JP2019158268A - Abnormality determination method and abnormality determination device for oximeter installed in consecutive type heating furnace - Google Patents

Abnormality determination method and abnormality determination device for oximeter installed in consecutive type heating furnace Download PDF

Info

Publication number
JP2019158268A
JP2019158268A JP2018047293A JP2018047293A JP2019158268A JP 2019158268 A JP2019158268 A JP 2019158268A JP 2018047293 A JP2018047293 A JP 2018047293A JP 2018047293 A JP2018047293 A JP 2018047293A JP 2019158268 A JP2019158268 A JP 2019158268A
Authority
JP
Japan
Prior art keywords
oxygen concentration
specific time
correlation coefficient
meter
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018047293A
Other languages
Japanese (ja)
Other versions
JP6773066B2 (en
Inventor
西村 隆
Takashi Nishimura
隆 西村
一晃 原
Kazuaki Hara
一晃 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018047293A priority Critical patent/JP6773066B2/en
Publication of JP2019158268A publication Critical patent/JP2019158268A/en
Application granted granted Critical
Publication of JP6773066B2 publication Critical patent/JP6773066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an abnormality determination method and an abnormality determination device for oximeter installed in a continuous type heating furnace in which it is possible to determine an abnormal state when a response delay time of the oximeter is long and to control without making air ratio abnormal.SOLUTION: An abnormality determination method performed by an oximeter is carried out in such a way that at a correlation coefficient calculation step S5, a correlation coefficient Rcontinuously varying from the correlation coefficient Rat a first specified time T1 to a correlation coefficient Rat a second specified time T2 is calculated, at a response delay time calculation step S6, a response delay time of an oximeter 8 ranging from a first specified time T1 in which the oxygen concentration in the exhaust gas is measured by the oximeter 8 to a time in which the correlation coefficient Rthat is continuously changed reaches to the maximum value is calculated, at the abnormality determination steps S7 to S9, when the response delay time of the oximeter 8 is longer than a predetermined threshold value, it is determined that the oximeter 8 shows an abnormal state.SELECTED DRAWING: Figure 2

Description

本発明は、連続式加熱炉内に設置された酸素濃度計の異常判定方法及び異常判定装置に関する。   The present invention relates to an abnormality determination method and an abnormality determination device for an oximeter installed in a continuous heating furnace.

製鉄所における連続式加熱炉(以下、単に加熱炉という)では、副生ガスを燃焼させて鋼片を加熱している。加熱炉の燃焼制御(燃焼空気量制御)として、燃料ガスの使用量に対して予め規定された空気比を持って燃焼させる空気比制御と、加熱炉内の排ガス中の酸素濃度を一定値にする排ガス酸素濃度制御の二つが存在する。排ガス酸素濃度制御は、加熱炉内の排ガス中の酸素濃度を0.5〜2.0体積%の低い値に設定することで空気比を低く保つための制御である。一般的に排ガス中の酸素濃度は次の式によって表される。   In a continuous heating furnace (hereinafter simply referred to as a heating furnace) in an ironworks, a byproduct gas is burned to heat a steel piece. As combustion control (combustion air amount control) of the heating furnace, the air ratio control for burning with a predetermined air ratio with respect to the amount of fuel gas used, and the oxygen concentration in the exhaust gas in the heating furnace to a constant value There are two types of exhaust gas oxygen concentration control. The exhaust gas oxygen concentration control is a control for keeping the air ratio low by setting the oxygen concentration in the exhaust gas in the heating furnace to a low value of 0.5 to 2.0% by volume. Generally, the oxygen concentration in the exhaust gas is expressed by the following formula.

Figure 2019158268
Figure 2019158268

ここで、Aは理論空気量を表し、ガス量(G)が1.0に対して完全燃焼が必要な空気量を意味している。また、Gは理論排ガス量を表し、ガス量(G)が1.0、燃焼空気量(A)が理論空気量Aであった時に発生する排ガス量を意味している。また、mは空気比であり、m=燃焼空気量A/理論空気量Aで表される。
製鉄所においては、理論空気量と異なるガス種を同じ加熱炉で使用したり、加熱炉内への侵入空気の発生により、一定の空気比としても、排ガス中の酸素濃度が一定となっていない。さらに、加熱炉外に排出される排ガスの持ち出す顕熱(排ガス損失熱)は、加熱炉内の排ガス中の酸素濃度と燃料ガスの使用量で推定できることから、排ガス酸素濃度制御が用いられているのが一般的である。
Here, A 0 represents the theoretical air amount, which means the amount of air that requires complete combustion with respect to a gas amount (G) of 1.0. G 0 represents the theoretical exhaust gas amount, which means the exhaust gas amount generated when the gas amount (G) is 1.0 and the combustion air amount (A) is the theoretical air amount A 0 . Further, m is air ratio, represented by m = the combustion air quantity A / theoretical air quantity A 0.
In steelworks, the oxygen concentration in the exhaust gas is not constant even when the air ratio is constant due to the use of gas types different from the theoretical air volume in the same heating furnace or the generation of air entering the heating furnace. . Furthermore, exhaust gas oxygen concentration control is used because the sensible heat (exhaust gas loss heat) brought out of the exhaust gas discharged outside the heating furnace can be estimated from the oxygen concentration in the exhaust gas in the heating furnace and the amount of fuel gas used. It is common.

ここで、従来の排ガス酸素濃度制御を行うものとして、例えば、特許文献1乃至5に示すものが知られている。
特許文献1に示す炎症制御補方法は、外気が侵入し得る燃焼制御方法において、火口に供給される燃料流量が設定値以上のときは一定範囲で空燃比を操作し、燃料流量が設定値未満のときは、空燃比を前記一定範囲に保ちながら燃焼設備の内圧を操作して侵入空気量を調節することにより排ガス中の酸素濃度を制御するものである。
また、特許文献2に示す連続鋼材加熱炉は、蓄熱式切替燃焼バーナを有する燃焼制御毎の誘引排ガスヘッダ管に酸素濃度を検出する酸素濃度検出器と、酸素濃度検出器の検出値に基づいて加熱炉内の空気比を制御する制御手段とを備えたものである。
Here, as what performs conventional exhaust gas oxygen concentration control, what is shown, for example in patent documents 1 thru / or 5 is known.
The inflammation control supplement method shown in Patent Document 1 is a combustion control method in which outside air can enter, and when the fuel flow rate supplied to the crater is equal to or higher than a set value, the air-fuel ratio is manipulated within a certain range, and the fuel flow rate is less than the set value. In this case, the oxygen concentration in the exhaust gas is controlled by adjusting the amount of intrusion air by operating the internal pressure of the combustion facility while keeping the air-fuel ratio in the above-mentioned fixed range.
Further, the continuous steel heating furnace shown in Patent Document 2 is based on an oxygen concentration detector that detects an oxygen concentration in an induced exhaust gas header pipe for each combustion control having a regenerative switching combustion burner, and a detection value of the oxygen concentration detector. And a control means for controlling the air ratio in the heating furnace.

更に、特許文献3に示す連続式加熱炉の操業方法は、各燃焼帯の内で燃焼排ガス流れの最下流に位置する燃焼帯の入口又はその近傍に局所的な加熱を行う燃焼バーナを配置し、燃焼バーナの近傍の燃焼排ガス中の酸素濃度が目標酸素濃度となるように燃焼バーナに対する空気比を制御するものである。
また、特許文献4に示す加熱炉の加熱炉の燃焼制御方法は、排気中の未燃分燃料濃度と酸素濃度とを測定し、これらの測定値に基づいて、燃料と空気とのバーナへの供給量の比率を調整するものである。
Furthermore, in the operation method of the continuous heating furnace shown in Patent Document 3, a combustion burner that performs local heating is arranged at or near the inlet of the combustion zone located in the most downstream of the combustion exhaust gas flow in each combustion zone. The air ratio to the combustion burner is controlled so that the oxygen concentration in the combustion exhaust gas in the vicinity of the combustion burner becomes the target oxygen concentration.
Further, the combustion control method of the heating furnace shown in Patent Document 4 measures the unburned fuel concentration and the oxygen concentration in the exhaust, and based on these measured values, the fuel and air burner is supplied to the burner. The ratio of supply amount is adjusted.

