JP2011007398A - Fuel air feed ratio control device - Google Patents

Fuel air feed ratio control device Download PDF

Info

Publication number
JP2011007398A
JP2011007398A JP2009150262A JP2009150262A JP2011007398A JP 2011007398 A JP2011007398 A JP 2011007398A JP 2009150262 A JP2009150262 A JP 2009150262A JP 2009150262 A JP2009150262 A JP 2009150262A JP 2011007398 A JP2011007398 A JP 2011007398A
Authority
JP
Japan
Prior art keywords
valve
control valve
fuel
flow rate
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009150262A
Other languages
Japanese (ja)
Other versions
JP5519961B2 (en
Inventor
Yukio Shimizu
行男 清水
Yusuke Yamamoto
裕介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2009150262A priority Critical patent/JP5519961B2/en
Publication of JP2011007398A publication Critical patent/JP2011007398A/en
Application granted granted Critical
Publication of JP5519961B2 publication Critical patent/JP5519961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fuel air feed ratio control device capable of appropriately adjusting a flow ratio between a fuel flow rate and a combustion air flow rate while reducing cost.SOLUTION: A fuel control valve 3 for adjusting the fuel flow rate supplied to a burner 2 achieves a linear or approximately linear relationship between a valve opening and the fuel flow rate and includes a valve drive part 3d for adjusting the valve opening. An air control valve 6 for adjusting the combustion air flow rate supplied to the burner 2 achieves a linear or approximately linear relationship between a valve opening and the combustion air flow rate and includes a valve drive part 6d for adjusting the valve opening. A control means 7 controls the valve drive part 3d of the fuel control valve 3 and the valve drive part 6d of the air control valve 6 to adjust the valve opening of the fuel control valve 3 and the valve opening of the air control valve 6 to a valve opening so that the fuel flow rate becomes a flow rate corresponding to combustion load and the flow ratio between the fuel flow rate and the combustion air flow rate becomes a set flow ratio.

Description

本発明は、バーナへ供給される燃料流量を調整する燃料制御弁と、
前記バーナへ供給される燃焼用空気流量を調整する空気制御弁と、
前記燃料流量が前記バーナの燃焼負荷に応じた流量となり且つ前記燃料流量と前記燃焼用空気流量との流量比率が設定流量比率になるように前記燃料制御弁及び前記空気制御弁を制御する制御手段とが設けられた燃料空気供給量比率制御装置に関する。
The present invention provides a fuel control valve that adjusts the flow rate of fuel supplied to the burner;
An air control valve for adjusting the flow rate of combustion air supplied to the burner;
Control means for controlling the fuel control valve and the air control valve so that the fuel flow rate becomes a flow rate corresponding to the combustion load of the burner and a flow rate ratio between the fuel flow rate and the combustion air flow rate becomes a set flow rate ratio. The present invention relates to a fuel / air supply rate control apparatus.

かかる燃料空気供給量比率制御装置は、バーナに供給される燃料と燃焼用空気との供給量比率を制御するものであり、バーナは、例えば各種工業炉の加熱用として用いられる。
そして、燃料流量がバーナの燃焼負荷に応じた流量となり且つ燃料流量と燃焼用空気流量との流量比率が設定流量比率になるように、制御手段により燃料制御弁及び空気制御弁が制御されるように構成されている。
Such a fuel / air supply amount ratio control device controls a supply amount ratio between fuel supplied to the burner and combustion air, and the burner is used for heating various industrial furnaces, for example.
The fuel control valve and the air control valve are controlled by the control means so that the fuel flow rate becomes a flow rate corresponding to the combustion load of the burner and the flow rate ratio between the fuel flow rate and the combustion air flow rate becomes the set flow rate ratio. It is configured.

このような燃料空気供給量比率制御装置において、従来は、空気制御弁の弁開度を調整する駆動部が設けられ、その駆動部による空気制御弁の弁開度の変更調整に連動して、燃料流量と燃焼用空気流量との流量比率が設定流量比率になるように燃料制御弁の弁開度が調整されるべく、空気制御弁と燃料制御弁とがリンク機構にて連結されていた。
そして、制御手段により弁駆動部が制御されて、燃焼用空気流量がバーナの燃焼負荷に応じた流量となるように空気制御弁の弁開度が調整されると、それに連動して、リンク機構により燃料制御弁の弁開度が調整されることにより、燃料流量がバーナの燃焼負荷に応じた流量となり且つ燃料流量と燃焼用空気流量との流量比率が設定流量比率になるように、燃料制御弁及び空気制御弁が制御されるように構成されていた(例えば、特許文献1参照)。
In such a fuel air supply amount ratio control device, conventionally, a drive unit for adjusting the valve opening of the air control valve is provided, and in conjunction with the change adjustment of the valve opening of the air control valve by the drive unit, The air control valve and the fuel control valve are connected by a link mechanism so that the opening degree of the fuel control valve is adjusted so that the flow rate ratio between the fuel flow rate and the combustion air flow rate becomes the set flow rate ratio.
When the valve opening of the air control valve is adjusted so that the valve drive unit is controlled by the control means and the combustion air flow rate becomes a flow rate corresponding to the combustion load of the burner, By adjusting the valve opening of the fuel control valve, the fuel control is performed so that the fuel flow rate becomes a flow rate corresponding to the combustion load of the burner and the flow rate ratio between the fuel flow rate and the combustion air flow rate becomes the set flow rate ratio. The valve and the air control valve are configured to be controlled (see, for example, Patent Document 1).

特公平4−29934号公報Japanese Patent Publication No. 4-29934

しかしながら、従来の燃料空気供給量比率制御装置では、空気制御弁の弁開度の調整範囲全域において、空気制御弁の弁開度の調整に連動して燃料制御弁の弁開度が適切に調整されるようにリンク機構を調整する必要があり、その調整が複雑であるとともにその調整に熟練を要し、設定変更・メンテナンスに困難が伴っていた。更に、リンク機構の調整を適切に行ったとしても、そのリンク機構でカバーできる空気比調整範囲には限界がある。ここで、空気比は、燃料を完全燃焼させる必要最低限の理論空気量と実際に供給されている空気量の比を意味する。
又、リンク機構の連結部の緩み等により、燃料流量と燃焼用空気流量との流量比率が設定流量比率からずれる虞もあった。
However, in the conventional fuel air supply amount ratio control device, the valve opening of the fuel control valve is appropriately adjusted in conjunction with the adjustment of the valve opening of the air control valve in the entire adjustment range of the valve opening of the air control valve. It is necessary to adjust the link mechanism as described above, and the adjustment is complicated and skill is required for the adjustment, and setting change and maintenance are difficult. Furthermore, even if the link mechanism is adjusted appropriately, there is a limit to the air ratio adjustment range that can be covered by the link mechanism. Here, the air ratio means a ratio between a minimum theoretical air amount necessary for complete combustion of fuel and an air amount actually supplied.
In addition, the flow rate ratio between the fuel flow rate and the combustion air flow rate may deviate from the set flow rate ratio due to looseness of the connecting portion of the link mechanism.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、低廉化を図りながら、燃料流量と燃焼用空気流量との流量比率を適切に調整し得る燃料空気供給量比率制御装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fuel air supply amount ratio control device that can appropriately adjust the flow rate ratio between the fuel flow rate and the combustion air flow rate while reducing the cost. It is to provide.

本発明の燃料空気供給量比率制御装置は、バーナへ供給される燃料流量を調整する燃料制御弁と、
前記バーナへ供給される燃焼用空気流量を調整する空気制御弁と、
前記燃料流量が前記バーナの燃焼負荷に応じた流量となり且つ前記燃料流量と前記燃焼用空気流量との流量比率が設定流量比率になるように前記燃料制御弁及び前記空気制御弁を制御する制御手段とが設けられたものであって、
第1特徴構成は、前記燃料制御弁が、弁開度と前記燃料流量との関係が線形又は略線形であり、弁開度を調整する弁駆動部を備えて構成され、
前記空気制御弁が、弁開度と前記燃焼用空気流量との関係が線形又は略線形であり、弁開度を調整する弁駆動部を備えて構成され、
前記制御手段が、前記燃料制御弁の弁開度及び前記空気制御弁の弁開度を前記燃料流量が前記燃焼負荷に応じた流量となり且つ前記流量比率が前記設定流量比率となる弁開度に調整すべく、前記燃料制御弁の弁駆動部及び前記空気制御弁の弁駆動部を制御する点にある。
The fuel air supply amount ratio control device of the present invention includes a fuel control valve that adjusts the flow rate of fuel supplied to the burner,
An air control valve for adjusting the flow rate of combustion air supplied to the burner;
Control means for controlling the fuel control valve and the air control valve so that the fuel flow rate becomes a flow rate corresponding to the combustion load of the burner and a flow rate ratio between the fuel flow rate and the combustion air flow rate becomes a set flow rate ratio. Are provided, and
In the first characteristic configuration, the fuel control valve is configured so that a relationship between a valve opening and the fuel flow rate is linear or substantially linear, and includes a valve driving unit that adjusts the valve opening.
The air control valve has a linear or substantially linear relationship between the valve opening and the combustion air flow rate, and includes a valve drive unit that adjusts the valve opening.
The control means converts the valve opening of the fuel control valve and the valve opening of the air control valve to a valve opening at which the fuel flow rate becomes a flow rate corresponding to the combustion load and the flow rate ratio becomes the set flow rate ratio. In order to adjust, the valve drive unit of the fuel control valve and the valve drive unit of the air control valve are controlled.

即ち、燃料制御弁が、弁開度と燃料流量との関係が線形又は略線形であり、弁開度を調整する弁駆動部を備えて構成されているので、燃料制御弁の弁開度の変更速度が分かった状態(変更速度が特定された状態)で弁駆動部を作動させ且つその弁駆動部の作動時間を管理することにより、燃料制御弁の弁開度を目標の弁開度に調整して、バーナへ供給される燃料流量を目標の流量に調整することが可能となる。
空気制御弁も、同様に、弁開度と燃焼用空気流量との関係が線形又は略線形であり、弁開度を調整する弁駆動部を備えて構成されているので、空気制御弁の弁開度の変更速度が分かった状態(変更速度が特定された状態)で弁駆動部を作動させ且つその弁駆動部の作動時間を管理することにより、空気制御弁の弁開度を目標の弁開度に調整して、バーナへ供給される燃焼用空気流量を目標の流量に調整することが可能となる。ちなみに、燃料制御弁及び空気制御弁夫々の弁開度は、全開状態に対する比率として表され、例えば、全閉状態の弁開度を0%、全開状態の弁開度を100%として、百分率で表される。
That is, since the fuel control valve is configured so that the relationship between the valve opening and the fuel flow rate is linear or substantially linear and includes a valve driving unit that adjusts the valve opening, The valve opening of the fuel control valve is set to the target valve opening by operating the valve drive unit in a state where the change speed is known (a state in which the change speed is specified) and managing the operation time of the valve drive unit. It is possible to adjust the fuel flow rate supplied to the burner to the target flow rate.
Similarly, the air control valve has a linear or substantially linear relationship between the valve opening and the combustion air flow rate, and is configured to include a valve drive unit that adjusts the valve opening. The valve opening of the air control valve is set to the target valve by operating the valve drive in a state where the change speed of the opening is known (state in which the change speed is specified) and managing the operation time of the valve drive. It is possible to adjust the flow rate of combustion air supplied to the burner to a target flow rate by adjusting the opening. Incidentally, the opening degree of each of the fuel control valve and the air control valve is expressed as a ratio with respect to the fully opened state. For example, the valve opening degree in the fully closed state is 0% and the valve opening degree in the fully opened state is 100%. expressed.

