開度補正部27を設けた構成としたが、開度補正部27を設けていない構成を採用しても良い。 [4] In the above embodiment, the opening correction unit 27 that corrects the target opening of the combustion air flow rate adjustment valve 13 is provided, but a configuration that does not include the opening correction unit 27 is adopted. Is also good.

〔5〕上記実施形態においては、条件決定部30で決定された燃焼用空気の温度に応じて、開度算出部26で算出された燃焼用空気流量調整弁13の目標開度を補正するようにしているが、これに限られるものではない。
加熱した燃焼用空気をバーナBへ供給する場合であっても、まず、各流量調整弁5,13,23の開度が0%から開度算出部26で算出した各目標開度に到達するまでの開時間が全て同じ時間となるように、各流量調整弁5,13,23の動作速度を決定し、決定した動作速度で各流量調整弁5,13,23の動作を開始する。その後、空気用温度計15で燃焼用空気の温度を計測し、開度補正部27において、計測された燃焼用空気の温度に対応する開度補正係数が係数テーブルから抽出され、開度算出部26で算出された燃焼用空気流量調整弁13の目標開度に抽出された開度補正係数を掛けることで目標開度が補正され、燃焼用空気流量調整弁13については、補正した目標開度に到達するまでの開時間が他の流量調整弁5,23が目標開度に到達するまでの開時間と同じとなるように、調整弁制御部28がその時点から動作速度を変えるようにしても良い。
[5] In the above embodiment, the target opening degree of the combustion air flow rate adjusting valve 13 calculated by the opening degree calculating section 26 is corrected according to the temperature of the combustion air determined by the condition determining section 30. However, it is not limited to this.
Even when the heated combustion air is supplied to the burner B, first, the opening degree of each flow rate adjusting valve 5, 13, 23 reaches each target opening degree calculated by the opening degree calculation unit 26 from 0%. The operation speeds of the flow rate adjusting valves 5, 13, 23 are determined so that all the opening times until are the same, and the operation of the flow rate adjusting valves 5, 13, 23 is started at the determined operation speed. After that, the temperature of the combustion air is measured by the air thermometer 15, and the opening degree correction unit 27 extracts the opening degree correction coefficient corresponding to the measured temperature of the combustion air from the coefficient table. The target opening degree of the combustion air flow rate adjusting valve 13 is corrected by multiplying the target opening degree of the combustion air flow rate adjusting valve 13 by the extracted opening degree correction coefficient. The adjustment valve control unit 28 changes the operation speed from that time so that the opening time until reaching the target opening is the same as the opening time until the other flow rate adjusting valves 5 and 23 reach the target opening. Is also good.

〔6〕上記実施形態においては、調整弁制御部28が、各流量調整弁5,13,23の開度が0%から開度算出部26で算出された各目標開度に到達するまでの時間が同じとなるように、各流量調整弁5,13,23の動作を制御するようにしたが、これに限られるものではない。
調整弁制御部28は、各流量調整弁5,13,23の開度が0%以外の所定開度から各目標開度に到達するまでの時間が同じとなるように、各流量調整弁5,13,23の動作を制御しても良い。
[6] In the above-described embodiment, the adjustment valve control unit 28 controls the opening degree of each flow rate adjusting valve 5, 13, 23 from 0% to reach each target opening degree calculated by the opening degree calculation unit 26. Although the operations of the flow rate adjusting valves 5, 13, 23 are controlled so that the time becomes the same, the present invention is not limited to this.
The adjustment valve control unit 28 adjusts the flow rate adjusting valves 5 and 13 so that the flow rate adjusting valves 5, 13, and 23 have the same opening time from the predetermined opening other than 0% to the target opening. , 13, 23 may be controlled.