また、特許文献5に示す直火式連続加熱炉の無酸化加熱方法は、直火式連続加熱炉において鋼材を加熱するに際し、加熱帯及び均熱帯においては空気比1.0以下の還元雰囲気で燃焼を行い、予熱帯においては加熱帯及び均熱帯における燃料流量及び未燃ガス濃度に基づいて予め算出した完全燃焼必要空気量を供給し、加熱炉炉尻の排ガス中の酸素濃度に基づいて予熱帯への供給空気量を加減するものである。   Moreover, the non-oxidative heating method of the direct-fired continuous heating furnace shown in Patent Document 5 is a heating atmosphere and a soaking zone in a reducing atmosphere with an air ratio of 1.0 or less in heating the steel material in the direct-fired continuous heating furnace. Combustion is performed, and in the pre-tropical zone, an air amount necessary for complete combustion calculated in advance based on the fuel flow rate and the unburned gas concentration in the heating zone and the soaking zone is supplied, and the pre-tropy is calculated based on the oxygen concentration in the exhaust gas from the furnace bottom The amount of air supplied to the tropics is adjusted.

特公昭58−43658号公報Japanese Patent Publication No.58-43658 特許第4653689号公報Japanese Patent No. 4653689 特開2001−272028号公報JP 2001-272028 A 特開平9−280551号公報JP-A-9-280551 特公平5−2725号公報Japanese Patent Publication No.5-2725

ここで、これら従来の特許文献1乃至5に示す技術のいずれにあっても、加熱炉内に酸素濃度計を設置し、その酸素濃度計から得られた情報をもとに、排ガス酸素濃度制御を行っている。
しかしながら、これら従来の特許文献1乃至5に示す技術のいずれにあっても、酸素濃度計に異常が発生した場合には、燃焼空気量の制御ができなくなってしまう問題がある。特に、酸素濃度計の応答遅れの場合には、一見すると、それなりの数値が表示されており、操炉担当者が異常が発生していることに気付くことができない。酸素濃度計に応答遅れが発生すると、当該応答遅れにより空気比を変動させても酸素濃度計の反応が遅くなるため、結果的に大きく空気比を変化させることになる。空気比が大きく変動することで目標値よりも低い値の酸素濃度となるまで空気比を変化させた結果、燃焼空気不足となる可能性がある。
Here, in any of these conventional techniques shown in Patent Documents 1 to 5, an oxygen concentration meter is installed in the heating furnace, and the exhaust gas oxygen concentration control is performed based on information obtained from the oxygen concentration meter. It is carried out.
However, any of the techniques disclosed in Patent Documents 1 to 5 has a problem that the amount of combustion air cannot be controlled when an abnormality occurs in the oximeter. In particular, in the case of a response delay of the oximeter, at first glance, an appropriate numerical value is displayed, and the person in charge of the furnace cannot notice that an abnormality has occurred. When a response delay occurs in the oximeter, the response of the oximeter is delayed even if the air ratio is changed due to the response delay, and as a result, the air ratio is greatly changed. As a result of changing the air ratio until the oxygen concentration becomes a value lower than the target value due to large fluctuations in the air ratio, there is a possibility that the combustion air becomes insufficient.

従って、本発明はこの従来の問題点を解決するためになされたものであり、その目的は、加熱炉内に設置された酸素濃度計の応答遅れ時間が長い場合に異常と判定し、空気比を異常にすることなく制御することができる、連続式加熱炉内に設置された酸素濃度計の異常判定方法及び異常判定装置を提供することにある。   Therefore, the present invention has been made to solve this conventional problem, and its purpose is to determine that the oxygen concentration meter installed in the heating furnace is abnormal when the response delay time is long, and the air ratio An object of the present invention is to provide an abnormality determination method and an abnormality determination device for an oximeter installed in a continuous heating furnace that can be controlled without making it abnormal.

上記目的を達成するために、本発明の一態様に係る連続式加熱炉内に設置された酸素濃度計の異常判定方法は、連続式加熱炉内に設置された酸素濃度計の異常判定方法であって、前記酸素濃度計により第1の特定時間から第2の特定時間に至るまで連続的に測定された前記連続式加熱炉内の排ガス中の酸素濃度を取得する酸素濃度取得ステップと、燃料ガス流量計により前記第1の特定時間から前記第2の特定時間に至るまで連続的に測定された前記連続式加熱炉に設けられたバーナへの燃料ガス流量を取得する燃料ガス流量取得ステップと、燃焼空気流量計により前記第1の特定時間から前記第2の特定時間に至るまで連続的に測定された前記バーナへの燃焼空気量を取得する燃焼空気流量取得ステップと、取得した燃焼空気流量と前記連続式加熱炉内で使用される理論空気量とから前記第1の特定時間から前記第2の特定時間に至るまで連続的に変化する空気比を算出する空気比算出ステップと、前記第1の特定時間における排ガス中の酸素濃度を目的変数とし、取得された前記第1の特定時間における前記燃料ガス流量及び算出された前記第1の特定時間における前記空気比を説明変数として重回帰分析を行い、重回帰分析の結果得られる前記第1の特定時間における排ガス中の予測酸素濃度と取得された前記第1の特定時間における排ガス中の酸素濃度との前記第1の特定時間における相関係数Rを算出し、この相関係数Rの算出を前記第1の特定時間における相関係数Rから前記第2の特定時間における相関係数Rまで連続的に行って、連続的に変化する相関係数Rを算出する相関係数算出ステップと、前記酸素濃度計により排ガス中の酸素濃度を測定した前記第1の特定時間から、連続的に変化する前記相関係数Rが最大値に至る時間までの前記酸素濃度計の応答遅れ時間を算出する応答遅れ時間算出ステップと、算出された前記酸素濃度計の応答遅れ時間が、所定の閾値よりも長い場合に、前記酸素濃度計の異常と判定する異常判定ステップとを含むことを要旨とする。 In order to achieve the above object, an abnormality determination method for an oximeter installed in a continuous heating furnace according to one aspect of the present invention is an abnormality determination method for an oximeter installed in a continuous heating furnace. An oxygen concentration acquisition step for acquiring an oxygen concentration in exhaust gas in the continuous heating furnace continuously measured from the first specific time to a second specific time by the oxygen concentration meter; A fuel gas flow rate acquisition step of acquiring a fuel gas flow rate to a burner provided in the continuous heating furnace continuously measured from the first specific time to the second specific time by a gas flow meter; A combustion air flow rate acquisition step for acquiring a combustion air flow rate to the burner continuously measured from the first specific time to the second specific time by a combustion air flow meter, and the acquired combustion air flow rate And said ream An air ratio calculating step for calculating an air ratio that continuously changes from the first specific time to the second specific time based on the theoretical air amount used in the furnace, and the first specific The oxygen concentration in the exhaust gas at the time is an objective variable, and the multiple regression analysis is performed using the acquired fuel gas flow rate at the first specific time and the calculated air ratio at the first specific time as explanatory variables, Correlation coefficient R 2 in the first specific time between the predicted oxygen concentration in the exhaust gas at the first specific time obtained as a result of the multiple regression analysis and the obtained oxygen concentration in the exhaust gas at the first specific time. is calculated, by performing the calculation of the correlation coefficient R 2 continuously until the correlation coefficient R 2 in the second specific time from the correlation coefficient R 2 in the first specific time, changes continuously correlation A correlation coefficient calculation step of calculating the number R 2, from the oxygen concentration of the first specified time of measuring the oxygen concentration in the exhaust gas by meter, the correlation coefficient R 2 for continuously varying reaches the maximum value A response delay time calculating step of calculating a response delay time of the oximeter up to a time, and when the calculated response delay time of the oximeter is longer than a predetermined threshold, an abnormality of the oximeter The gist is to include an abnormality determination step for determination.