つまり、制御手段により、燃料制御弁の弁開度変更速度が分かった状態で作動時間を管理するように燃料制御弁の弁駆動部を制御し、並びに、空気制御弁の弁開度変更速度が分かった状態で作動時間を管理するように空気制御弁の弁駆動部を制御するように構成することにより、燃料流量検出手段及び燃焼用空気流量検出手段を設けて、夫々の検出情報に基づいて燃料制御弁の弁駆動部及び空気制御弁の弁駆動部夫々を制御する高価なフィードバック制御を用いることなく、燃料制御弁の弁開度及び空気制御弁の弁開度を燃料流量が燃焼負荷に応じた流量となり且つ流量比率が設定流量比率となる弁開度に調整することができる。
そして、燃料制御弁及び空気制御弁夫々に専用の弁駆動部により、燃料制御弁及び空気制御弁夫々の弁開度を独立して調整することにより、従来の如きリンク機構を用いないようにして、燃料流量及び燃焼用空気流量を適切に調整してそれらの流量比率を設定流量比率に適切に調整することができる。
従って、低廉化を図りながら、燃料流量と燃焼用空気流量との流量比率を適切に調整し得る燃料空気供給量比率制御装置を提供することができるようになった。
That is, the control means controls the valve drive unit of the fuel control valve so as to manage the operation time in a state where the valve opening change speed of the fuel control valve is known, and the valve opening change speed of the air control valve is By configuring the valve drive part of the air control valve to control the operation time in the known state, a fuel flow rate detection means and a combustion air flow rate detection means are provided, and based on the respective detection information Without using expensive feedback control that controls the valve drive part of the fuel control valve and the valve drive part of the air control valve, the fuel flow rate can be adjusted to the combustion load. It is possible to adjust the valve opening so that the flow rate is adjusted and the flow rate ratio is the set flow rate ratio.
Then, by independently adjusting the valve opening degree of each of the fuel control valve and the air control valve by a dedicated valve drive unit for each of the fuel control valve and the air control valve, the conventional link mechanism is not used. The fuel flow rate and the combustion air flow rate can be appropriately adjusted, and the flow rate ratio thereof can be appropriately adjusted to the set flow rate ratio.
Accordingly, it is possible to provide a fuel air supply amount ratio control device that can appropriately adjust the flow rate ratio between the fuel flow rate and the combustion air flow rate while reducing the cost.

第2特徴構成は、上記第1特徴構成に加えて、
前記燃料制御弁及び前記空気制御弁夫々について弁開度変更速度が、前記燃焼負荷が最小燃焼負荷のときの最小弁開度と前記燃焼負荷が最大燃焼負荷のときの最大弁開度との間の遷移時間が前記燃料制御弁と前記空気制御弁とで同一になる速度に定められ、
前記制御手段が、前記燃料制御弁及び前記空気制御弁を夫々について定められた弁開度変更速度で同一時間作動させて、前記燃料制御弁の弁駆動部及び前記空気制御弁の弁駆動部を制御することにより、前記燃料制御弁の弁開度及び前記空気制御弁の弁開度を前記燃料流量が前記燃焼負荷に応じた流量となり且つ前記流量比率が前記設定流量比率となる弁開度に調整する点にある。
In addition to the first feature configuration, the second feature configuration is
The valve opening changing speed for each of the fuel control valve and the air control valve is between the minimum valve opening when the combustion load is the minimum combustion load and the maximum valve opening when the combustion load is the maximum combustion load. The transition time is determined to be the same speed for the fuel control valve and the air control valve,
The control means operates the fuel control valve and the air control valve at the valve opening change speeds determined for the same time for the same time, and causes the valve drive unit of the fuel control valve and the valve drive unit of the air control valve to operate. By controlling the valve opening of the fuel control valve and the valve opening of the air control valve, the fuel flow rate becomes a flow rate corresponding to the combustion load and the flow rate ratio becomes the set flow rate ratio. The point is to adjust.

即ち、燃料制御弁及び空気制御弁夫々の弁開度変更速度が、最小弁開度と最大弁開度との間の遷移時間が燃料制御弁と空気制御弁とで同一になる速度に夫々定められる。
そして、制御手段により、燃料制御弁及び空気制御弁を夫々について定められた弁開度変更速度で同一時間作動させて、燃料制御弁の弁駆動部及び空気制御弁の弁駆動部が制御されることにより、燃料制御弁の弁開度及び空気制御弁の弁開度を燃料流量が燃焼負荷に応じた流量となり且つ流量比率が設定流量比率となる弁開度に調整される。
That is, the valve opening changing speed of each of the fuel control valve and the air control valve is set to a speed at which the transition time between the minimum valve opening and the maximum valve opening is the same between the fuel control valve and the air control valve. It is done.
Then, the control means operates the fuel control valve and the air control valve at the valve opening change speeds determined for the same time for the same time, thereby controlling the valve drive unit of the fuel control valve and the valve drive unit of the air control valve. Thus, the valve opening degree of the fuel control valve and the valve opening degree of the air control valve are adjusted to the valve opening degree at which the fuel flow rate becomes a flow rate corresponding to the combustion load and the flow rate ratio becomes the set flow rate ratio.

このように燃料制御弁及び空気制御弁夫々の弁開度が調整されることにより、燃料制御弁及び空気制御弁夫々の弁開度が現在の弁開度から目標の弁開度にまで調整される弁開度調整過渡期間においても、燃料流量と燃焼用空気流量との流量比率を適切に調整することができるのである。
ちなみに、本願構成とは異なり、燃料制御弁及び空気制御弁夫々の弁開度変更速度が、最小弁開度と最大弁開度との間の遷移時間が燃料制御弁と空気制御弁とで異なるような速度に定められる場合は、現在の弁開度から目標の弁開度にまで調整されるときに、燃料制御弁及び空気制御弁のうちの一方の弁開度が目標の弁開度に達しているのに他方の弁開度が目標の弁開度に達していない期間が発生することになる。そして、そのような期間は、燃料流量に対する適正な燃焼用空気流量に対して実際の燃焼用空気流量に過不足が生じることになり、燃料流量と燃焼用空気流量との流量比率を適切に調整することができない。
従って、燃料制御弁及び空気制御弁夫々の弁開度が目標の弁開度に調整される弁開度調整過渡期間においても、燃料流量と燃焼用空気流量との流量比率を適切に調整することができるようになった。
In this way, by adjusting the valve opening of each of the fuel control valve and the air control valve, the valve opening of each of the fuel control valve and the air control valve is adjusted from the current valve opening to the target valve opening. Even during the valve opening adjustment transient period, the flow rate ratio between the fuel flow rate and the combustion air flow rate can be adjusted appropriately.
Incidentally, unlike the configuration of the present application, the valve opening changing speeds of the fuel control valve and the air control valve are different from each other in the transition time between the minimum valve opening and the maximum valve opening between the fuel control valve and the air control valve. In such a case, when the valve opening is adjusted from the current valve opening to the target valve opening, one of the fuel control valve and the air control valve is set to the target valve opening. However, there is a period in which the other valve opening does not reach the target valve opening. In such a period, the actual combustion air flow rate is excessive or insufficient with respect to the appropriate combustion air flow rate with respect to the fuel flow rate, and the flow rate ratio between the fuel flow rate and the combustion air flow rate is adjusted appropriately. Can not do it.
Accordingly, the flow rate ratio between the fuel flow rate and the combustion air flow rate should be adjusted appropriately even during the valve opening adjustment transition period in which the valve opening of each of the fuel control valve and the air control valve is adjusted to the target valve opening. Can now.

第3特徴構成は、上記第2特徴構成に加えて、
前記燃料制御弁における前記最小弁開度と前記最大弁開度との開度差と、前記空気制御弁における前記最小弁開度と前記最大弁開度との開度差とが異なる点にある。
The third feature configuration is in addition to the second feature configuration,
The difference in opening between the minimum valve opening and the maximum valve opening in the fuel control valve is different from the opening difference between the minimum valve opening and the maximum valve opening in the air control valve. .

最小燃焼負荷のときは、燃焼用空気流量の絶対量が少なくて、燃焼用空気不足状態になり易いので、最小燃焼負荷のときの燃料流量と燃焼用空気流量との流量比率を最大燃焼負荷のときの流量比率よりも大きく設定する場合があり、例えばこのような場合には、燃料制御弁における最小弁開度と最大弁開度との開度差と空気制御弁における最小弁開度と最大弁開度との開度差とが異なるようになる。
そして、このように最小弁開度と最大弁開度との開度差が燃料制御弁と空気制御弁とで異なる場合でも、上記の第2特徴構成のように、燃料制御弁及び空気制御弁夫々の弁開度を夫々について定められた弁開度変更速度にて変更すべく燃料制御弁及び空気制御弁夫々の弁駆動部が制御されることにより、弁開度調整過渡期間においても、燃料流量と燃焼用空気流量との流量比率を適切に調整することができる。
従って、燃料流量と燃焼用空気流量との流量比率を最小燃焼負荷のときと最大燃焼負荷のときとで異なるように設定した場合でも、燃料制御弁及び空気制御弁夫々の弁開度が目標の弁開度に調整される弁開度調整過渡期間においても、燃料流量と燃焼用空気流量との流量比率を適切に調整することができるようになった。
At the minimum combustion load, the absolute amount of the combustion air flow rate is small and the combustion air shortage is likely to occur.Therefore, the flow rate ratio between the fuel flow rate and the combustion air flow rate at the minimum combustion load is set to the maximum combustion load. For example, in such a case, an opening difference between the minimum valve opening and the maximum valve opening in the fuel control valve, and a minimum valve opening and a maximum in the air control valve may be set. The opening difference from the valve opening is different.
Even when the difference in opening between the minimum valve opening and the maximum valve opening is different between the fuel control valve and the air control valve, the fuel control valve and the air control valve as in the second feature configuration described above. The fuel control valve and the air control valve are controlled to change the valve opening at the valve opening changing speed determined for each, so that the fuel can be adjusted even during the valve opening adjustment transition period. The flow rate ratio between the flow rate and the combustion air flow rate can be adjusted appropriately.
Therefore, even when the flow rate ratio between the fuel flow rate and the combustion air flow rate is set to be different between the minimum combustion load and the maximum combustion load, the valve opening degree of each of the fuel control valve and the air control valve is the target. The flow rate ratio between the fuel flow rate and the combustion air flow rate can be appropriately adjusted even during the valve opening adjustment transition period adjusted to the valve opening.

第4特徴構成は、上記第2又は第3特徴構成に加えて、
前記制御手段が、前記遷移時間を変更設定自在に構成されている点にある。
In addition to the second or third feature configuration, the fourth feature configuration is
The control means is configured to be able to change and set the transition time.