本発明は、混合気の空気比及び/又は酸素富化率が所定の値となるように、言い換えれば、酸素比が所定の値となるように流量調整弁の開度を調整する際に、混合気の空気比又は酸素富化率、即ち、酸素比が所定の値から大きく乱れるのを抑制できる酸素比制御システムに利用できる。 In the present invention, the air ratio and/or the oxygen enrichment ratio of the air-fuel mixture have a predetermined value, in other words, when adjusting the opening of the flow rate adjusting valve so that the oxygen ratio has a predetermined value, It can be used for an oxygen ratio control system capable of suppressing the air ratio or oxygen enrichment ratio of the air-fuel mixture, that is, the oxygen ratio from being greatly disturbed from a predetermined value.

1 酸素比制御システム
2 燃料ガス供給手段
5 燃料ガス流量調整弁
10 燃焼用空気供給手段
13 燃焼用空気流量調整弁
20 酸素供給手段
23 酸素流量調整弁
25 制御装置(制御手段)
26 開度算出部
27 開度補正部
28 調整弁制御部
B バーナ(加熱機器)
1 Oxygen ratio control system 2 Fuel gas supply means 5 Fuel gas flow rate control valve 10 Combustion air supply means 13 Combustion air flow rate control valve 20 Oxygen supply means 23 Oxygen flow rate control valve 25 Control device (control means)
26 Opening Calculation Section 27 Opening Correction Section 28 Adjusting Valve Control Section B Burner (Heating Equipment)

Claims (4)

少なくとも燃料ガスと燃焼用空気とを含む混合気を燃焼する燃焼機器に付設され、前記混合気の酸素比を制御する酸素比制御システムであって、
供給流量を調整する燃料ガス流量調整弁を有し、前記燃焼機器に前記燃料ガスを供給する燃料ガス供給手段と、
供給流量を調整する燃焼用空気流量調整弁を有し、前記燃焼機器に前記燃焼用空気を供給する燃焼用空気供給手段と、
制御手段とを備えており、
前記制御手段は、
前記酸素比が所定の値となる前記燃料ガス流量調整弁及び前記燃焼用空気流量調整弁の各目標開度を算出する開度算出部と、
所定開度から前記各目標開度までの開時間が同じとなるように、前記燃料ガス流量調整弁及び前記燃焼用空気流量調整弁の動作を制御する調整弁制御部とを備えている酸素比制御システム。
An oxygen ratio control system, which is attached to a combustion device for burning an air-fuel mixture containing at least fuel gas and combustion air, and which controls an oxygen ratio of the air-fuel mixture,
A fuel gas flow rate adjusting valve for adjusting the supply flow rate, and a fuel gas supply means for supplying the fuel gas to the combustion device,
Combustion air flow rate adjusting valve for adjusting the supply flow rate, the combustion air supply means for supplying the combustion air to the combustion equipment,
And a control means,
The control means is
An opening degree calculation unit that calculates each target opening degree of the fuel gas flow rate adjustment valve and the combustion air flow rate adjustment valve where the oxygen ratio is a predetermined value,
An oxygen ratio including an adjusting valve control unit that controls the operations of the fuel gas flow rate adjusting valve and the combustion air flow rate adjusting valve so that the opening times from a predetermined opening degree to each of the target opening degrees are the same. Control system.
供給流量を調整する酸素流量調整弁を有し、前記燃焼機器に酸素を供給する酸素供給手段を更に備え、
前記開度算出部は、前記酸素比が所定の値となる前記酸素流量調整弁の目標開度を更に算出し、
前記調整弁制御部は、所定開度から前記各目標開度までの開時間が同じとなるように、前記燃料ガス流量調整弁、前記燃焼用空気流量調整弁、及び前記酸素流量調整弁の動作を制御する請求項1に記載の酸素比制御システム。
Having an oxygen flow rate adjusting valve for adjusting the supply flow rate, further comprising an oxygen supply means for supplying oxygen to the combustion equipment,
The opening degree calculation unit further calculates a target opening degree of the oxygen flow rate adjusting valve where the oxygen ratio is a predetermined value,
The adjustment valve control unit operates the fuel gas flow rate adjustment valve, the combustion air flow rate adjustment valve, and the oxygen flow rate adjustment valve so that the opening times from a predetermined opening to each of the target openings are the same. The oxygen ratio control system according to claim 1, which controls the oxygen.
前記制御手段は、前記燃焼用空気の温度に応じて、前記燃焼用空気流量調整弁の前記目標開度を補正する開度補正部を備えている請求項1又は2に記載の酸素比制御システム。 The oxygen ratio control system according to claim 1, wherein the control unit includes an opening degree correction unit that corrects the target opening degree of the combustion air flow rate adjusting valve according to the temperature of the combustion air. .. 前記調整弁制御部は、0%から前記各目標開度までの開時間が同じとなるように、前記各流量調整弁の動作を制御する請求項1〜3のいずれか一項に記載の酸素比制御システム。
The oxygen according to any one of claims 1 to 3, wherein the adjustment valve control unit controls the operation of each of the flow rate adjustment valves such that the opening time from 0% to each of the target opening amounts is the same. Ratio control system.
JP2019009609A 2019-01-23 2019-01-23 Oxygen ratio control system Pending JP2020118357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019009609A JP2020118357A (en) 2019-01-23 2019-01-23 Oxygen ratio control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019009609A JP2020118357A (en) 2019-01-23 2019-01-23 Oxygen ratio control system