また、本発明の別の態様に係る連続式加熱炉内に設置された酸素濃度計の異常判定装置は、連続式加熱炉内に設置された酸素濃度計の異常判定装置であって、前記酸素濃度計により第1の特定時間から第2の特定時間に至るまで連続的に測定された前記連続式加熱炉内の排ガス中の酸素濃度を取得する酸素濃度取得部と、燃料ガス流量計により前記第1の特定時間から前記第2の特定時間に至るまで連続的に測定された前記連続式加熱炉に設けられたバーナへの燃料ガス流量を取得する燃料ガス流量取得部と、燃焼空気流量計により前記第1の特定時間から前記第2の特定時間に至るまで連続的に測定された前記バーナへの燃焼空気量を取得する燃焼空気流量取得部と、取得した燃焼空気流量と前記連続式加熱炉内で使用される理論空気量とから前記第1の特定時間から前記第2の特定時間に至るまで連続的に変化する空気比を算出する空気比算出部と、前記第1の特定時間における排ガス中の酸素濃度を目的変数とし、取得された前記第1の特定時間における前記燃料ガス流量及び算出された前記第1の特定時間における前記空気比を説明変数として重回帰分析を行い、重回帰分析の結果得られる前記第1の特定時間における排ガス中の予測酸素濃度と取得された前記第1の特定時間における排ガス中の酸素濃度との前記第1の特定時間における相関係数Rを算出し、この相関係数Rの算出を前記第1の特定時間における相関係数Rから前記第2の特定時間における相関係数Rまで連続的に行って、連続的に変化する相関係数Rを算出する相関係数算出部と、前記酸素濃度計により排ガス中の酸素濃度を測定した前記第1の特定時間から、連続的に変化する前記相関係数Rが最大値に至る時間までの前記酸素濃度計の応答遅れ時間を算出する応答遅れ時間算出部と、算出された前記酸素濃度計の応答遅れ時間が、所定の閾値よりも長い場合に、前記酸素濃度計の異常と判定する異常判定部とを備えていることを要旨とする。 Further, an oxygen concentration meter abnormality determination device installed in a continuous heating furnace according to another aspect of the present invention is an oxygen concentration meter abnormality determination device installed in a continuous heating furnace, wherein the oxygen concentration meter abnormality determination device An oxygen concentration acquisition unit that acquires the oxygen concentration in the exhaust gas in the continuous heating furnace continuously measured from the first specific time to the second specific time by a densitometer; and the fuel gas flow meter A fuel gas flow rate acquisition unit for acquiring a flow rate of fuel gas to a burner provided in the continuous heating furnace continuously measured from a first specific time to the second specific time; and a combustion air flow meter The combustion air flow rate acquisition unit for acquiring the combustion air flow rate to the burner continuously measured from the first specific time to the second specific time, the acquired combustion air flow rate and the continuous heating The theoretical air volume used in the furnace and An air ratio calculation unit that calculates an air ratio that continuously changes from the first specific time to the second specific time, and an oxygen concentration in the exhaust gas at the first specific time as an objective variable, A multiple regression analysis is performed using the acquired fuel gas flow rate at the first specific time and the calculated air ratio at the first specific time as explanatory variables, and the first specific obtained as a result of the multiple regression analysis A correlation coefficient R 2 at the first specific time between the predicted oxygen concentration in the exhaust gas at the time and the acquired oxygen concentration at the first specific time is calculated, and the correlation coefficient R 2 is calculated. continuously performed until the correlation coefficient R 2 in the second specific time from the correlation coefficient R 2 in the first specific time, the correlation coefficient calculating for calculating a correlation coefficient R 2 for continuously varying Part and the acid Wherein the first specific time of measurement of the oxygen concentration in the exhaust gas by oxygen concentration meter, the correlation coefficient R 2 for continuously varying calculates the response delay time of the oxygen concentration meter up to the time to reach the maximum value A summary is provided with a response delay time calculation unit and an abnormality determination unit that determines that the oxygen concentration meter is abnormal when the calculated response delay time of the oxygen concentration meter is longer than a predetermined threshold. To do.

本発明に係る、連続式加熱炉内に設置された酸素濃度計の異常判定方法及び異常判定装置によれば、連続式加熱炉内に設置された酸素濃度計の応答遅れ時間が長い場合に異常と判定し、空気比を異常にすることなく制御することができる、連続式加熱炉内に設置された酸素濃度計の異常判定方法及び異常判定装置を提供できる。   According to the abnormality determination method and abnormality determination apparatus for the oxygen concentration meter installed in the continuous heating furnace according to the present invention, an abnormality occurs when the response delay time of the oxygen concentration meter installed in the continuous heating furnace is long. It is possible to provide an abnormality determination method and an abnormality determination device for an oximeter installed in a continuous heating furnace that can be controlled without making the air ratio abnormal.

本発明の一実施形態に係る連続式加熱炉内に設置された酸素濃度計の異常判定装置の概略構成図である。It is a schematic block diagram of the abnormality determination apparatus of the oxygen concentration meter installed in the continuous heating furnace which concerns on one Embodiment of this invention. 図1に示す異常判定装置における処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process in the abnormality determination apparatus shown in FIG. 連続式加熱炉において燃料ガス流量及び酸素濃度の0時間(第1の特定時間T1)から35時間(第2の特定時間T2)に至るまでの変動データの一例を示すグラフである。It is a graph which shows an example of the fluctuation | variation data from 0 hours (1st specific time T1) of fuel gas flow volume and oxygen concentration to 35 hours (2nd specific time T2) in a continuous heating furnace. 連続式加熱炉において空気比及び酸素濃度の0時間(第1の特定時間T1)から35時間(第2の特定時間T2)に至るまでの変動データの一例を示すグラフである。It is a graph which shows an example of the fluctuation | variation data from 0 hour (1st specific time T1) of air ratio and oxygen concentration to 35 hours (2nd specific time T2) in a continuous heating furnace. 相関係数算出部で算出された連続的に変化する相関係数Rの一例を示すグラフである。Is a graph showing an example of a correlation coefficient R 2 for continuously varying calculated by the correlation coefficient calculating unit. 応答遅れ時間分を是正した連続的に変化する相関係数Rの一例を示すグラフである。Is a graph showing an example of a correlation coefficient R 2 for continuously changes that correct response delay time period.

以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material, shape, structure, arrangement, etc. of components. It is not specified in the following embodiment. The drawings are schematic. For this reason, it should be noted that the relationship between the thickness and the planar dimension, the ratio, and the like are different from the actual ones, and the dimensional relationship and the ratio are different between the drawings.

図1には、本発明の一実施形態に係る連続式加熱炉内に設置された酸素濃度計の異常判定装置の概略構成が示されている。連続式加熱炉(以降、単に加熱炉という)1は、被加熱材Sを所定温度にまで加熱する加熱炉本体2を備えている。加熱炉本体2の被加熱材Sの装入側には装入扉3が設けられ、加熱炉本体2の被加熱材Sの抽出側には抽出扉4が設けられている。被加熱材Sは、装入扉3のある装入側から抽出扉4のある抽出側にスキッド12で搬送する間に所定温度に加熱される。
そして、加熱炉本体2の装入側端部近傍には煙道11が設けられており、排ガスは、煙道11からその煙道11の途中に設けられたレキュペレータ7によって熱交換されつつ煙突9に排出されるようになっている。
FIG. 1 shows a schematic configuration of an abnormality determination device for an oximeter installed in a continuous heating furnace according to an embodiment of the present invention. A continuous heating furnace (hereinafter simply referred to as a heating furnace) 1 includes a heating furnace body 2 that heats a material to be heated S to a predetermined temperature. A charging door 3 is provided on the side of the heating furnace body 2 where the material to be heated S is charged, and an extraction door 4 is provided on the side of the heating furnace body 2 where the material to be heated S is extracted. The material to be heated S is heated to a predetermined temperature while being transported by the skid 12 from the charging side with the charging door 3 to the extraction side with the extraction door 4.
A flue 11 is provided in the vicinity of the charging side end of the heating furnace body 2, and the flue gas is exchanged by the recuperator 7 provided in the middle of the flue 11 from the flue 11. It is supposed to be discharged.

そして、加熱炉本体2内の煙道11の近傍には、被加熱材Sを加熱するリジェネバーナ5が設けられるとともに、加熱炉本体2内には、装入側から抽出側に向けて所定ピッチで複数のバーナ6が設けられている。各バーナ6も、被加熱材Sを加熱するのである。
ここで、リジェネバーナ5には、燃料ガス供給源10から燃料ガス流量計52を介して燃料ガスが導入されるとともに、燃焼空気供給源54から燃焼空気流量計53及び蓄熱体51を介して燃焼空気が導入される。そして、リジェネバーナ5では、これら導入された燃料ガス及び燃焼空気によって燃焼し、燃焼された排ガスが蓄熱体51及び排ガス流量計55を介して煙突9に排出されるようになっている。ここで、符号56は、排ガス配管に設けられた吸引ブロワである。
A regenerative burner 5 for heating the material to be heated S is provided in the vicinity of the flue 11 in the heating furnace main body 2, and a predetermined pitch is provided in the heating furnace main body 2 from the charging side to the extraction side. A plurality of burners 6 are provided. Each burner 6 also heats the material to be heated S.
Here, fuel gas is introduced into the regenerative burner 5 from the fuel gas supply source 10 through the fuel gas flow meter 52, and combustion is performed from the combustion air supply source 54 through the combustion air flow meter 53 and the heat storage body 51. Air is introduced. The regenerative burner 5 burns with the introduced fuel gas and combustion air, and the combusted exhaust gas is discharged to the chimney 9 via the heat accumulator 51 and the exhaust gas flow meter 55. Here, the code | symbol 56 is the suction blower provided in exhaust gas piping.