即ち、加熱対象物を加熱する加熱条件等に応じて、最小弁開度と最大弁開度との間の遷移時間を異なるように設定する場合がある。
例えば、燃焼負荷の変動が大きいときは、バーナの燃焼量の変更を速くして燃焼負荷の変動に速く対応すべく、遷移時間を短く設定して弁開度変更速度を大きく設定し、燃焼負荷の変動が小さいときは、バーナの燃焼量の変更調整による加熱温度のオーバーシュートを小さくすべく、遷移時間を長く設定して弁開度変更速度を小さく設定する。
そして、このように最小弁開度と最大弁開度との間の遷移時間が変更されても、上記の第2特徴構成のように、燃料制御弁及び空気制御弁夫々の弁開度を夫々について定められた弁開度変更速度にて変更すべく燃料制御弁及び空気制御弁夫々の弁駆動部が制御されることにより、弁開度調整過渡期間においても、燃料流量と燃焼用空気流量との流量比率を適切に調整することができる。
従って、加熱条件等に応じて、最小弁開度と最大弁開度との間の遷移時間を変更設定できるようにしながら、燃料制御弁及び空気制御弁夫々の弁開度が目標の弁開度に調整される弁開度調整過渡期間においても、燃料流量と燃焼用空気流量との流量比率を適切に調整することができるようになった。
That is, the transition time between the minimum valve opening and the maximum valve opening may be set differently depending on the heating conditions for heating the heating object.
For example, when the fluctuation of the combustion load is large, in order to quickly change the burner combustion amount and respond quickly to the fluctuation of the combustion load, the transition time is set short and the valve opening change speed is set large. When the fluctuation of the valve is small, in order to reduce the overshoot of the heating temperature due to the change adjustment of the burner combustion amount, the transition time is set long and the valve opening change speed is set small.
And even if the transition time between the minimum valve opening and the maximum valve opening is changed in this way, the valve opening of each of the fuel control valve and the air control valve is set as in the second characteristic configuration. By controlling the valve drive parts of the fuel control valve and the air control valve so as to change at the valve opening changing speed determined for The flow rate ratio can be adjusted appropriately.
Therefore, while allowing the transition time between the minimum valve opening and the maximum valve opening to be changed and set according to the heating conditions etc., the valve opening of each of the fuel control valve and the air control valve is the target valve opening. The flow rate ratio between the fuel flow rate and the combustion air flow rate can be appropriately adjusted even during the valve opening adjustment transition period adjusted to.

第5特徴構成は、上記第2〜第4特徴構成のいずれか1つに加えて、
前記最小燃焼負荷及び前記最大燃焼負荷のうちの少なくとも一方が異なり燃焼負荷調整範囲が異なる複数の運転モードからいずれか一つの運転モードを指令するモード指令手段が設けられ、
前記複数の運転モードの夫々に対応して、前記弁開度変更速度が前記燃料制御弁及び前記空気制御弁夫々について定められ、
前記制御手段が、前記モード指令手段にて指令された運転モードに対応する前記燃料制御弁及び前記空気制御弁夫々の弁開度変更速度で、前記燃料制御弁及び前記空気制御弁夫々を作動させるべく、前記燃料制御弁の弁駆動部及び前記空気制御弁の弁駆動部を制御する点にある。
In addition to any one of the second to fourth feature configurations, the fifth feature configuration is
Mode command means is provided for commanding any one operation mode from a plurality of operation modes in which at least one of the minimum combustion load and the maximum combustion load is different and the combustion load adjustment range is different,
Corresponding to each of the plurality of operation modes, the valve opening change speed is determined for each of the fuel control valve and the air control valve,
The control means operates each of the fuel control valve and the air control valve at a valve opening change speed of each of the fuel control valve and the air control valve corresponding to the operation mode commanded by the mode command means. Therefore, the valve drive unit of the fuel control valve and the valve drive unit of the air control valve are controlled.

即ち、モード指令手段により、燃焼負荷調整範囲が異なる複数の運転モードからいずれか一つの運転モードが指令される。
すると、制御手段により、そのモード指令手段にて指令された運転モードに対応する燃料制御弁及び空気制御弁夫々の弁開度変更速度で、燃料制御弁及び空気制御弁夫々を作動させるべく、燃料制御弁の弁駆動部及び空気制御弁の弁駆動部が制御される。
That is, any one operation mode is commanded from the plurality of operation modes having different combustion load adjustment ranges by the mode command means.
Then, in order to operate the fuel control valve and the air control valve by the control means at the valve opening changing speed of each of the fuel control valve and the air control valve corresponding to the operation mode commanded by the mode command means. The valve drive unit of the control valve and the valve drive unit of the air control valve are controlled.

例えば、加熱対象物を加熱する加熱処理の種類が異なると、加熱温度やその加熱温度の調整範囲が異なるので、加熱処理の種類に応じて、最小燃焼負荷及び最大燃焼負荷のうちの少なくとも一方を異ならせることにより、燃焼負荷調整範囲が異なる複数の運転モードを設定する。
そして、複数の運転モードからいずれか一つの運転モードを指令するモード指令手段を設けて、そのモード指令手段にて指令される運転モードにて設定されている燃焼負荷調整範囲でバーナの燃焼量を制御することにより、加熱処理に応じた燃焼負荷調整範囲でバーナの燃焼量を制御することができ、汎用性を向上することができる。
For example, if the type of heat treatment for heating the object to be heated is different, the heating temperature and the adjustment range of the heating temperature are different, so at least one of the minimum combustion load and the maximum combustion load is determined according to the type of heat treatment. By making them different, a plurality of operation modes having different combustion load adjustment ranges are set.
Then, a mode command means for commanding any one of the plurality of operation modes is provided, and the burner combustion amount is set within the combustion load adjustment range set in the operation mode commanded by the mode command means. By controlling, the combustion amount of the burner can be controlled within the combustion load adjustment range corresponding to the heat treatment, and versatility can be improved.

このように、燃焼負荷調整範囲が異なる複数の運転モードから任意に選択した運転モードでバーナの作動が制御される場合でも、任意に選択した運転モードで設定されている条件に基づいて、上記の第2特徴構成のように、燃料制御弁及び空気制御弁夫々の弁開度変更速度が定められて、そのように夫々について定められた弁開度変更速度にて燃料制御弁及び空気制御弁夫々の弁開度を変更すべく燃料制御弁及び空気制御弁夫々の弁駆動部が制御されることにより、弁開度調整過渡期間においても、燃料流量と燃焼用空気流量との流量比率を適切に調整することができる。
従って、燃焼負荷調整範囲が異なる複数の運転モードから任意に選択される運転モードにてバーナの燃焼量を調整できるようにして、汎用性を向上した場合でも、燃料制御弁及び空気制御弁夫々の弁開度が目標の弁開度に調整される弁開度調整過渡期間においても、燃料流量と燃焼用空気流量との流量比率を適切に調整することができるようになった。
Thus, even when the operation of the burner is controlled in an operation mode arbitrarily selected from a plurality of operation modes having different combustion load adjustment ranges, based on the conditions set in the arbitrarily selected operation mode, As in the second feature configuration, the valve opening changing speeds of the fuel control valve and the air control valve are determined, and the fuel control valve and the air control valve are respectively set at the valve opening changing speeds determined for each. By controlling the valve drive parts of the fuel control valve and the air control valve so as to change the valve opening of the valve, the flow rate ratio between the fuel flow rate and the combustion air flow rate is appropriately adjusted even during the valve opening adjustment transition period. Can be adjusted.
Therefore, even when the burner combustion amount can be adjusted in an operation mode arbitrarily selected from a plurality of operation modes having different combustion load adjustment ranges, and the versatility is improved, each of the fuel control valve and the air control valve Even during the valve opening adjustment transition period in which the valve opening is adjusted to the target valve opening, the flow rate ratio between the fuel flow rate and the combustion air flow rate can be adjusted appropriately.

実施形態にかかる燃料空気供給量比率制御装置のブロック図The block diagram of the fuel air supply amount ratio control apparatus concerning embodiment 表示部の表示画面の要部を示す図The figure which shows the principal part of the display screen of a display part 弁開度と流量との関係を示す図Diagram showing the relationship between valve opening and flow rate 燃料制御弁及び空気制御弁の開閉時間及び燃焼負荷と設定空気比との関係を示す図The figure which shows the relationship between the open / close time of the fuel control valve and the air control valve, the combustion load, and the set air ratio

以下、図面に基づいて、本発明の実施の形態を説明する。
図1に示すように、燃料空気供給量比率制御装置は、燃料供給路1を通してバーナ2に供給されるガス燃料流量を調整する燃料制御弁3と、燃焼用送風機5から空気供給路4を通して供給される燃焼用空気流量を調整する空気制御弁6と、ガス燃料流量がバーナ2の燃焼負荷に応じた流量となり且つガス燃料流量と燃焼用空気流量との流量比率が設定流量比率になるように燃料制御弁3及び空気制御弁6を制御する制御部(制御手段に相当する)7と、その制御部7と通信自在な操作部8等を備えて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the fuel / air supply amount ratio control device supplies a fuel control valve 3 that adjusts the flow rate of gas fuel supplied to the burner 2 through the fuel supply path 1 and the air supply path 4 from the combustion blower 5. The air control valve 6 for adjusting the combustion air flow rate, the gas fuel flow rate is a flow rate corresponding to the combustion load of the burner 2, and the flow rate ratio between the gas fuel flow rate and the combustion air flow rate is the set flow rate ratio. A control unit (corresponding to control means) 7 for controlling the fuel control valve 3 and the air control valve 6 and an operation unit 8 that can communicate with the control unit 7 are provided.

この実施形態では、バーナ2は、炉9の加熱用として、加熱対象の炉9の炉壁9wに設けられる。
そして、この実施形態では、バーナ2が加熱対象の炉9の炉壁9wに2台設けられ、燃料制御弁3及び空気制御弁6が2台のバーナ2夫々に対応して設けられている。尚、以下の説明では、2台のバーナ2を区別して説明するときは、第1バーナ2a、第2バーナ2bと記載する。
燃料供給路1は、例えば、都市ガス(13A等、メタンガス(CH4)を主成分とするガス)が供給される都市ガス管(図示省略)に接続されて、都市ガスが燃焼用として各バーナ2に供給される。
燃料供給路1における2台のバーナ2に対する分岐箇所よりも上流側の部分には、2台のバーナ2に対するガス燃料の供給を一括して断続する燃料元弁10が設けられている。
又、炉内の温度を検出する炉温センサ11が設けられ、この炉温センサ11の検出情報が制御部7に入力されるように構成されている。
In this embodiment, the burner 2 is provided for heating the furnace 9 on the furnace wall 9w of the furnace 9 to be heated.
In this embodiment, two burners 2 are provided on the furnace wall 9w of the furnace 9 to be heated, and the fuel control valve 3 and the air control valve 6 are provided corresponding to the two burners 2, respectively. In the following description, when the two burners 2 are distinguished and described, they are referred to as a first burner 2a and a second burner 2b.
The fuel supply path 1 is connected to, for example, a city gas pipe (not shown) to which city gas (gas such as 13A, which contains methane gas (CH 4 ) as a main component) is supplied. 2 is supplied.
A fuel main valve 10 is provided in the fuel supply path 1 at a portion upstream from the branching point for the two burners 2 to collectively and intermittently supply gas fuel to the two burners 2.
A furnace temperature sensor 11 for detecting the temperature in the furnace is provided, and the detection information of the furnace temperature sensor 11 is input to the control unit 7.

本発明では、燃料制御弁3が、弁開度とガス燃料流量との関係が線形であり、弁開度を調整する弁駆動部3dを備えて構成されている。
又、空気制御弁6が、弁開度と燃焼用空気流量との関係が線形であり、弁開度を調整する弁駆動部6dを備えて構成されている。このような燃料制御弁3、空気制御弁6としては、ボール弁、ゲート弁等を採用することができる。
そして、制御部7が、燃料制御弁3の弁開度及び空気制御弁6の弁開度をガス燃料流量が燃焼負荷に応じた流量となり且つ流量比率が設定流量比率となる弁開度に調整すべく、燃料制御弁3の弁駆動部3d及び空気制御弁6の弁駆動部6dを制御するように構成されている。
In the present invention, the fuel control valve 3 has a linear relationship between the valve opening and the gas fuel flow rate, and is configured to include a valve drive unit 3d that adjusts the valve opening.
Further, the air control valve 6 is configured to include a valve drive unit 6d that adjusts the valve opening degree, in which the relationship between the valve opening degree and the combustion air flow rate is linear. As such a fuel control valve 3 and air control valve 6, a ball valve, a gate valve, etc. are employable.
And the control part 7 adjusts the valve opening degree of the fuel control valve 3 and the valve opening degree of the air control valve 6 to the valve opening degree where the gas fuel flow rate becomes a flow rate corresponding to the combustion load and the flow rate ratio becomes the set flow rate ratio. Accordingly, the valve drive unit 3d of the fuel control valve 3 and the valve drive unit 6d of the air control valve 6 are controlled.