Publications (1)

Publication Number Publication Date
JP2020118357A true JP2020118357A (en) 2020-08-06

Family

ID=71890410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019009609A Pending JP2020118357A (en) 2019-01-23 2019-01-23 Oxygen ratio control system

Country Status (1)

Country Link
JP (1) JP2020118357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117821694A (en) * 2023-12-27 2024-04-05 钢铁研究总院有限公司 High-regulation-ratio flow control valve bank for converter bottom blowing and air supply method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239315A (en) * 1988-03-22 1989-09-25 Rinnai Corp Combustion device
JP2009162130A (en) * 2008-01-08 2009-07-23 Yamatake Corp Fuel supply device
JP2011007398A (en) * 2009-06-24 2011-01-13 Osaka Gas Co Ltd Fuel air feed ratio control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239315A (en) * 1988-03-22 1989-09-25 Rinnai Corp Combustion device
JP2009162130A (en) * 2008-01-08 2009-07-23 Yamatake Corp Fuel supply device
JP2011007398A (en) * 2009-06-24 2011-01-13 Osaka Gas Co Ltd Fuel air feed ratio control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117821694A (en) * 2023-12-27 2024-04-05 钢铁研究总院有限公司 High-regulation-ratio flow control valve bank for converter bottom blowing and air supply method

Similar Documents

Publication Publication Date Title
JP2008232501A (en) Air-fuel ratio control system for combustion heating furnace
WO2013080894A1 (en) Valve control device, gas turbine, and valve control method
US20110223548A1 (en) Oxygen trim controller tuning during combustion system commissioning
EP2252838A1 (en) Assisted commissioning method for combustion control systems
US20120291679A1 (en) Method for correcting the combustion settings of a set of combustion chambers and apparatus implementing the method
CN108803327A (en) Boiler draft regulating system based on Adaptive Fuzzy Control and control method
JP2020118357A (en) Oxygen ratio control system
RU2761604C1 (en) Positive pressure coke oven heating system and method for temperature control
CN115576194A (en) Gas main pipe pressure control method based on pulse combustion continuous annealing furnace
JP7257898B2 (en) Oxygen ratio control system
JP5640689B2 (en) Combustion control device for hot stove and combustion control method for hot stove
JPS63286614A (en) Combustion control of boller
WO2024048029A1 (en) Combustion control method for combustion facility
JP4495011B2 (en) Control method of hot stove
WO2016157925A1 (en) Boiler device
JP7073025B1 (en) Combustion equipment
JP7413145B2 (en) combustion device
JP2012107292A (en) Combustion control apparatus of hot blast stove, and combustion control method of hot blast stove
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP5707975B2 (en) Heating furnace operation method
JP7210126B2 (en) Combustion equipment
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
JPS6113531B2 (en)
JP7210125B2 (en) Combustion equipment
JPH04131610A (en) Combustion controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230221