また、各バーナ6には、燃料ガス供給源10から燃料ガス流量計61を介して燃料ガスが導入されるとともに、煙道11に設置されたレキュペレータ7で熱交換された燃焼空気が燃焼空気流量計62を介して導入される。各バーナ6では、これら導入された燃料ガス及び燃焼空気によって燃焼し、燃焼された排ガスが煙道11から排出されるようになっている。ここで、符号71は、熱風温度計、73は吸引ブロワである。
また、加熱炉本体2の煙道11入口近傍であって加熱炉本体2の天井部には、排ガス中の酸素濃度を測定する酸素濃度計8が設置されている。
In addition, fuel gas is introduced into each burner 6 from a fuel gas supply source 10 via a fuel gas flow meter 61, and the combustion air heat-exchanged by the recuperator 7 installed in the flue 11 is the combustion air flow rate. It is introduced via the total 62. Each burner 6 burns with the introduced fuel gas and combustion air, and the burned exhaust gas is discharged from the flue 11. Here, reference numeral 71 is a hot air thermometer, and 73 is a suction blower.
An oxygen concentration meter 8 for measuring the oxygen concentration in the exhaust gas is installed near the entrance of the flue 11 of the heating furnace body 2 and on the ceiling of the heating furnace body 2.

この酸素濃度計8は、図3に示すように、加熱炉本体2内の排ガス中の酸素濃度を、0時間(第1の特定時間T1)から35時間(第2の特定時間T2)に至るまで連続的に測定する。
また、リジェネバーナ5用の燃料ガス流量計52及び各バーナ6用の燃料ガス流量計61は、それぞれ、図3に示すように、リジェネバーナ5に導入される燃料ガス流量、各バーナ6に導入される燃料ガス流量を、0時間(第1の特定時間T1)から35時間(第2の特定時間T2)に至るまで連続的に測定する。
As shown in FIG. 3, the oxygen concentration meter 8 changes the oxygen concentration in the exhaust gas in the heating furnace main body 2 from 0 hour (first specific time T1) to 35 hours (second specific time T2). Measure continuously.
Further, the fuel gas flow meter 52 for the regenerative burner 5 and the fuel gas flow meter 61 for each burner 6 are respectively introduced into the burner 6 as shown in FIG. The fuel gas flow rate is continuously measured from 0 hour (first specific time T1) to 35 hours (second specific time T2).

ここで、酸素濃度計8で測定された排ガス中の酸素濃度の変動データと、リジェネバーナ5用の燃料ガス流量計52及び各バーナ6用の燃料ガス流量計61で測定された燃料ガス流量の変動データとの関係を、図3(変動データの一例を示す)から見てみる。酸素濃度計8で測定された排ガス中の酸素濃度の変動データは、燃料ガス流量の変動データに対し、明確に応答時間の遅れを見ることはできないが、若干遅れている。
更に、リジェネバーナ5用の燃焼空気流量計53及び各バーナ6用の燃焼空気流量計62は、それぞれ、リジェネバーナ5に導入される燃焼空気流量、各バーナ6に導入される燃焼空気流量を、0時間(第1の特定時間T1)から35時間(第2の特定時間T2)に至るまで連続的に測定する。
Here, the fluctuation data of the oxygen concentration in the exhaust gas measured by the oxygen concentration meter 8 and the fuel gas flow rate measured by the fuel gas flow meter 52 for the regeneration burner 5 and the fuel gas flow meter 61 for each burner 6 are shown. The relationship with the fluctuation data will be seen from FIG. 3 (an example of fluctuation data is shown). The fluctuation data of the oxygen concentration in the exhaust gas measured by the oxygen concentration meter 8 cannot be clearly seen with respect to the fluctuation data of the fuel gas flow rate, but is slightly delayed.
Further, the combustion air flow meter 53 for the regenerative burner 5 and the combustion air flow meter 62 for each burner 6 respectively calculate the combustion air flow rate introduced into the regenerative burner 5 and the combustion air flow rate introduced into each burner 6. Measurement is continuously performed from 0 hour (first specific time T1) to 35 hours (second specific time T2).

ここで、酸素濃度計8で測定された排ガス中の酸素濃度の変動データと、リジェネバーナ5用の燃焼空気流量計53及び各バーナ6用の燃焼空気流量計62で測定された燃焼空気流量を基に算出した空気比の変動データとの関係を、図4(変動データの一例を示す)から見てみる。酸素濃度計8で測定された排ガス中の酸素濃度の変動データは、リジェネバーナ5用の燃焼空気流量計53及び各バーナ6用の燃焼空気流量計62で測定された燃焼空気流量を基に算出した空気比の変動データに対し、明確に応答時間の遅れを見ることができる。   Here, the fluctuation data of the oxygen concentration in the exhaust gas measured by the oxygen concentration meter 8 and the combustion air flow rate measured by the combustion air flow meter 53 for the regeneration burner 5 and the combustion air flow meter 62 for each burner 6 are obtained. The relationship with the fluctuation data of the air ratio calculated based on the above will be seen from FIG. 4 (an example of fluctuation data is shown). The fluctuation data of the oxygen concentration in the exhaust gas measured by the oxygen concentration meter 8 is calculated based on the combustion air flow rate measured by the combustion air flow meter 53 for the regeneration burner 5 and the combustion air flow meter 62 for each burner 6. The response time delay can be clearly seen for the air ratio fluctuation data.

従って、本実施形態にあっては、燃料ガス流量及び空気比をパラメータとして用いて、酸素濃度計8の応答遅れ時間を算出し、当該応答遅れ時間が長いときには異常と判定するために、酸素濃度計8の異常判定装置20を備えている。
ここで、異常判定装置20は、図1に示すように、酸素濃度計8、リジェネバーナ5用の燃料ガス流量計52、各バーナ6用の燃料ガス流量計61、リジェネバーナ5用の燃焼空気流量計53、及び各バーナ6用の燃焼空気流量計62に接続されている。
この異常判定装置20は、酸素濃度計8の応答遅れ時間が長いときに異常判定するものであり、酸素濃度取得部21、燃料ガス流量取得部22、燃焼空気流量取得部23、空気比算出部24、相関係数算出部25、応答遅れ時間算出部26及び異常判定部27を備えている。
Therefore, in the present embodiment, the response delay time of the oximeter 8 is calculated using the fuel gas flow rate and the air ratio as parameters, and the oxygen concentration is determined in order to determine that there is an abnormality when the response delay time is long. A total of eight abnormality determination devices 20 are provided.
Here, as shown in FIG. 1, the abnormality determination device 20 includes an oxygen concentration meter 8, a fuel gas flow meter 52 for the regeneration burner 5, a fuel gas flow meter 61 for each burner 6, and combustion air for the regeneration burner 5. The flowmeter 53 and the combustion air flowmeter 62 for each burner 6 are connected.
This abnormality determination device 20 determines abnormality when the response delay time of the oximeter 8 is long, and includes an oxygen concentration acquisition unit 21, a fuel gas flow rate acquisition unit 22, a combustion air flow rate acquisition unit 23, and an air ratio calculation unit. 24, a correlation coefficient calculation unit 25, a response delay time calculation unit 26, and an abnormality determination unit 27.

異常判定装置20は、酸素濃度取得部21、燃料ガス流量取得部22、燃焼空気流量取得部23、空気比算出部24、相関係数算出部25、応答遅れ時間算出部26及び異常判定部27の各機能をコンピュータソフトウェア上でプログラムを実行することで実現するための演算処理機能を有するコンピュータシステムである。そして、このコンピュータシステムは、ROM,RAM,CPU等を備えて構成され、ROM等に予め記憶された各種専用のプログラムを実行することにより、前述した各機能をソフトウェア上で実現する。
ここで、異常判定装置20の酸素濃度取得部21は、酸素濃度計8に接続され、酸素濃度計8により第1の特定時間T1(0時間)から第2の特定時間T2(35時間)に至るまで連続的に測定された加熱炉本体2内の排ガス中の酸素濃度を取得する。
The abnormality determination device 20 includes an oxygen concentration acquisition unit 21, a fuel gas flow rate acquisition unit 22, a combustion air flow rate acquisition unit 23, an air ratio calculation unit 24, a correlation coefficient calculation unit 25, a response delay time calculation unit 26, and an abnormality determination unit 27. It is a computer system which has the arithmetic processing function for implement | achieving each of these functions by running a program on computer software. The computer system includes a ROM, a RAM, a CPU, and the like, and implements the functions described above on software by executing various dedicated programs stored in advance in the ROM.
Here, the oxygen concentration acquisition unit 21 of the abnormality determination device 20 is connected to the oxygen concentration meter 8, and the oxygen concentration meter 8 changes the first specific time T1 (0 hour) to the second specific time T2 (35 hours). The oxygen concentration in the exhaust gas in the heating furnace main body 2 measured continuously is obtained.