この実施形態では、燃料制御弁3及び空気制御弁6夫々について燃焼量調整用の弁開度変更速度が、燃焼負荷が最小燃焼負荷のときの最小弁開度と燃焼負荷が最大燃焼負荷のときの最大弁開度との間の遷移時間が燃料制御弁3と空気制御弁6とで同一になる速度に夫々定められる。
そして、制御部7が、燃料制御弁3及び空気制御弁6を夫々について定められた燃焼量調整用の弁開度変更速度で同一時間作動させるように、燃料制御弁3の弁駆動部3d及び空気制御弁6の弁駆動部6dを制御することにより、燃料制御弁3の弁開度及び空気制御弁6の弁開度をガス燃料流量が燃焼負荷に応じた流量となり且つ流量比率が設定流量比率となる弁開度に調整するように構成されている。
In this embodiment, the valve opening changing speed for adjusting the combustion amount for each of the fuel control valve 3 and the air control valve 6 is the minimum valve opening when the combustion load is the minimum combustion load and the combustion load is the maximum combustion load. The transition time between the fuel control valve 3 and the air control valve 6 is determined to be the same speed.
Then, the control unit 7 operates the valve control unit 3d of the fuel control valve 3 and the fuel control valve 3 and the air control valve 6 so that the fuel control valve 3 and the air control valve 6 are operated for the same time at the valve opening changing speed for adjusting the combustion amount. By controlling the valve drive unit 6d of the air control valve 6, the valve opening degree of the fuel control valve 3 and the valve opening degree of the air control valve 6 are set so that the gas fuel flow rate corresponds to the combustion load and the flow rate ratio is the set flow rate. It is comprised so that it may adjust to the valve opening used as a ratio.

燃料空気供給量比率制御装置の各部について、説明を加える。
燃料制御弁3は、電動モータからなる弁駆動部3dを備えた電動ボール弁にて構成され、図3に示すように、弁開度とガス燃料流量との関係が線形である。
又、空気制御弁6も、電動モータからなる弁駆動部6dを備えた電動ボール弁にて構成され、図3に示すように、弁開度と燃焼用空気流量との関係が線形である。
燃料制御弁3及び空気制御弁6夫々を構成する電動ボール弁は、全閉状態で流体の通流を遮断することが可能なように構成されている。
ちなみに、燃料制御弁3及び空気制御弁6夫々の弁開度は、全閉状態の弁開度を0%、全開状態の弁開度を100%として、百分率で表される。
A description will be given of each part of the fuel / air supply amount ratio control device.
The fuel control valve 3 is constituted by an electric ball valve provided with a valve drive unit 3d made of an electric motor, and the relationship between the valve opening and the gas fuel flow rate is linear as shown in FIG.
The air control valve 6 is also constituted by an electric ball valve including a valve drive unit 6d made of an electric motor, and the relationship between the valve opening and the combustion air flow rate is linear as shown in FIG.
The electric ball valves constituting each of the fuel control valve 3 and the air control valve 6 are configured so as to be able to block the flow of fluid in a fully closed state.
Incidentally, the valve opening degree of each of the fuel control valve 3 and the air control valve 6 is expressed as a percentage with the valve opening degree in the fully closed state being 0% and the valve opening degree in the fully open state being 100%.

図3に示すように、例えば後述するA運転モードの場合、燃料制御弁3については、燃焼負荷が最小燃焼負荷のときの最小弁開度が38%、燃焼負荷が最大燃焼負荷のときの最大弁開度が85%に夫々設定され、空気制御弁6については、燃焼負荷が最小燃焼負荷のときの最小弁開度が41%、燃焼負荷が最大燃焼負荷のときの最大弁開度が96%に夫々設定されるとする。
つまり、燃料制御弁3における最小弁開度と最大弁開度との開度差は、全開状態の47%の開度であり、空気制御弁6における最小弁開度と最大弁開度との開度差は、全開状態の55%の開度であり、最小弁開度と最大弁開度との開度差が燃料制御弁3と空気制御弁6とで異なる。
As shown in FIG. 3, for example, in the case of the A operation mode described later, for the fuel control valve 3, the minimum valve opening when the combustion load is the minimum combustion load is 38%, and the maximum when the combustion load is the maximum combustion load. The valve opening is set to 85%, and the air control valve 6 has a minimum valve opening of 41% when the combustion load is the minimum combustion load and a maximum valve opening of 96 when the combustion load is the maximum combustion load. % Is set respectively.
That is, the opening difference between the minimum valve opening and the maximum valve opening in the fuel control valve 3 is 47% of the fully open state, and the difference between the minimum valve opening and the maximum valve opening in the air control valve 6 is The opening difference is 55% of the fully opened state, and the opening difference between the minimum valve opening and the maximum valve opening is different between the fuel control valve 3 and the air control valve 6.

そして、最小弁開度と最大弁開度との間の遷移時間、即ち、弁開度を最小弁開度から最大弁開度にまで大きくするのに要する時間、及び、弁開度を最大弁開度から最小弁開度にまで小さくするのに要する時間を、例えば、30秒とする。
この場合、燃料制御弁3における燃焼量調整用の弁開度変更速度が、1.57%/秒に設定され、空気制御弁6における燃焼量調整用の弁開度変更速度が、1.83%/秒に設定されることになる。
The transition time between the minimum valve opening and the maximum valve opening, that is, the time required to increase the valve opening from the minimum valve opening to the maximum valve opening, and the valve opening The time required to reduce from the opening to the minimum valve opening is, for example, 30 seconds.
In this case, the valve opening changing speed for adjusting the combustion amount in the fuel control valve 3 is set to 1.57% / second, and the valve opening changing speed for adjusting the combustion amount in the air control valve 6 is 1.83. % / Second will be set.

又、この実施形態では、最小燃焼負荷及び最大燃焼負荷のうちの少なくとも一方が異なることにより燃焼負荷調整範囲が異なる2種類の運転モードが設定可能なように構成されている。ちなみに、以下では、2種類の運転モードを区別して説明する場合、A運転モード、B運転モードと記載する。
そして、図1に示すように、それら2種類の運転モードからいずれか一つの運転モードを指令するモード指令手段としてのモード指令部12が操作部8に設けられている。つまり、このモード指令部12は、A運転モードとB運転モードのいずれか一方を指令するように構成されている。
Further, in this embodiment, it is configured such that two types of operation modes having different combustion load adjustment ranges can be set when at least one of the minimum combustion load and the maximum combustion load is different. Incidentally, in the following, when the two types of operation modes are distinguished and described, they are referred to as an A operation mode and a B operation mode.
As shown in FIG. 1, a mode command unit 12 is provided in the operation unit 8 as mode command means for commanding one of the two operation modes. That is, the mode command unit 12 is configured to command one of the A operation mode and the B operation mode.

次に、運転モードの設定の仕方について説明を加える。
即ち、各運転モード毎に、燃料制御弁3及び空気制御弁6の夫々についての最小弁開度及び最大弁開度、並びに、燃料制御弁3及び空気制御弁6に共通の遷移時間からなるモード条件を設定することができるように構成されている。
ちなみに、燃料制御弁3について設定する最小弁開度、最大弁開度は、夫々、最小燃焼負荷に対応する流量のガス燃料を流すための弁開度、最大燃焼負荷に対応する流量のガス燃料を流すための弁開度であり、空気制御弁6について設定する最小弁開度、最大弁開度は、夫々、最小燃焼負荷に対応するガス燃料流量に対して最小燃焼負荷時空気比となる流量の燃焼用空気を流すための弁開度、最大燃焼負荷に対応するガス燃料流量に対して最大燃焼負荷時空気比となる流量の燃焼用空気を流すための弁開度である。
ちなみに、最小燃焼負荷時空気比及び最大燃焼負荷時空気比は互いに同じ値に設定されてもよいし、互いに異なる値に設定されてもよい。
Next, a description will be given of how to set the operation mode.
That is, for each operation mode, a mode consisting of a minimum valve opening and a maximum valve opening for each of the fuel control valve 3 and the air control valve 6 and a transition time common to the fuel control valve 3 and the air control valve 6. It is configured so that conditions can be set.
Incidentally, the minimum valve opening and the maximum valve opening set for the fuel control valve 3 are the valve opening for flowing gas fuel at a flow rate corresponding to the minimum combustion load, and the gas fuel at a flow rate corresponding to the maximum combustion load, respectively. The minimum valve opening and the maximum valve opening set for the air control valve 6 are respectively the air ratio at the time of the minimum combustion load with respect to the gas fuel flow rate corresponding to the minimum combustion load. The valve opening for flowing the combustion air at a flow rate, and the valve opening for flowing the combustion air at a flow rate that corresponds to the maximum combustion load air ratio with respect to the gas fuel flow rate corresponding to the maximum combustion load.
Incidentally, the air ratio at the minimum combustion load and the air ratio at the maximum combustion load may be set to the same value, or may be set to different values.

又、2台のバーナ2の夫々について、A運転モード及びB運転モード夫々のモード条件を設定可能なように構成されている。
そして、2台のバーナ2で各運転モードのモード条件を異なる条件に設定することができる。
つまり、各運転モードにおいて、燃料制御弁3の最小弁開度及び最大弁開度、空気制御弁6の最小弁開度及び最大弁開度、並びに、遷移時間のうちのいずれか、又は、全てを2台のバーナ2で異なる値に設定することができる。
例えば、炉9の入口側のバーナ2は、奥側のバーナ2よりも燃焼負荷が大きく、しかも、燃焼負荷が変動し易い。そこで、入口側のバーナ2に対応する燃料制御弁3及び空気制御弁6夫々の最小弁開度及び最大弁開度を、奥側のバーナ2に対応する燃料制御弁3及び空気制御弁6夫々の最小弁開度及び最大弁開度よりも大きく設定し、並びに、入口側のバーナ2に対応する遷移時間を奥側のバーナ2に対応する遷移時間よりも短く設定すると、入口側のバーナ2の燃焼負荷の変動に対する応答を速くすることが可能となる。
Further, each of the two burners 2 is configured so that the mode conditions of the A operation mode and the B operation mode can be set.
And the mode conditions of each operation mode can be set to different conditions by the two burners 2.
That is, in each operation mode, any or all of the minimum valve opening and the maximum valve opening of the fuel control valve 3, the minimum valve opening and the maximum valve opening of the air control valve 6, and the transition time. Can be set to different values by the two burners 2.
For example, the burner 2 on the inlet side of the furnace 9 has a larger combustion load than the burner 2 on the back side, and the combustion load is likely to fluctuate. Therefore, the minimum valve opening and the maximum valve opening of each of the fuel control valve 3 and the air control valve 6 corresponding to the burner 2 on the inlet side are respectively set to the fuel control valve 3 and the air control valve 6 corresponding to the back burner 2. And the transition time corresponding to the inlet-side burner 2 is set to be shorter than the transition time corresponding to the back-side burner 2, the inlet-side burner 2 It is possible to speed up the response to fluctuations in the combustion load.