また、燃料ガス流量取得部22は、リジェネバーナ5用の燃料ガス流量計52及び各バーナ6用の燃料ガス流量計61に接続され、燃料ガス流量計52、61により第1の特定時間T1(0時間)から第2の特定時間(35時間)T2に至るまで連続的に測定された燃料ガス流量を取得する。
更に、燃焼空気流量取得部23は、リジェネバーナ5用の燃焼空気流量計53及び各バーナ6用の燃焼空気流量計62により第1の特定時間T1(0時間)から第2の特定時間T2(35時間)に至るまで連続的に測定されたリジェネバーナ5及びバーナ6への燃焼空気量を取得する。
また、空気比算出部24は、燃焼空気流量取得部23から取得した燃焼空気流量と加熱炉本体2内で使用される理論空気量とから第1の特定時間T1(0時間)から第2の特定時間T2(35時間)に至るまで連続的に変化する空気比を算出する。
The fuel gas flow rate acquisition unit 22 is connected to the fuel gas flow meter 52 for the regeneration burner 5 and the fuel gas flow meter 61 for each burner 6, and the fuel gas flow meters 52 and 61 use the first specific time T 1 ( The fuel gas flow rate continuously measured from 0 hour) to the second specific time (35 hours) T2 is acquired.
Further, the combustion air flow rate acquisition unit 23 uses the combustion air flow meter 53 for the regenerative burner 5 and the combustion air flow meter 62 for each burner 6 from the first specific time T1 (0 hour) to the second specific time T2 ( 35 hours), the amount of combustion air to the regeneration burner 5 and the burner 6 measured continuously is acquired.
In addition, the air ratio calculation unit 24 calculates the first specific time T1 (0 hour) to the second from the combustion air flow rate acquired from the combustion air flow rate acquisition unit 23 and the theoretical air amount used in the heating furnace body 2. The air ratio that continuously changes until the specific time T2 (35 hours) is calculated.

そして、相関係数算出部25は、第1の特定時間T1(0時間)における排ガス中の酸素濃度を目的変数とし、燃料ガス流量取得部22で取得された第1の特定時間T1(0時間)における燃料ガス流量及び空気比算出部24で算出された第1の特定時間T1(0時間)における空気比を説明変数として次の(1)式により重回帰分析を行う。
y=a+a+b ……(1)
ここで、y:加熱炉本体2における排ガス中の酸素濃度の予測値である予測濃度、x:空気比、x:燃料ガス流量、b:定数項である。
Then, the correlation coefficient calculation unit 25 uses the oxygen concentration in the exhaust gas at the first specific time T1 (0 hour) as an objective variable, and the first specific time T1 (0 hour) acquired by the fuel gas flow rate acquisition unit 22 ) And the air ratio at the first specific time T1 (0 hour) calculated by the air ratio calculation unit 24 in FIG.
y = a 1 x 1 + a 2 x 2 + b (1)
Here, y is a predicted concentration which is a predicted value of the oxygen concentration in the exhaust gas in the heating furnace body 2, x 1 is an air ratio, x 2 is a fuel gas flow rate, and b is a constant term.

また、相関係数算出部25は、重回帰分析の結果得られる第1の特定時間T1(0時間)における排ガス中の予測酸素濃度yと、酸素濃度取得部21で取得された第1の特定時間T1(0時間)における排ガス中の酸素濃度(実測された酸素濃度)との第1の特定時間T1(0時間)における相関係数R(重決定係数ともいう)を算出する。
また、相関係数算出部25は、この相関係数Rの算出を第1の特定時間T1(0時間)における相関係数Rから第2の特定時間T2(35時間)における相関係数Rまで連続的に行って、連続的に変化する相関係数Rを算出する。
Further, the correlation coefficient calculation unit 25 uses the predicted oxygen concentration y in the exhaust gas at the first specific time T1 (0 hour) obtained as a result of the multiple regression analysis, and the first specific acquired by the oxygen concentration acquisition unit 21. A correlation coefficient R 2 (also referred to as a multiple determination coefficient) at the first specific time T1 (0 hour) with the oxygen concentration (measured oxygen concentration) in the exhaust gas at the time T1 (0 hour) is calculated.
Moreover, the correlation coefficient calculation unit 25, a correlation coefficient at the correlation coefficient R to calculate the 2 first specific time T1 from the correlation coefficient R 2 in (0 hours) the second specific time T2 (35 hours) By continuously performing up to R 2 , a continuously changing correlation coefficient R 2 is calculated.

つまり、相関係数算出部25は、(1)式におけるyとxとxの時間を第1の特定時間T1(0時間)から第2の特定時間(35時間)まで少しずつずらしながら重回帰分析を何度も実施し、その都度、相関係数Rを算出して連続的に変化する相関係数Rを算出する。
相関係数算出部25で算出された連続的に変化する相関係数Rの一例を図5に示す。
図5を参照すると、相関係数Rは、酸素濃度計8により排ガス中の酸素濃度を測定した第1の特定時間T1(0時間)から連続的に変化し、この一例では、第1の特定時間T1(0時間)から49分(DT)後に相関係数Rが最大値となっている。
That is, the correlation coefficient calculation unit 25, while shifting little by little until (1) y and x 1 and x 2 of the time the first specific time T1 (0 hours) from the second specific time in the formula (35 hours) The multiple regression analysis is performed many times, and each time the correlation coefficient R 2 is calculated, the continuously changing correlation coefficient R 2 is calculated.
An example of a correlation coefficient R 2 for continuously varying calculated by the correlation coefficient calculation unit 25 shown in FIG.
Referring to FIG. 5, the correlation coefficient R 2 continuously changes from the first specific time T1 (0 hours) when the oxygen concentration in the exhaust gas is measured by the oximeter 8. the correlation coefficient R 2 is the maximum value after 49 minutes from a specific time T1 (0 h) (DT).

従って、応答遅れ時間算出部26は、酸素濃度計8により排ガス中の酸素濃度を測定した第1の特定時間T1(0時間)から相関係数Rが最大値に至る時間DT(49分後)までの酸素濃度計8の応答遅れ時間を算出する。
そして、異常判定部27は、応答遅れ時間算出部26で算出された応答遅れ時間が所定の閾値よりも長い場合には、酸素濃度計8の異常と判定する。この閾値は、過去の実績から定められるものであり、例えば、0〜5分程度である。
ここで、図5に示した一例では、応答遅れ時間49分は閾値(0〜5分)よりも長いので、酸素濃度計8は異常と判定される。
Accordingly, the response delay time calculating unit 26, a first specific time T1 (0 hours) Time to a maximum value correlation coefficient R 2 from DT (after 49 minutes of measurement of the oxygen concentration in the exhaust gas by the oxygen concentration meter 8 The response delay time of the oximeter 8 is calculated.
The abnormality determining unit 27 determines that the oximeter 8 is abnormal when the response delay time calculated by the response delay time calculating unit 26 is longer than a predetermined threshold. This threshold value is determined from past results, and is, for example, about 0 to 5 minutes.
Here, in the example shown in FIG. 5, since the response delay time 49 minutes is longer than the threshold value (0 to 5 minutes), the oximeter 8 is determined to be abnormal.

また、異常判定装置20の異常判定部27には、表示装置30が接続されている。この表示装置30は、プリンタなどの出力装置によって構成され、異常判定部27で酸素濃度計8の異常と判定されたときに、前述の応答遅れ時間を表示する。
なお、図5において、酸素濃度計8により排ガス中の酸素濃度を測定した第1の特定時間T1(0時間)における相関係数Rは、0.0035となっており、ほとんど無相関となっているが、応答遅れ時間49分を加味すると、相関係数Rは0.435(最大値)となり、一定の相関を考えることができる。
A display device 30 is connected to the abnormality determination unit 27 of the abnormality determination device 20. The display device 30 is constituted by an output device such as a printer, and displays the response delay time described above when the abnormality determination unit 27 determines that the oximeter 8 is abnormal.
Incidentally, it 5, the correlation coefficient R 2 in the first specific time T1 was measured oxygen concentration in the exhaust gas by the oxygen concentration meter 8 (0 hours) have been a 0.0035, and most uncorrelated and which is, when considering the response delay time 49 minutes, a correlation coefficient R 2 can be considered 0.435 (maximum value), and a certain correlation.

従って、酸素濃度計8の応答遅れ時間49分を是正すると、連続的に変化する相関係数Rは、図6に示すようになり、是正後は応答遅れ時間がほとんど生じないところで、相関係数Rが最大値をもつことになる。
このため、酸素濃度計8の応答遅れ時間分だけ早くなるように、制御することで、応答遅れ時間がほとんど生じずに、排ガス中酸素濃度制御を行うことが可能となる。
Therefore, when correcting the response delay time 49 minutes oximeter 8, a correlation coefficient R 2 for continuously varying is as shown in FIG. 6, after corrective where hardly a response delay time, the phase relationship number R 2 is to have the maximum value.
For this reason, by controlling the oxygen concentration meter 8 so as to be faster by the response delay time, it is possible to control the oxygen concentration in the exhaust gas with almost no response delay time.