又、炉9にて行う加熱処理の種類毎に、運転モードを設定し、その運転モードのモード条件を加熱処理の種類に応じて設定することができる。
例えば、加熱処理として、焼入れ処理と焼戻し処理を行う場合、焼入れ処理は焼き戻し処理よりも高温が要求されるので、燃料制御弁3及び空気制御弁6夫々の最小弁開度及び最大弁開度を、焼戻し処理に対応する運転モードよりも焼入れ処理に対応する運転モードの方が大きくなるように設定することになる。
In addition, an operation mode can be set for each type of heat treatment performed in the furnace 9, and mode conditions of the operation mode can be set according to the type of heat treatment.
For example, when performing a quenching process and a tempering process as the heating process, the quenching process requires a higher temperature than the tempering process, so the minimum valve opening and the maximum valve opening of the fuel control valve 3 and the air control valve 6 respectively. Is set so that the operation mode corresponding to the quenching process is larger than the operation mode corresponding to the tempering process.

図1及び図2に示すように、操作部8には、炉9を加熱する加熱運転の開始及び停止を指令する運転スイッチ13、2台のバーナ2の夫々について、2種類の運転モード夫々のモード条件を設定するためのモード条件設定部14、そのモード条件設定部14にて設定されるモード条件等を表示する表示部15、及び、炉9の加熱目標温度を設定する加熱温度設定部16等が設けられている。
尚、図2は、モード条件を表示している状態の表示部15の画面の詳細を示すものであるが、この図2では、2台のバーナ2のうちの第1バーナ2aについてのモード条件の表示領域のみが示され、第2バーナ2bについてのモード条件の表示領域が省略されている。
図示を省略するが、操作部8には、表示部15の表示画面を、モード条件を表示する画面等に切り換える表示画面切換部も設けられている。
As shown in FIGS. 1 and 2, the operation unit 8 has an operation switch 13 for instructing start and stop of a heating operation for heating the furnace 9, and two operation modes for each of the two burners 2. A mode condition setting unit 14 for setting mode conditions, a display unit 15 for displaying mode conditions set by the mode condition setting unit 14, and a heating temperature setting unit 16 for setting a heating target temperature of the furnace 9 Etc. are provided.
FIG. 2 shows details of the screen of the display unit 15 in a state in which the mode condition is displayed. In FIG. 2, the mode condition for the first burner 2a of the two burners 2 is shown. Only the display area is shown, and the display area of the mode condition for the second burner 2b is omitted.
Although not shown, the operation unit 8 is also provided with a display screen switching unit for switching the display screen of the display unit 15 to a screen for displaying mode conditions.

図2に示すように、モード条件を表示している表示部15の画面では、A運転モードについて、モード条件設定部14にて設定される燃料制御弁3の最小弁開度、最大弁開度、空気制御弁6の最小弁開度、最大弁開度、及び、遷移時間を夫々表示する表示領域15a〜15eが備えられ、B運転モードについて、モード条件設定部14にて設定される燃料制御弁3の最小弁開度、最大弁開度、空気制御弁6の最小弁開度、最大弁開度、及び、遷移時間を夫々表示する表示領域15f〜15jが備えられている。   As shown in FIG. 2, on the screen of the display unit 15 displaying the mode conditions, the minimum valve opening and the maximum valve opening of the fuel control valve 3 set by the mode condition setting unit 14 for the A operation mode. In addition, display areas 15a to 15e for displaying the minimum valve opening, the maximum valve opening, and the transition time of the air control valve 6 are provided, and the fuel control set by the mode condition setting unit 14 for the B operation mode. Display areas 15f to 15j for displaying the minimum valve opening and the maximum valve opening of the valve 3, the minimum valve opening and the maximum valve opening of the air control valve 6, and the transition time are provided.

詳細な図示を省略するが、モード条件設定部14は、第1バーナ2aか第2バーナ2bか、並びに、A運転モードかB運転モードかを選択して、各選択状態において、燃料制御弁3の最小弁開度及び最大弁開度、空気制御弁6の最小弁開度及び最大弁開度、並びに、遷移時間を入力可能なように構成されている。
つまり、各バーナ2毎に、複数の運転モード夫々について、燃料制御弁3の最小弁開度及び最大弁開度、空気制御弁6の最小弁開度及び最大弁開度、並びに、遷移時間を設定することができる。
Although detailed illustration is omitted, the mode condition setting unit 14 selects the first burner 2a or the second burner 2b and the A operation mode or the B operation mode, and in each selected state, the fuel control valve 3 The minimum valve opening and the maximum valve opening, the minimum valve opening and the maximum valve opening of the air control valve 6, and the transition time can be input.
That is, for each burner 2, the minimum valve opening and the maximum valve opening of the fuel control valve 3, the minimum valve opening and the maximum valve opening of the air control valve 6, and the transition time for each of a plurality of operation modes. Can be set.

図2及び図3に示すように、例えば、第1バーナ2aのA運転モードについては、燃料制御弁3の最小弁開度、最大弁開度が夫々38%、85%に設定され、空気制御弁6の最小弁開度、最大弁開度が夫々41%、96%に設定され、遷移時間が30秒に設定される。
又、第1バーナ2aのB運転モードについては、燃料制御弁3の最小弁開度、最大弁開度が夫々12%、55%に設定され、空気制御弁6の最小弁開度、最大弁開度が夫々19%、63%に設定され、遷移時間が25秒に設定される。
As shown in FIGS. 2 and 3, for example, in the A operation mode of the first burner 2a, the minimum valve opening and the maximum valve opening of the fuel control valve 3 are set to 38% and 85%, respectively. The minimum valve opening and the maximum valve opening of the valve 6 are set to 41% and 96%, respectively, and the transition time is set to 30 seconds.
In the B operation mode of the first burner 2a, the minimum valve opening and the maximum valve opening of the fuel control valve 3 are set to 12% and 55%, respectively, and the minimum valve opening and the maximum valve of the air control valve 6 are set. The opening is set to 19% and 63%, respectively, and the transition time is set to 25 seconds.

そして、第1バーナ2aのA運転モードでは、燃料制御弁3における最小弁開度と最大弁開度との開度差は全開状態の47%の開度となり、遷移時間が30秒であるので、燃焼量調整用の弁開度変更速度が1.57%/秒に設定され、空気制御弁6における最小弁開度と最大弁開度との開度差は全開状態の55%の開度となり、遷移時間が30秒であるので、燃焼量調整用の弁開度変更速度が、1.83%/秒に設定されることになる。
又、第1バーナ2aのB運転モードでは、燃料制御弁3における最小弁開度と最大弁開度との開度差は全開状態の43%の開度となり、遷移時間が25秒であるので、燃焼量調整用の弁開度変更速度が1.72%/秒に設定され、空気制御弁6における最小弁開度と最大弁開度との開度差は全開状態の44%の開度となり、遷移時間が25秒であるので、燃焼量調整用の弁開度変更速度が、1.76%/秒に設定されることになる。
ちなみに、制御部7は、モード条件設定部14にて設定される上述の如きモード条件に基づいて、複数のバーナ2夫々に対応して、燃料制御弁3及び空気制御弁6夫々について、複数の運転モード夫々での燃焼量調整用の弁開度変更速度を求めるように構成されている。
つまり、モード条件設定部14により最小弁開度と最大弁開度との間の遷移時間を変更設定自在であり、制御部7は、そのモード条件設定部14により設定される遷移時間に基づいて、燃料制御弁3及び空気制御弁6夫々について燃焼量調整用の弁開度変更速度を求めるように構成されているので、制御部7は、最小弁開度と最大弁開度との間の遷移時間を変更設定自在なように構成されていることになる。
In the A operation mode of the first burner 2a, the opening difference between the minimum valve opening and the maximum valve opening in the fuel control valve 3 is 47% of the fully open state, and the transition time is 30 seconds. The valve opening changing speed for adjusting the combustion amount is set to 1.57% / second, and the opening difference between the minimum valve opening and the maximum valve opening in the air control valve 6 is 55% of the fully opened state. Thus, since the transition time is 30 seconds, the valve opening changing speed for adjusting the combustion amount is set to 1.83% / second.
Further, in the B operation mode of the first burner 2a, the opening difference between the minimum valve opening and the maximum valve opening in the fuel control valve 3 is 43% of the fully opened state, and the transition time is 25 seconds. The valve opening changing speed for adjusting the combustion amount is set to 1.72% / second, and the opening difference between the minimum valve opening and the maximum valve opening in the air control valve 6 is 44% of the fully opened state. Thus, since the transition time is 25 seconds, the valve opening changing speed for adjusting the combustion amount is set to 1.76% / second.
Incidentally, the control unit 7 performs a plurality of fuel control valves 3 and a plurality of air control valves 6 for each of the plurality of burners 2 based on the mode conditions as described above set by the mode condition setting unit 14. The valve opening changing speed for adjusting the combustion amount in each operation mode is obtained.
That is, the mode condition setting unit 14 can change and set the transition time between the minimum valve opening and the maximum valve opening, and the control unit 7 can set the transition time set by the mode condition setting unit 14 based on the transition time. Since the fuel control valve 3 and the air control valve 6 are each configured to obtain the valve opening changing speed for adjusting the combustion amount, the control unit 7 is configured so as to reduce the difference between the minimum valve opening and the maximum valve opening. The transition time can be changed and set.

次に、制御部7の制御動作について説明する。
制御部7は、運転スイッチ13により加熱運転の開始が指令されると、燃焼用送風機5を作動させ、各バーナ2に対応する空気制御弁6を開弁した後、各バーナ2に対応する点火プラグ(図示省略)を作動させ、並びに、燃料元弁10及び各バーナ2に対応する燃料制御弁3を開弁して、各バーナ2を点火することにより、加熱運転を開始し、運転スイッチ13により加熱運転の停止が指令されると、燃焼用送風機5を停止し、燃料元弁10、各バーナ2に対応する燃料制御弁3及び空気制御弁6を閉弁して、各バーナ2を消火することにより、加熱運転を停止する。
そして、制御部7は、加熱運転の実行中は、設定周期毎に、加熱温度設定部16にて設定されている加熱目標温度と炉温センサ11の検出温度とに基づいて燃焼負荷を求めて、その求めた燃焼負荷に応じて各バーナ2の燃焼量を調整し且つガス燃料流量と燃焼用空気流量との流量比率を調整する燃焼量調整制御を実行する。
尚、この実施形態では、ガス燃料流量と燃焼用空気流量との流量比率として、空気比を用いる。ここで、空気比は、燃料を完全燃焼させる必要最低限の理論空気量と実際に供給されている空気量の比を意味する。
Next, the control operation of the control unit 7 will be described.
When the start of the heating operation is commanded by the operation switch 13, the controller 7 operates the combustion blower 5, opens the air control valve 6 corresponding to each burner 2, and then ignites corresponding to each burner 2. A plug (not shown) is operated, and the fuel control valve 3 corresponding to the fuel source valve 10 and each burner 2 is opened to ignite each burner 2 to start the heating operation, and the operation switch 13 When the stop of the heating operation is instructed, the combustion blower 5 is stopped, the fuel source valve 10, the fuel control valve 3 and the air control valve 6 corresponding to each burner 2 are closed, and each burner 2 is extinguished. By doing so, the heating operation is stopped.
And the control part 7 calculates | requires a combustion load based on the heating target temperature set in the heating temperature setting part 16, and the detected temperature of the furnace temperature sensor 11 for every setting period during execution of a heating operation. Then, the combustion amount adjustment control for adjusting the combustion amount of each burner 2 according to the determined combustion load and adjusting the flow rate ratio between the gas fuel flow rate and the combustion air flow rate is executed.
In this embodiment, an air ratio is used as a flow rate ratio between the gas fuel flow rate and the combustion air flow rate. Here, the air ratio means a ratio between a minimum theoretical air amount necessary for complete combustion of fuel and an air amount actually supplied.

燃焼量調整制御について説明を加える。
加熱運転の開始時、即ち、バーナ2の点火時の燃料制御弁3及び空気制御弁6夫々の弁開度が、開始時弁開度として、例えば、燃料制御弁3及び空気制御弁6夫々について設定されている最大弁開度に設定される。
又、加熱運転の開始時に、弁開度を閉弁状態から開始時弁開度に調整するための開始時用弁開度変更速度が、燃料制御弁3及び空気制御弁6夫々について、夫々の弁駆動部3d,6dにて弁開度を変更可能な最大速度に設定されている。
A description will be given of the combustion amount adjustment control.
The opening degree of each of the fuel control valve 3 and the air control valve 6 at the start of the heating operation, that is, when the burner 2 is ignited is, for example, each of the fuel control valve 3 and the air control valve 6. The maximum valve opening is set.
Further, at the start of the heating operation, the starting valve opening changing speed for adjusting the valve opening from the closed state to the starting valve opening is different for each of the fuel control valve 3 and the air control valve 6. The maximum speed at which the valve opening can be changed by the valve drive units 3d and 6d is set.

制御部7は、燃料制御弁3の弁開度を、モード指令部12にて指令されている運転モードに対応する燃料制御弁3の燃焼量調整用の弁開度変更速度で変更するための燃料制御弁3の弁駆動部3dの駆動速度を燃焼量調整用駆動速度として求め、並びに、空気制御弁6の弁開度を、モード指令部12にて指令されている運転モードに対応する空気制御弁6の燃焼量調整用の弁開度変更速度で変更するための空気制御弁6の弁駆動部6dの駆動速度を燃焼量調整用駆動速度として求める。   The control unit 7 changes the valve opening of the fuel control valve 3 at a valve opening changing speed for adjusting the combustion amount of the fuel control valve 3 corresponding to the operation mode commanded by the mode command unit 12. The drive speed of the valve drive unit 3d of the fuel control valve 3 is obtained as a combustion speed adjusting drive speed, and the air opening degree of the air control valve 6 is the air corresponding to the operation mode commanded by the mode command unit 12. The driving speed of the valve drive unit 6d of the air control valve 6 for changing at the valve opening changing speed for adjusting the combustion amount of the control valve 6 is obtained as the driving speed for adjusting the combustion amount.

又、制御部7は、燃焼負荷を加熱目標温度と炉温センサ11の検出温度との偏差に応じて求める。
例えば、炉温センサ11の検出温度が加熱目標温度以上のときは、燃焼負荷が0であるとし、炉温センサ11の検出温度が加熱目標温度よりも低いときは、その偏差が大きくなるほど燃焼負荷が大きくなる形態で、燃焼負荷を百分率等で複数段階に求める。
又、制御部7は、複数段階の燃焼負荷に対応する燃料制御弁3の弁開度(以下、燃焼負荷対応弁開度と記載する場合がある)を、モード指令部12にて指令されている運転モードに対応する燃料制御弁3の最小弁開度と最大弁開度との間に、等間隔で燃焼負荷の段階数と同数の段階にて複数段階に設定する。
Further, the control unit 7 determines the combustion load according to the deviation between the heating target temperature and the temperature detected by the furnace temperature sensor 11.
For example, when the detected temperature of the furnace temperature sensor 11 is equal to or higher than the heating target temperature, the combustion load is 0. When the detected temperature of the furnace temperature sensor 11 is lower than the heating target temperature, the combustion load increases as the deviation increases. The combustion load is obtained in a plurality of stages by a percentage or the like.
Further, the control unit 7 is instructed by the mode command unit 12 to determine the valve opening degree of the fuel control valve 3 corresponding to a plurality of stages of combustion loads (hereinafter sometimes referred to as a combustion load corresponding valve opening degree). Between the minimum valve opening and the maximum valve opening of the fuel control valve 3 corresponding to the operation mode being set, a plurality of stages are set at equal intervals and at the same number of stages as the combustion load.

例えば、燃焼負荷が0〜100%の間に10%おきで11段階に設定される場合、燃料制御弁3の燃焼負荷対応弁開度を、モード指令部12にて指令されている運転モードに対応する燃料制御弁3の最小弁開度と最大弁開度との間に等間隔で11段階に設定する。
例えば、モード指令部12にてA運転モードが指令されている場合は、上述のように、燃焼負荷が0〜100%の間に10%おきで11段階に設定されるとすると、例えば、燃焼負荷が0%のときの燃焼負荷対応弁開度、50%のときの燃焼負荷対応弁開度、100%のときの燃焼負荷対応弁開度を、夫々、燃料制御弁3の最小弁開度である38%、61.5%、燃料制御弁3の最大弁開度である85%に設定する。
For example, when the combustion load is set to 11 steps every 10% between 0 and 100%, the opening degree corresponding to the combustion load of the fuel control valve 3 is set to the operation mode commanded by the mode command unit 12. 11 steps are set at equal intervals between the minimum valve opening and the maximum valve opening of the corresponding fuel control valve 3.
For example, when the A operation mode is commanded by the mode command unit 12, as described above, if the combustion load is set at 11 steps every 10% between 0 and 100%, for example, combustion The minimum valve opening of the fuel control valve 3 is the opening degree corresponding to the combustion load when the load is 0%, the opening degree corresponding to the combustion load when the load is 50%, and the opening degree corresponding to the combustion load when the load is 100%. Are set to 38%, 61.5%, and 85% which is the maximum valve opening degree of the fuel control valve 3.

そして、制御部7は、加熱運転の開始時には、燃料制御弁3の弁開度を閉弁状態からその燃料制御弁3に対応して設定されている開始時弁開度に開始時用弁開度変更速度にて変更調整すべく、燃料制御弁3の弁駆動部3dを制御し、並びに、空気制御弁6の弁開度を閉弁状態からその空気制御弁6に対応して設定されている開始時弁開度に開始時用弁開度変更速度にて変更調整すべく、空気制御弁6の弁駆動部6dを制御する。   Then, at the start of the heating operation, the control unit 7 opens the start time valve opening from the closed state to the start valve opening set corresponding to the fuel control valve 3. The valve drive unit 3d of the fuel control valve 3 is controlled in order to change and adjust at a change speed, and the valve opening degree of the air control valve 6 is set corresponding to the air control valve 6 from the closed state. The valve drive unit 6d of the air control valve 6 is controlled so as to change and adjust the starting valve opening at the start valve opening changing speed.

以降、制御部7は、設定周期が経過する毎に、燃焼負荷を求めると共に、求めた燃焼負荷に対応する燃料制御弁3の燃焼負荷対応弁開度を求め、更に、燃料制御弁3の弁開度をモード指令部12にて指令されている運転モードに対応する燃料制御弁3の燃焼量調整用の弁開度変更速度にて現在の弁開度から燃焼負荷対応弁開度に変更するのに要する時間(以下、弁開度変更用時間と記載する場合がある)を求めて、燃料制御弁3の弁駆動部3dを弁開度が燃焼負荷対応弁開度に近づく側(即ち、弁開度が大きくなる側又は小さくなる側)に変更される側に、燃料制御弁用の燃焼量調整用駆動速度にて弁開度変更用時間作動させ、並びに、空気制御弁6の弁駆動部6dを弁開度が燃料制御弁3の弁開度変更側と同じ側に変更される側に、空気制御弁用の燃焼量調整用駆動速度にて弁開度変更用時間作動させる。   Thereafter, the control unit 7 obtains the combustion load every time the set cycle elapses, obtains the combustion load corresponding valve opening degree of the fuel control valve 3 corresponding to the obtained combustion load, and further determines the valve of the fuel control valve 3. The opening is changed from the current valve opening to the combustion load corresponding valve opening at the valve opening changing speed for adjusting the combustion amount of the fuel control valve 3 corresponding to the operation mode commanded by the mode command unit 12. Is calculated on the side closer to the combustion load corresponding valve opening (i.e., the valve drive part 3d of the fuel control valve 3). The valve opening degree is operated for a period of time for changing the valve opening degree at the drive speed for adjusting the combustion amount for the fuel control valve on the side to be changed to the side on which the valve opening degree is increased or decreased, and the valve drive of the air control valve 6 is performed. 6d is placed on the side where the valve opening is changed to the same side as the valve opening changing side of the fuel control valve 3. Actuated by the combustion amount adjusting drive speed for the valve opening degree for changing time.

つまり、制御部7は、上述したように、燃料制御弁3及び空気制御弁6を夫々について定められた燃焼量調整用の弁開度変更速度で同一時間作動させるように、燃料制御弁3の弁駆動部3d及び空気制御弁6の弁駆動部6dを制御することにより、燃料制御弁3の弁開度及び空気制御弁6の弁開度をガス燃料流量が燃焼負荷に応じた流量となり且つ流量比率が設定流量比率となる弁開度に調整するように構成されていることになる。
又、制御部7が、モード指令部12にて指令された運転モードに対応する燃料制御弁3及び空気制御弁6夫々の弁開度変更速度で、燃料制御弁3及び空気制御弁6夫々を作動させるべく、燃料制御弁3の弁駆動部3d及び空気制御弁6の弁駆動部6dを制御するように構成されていることになる。
That is, as described above, the control unit 7 operates the fuel control valve 3 and the air control valve 6 so that the fuel control valve 3 and the air control valve 6 are operated for the same time at the valve opening changing speed for adjusting the combustion amount. By controlling the valve drive unit 3d and the valve drive unit 6d of the air control valve 6, the valve opening degree of the fuel control valve 3 and the valve opening degree of the air control valve 6 are changed so that the gas fuel flow rate becomes a flow rate according to the combustion load. The flow rate ratio is configured to be adjusted to the valve opening degree that becomes the set flow rate ratio.
Further, the control unit 7 controls the fuel control valve 3 and the air control valve 6 at the valve opening changing speeds of the fuel control valve 3 and the air control valve 6 corresponding to the operation mode commanded by the mode command unit 12. In order to operate, the valve drive unit 3d of the fuel control valve 3 and the valve drive unit 6d of the air control valve 6 are controlled.