次に、異常判定装置20における処理の流れについて、図2を参照して説明する。
異常判定装置20の酸素濃度取得部21は、酸素濃度取得ステップである以下に示すステップS1を実行する。また、燃料ガス流量取得部22は、燃料ガス流量取得ステップであるステップS2を実行する。また、燃焼空気流量取得部23は燃焼空気流量取得ステップであるステップS3を実行し、空気比算出部24は、空気比算出ステップであるステップS4を実行する。更に、相関係数算出部25は、相関係数算出ステップであるステップS5を実行し、応答遅れ時間算出部26は、応答遅れ算出ステップであるステップS6を実行し、異常判定部27は、異常判定ステップであるステップS7〜S9を実行する。
Next, the flow of processing in the abnormality determination device 20 will be described with reference to FIG.
The oxygen concentration acquisition unit 21 of the abnormality determination device 20 executes the following step S1 that is an oxygen concentration acquisition step. Further, the fuel gas flow rate acquisition unit 22 executes Step S2 which is a fuel gas flow rate acquisition step. The combustion air flow rate acquisition unit 23 executes step S3 which is a combustion air flow rate acquisition step, and the air ratio calculation unit 24 executes step S4 which is an air ratio calculation step. Further, the correlation coefficient calculation unit 25 executes step S5 which is a correlation coefficient calculation step, the response delay time calculation unit 26 executes step S6 which is a response delay calculation step, and the abnormality determination unit 27 Steps S7 to S9, which are determination steps, are executed.

先ず、ステップS1で、酸素濃度取得部21は、酸素濃度計8により第1の特定時間T1(0時間)から第2の特定時間T2(35時間)に至るまで連続的に測定された加熱炉本体2内の排ガス中の酸素濃度を取得する。
次いで、ステップS2で、燃料ガス流量取得部22は、燃料ガス流量計52、61により第1の特定時間T1(0時間)から第2の特定時間(35時間)T2に至るまで連続的に測定された燃料ガス流量を取得する。
更に、ステップS3で、燃焼空気流量取得部23は、リジェネバーナ5用の燃焼空気流量計53及び各バーナ6用の燃焼空気流量計62により第1の特定時間T1(0時間)から第2の特定時間T2(35時間)に至るまで連続的に測定されたリジェネバーナ5及びバーナ6への燃焼空気量を取得する。
First, in step S1, the oxygen concentration acquisition unit 21 continuously measures the heating furnace from the first specific time T1 (0 hour) to the second specific time T2 (35 hours) by the oxygen concentration meter 8. The oxygen concentration in the exhaust gas in the main body 2 is acquired.
Next, in step S2, the fuel gas flow rate acquisition unit 22 continuously measures from the first specific time T1 (0 hour) to the second specific time (35 hours) T2 by the fuel gas flow meters 52 and 61. The obtained fuel gas flow rate is acquired.
Further, in step S3, the combustion air flow rate acquisition unit 23 performs the second operation from the first specific time T1 (0 hour) using the combustion air flow meter 53 for the regeneration burner 5 and the combustion air flow meter 62 for each burner 6. The combustion air amount to the regeneration burner 5 and the burner 6 continuously measured until the specific time T2 (35 hours) is acquired.

そして、ステップS4で、空気比算出部24は、燃焼空気流量取得部23から取得した燃焼空気流量と加熱炉本体2内で使用される理論空気量とから第1の特定時間T1(0時間)から第2の特定時間T2(35時間)に至るまで連続的に変化する空気比を算出する。
次いで、ステップS5で、相関係数算出部25は、第1の特定時間T1(0時間)における排ガス中の酸素濃度を目的変数とし、燃料ガス流量取得部22で取得された第1の特定時間T1(0時間)における燃料ガス流量及び空気比算出部24で算出された第1の特定時間T1(0時間)における空気比を説明変数として前述の(1)式により重回帰分析を行い、重回帰分析の結果得られる第1の特定時間T1(0時間)における排ガス中の予測酸素濃度yと、酸素濃度取得部21で取得された第1の特定時間T1(0時間)における排ガス中の酸素濃度(実測された酸素濃度)との第1の特定時間T1(0時間)における相関係数Rを算出する。
In step S4, the air ratio calculation unit 24 calculates the first specific time T1 (0 hours) from the combustion air flow rate acquired from the combustion air flow rate acquisition unit 23 and the theoretical air amount used in the heating furnace body 2. To the second specific time T2 (35 hours) is calculated.
Next, in step S5, the correlation coefficient calculation unit 25 uses the oxygen concentration in the exhaust gas at the first specific time T1 (0 hour) as an objective variable, and the first specific time acquired by the fuel gas flow rate acquisition unit 22 The multiple regression analysis is performed by the above equation (1) using the fuel gas flow rate at T1 (0 hour) and the air ratio at the first specific time T1 (0 hour) calculated by the air ratio calculation unit 24 as an explanatory variable. The predicted oxygen concentration y in the exhaust gas at the first specific time T1 (0 hour) obtained as a result of the regression analysis, and the oxygen in the exhaust gas at the first specific time T1 (0 hour) acquired by the oxygen concentration acquisition unit 21 calculating a correlation coefficient R 2 in a concentration first specific time T1 (the actually measured oxygen concentrations) (0 hours).

また、ステップS5で、相関係数算出部25は、この相関係数Rの算出を第1の特定時間T1(0時間)における相関係数Rから第2の特定時間T2(35時間)における相関係数Rまで連続的に行って、連続的に変化する相関係数Rを算出する。
次いで、ステップS6で、応答遅れ時間算出部26は、酸素濃度計8により排ガス中の酸素濃度を測定した第1の特定時間T1(0時間)から相関係数Rが最大値に至る時間DTまでの酸素濃度計8の応答遅れ時間を算出する。
そして、ステップS7で、異常判定部27は、応答遅れ時間算出部26で算出された応答遅れ時間が所定の閾値よりも長いか否かを判定し、長い場合(YES)にはステップS8に移行し、同じか短い場合(NO)には処理を終了する。
Further, in step S5, the correlation coefficient calculation unit 25, the second specific time T2 (35 hours) from the correlation coefficient R 2 in the calculation of the correlation coefficient R 2 first specific time T1 (0 hours) continuously performed until the correlation coefficient R 2 in the calculates a correlation coefficient R 2 for continuously varying.
Then, in step S6, the response delay time calculating unit 26, an oxygen concentration meter 8 times the first correlation coefficient R 2 from a certain time T1 (0 h) was measured oxygen concentration in the exhaust gas to a maximum value by DT The response delay time of the oxygen concentration meter 8 is calculated.
Then, in step S7, the abnormality determination unit 27 determines whether or not the response delay time calculated by the response delay time calculation unit 26 is longer than a predetermined threshold. If the response delay time is longer (YES), the process proceeds to step S8. If it is the same or shorter (NO), the process ends.

異常判定部27は、ステップS8で異常判定と認定し、ステップS9にて、ステップS6で算出された応答遅れ時間を表示装置30に対し出力し、処理を終了する。
このように、本実施形態に係る連続式加熱炉内に設置された酸素濃度計の異常判定方法及び異常判定装置によれば、第1の特定時間T1における相関係数Rから第2の特定時間T2における相関係数Rまで連続的に変化する相関係数Rを算出し、酸素濃度計8により排ガス中の酸素濃度を測定した第1の特定時間T1から、連続的に変化する相関係数Rが最大値に至る時間までの酸素濃度計8の応答遅れ時間を算出し、算出された酸素濃度計8の応答遅れ時間が、所定の閾値よりも長い場合に、酸素濃度計8の異常と判定する。
The abnormality determination unit 27 recognizes the abnormality determination in step S8, outputs the response delay time calculated in step S6 to the display device 30 in step S9, and ends the process.
Thus, according to the abnormality determination method and the abnormality determination apparatus for an oxygen concentration meter provided on the continuous heating furnace according to the present embodiment, the second identified from the correlation coefficient R 2 in the first specific time T1 A correlation coefficient R 2 that continuously changes up to the correlation coefficient R 2 at time T 2 is calculated, and a phase that changes continuously from the first specific time T 1 when the oxygen concentration in the exhaust gas is measured by the oxygen concentration meter 8. If correlation coefficient R 2 calculates the oximeter 8 response delay time up to the time to reach the maximum value, the response delay time of the oxygen concentration meter 8, which is calculated is longer than the predetermined threshold value, the oxygen concentration meter 8 Judged as abnormal.

これにより、連続式加熱炉1内に設置された酸素濃度計8の応答遅れ時間が長い場合に異常と判定し、酸素濃度計8に不可避な応答時間遅れが発生した時も、空気比を異常にすることなく排ガス中酸素濃度制御をおこなうことができる。
また、酸素濃度計8の異常と判定されたときに、算出された酸素濃度計8の応答遅れ時間を表示装置30に出力し、表示装置30が応答遅れ時間を表示するので、操炉担当者が表示装置30を見て酸素濃度計8の異常をいち早く検知することができる。
そして、操炉担当者は、酸素濃度計8の応答遅れ時間をいち早く是正することができる。
As a result, when the response delay time of the oxygen concentration meter 8 installed in the continuous heating furnace 1 is long, it is determined that there is an abnormality, and even when an unavoidable response time delay occurs in the oxygen concentration meter 8, the air ratio is abnormal. It is possible to control the oxygen concentration in the exhaust gas without making it.
Further, when it is determined that the oximeter 8 is abnormal, the calculated response delay time of the oximeter 8 is output to the display device 30, and the display device 30 displays the response delay time. However, the abnormality of the oximeter 8 can be quickly detected by looking at the display device 30.
The person in charge of the furnace can quickly correct the response delay time of the oximeter 8.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
例えば、酸素濃度計8による測定、燃料ガス流量計52、61による測定、及び燃焼空気流量計53、62による測定における第1の特定時間T1は0時間、第2の特定時間T2は35時間としてあるが、これらの時間は任意に設定することができる。
As mentioned above, although embodiment of this invention has been described, this invention is not limited to this, A various change and improvement can be performed.
For example, in the measurement by the oxygen concentration meter 8, the measurement by the fuel gas flow meters 52 and 61, and the measurement by the combustion air flow meters 53 and 62, the first specific time T1 is 0 hour, and the second specific time T2 is 35 hours. However, these times can be set arbitrarily.

1 連続式加熱炉
2 加熱炉本体
3 装入扉
4 抽出扉
5 リジェネバーナ
6 バーナ
7 レキュペレータ
8 酸素濃度計
9 煙突
10 燃料ガス供給源
11 煙道
12 スキッド
20 異常判定装置
21 酸素濃度取得部
22 燃料ガス流量取得部
23 燃焼空気流量取得部
24 空気比算出部
25 相関係数算出部
26 応答遅れ時間算出部
27 異常判定部
30 表示装置
51 蓄熱体
52 燃料ガス流量計
53 燃焼空気流量計
54 燃焼空気供給源
55 排ガス流量計
56 吸引ブロワ
61 燃料ガス流量計
62 燃焼空気流量計
71 熱風温度計
72 吸引ブロワ
S 被加熱材
T1 第1の特定時間
T2 第2の特定時間
DESCRIPTION OF SYMBOLS 1 Continuous heating furnace 2 Heating furnace main body 3 Loading door 4 Extraction door 5 Regenerative burner 6 Burner 7 Recuperator 8 Oxygen meter 9 Chimney 10 Fuel gas supply source 11 Flue 12 Skid 20 Abnormality judgment device 21 Oxygen concentration acquisition part 22 Fuel Gas flow rate acquisition unit 23 Combustion air flow rate acquisition unit 24 Air ratio calculation unit 25 Correlation coefficient calculation unit 26 Response delay time calculation unit 27 Abnormality determination unit 30 Display device 51 Heat storage body 52 Fuel gas flow meter 53 Combustion air flow meter 54 Combustion air Supply source 55 Exhaust gas flow meter 56 Suction blower 61 Fuel gas flow meter 62 Combustion air flow meter 71 Hot air thermometer 72 Suction blower S Heated material T1 First specific time T2 Second specific time

Claims (4)

連続式加熱炉内に設置された酸素濃度計の異常判定方法であって、
前記酸素濃度計により第1の特定時間から第2の特定時間に至るまで連続的に測定された前記連続式加熱炉内の排ガス中の酸素濃度を取得する酸素濃度取得ステップと、
燃料ガス流量計により前記第1の特定時間から前記第2の特定時間に至るまで連続的に測定された前記連続式加熱炉に設けられたバーナへの燃料ガス流量を取得する燃料ガス流量取得ステップと、
燃焼空気流量計により前記第1の特定時間から前記第2の特定時間に至るまで連続的に測定された前記バーナへの燃焼空気量を取得する燃焼空気流量取得ステップと、
取得した燃焼空気流量と前記連続式加熱炉内で使用される理論空気量とから前記第1の特定時間から前記第2の特定時間に至るまで連続的に変化する空気比を算出する空気比算出ステップと、
前記第1の特定時間における排ガス中の酸素濃度を目的変数とし、取得された前記第1の特定時間における前記燃料ガス流量及び算出された前記第1の特定時間における前記空気比を説明変数として重回帰分析を行い、重回帰分析の結果得られる前記第1の特定時間における排ガス中の予測酸素濃度と取得された前記第1の特定時間における排ガス中の酸素濃度との前記第1の特定時間における相関係数Rを算出し、この相関係数Rの算出を前記第1の特定時間における相関係数Rから前記第2の特定時間における相関係数Rまで連続的に行って、連続的に変化する相関係数Rを算出する相関係数算出ステップと、
前記酸素濃度計により排ガス中の酸素濃度を測定した前記第1の特定時間から、連続的に変化する前記相関係数Rが最大値に至る時間までの前記酸素濃度計の応答遅れ時間を算出する応答遅れ時間算出ステップと、
算出された前記酸素濃度計の応答遅れ時間が、所定の閾値よりも長い場合に、前記酸素濃度計の異常と判定する異常判定ステップとを含むことを特徴とする連続式加熱炉内に設置された酸素濃度計の異常判定方法。
An oxygen concentration meter abnormality determination method installed in a continuous heating furnace,
An oxygen concentration acquisition step of acquiring the oxygen concentration in the exhaust gas in the continuous heating furnace continuously measured from the first specific time to the second specific time by the oxygen concentration meter;
A fuel gas flow rate acquisition step of acquiring a fuel gas flow rate to a burner provided in the continuous heating furnace, which is continuously measured from the first specific time to the second specific time by a fuel gas flow meter When,
A combustion air flow rate acquisition step of acquiring a combustion air amount to the burner continuously measured from the first specific time to the second specific time by a combustion air flow meter;
Air ratio calculation for calculating an air ratio that continuously changes from the first specific time to the second specific time from the obtained combustion air flow rate and the theoretical air amount used in the continuous heating furnace. Steps,
The oxygen concentration in the exhaust gas at the first specific time is used as an objective variable, and the obtained fuel gas flow rate at the first specific time and the calculated air ratio at the first specific time are used as explanatory variables. A regression analysis is performed, and the predicted oxygen concentration in the exhaust gas at the first specific time obtained as a result of the multiple regression analysis and the obtained oxygen concentration in the exhaust gas at the first specific time at the first specific time calculating a correlation coefficient R 2, performs calculation of the correlation coefficient R 2 to the continuously until the correlation coefficient R 2 in the second specific time from the correlation coefficient R 2 in the first specific time, A correlation coefficient calculating step for calculating a continuously changing correlation coefficient R 2 ;
From the oxygen concentration of the first specified time of measuring the oxygen concentration in the exhaust gas by meter, calculating the response delay time of the oxygen concentration meter up to the time that the correlation coefficient R 2 for continuously varying reaches the maximum value A response delay time calculating step,
And an abnormality determining step for determining that the oxygen concentration meter is abnormal when the calculated response delay time of the oxygen concentration meter is longer than a predetermined threshold value. Oxygen meter abnormality judgment method.
前記異常判定ステップで前記酸素濃度計の異常と判定されたときに、算出された前記酸素濃度計の応答遅れ時間を表示装置に出力し、前記表示装置が前記応答遅れ時間を表示する表示ステップを含むことを特徴とする請求項1に記載の連続式加熱炉内に設置された酸素濃度計の異常判定方法。   When it is determined in the abnormality determination step that the oximeter is abnormal, the calculated response delay time of the oximeter is output to a display device, and the display device displays the response delay time. An abnormality determination method for an oxygen concentration meter installed in a continuous heating furnace according to claim 1, comprising: 連続式加熱炉内に設置された酸素濃度計の異常判定装置であって、
前記酸素濃度計により第1の特定時間から第2の特定時間に至るまで連続的に測定された前記連続式加熱炉内の排ガス中の酸素濃度を取得する酸素濃度取得部と、
燃料ガス流量計により前記第1の特定時間から前記第2の特定時間に至るまで連続的に測定された前記連続式加熱炉に設けられたバーナへの燃料ガス流量を取得する燃料ガス流量取得部と、
燃焼空気流量計により前記第1の特定時間から前記第2の特定時間に至るまで連続的に測定された前記バーナへの燃焼空気量を取得する燃焼空気流量取得部と、
取得した燃焼空気流量と前記連続式加熱炉内で使用される理論空気量とから前記第1の特定時間から前記第2の特定時間に至るまで連続的に変化する空気比を算出する空気比算出部と、
前記第1の特定時間における排ガス中の酸素濃度を目的変数とし、取得された前記第1の特定時間における前記燃料ガス流量及び算出された前記第1の特定時間における前記空気比を説明変数として重回帰分析を行い、重回帰分析の結果得られる前記第1の特定時間における排ガス中の予測酸素濃度と取得された前記第1の特定時間における排ガス中の酸素濃度との前記第1の特定時間における相関係数Rを算出し、この相関係数Rの算出を前記第1の特定時間における相関係数Rから前記第2の特定時間における相関係数Rまで連続的に行って、連続的に変化する相関係数Rを算出する相関係数算出部と、
前記酸素濃度計により排ガス中の酸素濃度を測定した前記第1の特定時間から、連続的に変化する前記相関係数Rが最大値に至る時間までの前記酸素濃度計の応答遅れ時間を算出する応答遅れ時間算出部と、
算出された前記酸素濃度計の応答遅れ時間が、所定の閾値よりも長い場合に、前記酸素濃度計の異常と判定する異常判定部とを備えていることを特徴とする連続式加熱炉内に設置された酸素濃度計の異常判定装置。
An oxygen concentration meter abnormality determination device installed in a continuous heating furnace,
An oxygen concentration acquisition unit for acquiring the oxygen concentration in the exhaust gas in the continuous heating furnace continuously measured from the first specific time to the second specific time by the oxygen concentration meter;
A fuel gas flow rate acquisition unit for acquiring a fuel gas flow rate to a burner provided in the continuous heating furnace continuously measured from the first specific time to the second specific time by a fuel gas flow meter When,
A combustion air flow rate acquisition unit for acquiring a combustion air amount to the burner continuously measured from the first specific time to the second specific time by a combustion air flow meter;
Air ratio calculation for calculating an air ratio that continuously changes from the first specific time to the second specific time from the obtained combustion air flow rate and the theoretical air amount used in the continuous heating furnace. And
The oxygen concentration in the exhaust gas at the first specific time is used as an objective variable, and the obtained fuel gas flow rate at the first specific time and the calculated air ratio at the first specific time are used as explanatory variables. A regression analysis is performed, and the predicted oxygen concentration in the exhaust gas at the first specific time obtained as a result of the multiple regression analysis and the obtained oxygen concentration in the exhaust gas at the first specific time at the first specific time calculating a correlation coefficient R 2, performs calculation of the correlation coefficient R 2 to the continuously until the correlation coefficient R 2 in the second specific time from the correlation coefficient R 2 in the first specific time, A correlation coefficient calculating unit for calculating a continuously changing correlation coefficient R 2 ;
From the oxygen concentration of the first specified time of measuring the oxygen concentration in the exhaust gas by meter, calculating the response delay time of the oxygen concentration meter up to the time that the correlation coefficient R 2 for continuously varying reaches the maximum value A response delay time calculating unit,
In the continuous heating furnace, comprising: an abnormality determination unit that determines that the oxygen concentration meter is abnormal when the calculated response delay time of the oxygen concentration meter is longer than a predetermined threshold value. An abnormality determination device for the installed oxygen concentration meter.
前記異常判定部で前記酸素濃度計の異常と判定されたときに、前記応答遅れ時間を表示する表示装置を備えていることを特徴とする請求項3に記載の連続式加熱炉内に設置された酸素濃度計の異常判定装置。   The apparatus according to claim 3, further comprising a display device that displays the response delay time when the abnormality determination unit determines that the oximeter is abnormal. Oxygen meter abnormality determination device.
JP2018047293A 2018-03-14 2018-03-14 Abnormality judgment method and abnormality judgment device of oxygen concentration meter installed in the continuous heating furnace Active JP6773066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047293A JP6773066B2 (en) 2018-03-14 2018-03-14 Abnormality judgment method and abnormality judgment device of oxygen concentration meter installed in the continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047293A JP6773066B2 (en) 2018-03-14 2018-03-14 Abnormality judgment method and abnormality judgment device of oxygen concentration meter installed in the continuous heating furnace