例えば、モード指令部12にてA運転モードが指令されている場合において、第1バーナ2aに対応する燃料制御弁3及び空気制御弁6夫々の弁開度の調整を例にして説明を加える。
例えば、燃料制御弁3の開始時弁開度がその最大弁開度である85%に設定され、空気制御弁6の開始時弁開度がその最大弁開度である96%に設定されているとする。
そして、制御部7は、加熱運転の開始時には、燃料制御弁3の弁開度を閉弁状態からその燃料制御弁用の開始時弁開度である85%に開始時用弁開度変更速度にて調整すべく、燃料制御弁3の弁駆動部3dを制御し、並びに、空気制御弁6の弁開度を閉弁状態からその空気制御弁用の開始時弁開度である96%に開始時用弁開度変更速度にて調整すべく、空気制御弁6の弁駆動部6dを制御する。
続いて、制御部7は、設定周期が経過すると、燃焼負荷を求め、その燃焼負荷が50%の場合は、その燃焼負荷に対応する燃料制御弁3の燃焼負荷対応弁開度を61.5%と求め、又、燃料制御弁3の弁開度を現在の85%から燃焼負荷対応弁開度の61.5%に燃焼量調整用の弁開度変更速度である1.57%/秒にて変更するのに要する弁開度変更用時間を15秒と求める。
そして、制御部7は、燃料制御弁3の弁駆動部3dを弁開度が燃焼負荷対応弁開度に近づく側に変更される側に燃料制御弁用の燃焼量調整用駆動速度にて15秒間作動させ、並びに、空気制御弁6の弁駆動部6dを弁開度が燃料制御弁3の弁開度変更側と同じ側に変更される側に空気制御弁用の燃焼量調整用駆動速度にて15秒間作動させる。
以降、制御部7は、設定周期が経過する毎に、上述の如き制御を繰り返す。
For example, in the case where the A operation mode is commanded by the mode command unit 12, the adjustment of the valve opening degrees of the fuel control valve 3 and the air control valve 6 corresponding to the first burner 2a will be described as an example.
For example, the starting valve opening degree of the fuel control valve 3 is set to 85% that is the maximum valve opening degree, and the starting valve opening degree of the air control valve 6 is set to 96% that is the maximum valve opening degree. Suppose that
Then, at the start of the heating operation, the control unit 7 changes the valve opening degree of the fuel control valve 3 from the closed state to 85% that is the starting valve opening degree for the fuel control valve. In order to adjust, the valve drive unit 3d of the fuel control valve 3 is controlled, and the valve opening of the air control valve 6 is changed from the closed state to 96% which is the opening valve opening for the air control valve. The valve drive unit 6d of the air control valve 6 is controlled so as to adjust at the starting valve opening changing speed.
Subsequently, when the set period elapses, the control unit 7 obtains the combustion load, and when the combustion load is 50%, the control unit 7 sets the combustion load corresponding valve opening degree of the fuel control valve 3 corresponding to the combustion load to 61.5. %, And the valve opening of the fuel control valve 3 is changed from 85% at present to 61.5% of the valve opening corresponding to the combustion load, which is a valve opening changing speed for adjusting the combustion amount, 1.57% / second. The time required for changing the valve opening required for the change is obtained as 15 seconds.
Then, the control unit 7 sets the valve drive unit 3d of the fuel control valve 3 to a side where the valve opening is changed to a side closer to the combustion load corresponding valve opening at a combustion amount adjusting drive speed for the fuel control valve. The valve drive unit 6d of the air control valve 6 is operated for a second and the combustion speed adjustment drive speed for the air control valve is changed to the side where the valve opening is changed to the same side as the valve opening change side of the fuel control valve 3. Operate for 15 seconds.
Thereafter, the control unit 7 repeats the above-described control every time the set cycle elapses.

次に、上述したように燃料制御弁3及び空気制御弁6夫々の弁開度が燃焼負荷に応じて調整される場合に、燃焼負荷に応じて設定される設定空気比について、説明を加える。
例えば、最小燃焼負荷時のガス燃料流量が1m3(標準状態)/hに、その最小燃焼負荷時の設定空気比が1.3に夫々設定され、最大燃焼負荷時のガス燃料流量が10m3(標準状態)/hに、その最大燃焼負荷時の設定空気比が1.1に夫々設定される場合を例にして説明する。
Next, as described above, when the valve openings of the fuel control valve 3 and the air control valve 6 are adjusted according to the combustion load, a description will be given of the set air ratio set according to the combustion load.
For example, the gas fuel flow rate at the minimum combustion load is set to 1 m 3 (standard state) / h, the set air ratio at the minimum combustion load is set to 1.3, and the gas fuel flow rate at the maximum combustion load is set to 10 m 3. The case where the set air ratio at the maximum combustion load is set to 1.1 in (standard state) / h will be described as an example.

この場合、燃料制御弁3の最小弁開度が、ガス燃料流量が1m3(標準状態)/hとなる弁開度に設定され、空気制御弁6の最小弁開度が、1m3(標準状態)/hのガス燃料流量に対して空気比が1.3となる流量(13.91m3(標準状態)/h)の燃焼用空気を流すための弁開度に設定される。
又、燃料制御弁3の最大弁開度が、ガス燃料流量が10m3(標準状態)/hとなる弁開度に設定され、空気制御弁6の最大弁開度が、10m3(標準状態)/hのガス燃料流量に対して空気比が1.1となる流量(117.7m3(標準状態)/h)の燃焼用空気を流すための弁開度に設定される。
又、最小弁開度と最大弁開度との間の遷移時間が、30秒に設定されるとする。
又、燃焼負荷が0%のときの燃料制御弁3及び空気制御弁6夫々の燃焼負荷対応弁開度を夫々の最小弁開度とし、燃焼負荷が100%のときの燃料制御弁3及び空気制御弁6夫々の燃焼負荷対応弁開度を夫々の最大弁開度とする。
In this case, the minimum valve opening of the fuel control valve 3 is set to a valve opening at which the gas fuel flow rate is 1 m 3 (standard state) / h, and the minimum valve opening of the air control valve 6 is 1 m 3 (standard). State) / h is set to a valve opening for flowing combustion air at a flow rate (13.91 m 3 (standard state) / h) at which the air ratio is 1.3 with respect to the gas fuel flow rate.
The maximum valve opening of the fuel control valve 3 is set to a valve opening at which the gas fuel flow rate is 10 m 3 (standard state) / h, and the maximum valve opening of the air control valve 6 is 10 m 3 (standard state). ) / H is set to a valve opening for flowing combustion air at a flow rate (117.7 m 3 (standard state) / h) at an air ratio of 1.1 with respect to the gas fuel flow rate.
Further, it is assumed that the transition time between the minimum valve opening and the maximum valve opening is set to 30 seconds.
Further, when the combustion load is 0%, the opening degree corresponding to the combustion load of each of the fuel control valve 3 and the air control valve 6 is set to the minimum valve opening degree, and the fuel control valve 3 and the air when the combustion load is 100%. The opening degree corresponding to the combustion load of each control valve 6 is set as the maximum opening degree of each valve.

燃料制御弁3及び空気制御弁6夫々の弁開度が燃焼負荷に応じて上述のように調整される場合に、燃料制御弁3及び空気制御弁6の開閉時間並びに燃焼負荷と設定空気比との関係は、図4に示す通りとなる。   When the valve opening degree of each of the fuel control valve 3 and the air control valve 6 is adjusted as described above according to the combustion load, the opening / closing time of the fuel control valve 3 and the air control valve 6 and the combustion load and the set air ratio The relationship is as shown in FIG.

〔別実施形態〕
次に別実施形態を説明する。
(イ) 燃料制御弁3の弁開度及び空気制御弁6の弁開度を燃料流量が燃焼負荷に応じた流量となり且つ流量比率が設定流量比率となる弁開度に調整すべく、燃料制御弁3の弁駆動部3d及び空気制御弁6の弁駆動部6dを制御する制御形態は、上記の実施形態において例示した制御形態、即ち、最小弁開度と最大弁開度との間の遷移時間が燃料制御弁3と空気制御弁6とで同一になるように、燃料制御弁3及び空気制御弁6夫々について弁開度変更速度が定められて、燃料制御弁3及び空気制御弁6を夫々について定められた弁開度変更速度で同一時間作動させるように、燃料制御弁3の弁駆動部3d及び空気制御弁6の弁駆動部6dを制御する制御形態に限定されるものではない。
例えば、燃料制御弁3及び空気制御弁6夫々の弁開度変更速度を、最小弁開度と最大弁開度との開度差が異なっていても、互いに同一に設定する。そして、燃料制御弁3の弁開度を弁開度変更速度で現在の弁開度から燃焼負荷対応弁開度に変更調整すべく燃料制御弁3の弁駆動部3dを制御し、並びに、空気制御弁6の弁開度を弁開度変更速度で現在の弁開度から燃焼負荷対応弁開度に変更調整すべく空気制御弁6の弁駆動部6dを制御する制御形態でも良い。
[Another embodiment]
Next, another embodiment will be described.
(A) Fuel control in order to adjust the valve opening of the fuel control valve 3 and the valve opening of the air control valve 6 to a valve opening in which the fuel flow rate is a flow rate corresponding to the combustion load and the flow rate ratio is the set flow rate ratio. The control mode for controlling the valve drive unit 3d of the valve 3 and the valve drive unit 6d of the air control valve 6 is the control mode illustrated in the above embodiment, that is, the transition between the minimum valve opening and the maximum valve opening. The valve opening changing speed is determined for each of the fuel control valve 3 and the air control valve 6 so that the time is the same for the fuel control valve 3 and the air control valve 6. It is not limited to the control form which controls the valve drive part 3d of the fuel control valve 3 and the valve drive part 6d of the air control valve 6 so that it may operate for the same time with the valve opening change speed defined about each.
For example, the valve opening changing speeds of the fuel control valve 3 and the air control valve 6 are set to be the same even if the opening difference between the minimum valve opening and the maximum valve opening is different. Then, the valve drive unit 3d of the fuel control valve 3 is controlled to adjust the valve opening of the fuel control valve 3 from the current valve opening to the combustion load corresponding valve opening at the valve opening changing speed, and the air A control mode in which the valve drive unit 6d of the air control valve 6 is controlled so as to change and adjust the valve opening degree of the control valve 6 from the current valve opening degree to the combustion load corresponding valve opening degree at the valve opening changing speed may be employed.

(ロ) 上記の実施形態では、燃料制御弁3及び空気制御弁6夫々の最小弁開度及び最大弁開度夫々を、最小弁開度と最大弁開度との開度差が燃料制御弁3と空気制御弁6とで異なる条件で設定したが、最小弁開度と最大弁開度との開度差が燃料制御弁3と空気制御弁6とで同一になる条件で設定してもよい。 (B) In the above embodiment, the minimum valve opening and the maximum valve opening of each of the fuel control valve 3 and the air control valve 6 are determined by the difference in opening between the minimum valve opening and the maximum valve opening. 3 and the air control valve 6 are set under different conditions. However, even when the difference between the minimum valve opening and the maximum valve opening is set to be the same between the fuel control valve 3 and the air control valve 6. Good.

(ハ) 上記の実施形態では、燃焼量調整制御において、燃焼負荷に対応する燃料制御弁3の燃焼負荷対応弁開度を求め、更に、燃料制御弁3の弁開度を燃料制御弁3に対応する燃焼量調整用の弁開度変更速度にて現在の弁開度から燃焼負荷対応弁開度に変更するのに要する弁開度変更用時間を求めて、燃料制御弁3の弁駆動部3d及び空気制御弁6の弁駆動部6dを夫々の燃焼量調整用駆動速度にて弁開度変更用時間作動させる場合について例示した。
これに代えて、燃焼負荷に対応する空気制御弁6の燃焼負荷対応弁開度を求め、更に、空気制御弁6の弁開度を空気制御弁6に対応する燃焼量調整用の弁開度変更速度にて現在の弁開度から燃焼負荷対応弁開度に変更するのに要する弁開度変更用時間を求めて、燃料制御弁3の弁駆動部3d及び空気制御弁6の弁駆動部6dを夫々の燃焼量調整用駆動速度にて弁開度変更用時間作動させるように構成しても良い。
(C) In the above embodiment, in the combustion amount adjustment control, the combustion load corresponding valve opening degree of the fuel control valve 3 corresponding to the combustion load is obtained, and further, the valve opening degree of the fuel control valve 3 is changed to the fuel control valve 3. The valve drive part of the fuel control valve 3 is obtained by obtaining the valve opening change time required to change from the current valve opening to the combustion load corresponding valve opening at the corresponding valve opening changing speed for adjusting the combustion amount. 3d and the valve drive part 6d of the air control valve 6 were illustrated for the case of operating the valve opening changing time at the respective combustion amount adjusting drive speeds.
Instead of this, the opening degree of the combustion load corresponding valve of the air control valve 6 corresponding to the combustion load is obtained, and further, the opening degree of the air control valve 6 is adjusted to the opening degree of the combustion amount corresponding to the air control valve 6. The valve opening changing time required for changing the current valve opening from the current valve opening to the combustion load corresponding valve opening at the changing speed is obtained, and the valve driving part 3d of the fuel control valve 3 and the valve driving part of the air control valve 6 are obtained. 6d may be configured to operate for a valve opening changing time at each combustion amount adjusting drive speed.