Publications (2)

Publication Number Publication Date
JP2019158268A true JP2019158268A (en) 2019-09-19
JP6773066B2 JP6773066B2 (en) 2020-10-21

Family

ID=67993962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047293A Active JP6773066B2 (en) 2018-03-14 2018-03-14 Abnormality judgment method and abnormality judgment device of oxygen concentration meter installed in the continuous heating furnace

Country Status (1)

Country Link
JP (1) JP6773066B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176423A (en) * 2022-08-29 2022-11-29 中外炉工業株式会社 Combustion facility
JP2022176424A (en) * 2022-08-31 2022-11-29 中外炉工業株式会社 Combustion control method of combustion facility
JP2022177842A (en) * 2022-08-29 2022-12-01 中外炉工業株式会社 Combustion facility
JP7354988B2 (en) 2019-12-25 2023-10-03 Jfeスチール株式会社 Continuous steel heating furnace, air ratio control method for continuous steel heating furnace, and steel manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354988B2 (en) 2019-12-25 2023-10-03 Jfeスチール株式会社 Continuous steel heating furnace, air ratio control method for continuous steel heating furnace, and steel manufacturing method
JP2022176423A (en) * 2022-08-29 2022-11-29 中外炉工業株式会社 Combustion facility
JP2022177842A (en) * 2022-08-29 2022-12-01 中外炉工業株式会社 Combustion facility
JP7210125B2 (en) 2022-08-29 2023-01-23 中外炉工業株式会社 Combustion equipment
JP7210126B2 (en) 2022-08-29 2023-01-23 中外炉工業株式会社 Combustion equipment
WO2024048028A1 (en) * 2022-08-29 2024-03-07 中外炉工業株式会社 Combustion facility
JP2022176424A (en) * 2022-08-31 2022-11-29 中外炉工業株式会社 Combustion control method of combustion facility
JP7220971B2 (en) 2022-08-31 2023-02-13 中外炉工業株式会社 Combustion control method for combustion equipment

Also Published As

Publication number Publication date
JP6773066B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
JP2019158268A (en) Abnormality determination method and abnormality determination device for oximeter installed in consecutive type heating furnace
CN101689050B (en) Use of statistical analysis in power plant performance monitoring
CN111705174B (en) Method for detecting blast furnace wall junction thickness
CN103267684B (en) A kind of station boiler pressure restraining element life consumption acquisition methods and system
CN103243190A (en) Method for predicting coal gas consumption of hot blast stove
JP7214940B2 (en) Heating furnace air volume control method
JP5990811B2 (en) Method for predicting sulfide corrosion of boiler furnace wall pipes.
US9927175B2 (en) Monitoring method
JP5849615B2 (en) Radiant tube furnace control method and control apparatus
CN113046544B (en) Air-fuel ratio control method and control system for continuous annealing furnace
JP4333766B2 (en) Boiler control device and control method
CN105004756A (en) Burner flame intensity determination method and apparatus thereof
JP7142545B2 (en) Boiler tube leak diagnostic system and boiler tube leak diagnostic method
JP2010281506A (en) Method of deciding maintenance and repair time of heat exchanger for preheating combustion air
JP6822435B2 (en) Elucidation device and elucidation method of the cause of deterioration of fuel intensity in the heating furnace
RU2425290C2 (en) Automatic optimisation method of combustion process in drum steam boiler furnace
KR100689153B1 (en) Method for estimating temperature of slab in heating furnace
US10921197B2 (en) Visualization and manipulation of micro-scale calorimeter chamber data matrices
JP7155988B2 (en) Method for detecting defective combustion of radiant tube burner
CN106642125A (en) Temperature control method and device for regenerative radiant tube
JP2017207255A (en) Heating furnace combustion control method, heating furnace and hot rolling line
JP2004028486A (en) Temperature estimating method of heated material
JP6209899B2 (en) Furnace port resistance calculation method, flue gas blowing amount calculation method, furnace pressure control device, furnace pressure control program, and furnace pressure control method of converter exhaust gas treatment device
Hubner et al. Method for analysing the heat recovery potential of thermoprocessing equipment
KR20160041689A (en) Thermal efficiency calculating system of heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250