(ニ) バーナ2を複数設置する場合の設置台数は、上記の実施形態の如き2台に限定されるものではなく、3台以上でも良い。
又、バーナの設置台数は1台でも良い。
(D) The number of installed burners 2 is not limited to two as in the above embodiment, and may be three or more.
The number of burners installed may be one.

(ホ) 燃焼負荷調整範囲が異なる複数の運転モードを設定する場合、その設定数は、上記の実施形態において例示した2つの限定されるものではなく、3つ以上でも良い。 (E) When setting a plurality of operation modes having different combustion load adjustment ranges, the number of settings is not limited to the two exemplified in the above embodiment, but may be three or more.

(ヘ) 弁開度と流体の流量との関係が線形又は略線形となる弁の種類としては、上記の実施形態において例示したボール弁に限定されるものではなく、例えば、ゲート弁等、種々の弁を採用することができる。 (F) The type of the valve in which the relationship between the valve opening degree and the fluid flow rate is linear or substantially linear is not limited to the ball valve exemplified in the above embodiment, and may be various types such as a gate valve. The valve can be adopted.

以上説明したように、低廉化を図りながら、燃料流量と燃焼用空気流量との流量比率を適切に調整し得る燃料空気供給量比率制御装置を提供することができる。   As described above, it is possible to provide a fuel air supply amount ratio control device that can appropriately adjust the flow rate ratio between the fuel flow rate and the combustion air flow rate while reducing the cost.

2 バーナ
3 燃料制御弁
3d 弁駆動部
6 空気制御弁
6d 弁駆動部
7 制御手段
12 モード指令手段
2 Burner 3 Fuel control valve 3d Valve drive unit 6 Air control valve 6d Valve drive unit 7 Control means 12 Mode command means

Claims (5)

バーナへ供給される燃料流量を調整する燃料制御弁と、
前記バーナへ供給される燃焼用空気流量を調整する空気制御弁と、
前記燃料流量が前記バーナの燃焼負荷に応じた流量となり且つ前記燃料流量と前記燃焼用空気流量との流量比率が設定流量比率になるように前記燃料制御弁及び前記空気制御弁を制御する制御手段とが設けられた燃料空気供給量比率制御装置であって、
前記燃料制御弁が、弁開度と前記燃料流量との関係が線形又は略線形であり、弁開度を調整する弁駆動部を備えて構成され、
前記空気制御弁が、弁開度と前記燃焼用空気流量との関係が線形又は略線形であり、弁開度を調整する弁駆動部を備えて構成され、
前記制御手段が、前記燃料制御弁の弁開度及び前記空気制御弁の弁開度を前記燃料流量が前記燃焼負荷に応じた流量となり且つ前記流量比率が前記設定流量比率となる弁開度に調整すべく、前記燃料制御弁の弁駆動部及び前記空気制御弁の弁駆動部を制御する燃料空気供給量比率制御装置。
A fuel control valve for adjusting the flow rate of fuel supplied to the burner;
An air control valve for adjusting the flow rate of combustion air supplied to the burner;
Control means for controlling the fuel control valve and the air control valve so that the fuel flow rate becomes a flow rate corresponding to the combustion load of the burner and a flow rate ratio between the fuel flow rate and the combustion air flow rate becomes a set flow rate ratio. And a fuel / air supply ratio control device provided with
The fuel control valve has a linear or substantially linear relationship between the valve opening and the fuel flow rate, and includes a valve drive unit that adjusts the valve opening.
The air control valve has a linear or substantially linear relationship between the valve opening and the combustion air flow rate, and includes a valve drive unit that adjusts the valve opening.
The control means converts the valve opening of the fuel control valve and the valve opening of the air control valve to a valve opening at which the fuel flow rate becomes a flow rate corresponding to the combustion load and the flow rate ratio becomes the set flow rate ratio. A fuel / air supply amount ratio control device for controlling a valve drive unit of the fuel control valve and a valve drive unit of the air control valve for adjustment.
前記燃料制御弁及び前記空気制御弁夫々について弁開度変更速度が、前記燃焼負荷が最小燃焼負荷のときの最小弁開度と前記燃焼負荷が最大燃焼負荷のときの最大弁開度との間の遷移時間が前記燃料制御弁と前記空気制御弁とで同一になる速度に定められ、
前記制御手段が、前記燃料制御弁及び前記空気制御弁を夫々について定められた弁開度変更速度で同一時間作動させて、前記燃料制御弁の弁駆動部及び前記空気制御弁の弁駆動部を制御することにより、前記燃料制御弁の弁開度及び前記空気制御弁の弁開度を前記燃料流量が前記燃焼負荷に応じた流量となり且つ前記流量比率が前記設定流量比率となる弁開度に調整する請求項1に記載の燃料空気供給量比率制御装置。
The valve opening changing speed for each of the fuel control valve and the air control valve is between the minimum valve opening when the combustion load is the minimum combustion load and the maximum valve opening when the combustion load is the maximum combustion load. The transition time is determined to be the same speed for the fuel control valve and the air control valve,
The control means operates the fuel control valve and the air control valve at the valve opening change speeds determined for the same time for the same time, and causes the valve drive unit of the fuel control valve and the valve drive unit of the air control valve to operate. By controlling the valve opening of the fuel control valve and the valve opening of the air control valve, the fuel flow rate becomes a flow rate corresponding to the combustion load and the flow rate ratio becomes the set flow rate ratio. The fuel / air supply rate control device according to claim 1, which is adjusted.
前記燃料制御弁における前記最小弁開度と前記最大弁開度との開度差と、前記空気制御弁における前記最小弁開度と前記最大弁開度との開度差とが異なる請求項2に記載の燃料空気供給量比率制御装置。   The opening difference between the minimum valve opening and the maximum valve opening in the fuel control valve is different from the opening difference between the minimum valve opening and the maximum valve opening in the air control valve. The fuel air supply amount ratio control device according to claim 1. 前記制御手段が、前記遷移時間を変更設定自在に構成されている請求項2又は3に記載の燃料空気供給量比率制御装置。   The fuel / air supply amount ratio control device according to claim 2 or 3, wherein the control means is configured to change and set the transition time. 前記最小燃焼負荷及び前記最大燃焼負荷のうちの少なくとも一方が異なり燃焼負荷調整範囲が異なる複数の運転モードからいずれか一つの運転モードを指令するモード指令手段が設けられ、
前記複数の運転モードの夫々に対応して、前記弁開度変更速度が前記燃料制御弁及び前記空気制御弁夫々について定められ、
前記制御手段が、前記モード指令手段にて指令された運転モードに対応する前記燃料制御弁及び前記空気制御弁夫々の弁開度変更速度で、前記燃料制御弁及び前記空気制御弁夫々を作動させるべく、前記燃料制御弁の弁駆動部及び前記空気制御弁の弁駆動部を制御する請求項2〜4のいずれか1項に記載の燃料空気供給量比率制御装置。
Mode command means is provided for commanding any one operation mode from a plurality of operation modes in which at least one of the minimum combustion load and the maximum combustion load is different and the combustion load adjustment range is different,
Corresponding to each of the plurality of operation modes, the valve opening change speed is determined for each of the fuel control valve and the air control valve,
The control means operates each of the fuel control valve and the air control valve at a valve opening change speed of each of the fuel control valve and the air control valve corresponding to the operation mode commanded by the mode command means. Therefore, the fuel air supply amount ratio control device according to any one of claims 2 to 4, which controls a valve drive unit of the fuel control valve and a valve drive unit of the air control valve.
JP2009150262A 2009-06-24 2009-06-24 Fuel air supply ratio control device Expired - Fee Related JP5519961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150262A JP5519961B2 (en) 2009-06-24 2009-06-24 Fuel air supply ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150262A JP5519961B2 (en) 2009-06-24 2009-06-24 Fuel air supply ratio control device

Publications (2)

Publication Number Publication Date
JP2011007398A true JP2011007398A (en) 2011-01-13
JP5519961B2 JP5519961B2 (en) 2014-06-11

Family

ID=43564272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150262A Expired - Fee Related JP5519961B2 (en) 2009-06-24 2009-06-24 Fuel air supply ratio control device

Country Status (1)

Country Link
JP (1) JP5519961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407744B1 (en) * 2013-04-19 2014-06-16 동아콘트롤 주식회사 Gas range having flow rate controller
JP2020118357A (en) * 2019-01-23 2020-08-06 大阪瓦斯株式会社 Oxygen ratio control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747125A (en) * 1980-09-01 1982-03-17 Kawasaki Steel Corp Controlling method of combustion of liquid fuel
JPS6172920A (en) * 1984-09-19 1986-04-15 Tokyo Gas Co Ltd Air-fuel ratio controlling device
JPH0463928U (en) * 1990-10-12 1992-06-01
JPH06147472A (en) * 1992-10-27 1994-05-27 Osaka Gas Co Ltd Gas burner
JPH06159659A (en) * 1992-11-30 1994-06-07 Sanyo Electric Co Ltd Control device for controlling relation between gas control valve and air damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747125A (en) * 1980-09-01 1982-03-17 Kawasaki Steel Corp Controlling method of combustion of liquid fuel
JPS6172920A (en) * 1984-09-19 1986-04-15 Tokyo Gas Co Ltd Air-fuel ratio controlling device
JPH0463928U (en) * 1990-10-12 1992-06-01
JPH06147472A (en) * 1992-10-27 1994-05-27 Osaka Gas Co Ltd Gas burner
JPH06159659A (en) * 1992-11-30 1994-06-07 Sanyo Electric Co Ltd Control device for controlling relation between gas control valve and air damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407744B1 (en) * 2013-04-19 2014-06-16 동아콘트롤 주식회사 Gas range having flow rate controller
JP2020118357A (en) * 2019-01-23 2020-08-06 大阪瓦斯株式会社 Oxygen ratio control system

Also Published As

Publication number Publication date
JP5519961B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
US11073281B2 (en) Closed-loop programming and control of a combustion appliance
KR200469253Y1 (en) Premix Combustion Device of Gas Burner
US10739010B2 (en) Method of operating a gas burner of a cooking appliance
JP2008232501A (en) Air-fuel ratio control system for combustion heating furnace
JP5519961B2 (en) Fuel air supply ratio control device
JP4938639B2 (en) Combustion device
US10100938B2 (en) Variable flow gas valve and method for controlling same
KR101476645B1 (en) Method for controlling heating temperature for each room in the heating system for each room
JP2008215658A (en) Combustion apparatus
JP2001173949A (en) Combustion device
US11732890B2 (en) Cooking appliance gas oven burner control during oven warm-up operation
JP6104880B2 (en) Linked hot water system
JP5480697B2 (en) Combustion equipment
JP4326459B2 (en) Burner control device
JP2000205555A (en) Combustion equipment
US20230184433A1 (en) Electronic Gas/Air Burner Modulating Control
JP2023000718A (en) Gas combustion apparatus
JP5128322B2 (en) Heat medium supply equipment
CN116263246A (en) Gas combustion device
JP5812755B2 (en) Hot water floor heater
JP2003065607A (en) Hot water feeding device
JPH05248631A (en) Method for controlling furnace temperature
JP2002130661A (en) Combustion controller for heating
JP2001201045A (en) Burner
JP2002061834A (en) Combustion control device of burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5519961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees