WO2024047853A1 - リチウムイオン二次電池用負極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2024047853A1
WO2024047853A1 PCT/JP2022/033038 JP2022033038W WO2024047853A1 WO 2024047853 A1 WO2024047853 A1 WO 2024047853A1 JP 2022033038 W JP2022033038 W JP 2022033038W WO 2024047853 A1 WO2024047853 A1 WO 2024047853A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
material layer
layer
negative
Prior art date
Application number
PCT/JP2022/033038
Other languages
English (en)
French (fr)
Inventor
達哉 遠山
Original Assignee
ビークルエナジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ビークルエナジージャパン株式会社 filed Critical ビークルエナジージャパン株式会社
Priority to PCT/JP2022/033038 priority Critical patent/WO2024047853A1/ja
Publication of WO2024047853A1 publication Critical patent/WO2024047853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery including the negative electrode.
  • Lithium ion secondary batteries having a negative electrode with a plurality of active material layers are conventionally known (see, for example, Patent Documents 1 to 6).
  • the negative electrode for a lithium ion secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer laminated on the negative electrode current collector, and the negative electrode active material layer is laminated on the negative electrode current collector.
  • the negative electrode first active material layer includes the negative electrode first active material;
  • the negative electrode second active material layer includes a negative electrode second active material, and the BET specific surface area of the negative electrode second active material is larger than the BET specific surface area of the negative electrode first active material.
  • the negative electrode for a lithium ion secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer laminated on the negative electrode current collector, and the negative electrode active material layer is laminated on the negative electrode current collector.
  • the negative electrode first active material contains a Si-based material, satisfying at least one of the second conditions that the weight ratio is greater than the weight ratio of the conductive support agent.
  • the Si-based material contained in the negative electrode first active material may be pre-doped with lithium.
  • the lithium ion secondary battery of the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, and the negative electrode is the negative electrode for a lithium ion secondary battery of the present invention.
  • the lithium ion secondary battery equipped with the negative electrode for lithium ion secondary batteries of the present invention improvement in charging performance and long life can be realized.
  • FIG. 1 is a schematic perspective view showing a battery 1 including an example of a negative electrode 120 according to first and second embodiments.
  • FIG. 2 is a schematic perspective view showing a charge/discharge body 100 of the battery 1 shown in FIG. 1.
  • FIG. 3 is a schematic perspective view showing a portion of the charge/discharge body 100 shown in FIG. 2 including a positive electrode tab 111b and a negative electrode tab 121b, with the positions of the side ends of the positive electrode 110, the negative electrode 120, and the separator 130 different.
  • FIG. 4 is a schematic side view showing the charge/discharge body 100 of the battery 1 according to the first embodiment, which is shown in FIG. 3.
  • FIG. 3 is a schematic enlarged view of a die head and a back roller used in manufacturing a negative electrode.
  • FIG. 7 is a schematic cross-sectional view of a positive electrode and a negative electrode of a separator-less battery including another negative electrode according to the first and second embodiments.
  • FIG. 7 is a schematic enlarged sectional view of the interface between the negative electrode second active material layer and the negative electrode electronic insulating layer of the negative electrode active material layer of the negative electrode of another example according to the first and second embodiments, and the vicinity thereof.
  • 4 is a schematic side view showing the charge/discharge body 100 of the battery 1 according to the second embodiment, which is shown in FIG. 3.
  • FIG. 3 is a schematic enlarged view of a die head and a back roller used in manufacturing a negative electrode.
  • FIG. 7 is a schematic cross-sectional view of a positive electrode and a negative electrode of a separator-less battery including another negative electrode according to the first and second embodiments.
  • FIG. 7 is a schematic
  • the width direction X and depth direction Y of the battery 1 and the height direction Z changes.
  • lithium ion secondary battery negative electrode may be abbreviated as “negative electrode”.
  • Lithium ion secondary battery” is sometimes abbreviated as “battery”.
  • the negative electrode for a lithium ion secondary battery according to the first embodiment includes a negative electrode current collector and a negative electrode active material layer laminated on the negative electrode current collector, and the negative electrode active material layer includes a negative electrode current collector.
  • the negative electrode second active material layer includes a negative electrode second active material, and the negative electrode second active material has a BET specific surface area larger than the negative electrode first active material.
  • the lithium ion secondary battery according to the first embodiment is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, and the negative electrode is the negative electrode for the lithium ion secondary battery according to the first embodiment. It is.
  • a battery 1 including an example negative electrode 120 according to the first embodiment is a lithium ion secondary battery, and as shown in FIG. and an external terminal 300 connected to the charge/discharge body 100 and attached to the container 200.
  • the charge/discharge body 100 has a positive electrode 110, a negative electrode 120, and a separator 130, as shown in FIGS. 2 to 4.
  • the separator 130 is impregnated with an electrolytic solution in which a supporting salt (electrolyte) is dissolved.
  • the charge/discharge body 100 has a positive electrode 110 formed in an elongated shape and a negative electrode 120 formed in an elongated shape, which are wound together with a separator 130 formed in an elongated shape interposed therebetween. It is rotated and composed.
  • the charging/discharging body 100 is formed into a rectangular parallelepiped shape with rounded ends when the constituent members are wound.
  • the positive electrode 110 is a positive electrode for a lithium ion secondary battery, and includes a positive electrode current collector 111 and a positive electrode active material layer 112 laminated on the positive electrode current collector 111, as shown in FIGS. 3 and 4. .
  • the positive electrode current collector 111 is formed in an elongated shape extending in the width direction X. As shown in FIGS. 3 and 4, the positive electrode current collector 111 includes a current collecting portion 111a and a positive electrode tab 111b.
  • the current collector 111a is elongated in the width direction X and is formed in a foil shape. As shown in FIGS. 3 and 4, the positive electrode tab 111b protrudes in the lateral direction (above the height direction Z) of the current collecting section 111a from the side edge 111c along the longitudinal direction of the current collecting section 111a. .
  • the positive electrode tab 111b is formed integrally with the current collector 111a. For example, one positive electrode tab 111b is formed in the current collector 111a.
  • the current collector 111a is formed of, for example, aluminum or an aluminum alloy, such as aluminum foil having a plate-like (sheet-like) shape.
  • the positive electrode active material layer 112 is joined to the current collecting portion 111a of the positive electrode current collector 111.
  • the positive electrode active material layer 112 may be formed on both sides of the current collector 111a.
  • the positive electrode active material layer 112 faces, for example, the entire region along the transverse direction (height direction Z) of the current collector 111a.
  • the positive electrode active material layer 112 includes a positive electrode active material made of a lithium-containing composite oxide.
  • a lithium-containing composite oxide for example, metal elements such as nickel, cobalt, and manganese, and lithium are used.
  • lithium-containing composite oxide constituting the positive electrode active material
  • the following general composition formula Li 1+X M A O 2 (1) (In the formula, X satisfies -0.15 ⁇ X ⁇ 0.15, and M A represents an element group containing at least one element selected from the group consisting of Mn and Al, Ni, and Co. )
  • the ternary lithium-containing composite oxide represented by the above general compositional formula (1) has high thermal stability and stability in high potential conditions, and by applying this oxide, the safety of the battery 1 can be improved. It is possible to improve various battery characteristics.
  • the positive electrode active material layer 112 further includes additives such as a conductive additive and a binder.
  • a carbon-based material can be used as the conductive additive for the positive electrode active material layer 112.
  • crystalline carbon, amorphous carbon, or a mixture thereof can be used.
  • crystalline carbon include natural graphite (eg, flaky graphite), artificial graphite (artificial graphite), carbon fiber, or mixtures thereof.
  • amorphous carbon include carbon black (eg, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, or mixtures thereof).
  • Examples of carbon fibers include carbon nanotubes.
  • binder for the positive electrode active material layer 112 examples include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, polyacrylonitrile, polyvinyl fluoride, polypropylene fluoride, polychloroprene fluoride, butyl rubber, Nitrile rubber, styrene butadiene rubber (SBR), polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylic resins, or mixtures thereof can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PTFE polyethylene
  • polystyrene polybutadiene
  • polyacrylonitrile polyvinyl fluoride
  • polypropylene fluoride polychloroprene fluoride
  • butyl rubber Nitrile rubber
  • SBR styrene buta
  • the positive electrode 110 can be manufactured as follows. First, materials included in the positive electrode active material layer 112 (for example, a positive electrode active material, a conductive additive, a binder, etc.) are prepared. This material may be in powder form. Next, the materials are mixed and the resulting mixture is dispersed in a solvent (eg, N-methyl-2-pyrrolidone (NMP) and/or water) to prepare a positive electrode slurry. Next, a positive electrode slurry is applied to the surface (one side or both sides) of the positive electrode current collector 111 using a known technique, dried, and calendered if necessary to form the positive electrode active material layer 112. Through the above steps, the positive electrode 110 is obtained.
  • a solvent eg, N-methyl-2-pyrrolidone (NMP) and/or water
  • the negative electrode 120 is a negative electrode for a lithium ion secondary battery, and includes a negative electrode current collector 121 and a negative electrode active material layer 122 laminated on the negative electrode current collector 121, as shown in FIGS. 3 and 4. .
  • the negative electrode active material layer 122 includes a first negative active material layer 123 stacked on the negative current collector 121 and a second negative active material layer 124 stacked on the first negative active material layer 123 . That is, the negative electrode 120 includes a plurality of active material layers.
  • the negative electrode current collector 121 is formed in an elongated shape extending in the width direction X. As shown in FIGS. 3 and 4, the negative electrode current collector 121 includes a current collecting portion 121a and a negative electrode tab 121b. The current collector 121a is elongated in the width direction X and is formed in a foil shape. As shown in FIG. 4, the current collecting portion 121a of the negative electrode 120 has a longer width in the transverse direction (height direction Z) than the current collecting portion 111a of the positive electrode 110. Within the range (from the upper end to the lower end in the height direction Z) along the width direction of the current collection portion 121a of the negative electrode 120, both ends ( from the upper end to the lower end in the height direction Z).
  • the negative electrode tab 121b protrudes in the lateral direction (above the height direction Z) of the current collecting section 121a from the side edge 121c along the longitudinal direction of the current collecting section 121a. .
  • the negative electrode tab 121b protrudes in the same direction (above the height direction Z) as the positive electrode tab 111b of the positive electrode 110 in a state where it is laminated with the positive electrode 110 via the separator 130.
  • the negative electrode tab 121b is separated from the positive electrode tab 111b of the positive electrode 110 in the width direction X in a state where the negative electrode tab 121b is laminated with the positive electrode 110 with the separator 130 in between.
  • the negative electrode tab 121b is formed integrally with the current collector 121a.
  • one negative electrode tab 121b is formed in the current collector 121a.
  • the current collector 121a is made of copper or a copper alloy, for example.
  • the negative electrode first active material layer 123 of the negative electrode active material layer 122 is joined to the current collecting part 121a of the negative electrode current collector 121.
  • the negative electrode first active material layer 123 may be formed on both sides of the current collector 121a.
  • the negative electrode first active material layer 123 faces, for example, the entire region along the transverse direction (height direction Z) of the current collector 121a.
  • the second negative active material layer 124 of the negative active material layer 122 is joined to the first negative active material layer 123 .
  • the negative electrode first active material layer 123 includes a negative electrode first active material 123a.
  • the negative electrode first active material 123a contains pitch-coated natural graphite 123a1, natural graphite 123a2 whose surface is exposed without being coated, and artificial graphite (artificial graphite) 123a3.
  • the negative electrode first active material layer 123 further includes additives such as a conductive additive 123c and a binder 123b.
  • the negative electrode first active material layer 123 is a high capacity layer that can store a relatively large amount of lithium ions, and generally corresponds to a negative electrode active material layer used in a battery electric vehicle (BEV). .
  • the negative electrode second active material layer 124 includes a negative electrode second active material 124a.
  • the negative electrode second active material 124a contains pitch-coated natural graphite 124a1 and natural graphite 124a2 whose surface is not coated and exposed.
  • the negative electrode second active material layer 124 further includes additives such as a conductive additive 124c and a binder 124b.
  • the negative electrode second active material layer 124 generally corresponds to a negative electrode active material layer used in a hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • the average particle size of the negative electrode second active material 124a of the negative electrode second active material layer 124 is smaller than the average particle size of the negative electrode first active material 123a of the negative electrode first active material layer 123. There is. Thereby, the BET specific surface area of the negative electrode second active material 124a of the negative electrode second active material layer 124 is larger than the BET specific surface area of the negative electrode first active material 123a of the negative electrode first active material layer 123.
  • the separator 130 has an insulating function of insulating between the positive electrode 110 and the negative electrode 120 and preventing short circuit between the positive electrode 110 and the negative electrode 120, and retains the non-aqueous electrolyte. It has a function.
  • the separator 130 allows lithium ions to pass through the electrolyte. Separator 130 is formed into a long shape. As shown in FIG. 4, the separator 130 has a longer width in the transverse direction (height direction Z) than the current collecting section 111a of the positive electrode 110 and the current collecting section 121a of the negative electrode 120.
  • Both ends of the current collector 111a of the positive electrode 110 along the width direction are located within the range along the width direction of the separator 130 (from the top end to the bottom end in the height direction Z). However, both ends (from the upper end to the lower end in the height direction Z) along the width direction of the current collecting part 121a of the negative electrode 120 are located.
  • Separator 130 is made of porous material.
  • the separator 130 may be a porous sheet made of resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, or polyamide, or a laminated sheet thereof (for example, a three-layer structure of PP/PE/PP). sheets) are used.
  • a layer containing an inorganic material (for example, alumina particles, etc.) and a binder may be provided on one or both surfaces of the separator 130.
  • the electrolyte is impregnated into the separator 130 and is in contact with the positive electrode 110 and the negative electrode 120.
  • the electrolytic solution contains an organic solvent and a supporting salt (electrolyte), and may further contain additives such as an SEI film forming agent.
  • organic solvent for example, carbonate ester is used.
  • lithium salt is used as the supporting salt.
  • the container 200 houses the charge/discharge body 100.
  • Container 200 includes a case 201 and a lid 202.
  • the lid 202 is joined to the opening of the case 201 and seals the charge/discharge body 100 together with the case 201.
  • a charging/discharging body 100 sealed by a case 201 and a lid 202 is filled with an electrolyte.
  • the external terminal 300 includes a positive terminal 301 and a negative terminal 302.
  • the positive terminal 301 and the negative terminal 302 relay input and output of electric power between the charging/discharging body 100 and external equipment. Further, when a battery pack is configured using a plurality of batteries 1, one adjacent positive electrode terminal 301 and the other adjacent negative electrode terminal 302 are joined via a bus bar.
  • the positive electrode terminal 301 is connected to the positive electrode tab 111b indirectly or directly via a positive current collector plate.
  • the negative electrode terminal 302 is connected to the negative electrode tab 121b indirectly or directly via a negative electrode current collector plate.
  • a positive terminal 301 and a negative terminal 302 are attached to the lid 202.
  • a battery including the example negative electrode according to the first embodiment can be manufactured using techniques known in the technical field of the present invention, except for the method for manufacturing the negative electrode.
  • An example of the negative electrode 120 according to the first embodiment can be manufactured, for example, as follows. First, materials included in the negative electrode first active material layer 123 (for example, negative electrode first active material, additives such as a conductive agent and a binder, etc.) are prepared. This material may be in powder form. Next, the materials are mixed and the resulting mixture is dispersed in a solvent (eg, N-methyl-2-pyrrolidone (NMP) and/or water) to prepare a negative electrode first slurry. Next, the negative electrode first slurry is applied to the surface (one side or both sides) of the negative electrode current collector 121 using a known technique, dried, and calendered if necessary to form the negative electrode first active material layer 123. Form.
  • a solvent eg, N-methyl-2-pyrrolidone (NMP) and/or water
  • the materials included in the negative electrode second active material layer 124 are prepared.
  • This material may be in powder form.
  • the materials are mixed and the resulting mixture is dispersed in a solvent (eg, N-methyl-2-pyrrolidone (NMP) and/or water) to prepare a negative electrode second slurry.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode second slurry is applied to the surface (one side or both sides) of the negative electrode first active material layer 123 by a known technique, dried, and calendered if necessary to form the negative electrode second active material layer 123.
  • the negative electrode 120 is obtained by the above manufacturing method.
  • the negative electrode 120 is not limited to that manufactured by the above manufacturing method, and may be manufactured by other methods.
  • the negative electrode active material layer 122 includes a negative electrode first active material layer 123 laminated on the negative electrode current collector 121 and a negative electrode first active material layer laminated on the negative electrode first active material layer 123. 2 active material layers 124.
  • the average particle size of the negative electrode second active material 124a of the negative electrode second active material layer 124 is smaller than the average particle size of the negative electrode first active material 123a of the negative electrode first active material layer 123.
  • the BET specific surface area of the negative electrode second active material 124a of the negative electrode second active material layer 124 is larger than the BET specific surface area of the negative electrode first active material 123a of the negative electrode first active material layer 123.
  • a negative electrode second active material layer 124 containing a negative electrode second active material 124a having a large reaction area with lithium ions is placed on the separator 130 side which is the receiving side of lithium ions when charging the battery 1. is placed. Therefore, since Li is precipitated on the separator 130 side of the negative electrode active material layer 122 and side reactions accompanying the Li precipitation are suppressed, the durability of the battery 1 can be improved and the life of the battery 1 can be extended. realizable. Furthermore, the rapid charging performance of the battery 1 can be improved.
  • a negative electrode first active material layer 123 including a negative electrode first active material 123a having a small reaction area with lithium ions is arranged, so that lithium ions are transferred to the negative electrode active material. It is possible to suppress an increase in the amount that is trapped and no longer contributes to subsequent battery reactions. Therefore, the cycle characteristics of the battery 1 can be improved, and the storage durability of the battery 1 can be improved. Therefore, the life of the battery 1 can be extended. Therefore, in the negative electrode 120, improvement in charging performance and long life can be realized.
  • the reaction area of the negative electrode active material per unit volume in the negative electrode active material layer is larger than that of the negative electrode second active material layer, which is a high input/output layer, compared to the negative electrode first active material layer, which is a high capacity layer.
  • the layer becomes relatively larger.
  • the diffusion path of lithium ions is relatively shorter in the negative electrode second active material layer than in the negative electrode first active material layer. Therefore, in the negative electrode second active material layer, the charging characteristics of the battery, particularly the rapid charging characteristics, can be improved.
  • the reaction area of the negative electrode active material per unit volume in the negative electrode active material layer is higher in the negative electrode first active material layer, which is a high capacity layer, than in the negative electrode second active material layer, which is a high input/output layer. becomes relatively small. Therefore, in the negative electrode first active material layer which is a high capacity layer, cycle durability and lithium ion storage durability when the battery is repeatedly charged and discharged can be improved.
  • the negative electrode first active material 123a included in the negative electrode first active material layer 123 includes pitch-coated natural graphite 123a1, natural graphite 123a2 whose surface is not coated and exposed, and artificial graphite 123a3. contains.
  • Pitch-coated natural graphite 123a1 has a pitch-coated surface, so it has higher conductivity and a smaller reaction area with lithium ions than normal natural graphite 123a2 (natural graphite whose surface is exposed without being coated).
  • the negative electrode first active material 123a is composed only of the pitch-coated natural graphite 123a1, the press formability during formation of the negative electrode first active material layer 123 deteriorates.
  • the negative electrode 120 in addition to the pitch-coated natural graphite 123, normal natural graphite (natural graphite whose surface is exposed without being coated) 123a2, which is more flexible than the pitch-coated natural graphite 123a1, is further added to the negative electrode first active layer.
  • the substance 123a By incorporating the substance 123a, the reaction area of the negative electrode first active material 123a is suppressed, and the conductivity of the negative electrode first active material 123a is sufficiently ensured. You can improve your sexuality. Thereby, the cycle characteristics of the battery 1 can be further improved and the energy density of the battery 1 can be increased.
  • the ease of pressing can be arbitrarily controlled, it is possible to easily set the negative electrode first active material layer to a predetermined density or thickness.
  • the negative electrode second active material 124a included in the negative electrode second active material layer 124 also contains pitch-coated natural graphite 124a1 and natural graphite 124a2 whose surface is exposed without being coated. do. For this reason, similarly, the reaction area of the negative electrode second active material 124a is suppressed, and the press formability during formation of the negative electrode second active material layer 124 is improved while ensuring sufficient conductivity of the negative electrode second active material 124a. You can improve. Thereby, the cycle characteristics of the battery 1 can be further improved, and the energy density of the battery 1 can be further improved. Furthermore, since the ease of pressing can be arbitrarily controlled, it is possible to easily set the negative electrode second active material layer to a predetermined density or thickness.
  • the cycle characteristics of the battery 1 are further improved by suppressing the reaction between the surface of the negative electrode active material and the electrolyte.
  • the storage durability of the battery 1 can be further improved.
  • Negative electrode for lithium ion secondary batteries The negative electrode for lithium ion secondary batteries according to the first embodiment includes a negative electrode current collector, and a negative electrode active material layer laminated on the negative electrode current collector, and includes a negative electrode active material layer laminated on the negative electrode current collector.
  • the layer includes a first negative active material layer stacked on the negative current collector, and a second negative active material layer stacked on the first negative active material layer.
  • the negative electrode first active material layer includes a negative electrode first active material.
  • the negative electrode first active material is not particularly limited as long as it contains a negative electrode active material that can insert and extract lithium ions, but examples include natural graphite, artificial graphite (artificial graphite), and non-graphitizable carbon. (hard carbon), carbon materials such as graphitizable carbon (soft carbon), graphite coated with amorphous carbon, and the like.
  • the first active material of the negative electrode it is preferable to use one containing pitch-coated natural graphite and natural graphite whose surface is exposed without being coated, and in particular, one containing pitch-coated natural graphite and natural graphite whose surface is exposed without being coated.
  • Those containing natural graphite and artificial graphite are preferable. This is because it is possible to suppress the reaction area of the negative electrode first active material, to sufficiently ensure the conductivity of the negative electrode first active material, and to improve press formability during formation of the negative electrode first active material layer.
  • the characteristics of the negative electrode active material can be improved by using artificial graphite with high purity and high crystal uniformity.
  • the negative electrode first active material layer is not particularly limited as long as it contains the negative electrode first active material, but for example, in addition to the negative electrode first active material, at least one type selected from the group consisting of a conductive additive, a binder, etc. It is preferable that the composition further contains an additive.
  • a carbon-based material can be used as the conductive additive for the negative electrode first active material layer.
  • crystalline carbon, amorphous carbon, or a mixture thereof can be used.
  • crystalline carbon include natural graphite (eg, flaky graphite), artificial graphite, carbon fiber, or mixtures thereof.
  • amorphous carbon include carbon black (eg, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, or mixtures thereof).
  • Examples of carbon fibers include carbon nanotubes.
  • binder for the negative electrode first active material layer examples include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, polyacrylonitrile, polyvinyl fluoride, polyfluorinated propylene, polyfluorinated chloroprene, and butyl rubber. , nitrile rubber, styrene-butadiene rubber (SBR), polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylic resins, polyamideimide, polyimide, or mixtures thereof can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • PTFE polyethylene
  • polystyrene polybutadiene
  • polyacrylonitrile polyvinyl fluoride
  • polyfluorinated propylene polyfluorin
  • the ratio of the weight of the negative electrode first active material to the total weight of the negative electrode first active material layer is, for example, preferably 80% by weight or more and 99% by weight or less.
  • the thickness (for example, the first thickness T1 in FIG. 4) of one side of the negative electrode first active material layer in the stacking direction (for example, the depth direction Y in FIG. 4) is, for example, an average thickness of 5 ⁇ m or more and 500 ⁇ m or less.
  • the average thickness may be 10 ⁇ m or more and 300 ⁇ m or less.
  • the negative electrode second active material layer includes a negative electrode second active material.
  • the negative electrode second active material is not particularly limited as long as it contains a negative electrode active material capable of inserting and deintercalating lithium ions, but for example, at least one selected from the same group as the negative electrode first active material is used. It contains one kind of
  • the negative electrode second active materials those containing pitch-coated natural graphite and natural graphite whose surface is exposed without being coated are preferred, and in particular, those containing pitch-coated natural graphite and natural graphite whose surface is exposed without being coated are preferred.
  • Those containing natural graphite and artificial graphite are preferable. This is because it is possible to suppress the reaction area of the negative electrode first active material, to sufficiently ensure the conductivity of the negative electrode first active material, and to improve press formability during formation of the negative electrode first active material layer. Furthermore, the characteristics of the negative electrode active material can be improved by using artificial graphite with high purity and high crystal uniformity.
  • the negative electrode second active material layer is not particularly limited as long as it contains the negative electrode second active material, but for example, in addition to the negative electrode second active material, at least one type selected from the group consisting of a conductive additive, a binder, etc. It is preferable that the composition further contains an additive.
  • a conductive additive for the negative electrode second active material layer for example, the same conductive agent as for the negative electrode first active material layer is used.
  • the binder for the negative electrode second active material layer for example, the same binder as that for the negative electrode first active material layer is used.
  • the ratio of the weight of the negative electrode second active material to the total weight of the negative electrode second active material layer is, for example, preferably 80% by weight or more and 99% by weight or less.
  • the thickness of one side of the negative electrode second active material layer in the stacking direction (for example, the depth direction Y in FIG. 4) (for example, the first thickness T2 in FIG. 4) is, for example, an average thickness of 5 ⁇ m or more and 500 ⁇ m or less.
  • the average thickness may be 10 ⁇ m or more and 300 ⁇ m or less.
  • the BET specific surface area of the negative electrode second active material is larger than the BET specific surface area of the negative electrode first active material.
  • the BET specific surface area can be calculated from the BET method using, for example, a pore distribution measuring device.
  • the BET specific surface area of the negative electrode first active material can be determined, for example, by extracting only the negative electrode first active material as a sample from a part of the negative electrode first active material layer and measuring the BET specific surface area of that material. .
  • the BET specific surface area of the negative electrode first active material can be determined by, for example, measuring the BET specific surface area of the powdered material of the negative electrode first active material used when forming the negative electrode first active material layer. Good too.
  • the BET specific surface area of the negative electrode second active material is also determined by the same method as the BET specific surface area of the negative electrode first active material.
  • the negative electrode active material layer is not particularly limited as long as the BET specific surface area of the negative electrode second active material is larger than the BET specific surface area of the negative electrode first active material, but for example, the BET specific surface area of the negative electrode first active material is preferably 1 m 2 /g or more and 6 m 2 /g or less, and the BET specific surface area of the negative electrode second active material is 4 m 2 /g or more and 10 m 2 /g or less. This is because side reactions accompanying Li precipitation on the separator side of the negative electrode active material layer are effectively suppressed, and the rapid charging performance of the battery can be effectively improved.
  • the negative electrode active material layer is not particularly limited as long as the BET specific surface area of the negative electrode second active material is larger than the BET specific surface area of the negative electrode first active material. It is preferable that the diameter is smaller than the average particle diameter of the negative electrode first active material. Making the BET specific surface area of the negative electrode second active material larger than the BET specific surface area of the negative electrode first active material by simply making the average particle size of the negative electrode second active material smaller than the average particle size of the negative electrode first active material. This is because the rapid charging performance of the battery can be easily improved.
  • the average particle size is, for example, the median diameter (D50), and the median diameter (D50) refers to the area where the integrated value is 50% in particle size distribution measurement measured by laser diffraction scattering particle size distribution measurement method. is the diameter of the particle in case.
  • the median diameter (D50) is determined by measuring the diameter equivalent to a circle of the projected area of 100 or more randomly selected active material particles based on the microscopic observation image of each active material layer in the stacked cross section of the battery. In the particle size distribution of the active material obtained from the measurement results, the particle diameter when the integrated value is 50% may be determined.
  • the median diameter of the negative electrode second active material is smaller than the median diameter of the negative electrode first active material. It is preferable that the first active material has a median diameter of 10 ⁇ m or more and 35 ⁇ m or less, and the negative electrode second active material has a median diameter of 2 ⁇ m or more and 15 ⁇ m or less. This is because side reactions accompanying Li precipitation on the separator side of the negative electrode active material layer are effectively suppressed, and the rapid charging performance of the battery can be effectively improved.
  • the BET specific surface area of the negative electrode second active material is smaller than that of the negative electrode first active material. It may be larger than the BET specific surface area of the substance.
  • Examples of such a negative electrode active material layer include one in which the first negative active material contains pitch-coated natural graphite, and the second negative active material contains natural graphite whose surface is exposed without being coated. .
  • the negative electrode first active material layer and the negative electrode second active material layer of the negative electrode active material layer are formed by simultaneous coating. A method may also be used. This manufacturing method will be explained below with reference to FIG.
  • materials included in the negative electrode first active material layer are prepared.
  • the materials are mixed and the resulting mixture is dispersed in a solvent (eg, N-methyl-2-pyrrolidone (NMP) and/or water) to obtain a negative electrode first slurry.
  • materials included in the negative electrode second active material layer are prepared.
  • the materials are mixed and the resulting mixture is dispersed in a solvent (eg, N-methyl-2-pyrrolidone (NMP) and/or water) to obtain a second negative electrode slurry.
  • the negative electrode first slurry and the negative electrode second slurry are simultaneously applied onto the negative electrode current collector 34a.
  • the die head 50 includes an exit block 57, a three-dimensional shim 58, and an entry block 59.
  • a negative electrode second slurry manifold 52 and a negative electrode first slurry manifold 51 are provided inside the die head 50.
  • the second negative slurry and the first negative slurry are simultaneously discharged from each manifold 52 and 51 toward the negative current collector 34a that is being conveyed along the back roller 56. Thereby, a second negative slurry layer 33d and a first negative slurry layer 33b are formed.
  • the solvent contained in the first negative slurry layer 33b and the second negative slurry layer 33d is evaporated using a drying oven or the like, and the first negative slurry layer 33b and the second negative slurry layer 33d are dried.
  • a first negative active material layer (not shown) and a second negative active material layer (not shown) are formed on one surface of the negative current collector 34a.
  • the negative electrode current collector 34a, the negative electrode first active material layer, and the negative electrode second active material layer are pressed. Specifically, a laminate including the negative electrode current collector 34a, the negative electrode first active material layer, and the negative electrode second active material layer is sandwiched between rolls at 0 to 120° C. and pressure is applied. Thereafter, this laminate is slit to a predetermined width. Thereby, a negative electrode is obtained.
  • the first negative active material and the second negative active material are formed at the interface between the first negative active material layer and the second negative active material layer.
  • a layer of mixed substances forms.
  • the mixed layer becomes a buffer layer that alleviates the difference in expansion and contraction between the negative electrode first active material layer and the negative electrode second active material layer, so that there is a gap between the negative electrode first active material layer and the negative electrode second active material layer during charging and discharging. This has the effect of alleviating peeling.
  • the interface between the negative electrode first active material layer (negative electrode first slurry layer 33b) and the negative electrode second active material layer (negative electrode second slurry layer 33d) is not pressed by a roll.
  • the interface of the negative electrode second active material layer (negative electrode second slurry layer 33d) on the side opposite to the negative electrode first active material layer (negative electrode first slurry layer 33b) is pressed by a roll.
  • the interface between the negative electrode first active material layer (negative electrode first slurry layer 33b) and the negative electrode second active material layer (negative electrode second slurry layer 33d) ) has larger irregularities than the opposite interface.
  • the negative electrode first active material layer (negative electrode first slurry layer 33b) has a large surface area.
  • the surface of the negative electrode second active material layer (negative electrode second slurry layer 33d) facing the roll is lower than the negative electrode first active material layer (negative electrode first slurry layer 33b) and negative electrode second active material layer (negative electrode second slurry layer 33d). It is preferable to form larger irregularities on the interface of the slurry layer 33d) because good adhesion and stable ionic conductivity can be obtained.
  • the lithium ion secondary battery according to the first embodiment is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode is the lithium ion secondary battery according to the first embodiment. It is a negative electrode for batteries.
  • the lithium ion secondary battery according to the first embodiment is not particularly limited, but includes, for example, a charge/discharge body having a positive electrode, a negative electrode, and a separator, and the separator is impregnated with an electrolyte. .
  • the lithium ion secondary battery according to the first embodiment may include an electrolytic solution in which the electrolyte is dissolved, and the electrolytic solution may further contain an additive such as an SEI film forming agent. Those containing an SEI film forming agent are preferred.
  • the negative electrode can be protected by the SEI film forming agent. Therefore, it is possible to improve the cycle durability of the negative electrode active material when the battery is repeatedly charged and discharged.
  • the SEI film is an organic film called SEI (Solid Electrolyte Interface) formed on the surface of the negative electrode active material layer 122, which suppresses excess decomposition of the electrolyte and prevents deterioration of the cycle characteristics of the battery 1. It is a film that plays the role of preventing this.
  • SEI film forming agent refers to an additive added to the electrolyte so that an SEI film is formed.
  • the SEI film forming agent for example, vinylene carbonate (VC), fluoroethylene carbonate (FEC), etc. are used.
  • the lithium ion secondary battery according to the first embodiment is a battery including a solid electrolyte as an electrolyte, and includes a positive electrode, a negative electrode, and a solid electrolyte layer containing a solid electrolyte.
  • the battery may include a charge/discharge body interposed between the positive electrode and the negative electrode.
  • a battery including such a solid electrolyte does not need to contain an electrolyte, so it can have high safety.
  • the active material particle surface has high reactivity, so it can contribute to stable ion conduction. This effect can be obtained.
  • the interface between the negative electrode second active material layer and the solid electrolyte layer preferably has larger irregularities in the thickness direction than the interface of the solid electrolyte layer on the side opposite to the negative electrode second active material layer. It is preferable for lithium ion transfer because of its high adhesion.
  • solid electrolytes examples include sulfide-based solid electrolytes, such as Li 10 GeP 2 S 12 , Li 6 PS 5 Cl, Li 2 S-P 2 S 5 -based glass, and Li 2 S-SiS 2- based glass. , Li 2 S-P 2 S 5 -GeS 2- based glass, Li 2 S-B 2 S 3 -based glass, oxide-based solid electrolytes, such as Li 7 La 3 Zr 2 O 12 , LiLaTiO 3 , LiTi(PO 4 ) 3 , LiGe(PO 4 ) 3 , and complex hydride solid electrolytes such as LiBH 4 -LiI, LiBH 4 -LiNH 2 , and mixtures of two or more thereof.
  • sulfide-based solid electrolytes such as Li 10 GeP 2 S 12 , Li 6 PS 5 Cl, Li 2 S-P 2 S 5 -based glass, and Li 2 S-SiS 2- based glass.
  • a battery including a negative electrode according to the first embodiment may be a separator-less battery including a positive electronic insulating layer provided on the positive electrode and a negative electronic insulating layer provided on the negative electrode instead of the separator.
  • the positive electrode 34 includes a positive electrode current collector 34a and a positive electrode current collector 34a. It includes a positive electrode active material layer 34b joined to both surfaces, and a positive electrode electronic insulating layer 34d joined to each of the positive electrode active material layers 34b (positive electrode mixture layer).
  • the negative electrode 32 includes a negative electrode current collector 32a and a negative electrode active material layer 32b (negative electrode mixture layer) bonded to both surfaces of the negative electrode current collector 32a. , and a second negative active material layer 32b2 joined to each of the first negative active material layers 32b1.
  • the negative electrode 32 further includes a negative electrode electronic insulating layer 32d bonded to each of the negative electrode second active material layers 32b2.
  • a portion (hereinafter referred to as “positive electrode current collector exposed portion”) 34c that is not covered with either the positive electrode active material layer 34b or the positive electrode electronic insulating layer 34d is provided at one end of the positive electrode current collector 34a.
  • the positive electrode current collector exposed portion 34c is provided at and near the end face of the winding group (not shown).
  • the positive electrode current collector exposed portion 34c faces and is electrically connected to a positive electrode side connection end (not shown) of a positive electrode current collector plate (not shown).
  • a portion 32c (hereinafter referred to as “negative electrode current collector exposed portion”) that is not covered with either the negative electrode active material layer 32b or the negative electrode electronic insulating layer 32d is provided at one end of the negative electrode current collector 32a. It will be done.
  • the negative electrode current collector exposed portion 32c is provided on the end face of the wound group and in the vicinity thereof.
  • the negative electrode current collector exposed portion 32c faces and is electrically connected to a negative electrode side connection end (not shown) of a negative electrode current collector plate (not shown).
  • the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d have the function of preventing short circuit between the positive electrode active material layer 34b and the negative electrode active material layer 32b, and the function of preventing ions from occurring between the positive electrode active material layer 34b and the negative electrode active material layer 32b. It has the function of conducting.
  • the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d may be porous layers made of an electrically insulating (that is, electronically and ionically insulating) material. The porous layer can hold an electrolytic solution in its pores, and can conduct ions between the positive electrode active material layer 34b and the negative electrode active material layer 32b via this electrolytic solution.
  • the porous positive electrode electronic insulating layer 34d and negative electrode electronic insulating layer 32d may also have a function of buffering expansion and contraction of the positive electrode active material layer 34b and negative electrode active material layer 32b accompanying charging and discharging of the lithium ion secondary battery 100.
  • the expansion and contraction of the negative electrode active material layer 32b accompanying charging and discharging of the battery 1 is generally larger than the expansion and contraction of the positive electrode active material layer 34b. Therefore, in order to buffer the expansion and contraction of the larger negative electrode active material layer 32b, the negative electrode electronic insulating layer 32d may have a larger average pore diameter than the average pore diameter of the positive electrode electronic insulating layer 34d.
  • the average pore diameter of the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d means the average value of volume-based pore diameters measured by mercury porosimetry.
  • the total content of Na and Fe in the positive electronic insulating layer 34d and the negative electronic insulating layer 32d may be 300 ppm or less based on the weight of the positive electronic insulating layer 34d and the negative electronic insulating layer 32d.
  • the amount of each element contained in the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d can be measured by an ICP (Inductive Coupled Plasma) method.
  • the positive electronic insulating layer 34d may include positive electronic insulating particles, and the negative electronic insulating layer 32d may include negative electronic insulating particles.
  • the positive electrode electronically insulating particles and the negative electrode electronically insulating particles are collectively referred to as electronically insulating particles.
  • the electronically insulating particles may be electrically insulating particles. Examples of electrically insulating particles include ceramic particles.
  • Ceramic particles include alumina (Al 2 O 3 ), boehmite (Al 2 O trihydrate ), magnesia (MgO), zirconia (ZrO 2 ), titania (TiO 2 ), iron oxide, silica (SiO 2 ), and It may contain at least one selected from the group consisting of barium titanate (BaTiO 2 ), preferably at least one selected from the group consisting of alumina, boehmite, magnesia, zirconia, and titania.
  • the electronically insulating particles may have an average particle size within the range of 0.7-1.1 ⁇ m.
  • the average particle diameter of the electronic insulating particles is the arithmetic mean of the projected area circular diameters of 100 or more electronic insulating particles randomly selected based on microscopic images of the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d. It can be obtained by calculating.
  • the electronically insulating particles may contain at least one of 100 to 200 ppm Na, 50 to 100 ppm Fe, or 50 to 100 ppm Ca, based on the weight of the electronic insulating particles.
  • the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d may further include a binder.
  • the binder may be dispersed or dissolved in an aqueous or non-aqueous solvent such as N-methyl-2-pyrrolidone (NMP), such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), etc. , polyacrylic acid (PAA), and carboxymethylcellulose (CMC).
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAA polyacrylic acid
  • CMC carboxymethylcellulose
  • the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d may further contain a dispersant.
  • the dispersant may contain at least one selected from the group consisting of carboxylic acid compounds and phosphoric acid compounds.
  • the interface 34e between the positive electrode electronic insulating layer 34d and the positive electrode active material layer 34b has an uneven shape, and the height of the unevenness is 2 ⁇ m or more, preferably within the range of 2 to 4 ⁇ m.
  • the interface 32e between the negative electrode electronic insulating layer 32d and the negative electrode active material layer 32b (negative electrode second active material layer 32b2) has an uneven shape, and the height of the unevenness is 2 ⁇ m or more, preferably in the range of 2 to 4 ⁇ m. It is within.
  • the positive electrode electronic insulating layer 34d Since the unevenness height of the interface 34e between the positive electrode electronic insulating layer 34d and the positive electrode active material layer 34b and the interface 32e between the negative electrode electronic insulating layer 32d and the negative electrode active material layer 32b is 2 ⁇ m or more, the positive electrode electronic insulating layer 34d The adhesion between the positive electrode active material layer 34b and the negative electrode electronic insulating layer 32d and the negative electrode active material layer 32b can be improved. Thereby, peeling of the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d from the positive electrode active material layer 34b and the negative electrode active material layer 32b can be prevented or reduced, respectively, and the reliability of the lithium ion secondary battery 100 can be improved. can be improved.
  • the height of the unevenness of the interface 34e between the positive electrode active material layer 34b and the positive electrode electronic insulating layer 34d is, for example, the height of the irregularities included in the positive electrode active material particles (positive electrode active material) contained in the positive electrode active material layer 34b and the positive electrode electronic insulating layer 34d. It can be controlled by the particle size of the positive electrode electronic insulating particles. As shown in FIG. 7, the average particle diameter of the positive electrode active material particles 34bp (positive electrode active material) included in the positive electrode active material layer 34b is larger than the average particle diameter of the positive electrode electronic insulating particles 34dp included in the positive electrode electronic insulating layer 34d.
  • the interface 34e between the positive electrode active material layer 34b and the positive electrode electronic insulating layer 34d becomes uneven.
  • 34 bp of spherical positive electrode active material particles having an average particle diameter within the range of 4.5 to 5.5 ⁇ m and 34 dp of positive electrode electronic insulating particles having an average particle diameter within the range of 0.7 to 1.1 ⁇ m are used.
  • the height of the unevenness of the interface 34e between the positive electrode active material layer 34b and the positive electrode electronic insulating layer 34d can be set to 2 ⁇ m or more, preferably within the range of 2 to 4 ⁇ m.
  • the uneven height of the interface 32e between the negative electrode active material layer 32b (negative electrode second active material layer 32b2) and the negative electrode electronic insulating layer 32d is also the same as that of the negative electrode second active material particles (negative electrode second active material particles) contained in the negative electrode second active material layer 32b2. It can be controlled by the particle diameter of the negative electrode electronic insulating particles contained in the second active material) and the negative electrode electronic insulating layer 32d.
  • the height of the unevenness at the interface 32e between the negative electrode active material layer 32b and the negative electrode electronic insulating layer 32d can be set to 2 ⁇ m or more, preferably within the range of 2 to 4 ⁇ m.
  • the unevenness height of the interface 34e between the positive electrode electronic insulating layer 34d and the positive electrode active material layer 34b, and the interface 32e between the negative electrode active material layer 32b (negative electrode second active material layer 32b2) and the negative electrode electronic insulating layer 32d is measured as follows.
  • a scanning electron microscope (SEM) is used to obtain cross-sectional SEM images of three arbitrary points on the positive electrode 34 or the negative electrode 32, and in each cross-sectional SEM image, a predetermined reference plane is obtained from ten or more arbitrary points on the interfaces 34e and 32e.
  • the thickness of the insulating layer 34d and the thickness of the negative electrode electronic insulating layer 32d are measured.
  • the standard deviation of the obtained distance values is defined as the unevenness height of the interfaces 34e and 32e.
  • the surface 34f of the positive electrode electronic insulating layer 34d and the surface 32f of the negative electrode electronic insulating layer 32d are surfaces facing each other, and may be sufficiently flat compared to the interfaces 34e and 32e.
  • the height of the unevenness on the surfaces 34f and 32f of the positive electronic insulating layer 34d and the negative electronic insulating layer 32d may be one-tenth or less of the height of the unevenness on the interfaces 34e and 32e, respectively.
  • the interface 34e between the positive electrode electronic insulating layer 34d and the positive electrode active material layer 34b has an uneven shape means "A positive electrode active material and an electronic insulating material are provided between the positive electrode electronic insulating layer 34d and the positive electrode active material layer 34b.” It can also be paraphrased as “having a positive electrode mixed layer containing the positive electrode mixture layer.” Similarly, “the interface 32e between the negative electrode electronic insulating layer 32d and the negative electrode active material layer 32b has an uneven shape” means that "the negative electrode active material and the electronic insulating layer 32d and the negative electrode active material layer 32b are It can be paraphrased as "having a negative electrode mixed layer containing a negative electrode material”.
  • the thickness of the positive electrode mixed layer is 2 ⁇ m or more, preferably within the range of 2 to 4 ⁇ m.
  • the thickness of the negative electrode mixed layer is 2 ⁇ m or more, preferably within the range of 2 to 4 ⁇ m.
  • the thickness of the positive electrode mixed layer and the negative electrode mixed layer is similar to the unevenness height of the interfaces 34e and 32e between the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d and the positive electrode active material layer 34b and the negative electrode active material layer 32b described above. can be measured.
  • the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d may be in contact with each other.
  • the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d may be in contact with each other without being fixed to each other. Since the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d are not fixed to each other, stress caused by expansion and contraction of the negative electrode active material layer 32b and the positive electrode active material layer 34b accompanying charging and discharging of the lithium ion secondary battery 100 is alleviated.
  • peel strength of the positive electrode electronic insulating layer 34d with respect to the positive electrode active material layer 34b and the peel strength of the negative electrode electronic insulating layer 32d with respect to the negative electrode active material layer 32b are greater than the peel strength of the positive electrode electronic insulating layer 34d with respect to the negative electrode electronic insulating layer 32d. good. Peel strength can be measured, for example, by a 180° tape peel test based on JIS C 0806-3 1999.
  • the unevenness height of the interface 34e between the positive electrode active material layer 34b and the positive electrode electronic insulating layer 34d is determined by the coating of the positive electrode active material layer 34b in addition to the particle diameters of the positive electrode active material particles and positive electrode electronic insulating particles described above. It can also be controlled by the type of solvent, viscosity, etc. of the positive electrode slurry used for forming the positive electrode electronic insulating material slurry used for forming the positive electrode electronic insulating layer 34d by coating. Similarly, the unevenness height of the interface 32e between the negative electrode active material layer 32b (negative electrode second active material layer 32b2) and the negative electrode electronic insulating layer 32d is also determined by the coating of the negative electrode active material layer 32b (negative electrode second active material layer 32b2).
  • the negative electrode slurry (negative electrode second slurry) used for forming the negative electrode electronic insulating layer 32d and the negative electrode electronic insulating material slurry used for forming the negative electrode electronic insulating layer 32d by coating.
  • the average pore diameter of the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d can be controlled by the particle size of the electronic insulating particles, the press pressure during press processing, etc. Specifically, the higher the press pressure, the smaller the average pore diameter, and the smaller the particle diameter of the electronic insulating particles, the smaller the average pore diameter.
  • the separator-less battery 1 including the positive electrode 34 of the other example described above stable ion conduction is realized because the adhesion between the negative electrode active material layer 32b and the negative electrode electronic insulating layer 32d is high.
  • such other examples of the battery 1 are particularly applicable to electrodes manufactured by the above-mentioned manufacturing method in which two-layer simultaneous coating is applied, or electrodes manufactured by the manufacturing method in which three-layer simultaneous coating is applied, which will be described later. By installing electrodes manufactured in this way, it is possible to contribute to the provision of batteries with high energy density and long life.
  • each of the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d is a solid electrolyte (i.e., an electronic insulating It is a layer containing a ionically conductive and ionically conductive material.
  • This modified battery does not need to contain an electrolyte, so it can have high safety.
  • the electronic insulating particles included in the positive electronic insulating layer 34d and the negative electronic insulating layer 32d may be solid electrolyte particles. Since the solid electrolyte can be well formed by press molding, in this case, it is not essential that the positive electrode electronic insulating layer 34d and the negative electrode electronic insulating layer 32d contain a binder and a dispersant.
  • the positive electrode active material layer 34b may further contain a solid electrolyte in addition to the active material, an optional binder, a conductive aid, and a dispersant. Thereby, the ion conductivity of the positive electrode active material layer 34b can be improved.
  • At least one of the first negative active material layer 32b1 and the second negative active material layer 32b2 included in the negative electrode active material layer 32b contains a solid material in addition to the electrode active material, an optional binder, a conductive aid, and a dispersant. It may further contain an electrolyte. Thereby, the ion conductivity of at least one of the negative electrode first active material layer 32b1 and the negative electrode second active material layer 32b2 can be improved.
  • the batteries of the above modifications do not need to contain an electrolytic solution, and the strength of the electronic insulating layers (positive electronic insulating layer 34d and negative electronic insulating layer 32d) is higher than that of the separator, so high safety can be achieved.
  • a modified battery is particularly suitable for electrodes manufactured using a manufacturing method that applies two-layer simultaneous coating as described above, or electrodes that are manufactured using a manufacturing method that applies three-layer simultaneous coating that will be described later. By incorporating such electrodes, it is possible to contribute to the provision of batteries with high energy density and long life.
  • Such a separator-less battery (lithium ion secondary battery) can be manufactured using techniques known in the technical field of the present invention, except for the manufacturing method of the negative electrode of the other example according to the embodiment.
  • the first negative active material layer 32b1, the second negative active material layer 32b2, and the negative electronic insulating layer 32d of the negative active material layer 32b are simultaneously coated as follows. It can be manufactured by
  • materials included in the negative electrode first active material layer 32b1 are prepared.
  • the materials are mixed and the resulting mixture is dispersed in a solvent (eg, N-methyl-2-pyrrolidone (NMP) and/or water) to obtain a negative electrode first slurry.
  • materials included in the negative electrode second active material layer 32b2 are prepared.
  • the materials are mixed and the resulting mixture is dispersed in a solvent (eg, N-methyl-2-pyrrolidone (NMP) and/or water) to obtain a second negative electrode slurry.
  • materials included in the negative electrode electronic insulating layer 34d are prepared.
  • the materials are mixed and the resulting mixture is dispersed in a solvent (eg, N-methyl-2-pyrrolidone (NMP) and/or water) to obtain a negative electrode electronic insulating material slurry.
  • a solvent eg, N-methyl-2-pyrrolidone (NMP) and/or water
  • the negative electrode first slurry, the negative electrode second slurry, and the negative electrode electronic insulating material slurry are simultaneously applied onto the negative electrode current collector. Thereby, a negative electrode first slurry layer, a negative electrode second slurry layer, and a negative electrode electronic insulating material slurry layer are formed.
  • the solvent contained in the negative electrode first slurry layer, negative electrode second slurry layer, and negative electrode electronic insulating material slurry layer is volatilized using a drying oven or the like, and the negative electrode first slurry layer, negative electrode second slurry layer, and negative electrode Dry the electronic insulation slurry layer.
  • the first negative active material layer 32b1, the second negative active material layer 32b2, and the negative electronic insulating layer 32d are formed on one surface of the negative current collector.
  • the negative electrode current collector, the negative electrode first active material layer, the negative electrode second active material layer 32b2, and the negative electrode electronic insulating layer 32d are pressed.
  • a laminate including a negative electrode current collector, a first negative active material layer 32b1, a second negative active material layer 32b2, and a negative electronic insulating layer 32d is sandwiched between rolls heated to 60 to 120° C. and subjected to pressure. multiply. Thereafter, this laminate is slit to a predetermined width. Thereby, a negative electrode is obtained.
  • the interface between each layer has unevenness. Strong adhesion ensures high safety and reliability. Furthermore, if this manufacturing method is applied to the lithium ion secondary battery of the above modification, there is no need to include an electrolyte, and even higher safety and reliability can be obtained.
  • the interface between the negative electrode active material layer 32b (negative electrode second active material layer 32b2) and the negative electrode electronic insulating layer 32d is not pressed by a roll.
  • the interface of the negative electrode electronic insulating layer 32d on the side opposite to the negative electrode active material layer 32b is pressed with a roll.
  • the interface between the negative electrode active material layer 32b and the negative electrode electronic insulating layer 32d has larger irregularities than the opposite interface of the negative electrode electronic insulating layer 32d.
  • the negative electrode active material layer 32b has a large surface area. Therefore, it is preferable for ion conduction.
  • the interface between the negative electrode electronic insulating layer 32d and the negative electrode active material layer 32b is more uneven than the surface of the negative electrode electronic insulating layer 32d facing the roll, good adhesion and stable ionic conductivity can be obtained. This is preferable because it allows
  • the negative electrode for a lithium ion secondary battery according to the second embodiment includes a negative electrode current collector and a negative electrode active material layer laminated on the negative electrode current collector, and the negative electrode active material layer is a negative electrode first active material layer laminated on the body, and a negative electrode second active material layer laminated on the negative electrode first active material layer, and the negative electrode first active material layer includes a negative electrode first active material layer.
  • the negative electrode second active material layer includes a negative electrode second active material layer, the density of the negative electrode second active material layer is lower than the density of the negative electrode first active material layer; 1 active material layer and the negative electrode second active material layer contain a conductive additive, and the ratio of the weight of the conductive additive to the total weight of the negative electrode second active material layer is the same as the total weight of the negative electrode first active material layer.
  • the negative electrode first active material contains a Si-based material, satisfying at least one of the second conditions that the ratio of the weight of the conductive support agent to the weight is greater than the weight ratio of the conductive support agent.
  • the Si-based material may be pre-doped with lithium.
  • the lithium ion secondary battery according to the second embodiment is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode is the negative electrode for the lithium ion secondary battery according to the second embodiment. It is.
  • Battery including an example negative electrode according to the second embodiment The configuration of a battery including an example negative electrode according to the second embodiment will be described with reference to FIG. 8, focusing on the differences from the configuration of a battery including an example negative electrode according to the first embodiment.
  • the negative electrode active material layer 122 and the negative electrode first active material layer 123 stacked on the negative electrode current collector 121 are similar to the example negative electrode 120 according to the first embodiment.
  • the negative electrode first active material layer 123 includes a negative electrode first active material 123a.
  • the negative electrode first active material 123a contains a Si-based material 123a3 pre-doped with lithium.
  • the negative electrode first active material layer 123 further includes additives such as a conductive additive 123c and a binder 123b.
  • the negative electrode first active material layer 123 contains carbon nanotubes as a conductive additive 123c.
  • the negative electrode first active material layer 123 is a high capacity layer that can store a relatively large amount of lithium ions, and generally corresponds to a negative electrode active material layer used in a battery electric vehicle (BEV). .
  • the negative electrode second active material layer 124 generally corresponds to a negative electrode active material layer used in a hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • the negative electrode second active material layer 124 includes a negative electrode second active material 124a.
  • the negative electrode second active material 124a is, for example, a carbon material such as natural graphite, artificial graphite (artificial graphite), non-graphitizable carbon (hard carbon), easily graphitizable carbon (soft carbon), or graphite coated with amorphous carbon. Contains at least one selected from the group consisting of.
  • the negative electrode second active material layer 124 further includes additives such as a conductive additive 124c and a binder 124b.
  • the density of the negative electrode second active material layer 124 is lower than the density of the negative electrode first active material layer 123. Further, the weight ratio of the conductive additive 124c to the total weight of the negative electrode second active material layer 124 is greater than the weight ratio of the conductive additive 123c to the total weight of the negative electrode first active material layer 123.
  • the average particle size of the negative electrode second active material 124a of the negative electrode second active material layer 124 is smaller than the average particle size of the negative electrode first active material 123a of the negative electrode first active material layer 123. It has become. Therefore, the BET specific surface area of the negative electrode second active material 124a of the negative electrode second active material layer 124 is larger than the BET specific surface area of the negative electrode first active material 123a of the negative electrode first active material layer 123.
  • the configuration of the battery 1 including the example negative electrode 120 according to the second embodiment is the same as the configuration of the battery 1 including the example negative electrode 120 according to the first embodiment, except for the points described above.
  • the example material according to the second embodiment is used as the material included in the negative electrode first active material layer 123 to prepare the negative electrode first slurry.
  • the method for manufacturing a battery including an example negative electrode according to the second embodiment in order to make the density of the negative electrode second active material layer 124 lower than the density of the negative electrode first active material layer 123, for example, A method is used in which the press pressure when forming the second active material layer 124 is lower than the press pressure when forming the negative electrode first active material layer 123.
  • the negative electrode active material layer 122 includes a negative electrode first active material layer 123 laminated on the negative electrode current collector 121 and a negative electrode first active material layer laminated on the negative electrode first active material layer 123. 2 active material layers 124.
  • the density of the negative electrode second active material layer 124 is lower than the density of the negative electrode first active material layer 123.
  • the weight ratio of the conductive additive 124c to the total weight of the negative electrode second active material layer 124 is greater than the weight ratio of the conductive additive 123c to the total weight of the negative electrode first active material layer 123. Since the highly conductive negative electrode second active material layer 124 is disposed on the separator 130 side that receives lithium ions during charging of the battery 1, the rapid charging performance of the battery 1 can be further improved.
  • the negative electrode first active material 123a included in the negative electrode first active material layer 123 contains a Si-based material 123a3 pre-doped with lithium. Therefore, it is possible to prevent the lithium ions contained in the positive electrode active material layer 112 of the positive electrode 110 from being consumed during the first charging and discharging of the battery 1 and no longer contribute to subsequent battery reactions, resulting in a decrease in the charging and discharging capacity of the battery 1. can be suppressed.
  • the negative electrode first active material layer 123a contains the Si-based material 123a3.
  • the negative electrode first active material layer 123 includes carbon nanotubes, which have a particularly high effect of improving conductivity, as a conductive aid 123c, and further includes a binder 123b that binds the Si-based materials 123a3 together. Therefore, a decrease in the conductivity of the negative electrode first active material layer 123 can be suppressed, and deformation of the negative electrode 120 can be suppressed. Therefore, the negative electrode 120 can suppress a reduction in the energy density of the battery 1 and improve the cycle characteristics of the battery 1. Therefore, in the negative electrode 120, improvement in charging performance and long life can be realized.
  • the area where the negative electrode active material per unit volume in the negative electrode active material layer can come into contact with the electrolyte is smaller than that of the negative electrode active material layer, which is a high input/output layer, compared to the negative electrode first active material layer, which is a high capacity layer.
  • the second active material layer is relatively larger. That is, the electrolytic solution comes into contact with the negative electrode active material relatively more easily in the negative electrode second active material layer than in the negative electrode first active material layer. Therefore, in the negative electrode second active material layer which is a high input/output layer, the charging characteristics of the battery, particularly the rapid charging characteristics, can be improved.
  • the negative electrode first active material is, for example, silicon oxide (Li--SiO) in which silicon is pre-doped with lithium. Silicon takes in and retains a certain amount of lithium as the battery is charged, so by doping the silicon with lithium in advance, the amount of positive active material in the positive electrode can be reduced.
  • the expansion and contraction of the negative electrode active material per unit volume during charging and discharging of the battery is relatively greater in the negative electrode first active material layer, which is a high capacity layer, than in the negative electrode second active material layer, which is a high input/output layer. become larger.
  • the Si-based material contained in the negative electrode first active material expands and contracts more than the carbon-based material.
  • the expansion and contraction of the negative electrode first active material and the like can be absorbed by the carbon nanotubes and binder contained in the negative electrode first active material layer. Therefore, in the negative electrode first active material layer which is a high capacity layer, it is possible to improve the cycle durability of the negative electrode first active material and the like and the storage durability of lithium ions when the battery is repeatedly charged and discharged.
  • the weight ratio of the conductive additive to the total weight of the negative electrode second active material layer is greater than the weight ratio of the conductive additive to the total weight of the negative electrode first active material layer, conduction in the negative electrode active material layer is reduced.
  • the property of the negative electrode second active material layer which is a high input/output layer, is relatively larger than that of the negative electrode first active material layer, which is a high capacity layer. Therefore, in the negative electrode second active material layer, the charging characteristics of the battery, particularly the rapid charging characteristics, can be improved.
  • the proportion of the conductive additive in the negative electrode first active material layer is smaller than that in the negative electrode second active material layer, the reaction area becomes relatively small. Therefore, in the negative electrode first active material layer, it is possible to improve the cycle durability of the negative electrode first active material, etc. and the storage durability of lithium ions when the battery is repeatedly charged and discharged.
  • the average particle size of the negative electrode second active material 124a of the negative electrode second active material layer 124 is smaller than the average particle size of the negative electrode first active material 123a of the negative electrode first active material layer 123.
  • the BET specific surface area of the negative electrode second active material 124a of the negative electrode second active material layer 124 is larger than the BET specific surface area of the negative electrode first active material 123a of the negative electrode first active material layer 123. Therefore, in the negative electrode active material layer 122, a negative electrode second active material layer 124 containing a negative electrode second active material 124a having a large reaction area with lithium ions is placed on the separator 130 side which is the receiving side of lithium ions when charging the battery 1. , the rapid charging performance of the battery 1 can be further improved.
  • the cycle characteristics of the battery 1 are further improved by suppressing the reaction between the surface of the negative electrode active material and the electrolyte. Therefore, the storage durability of the battery 1 can be further improved.
  • Negative electrode for lithium ion secondary batteries The negative electrode for lithium ion secondary batteries according to the second embodiment includes a negative electrode current collector, and a negative electrode active material layer laminated on the negative electrode current collector, and includes a negative electrode active material layer laminated on the negative electrode current collector.
  • the layer includes a first negative active material layer stacked on the negative current collector, and a second negative active material layer stacked on the first negative active material layer.
  • Negative electrode first active material layer The negative electrode first active material layer includes a negative electrode first active material.
  • the negative electrode first active material contains a Si-based (silicon-based) material as a negative electrode active material capable of intercalating and deintercalating lithium ions.
  • the Si-based material may be pre-doped with lithium.
  • the Si-based material pre-doped with lithium refers to a negative electrode active material in which a Si-based material is pre-doped with lithium.
  • Examples of Si-based materials pre-doped with lithium include Si (single silicon), for example, negative electrode active materials in which Si compounds (silicon compounds) such as SiO and SiO 2 are pre-doped with lithium.
  • the negative electrode first active material is not particularly limited as long as it contains a Si-based material, but in addition to Si-based materials, for example, natural graphite, artificial graphite ( Carbon materials such as artificial graphite), non-graphitizable carbon (hard carbon), easily graphitizable carbon (soft carbon), graphite coated with amorphous carbon, etc. good. This is because damage to the negative electrode can be suppressed by containing these materials that are more flexible than Si-based materials.
  • the negative electrode first active material among those containing at least one selected from the above group, those containing pitch-coated natural graphite and natural graphite whose surface is exposed without being coated are preferable, and in particular, Preferably, the material contains pitch-coated natural graphite, natural graphite whose surface is exposed without being coated, and artificial graphite.
  • the negative electrode first active material layer is not particularly limited as long as it contains the negative electrode first active material, but for example, in addition to the negative electrode first active material, at least one type selected from the group consisting of a conductive additive, a binder, etc. It is preferable that the composition further contains an additive.
  • a conductive aid for the negative electrode first active material layer the same one as in the negative electrode first active material layer according to the first embodiment is used.
  • the binder for the negative electrode first active material layer the same binder as the negative electrode first active material layer according to the first embodiment is used.
  • the negative electrode first active material layer preferably contains carbon nanotubes as a conductive additive and a binder.
  • the ratio of the weight of the negative electrode first active material to the total weight of the negative electrode first active material layer is, for example, preferably 80% by weight or more and 99% by weight or less.
  • the thickness of one side of the negative electrode first active material layer in the stacking direction (for example, the depth direction Y in FIG. 8) (for example, the first thickness T1 in FIG. 8) is the same as that of the negative electrode first active material layer according to the first embodiment. Since they are similar, the explanation here will be omitted.
  • the negative electrode second active material layer includes a negative electrode second active material.
  • the negative electrode second active material is not particularly limited as long as it contains a negative electrode active material that can insert and extract lithium ions, but examples include natural graphite, artificial graphite (artificial graphite), and non-graphitizable carbon. (hard carbon), carbon materials such as graphitizable carbon (soft carbon), graphite coated with amorphous carbon, and the like.
  • the negative electrode second active material includes, for example, at least one selected from the above group, and among them, a material containing pitch-coated natural graphite and natural graphite whose surface is exposed without being coated. is preferable, and in particular, one containing pitch-coated natural graphite, natural graphite whose surface is exposed without being coated, and artificial graphite is preferable.
  • the negative electrode second active material layer is not particularly limited as long as it contains the negative electrode second active material, but for example, in addition to the negative electrode second active material, at least one type selected from the group consisting of a conductive additive, a binder, etc. It is preferable that the composition further contains an additive.
  • a conductive additive for the negative electrode second active material layer for example, the same conductive agent as for the negative electrode first active material layer is used.
  • the binder for the negative electrode second active material layer for example, the same binder as that for the negative electrode first active material layer is used.
  • the ratio of the weight of the negative electrode second active material to the total weight of the negative electrode second active material layer is, for example, preferably 80% by weight or more and 99% by weight or less.
  • the thickness of one side of the negative electrode second active material layer in the stacking direction (for example, the depth direction Y in FIG. 8) (for example, the second thickness T2 in FIG. 8) is the same as that of the negative electrode second active material layer according to the first embodiment. Since they are similar, the explanation here will be omitted.
  • Negative electrode active material layer meets the first condition that the density of the negative electrode second active material layer is lower than the density of the negative electrode first active material layer, and the negative electrode first active material layer and the negative electrode active material layer.
  • the negative electrode second active material layer includes a conductive additive, and the ratio of the weight of the conductive additive to the total weight of the negative electrode second active material layer is the same as the conductive additive to the total weight of the negative electrode first active material layer. satisfies at least one of the second conditions that the weight ratio is greater than the weight ratio of the second condition.
  • the negative electrode active material layer is not particularly limited as long as it satisfies at least one of the first and second conditions, but among others, the negative electrode active material layer that satisfies the first condition is It is preferable that the active material layer has a higher void ratio than the negative electrode first active material layer. This is because the circulation of the electrolyte in the negative electrode second active material layer tends to be better than that in the negative electrode first active material layer.
  • the negative electrode active material layer that satisfies the first condition is such that the density of the negative electrode first active material layer is 1.4 g/cm 3 or more and 2.0 g/cm 3 or less, and the density of the negative electrode second active material layer is is preferably 1.0 g/cm 3 or more and 1.6 g/cm 3 or less. Since the negative electrode first active material layer has a high density, reaction with the electrolytic solution is suppressed. This is because the life performance is improved accordingly. The low density of the negative electrode second active material layer promotes reaction with the electrolyte. This is because charging performance improves accordingly.
  • the method for calculating the void ratio of the negative electrode first active material layer and the negative electrode second active material layer is not particularly limited, but can be calculated using "3D-SEM", for example.
  • a group of 2D photographs of the negative electrode first active material layer and the negative electrode second active material layer in the stacked cross section of the battery are obtained.
  • the area of the void existing in the 2D photograph group is calculated, and the area is integrated to calculate the volume of the void in the 3D region.
  • the ratio of the voids can be calculated.
  • the negative electrode active material layer that satisfies the second condition is such that the weight ratio of the conductive additive to the total weight of the negative electrode first active material layer is 0.5% by weight or more and 10% by weight or less, and It is preferable that the weight ratio of the conductive additive to the total weight of the negative electrode second active material layer is 1% by weight or more and 15% by weight or less. This is because if the weight ratio is large, the energy density will be low, and if the weight ratio is small, the conductivity inside the electrode will be poor.
  • the negative electrode active material layer is preferably one in which the BET specific surface area of the negative electrode second active material is larger than the BET specific surface area of the negative electrode first active material.
  • the BET specific surface area of the negative electrode first active material and the negative electrode second active material and the preferable ranges of the BET specific surface area of the negative electrode first active material and the negative electrode second active material, please refer to the first embodiment. The same is true.
  • the average particle size of the negative electrode second active material is larger than the negative electrode first active material. It is preferable that the particle size is smaller than the average particle size of one active material. Making the BET specific surface area of the negative electrode second active material larger than the BET specific surface area of the negative electrode first active material by simply making the average particle size of the negative electrode second active material smaller than the average particle size of the negative electrode first active material. This is because the rapid charging performance of the battery can be easily improved. Note that the definition of the average particle size and the preferable range of the median diameter of the negative electrode first active material and the median diameter of the negative electrode second active material are the same as in the first embodiment.
  • the negative electrode first active material layer and the negative electrode second active material layer of the negative electrode active material layer are formed by simultaneous coating.
  • a method may also be used. This manufacturing method is similar to the manufacturing method of forming the negative electrode first active material layer and the negative electrode second active material layer of the negative electrode active material layer according to the first embodiment by simultaneous coating.
  • Negative electrode for lithium ion secondary batteries includes the BET specific surface area and average particle size of the active materials of the negative electrode first active material layer and the negative electrode second active material layer. Other examples of negative electrodes with adjusted values may also be used.
  • the negative electrode first active material layer includes a negative electrode first active material containing a Si-based material such as silicon oxide (SiO) pre-doped with lithium, carbon nanotubes, and a binder. Contains.
  • the negative electrode second active material layer contains a carbon-based negative electrode second active material.
  • the BET specific surface area of the negative electrode second active material of the negative electrode second active material layer is larger than the BET specific surface area of the negative electrode first active material of the negative electrode first active material layer.
  • the average particle size of the negative electrode second active material of the negative electrode second active material layer is smaller than the average particle size of the negative electrode first active material of the negative electrode first active material layer.
  • the reaction area of the negative electrode active material per unit volume in the negative electrode active material layer is larger than that of the negative electrode second active material layer, which is a high input/output layer, compared to the negative electrode first active material layer, which is a high capacity layer.
  • the active material layer is relatively larger. Therefore, in the negative electrode second active material layer which is a high input/output layer, the charging characteristics of the battery, particularly the rapid charging characteristics, can be improved.
  • the expansion and contraction of the negative electrode active material per unit volume during charging and discharging of the battery is greater in the negative electrode first active material layer, which is a high capacity layer, than in the negative electrode second active material layer, which is a high input/output layer. becomes relatively large.
  • the silicon-based negative electrode first active material expands and contracts more than the carbon-based negative electrode second active material.
  • expansion and contraction of the negative electrode first active material and the like can be absorbed by the carbon nanotubes and the binder. Therefore, in the negative electrode first active material layer, which is a high capacity layer, it is possible to improve the cycle durability of the negative electrode first active material, etc. and the storage durability of lithium ions when the battery is repeatedly charged and discharged.
  • Lithium ion secondary battery is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode is the lithium ion secondary battery according to the second embodiment. It is a negative electrode for batteries.
  • the lithium ion secondary battery according to the second embodiment is not particularly limited, but includes, for example, a charge/discharge body having a positive electrode, a negative electrode, and a separator, and the separator is impregnated with an electrolyte. .
  • the lithium ion secondary battery according to the second embodiment may include an electrolytic solution in which the electrolyte is dissolved, and the electrolytic solution may further contain an additive such as an SEI film forming agent. Those containing an SEI film forming agent are preferred.
  • the SEI film and SEI film forming agent are the same as in the first embodiment.
  • the lithium ion secondary battery according to the second embodiment is a battery including a solid electrolyte as an electrolyte, and includes a positive electrode, a negative electrode, and a solid electrolyte layer containing a solid electrolyte.
  • the battery may include a charge/discharge body interposed between the positive electrode and the negative electrode.
  • a battery including such a solid electrolyte and an example of the solid electrolyte are the same as those in the first embodiment.
  • a battery including a negative electrode according to the second embodiment may be a separator-less battery including a positive electronic insulating layer provided on the positive electrode and a negative electronic insulating layer provided on the negative electrode instead of the separator.
  • the structure, modification examples, and manufacturing method of such a separator-less battery are the same as those in the first embodiment.
  • the present invention includes the following aspects.
  • a positive electrode comprising a positive electrode current collector, a positive electrode mixture layer provided on the positive electrode current collector, and a positive electrode electronic insulating layer provided on the positive electrode mixture layer;
  • a negative electrode comprising a negative electrode current collector, a negative electrode mixture layer provided on the negative electrode current collector, and a negative electrode electronic insulating layer provided on the negative electrode mixture layer; Equipped with The unevenness height of the interface between the positive electrode mixture layer and the positive electrode electronic insulating layer is 2 ⁇ m or more, A lithium ion secondary battery, wherein the unevenness height of the interface between the negative electrode mixture layer and the negative electrode electronic insulating layer is 2 ⁇ m or more.
  • Item 2 Item 2.
  • Reference Signs List 1 battery (lithium ion secondary battery), 100 charge/discharge body, 110 positive electrode, 111 positive electrode current collector, 111a current collector, 111b positive electrode tab, 111c side edge, 112 positive electrode active material layer, 120 negative electrode (lithium ion secondary battery negative electrode), 121 negative electrode current collector, 121a current collecting part, 121b negative electrode tab, 121c side edge, 122 negative electrode active material layer, 123 negative electrode first active material layer, 124 negative electrode second active material layer, 130 separator, 200 container, 201 case, 202 lid, 300 external terminal, 301 positive terminal, 302 negative terminal, X width direction of battery 1, Y depth direction of battery 1, Z height direction of battery 1. All publications, patents, and patent applications cited herein are incorporated by reference in their entirety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電池の充電性能及び長寿命の向上を実現できるリチウムイオン二次電池用負極を提供することを目的とする。本発明のリチウムイオン二次電池用負極は、負極集電体と、上記負極集電体に積層された負極活物質層と、を備え、上記負極活物質層は、上記負極集電体に積層された負極第1活物質層と、上記負極第1活物質層に積層された負極第2活物質層と、を含み、上記負極第1活物質層が、負極第1活物質を含み、上記負極第2活物質層が、負極第2活物質を含み、上記負極第2活物質のBET比表面積が、上記負極第1活物質のBET比表面積よりも大きい。

Description

リチウムイオン二次電池用負極及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極及びその負極を備えるリチウムイオン二次電池に関する。
 従来から、複数の活物質層を備えた負極を有するリチウムイオン二次電池が知られている(例えば、特許文献1~6参照)。
国際公開第2011/114433号 特開2009-009858号公報 特開2013-246900号公報 特開2014-229581号公報 特開2015-187926号公報 特開2019-185920号公報
 リチウムイオン二次電池の充電性能の改善とともにリチウムイオン二次電池の耐久性の改善を実現するリチウムイオン二次電池用負極の開発が要請されている。
 本発明のリチウムイオン二次電池用負極は、負極集電体と、上記負極集電体に積層された負極活物質層と、を備え、上記負極活物質層は、上記負極集電体に積層された負極第1活物質層と、上記負極第1活物質層に積層された負極第2活物質層と、を含み、上記負極第1活物質層が、負極第1活物質を含み、上記負極第2活物質層が、負極第2活物質を含み、上記負極第2活物質のBET比表面積が、上記負極第1活物質のBET比表面積よりも大きい。
 本発明のリチウムイオン二次電池用負極は、負極集電体と、上記負極集電体に積層された負極活物質層と、を備え、上記負極活物質層は、上記負極集電体に積層された負極第1活物質層と、上記負極第1活物質層に積層された負極第2活物質層と、を含み、上記負極第1活物質層が、負極第1活物質を含み、上記負極第2活物質層が、負極第2活物質を含み、上記負極第2活物質層の密度が、上記負極第1活物質層の密度より低いという第1条件、及び上記負極第1活物質層及び上記負極第2活物質層が、導電助剤を含み、上記負極第2活物質層の総重量に対する上記導電助剤の重量の割合が、上記負極第1活物質層の総重量に対する上記導電助剤の重量の割合よりも多いという第2条件のうちの少なくとも一方の条件を満たし、上記負極第1活物質が、Si系材料を含有する。前記負極第1活物質に含有される前記Si系材料は、リチウムがプレドープされていても良い。
 本発明のリチウムイオン二次電池は、正極と、負極と、電解質とを備えるリチウムイオン二次電池であって、上記負極が本発明のリチウムイオン二次電池用負極である。
 本発明のリチウムイオン二次電池用負極を備えるリチウムイオン二次電池によれば、充電性能及び長寿命の向上を実現できる。
第1及び第2実施形態に係る一例の負極120を備える電池1を示す概略斜視図である。 図1に示す電池1の充放電体100を示す概略斜視図である。 図2に示す充放電体100における正極タブ111b及び負極タブ121bを含む部分を、正極110と負極120及びセパレータ130の側端の位置を異ならせて示す概略斜視図である。 第1実施形態に係る一例の電池1の充放電体100であって、図3に示す充放電体100を示す概略側面図である。 負極の製造に用いられるダイヘッド及びバックローラの部分の概略拡大図である。 第1及び第2実施形態に係る他の例の負極を備えるセパレータレスの電池の正極及び負極の概略断面図である。 第1及び第2実施形態に係る他の例の負極の負極活物質層の負極第2活物質層と負極電子絶縁層の間の界面及びその近傍の概略拡大断面図である。 第2実施形態に係る一例の電池1の充放電体100であって、図3に示す充放電体100を示す概略側面図である。
 本発明の各々の実施形態について、図面を参照しながら説明する。各々の実施形態の理解を容易にするために、各々の図面において、構成部材の大きさや比率を誇張している場合がある。各々の図面において、同一の構成に対して同一符号を付与している。各々の図面において、電池1及び電池1の構成部材の横幅方向X(X軸方向)、奥行方向Y(Y軸方向)及び高さ方向Z(Z軸方向)を矢印で示している。但し、各々の図面において、横幅方向X、奥行方向Y及び高さ方向Zは、相対的な方向関係を示すものである。すなわち、例えば、電池1を180度回転させて上面と下面を逆転させて配置した場合や、電池1を90度回転させて上面を側面として配置した場合、電池1の横幅方向X、奥行方向Y及び高さ方向Zは変わる。
 以下では、「リチウムイオン二次電池用負極」を「負極」と略すことがある。「リチウムイオン二次電池」を「電池」と略すことがある。
[第1実施形態]
 第1実施形態に係るリチウムイオン二次電池用負極は、負極集電体と、上記負極集電体に積層された負極活物質層と、を備え、上記負極活物質層は、上記負極集電体に積層された負極第1活物質層と、上記負極第1活物質層に積層された負極第2活物質層と、を含み、上記負極第1活物質層が、負極第1活物質を含み、上記負極第2活物質層が、負極第2活物質を含み、上記負極第2活物質のBET比表面積が、上記負極第1活物質のBET比表面積よりも大きい。そして、第1実施形態に係るリチウムイオン二次電池は、正極と、負極と、電解質とを備えるリチウムイオン二次電池であって、上記負極が第1実施形態に係るリチウムイオン二次電池用負極である。
(第1実施形態に係る一例の負極を備える電池の構成)
 第1実施形態に係る一例の負極を備える電池の構成について、図1から図4を参照して説明する。
 第1実施形態に係る一例の負極120を備える電池1は、リチウムイオン二次電池であって、図1に示すように、電力が充放電される充放電体100と、充放電体100を収容した容器200と、充放電体100に接続され容器200に取り付けられた外部端子300と、を備える。
 充放電体100は、図2から図4に示すように、正極110と、負極120と、セパレータ130と、を有する。充放電体100は、容器200に収容された状態において、セパレータ130に、支持塩(電解質)が溶解した電解液を含侵させている。充放電体100は、図2及び図3に示すように、長尺状に形成された正極110と長尺状に形成された負極120が、長尺状に形成されたセパレータ130を介して捲回されて構成されている。充放電体100は、構成部材が捲回された状態において、両端部が丸い長方体形状に形成されている。
 正極110は、リチウムイオン二次電池用正極であって、図3及び図4に示すように、正極集電体111と、正極集電体111に積層された正極活物質層112と、を備える。
 正極集電体111は、横幅方向Xに延びた長尺形状に形成されている。正極集電体111は、図3及び図4に示すように、集電部111aと、正極タブ111bと、を含む。集電部111aは、横幅方向Xに長尺であって、箔状に形成されている。正極タブ111bは、図3及び図4に示すように、集電部111aの長手方向に沿った側縁111cから、集電部111aの短手方向(高さ方向Zの上方)に突出している。正極タブ111bは、集電部111aと一体に形成されている。正極タブ111bは、集電部111aに、例えば1つ形成されている。集電部111aは、例えば、アルミニウム又はアルミニウム合金、例えば板状(シート状)の形状を有するアルミニウム箔によって形成されている。
 正極活物質層112は、図4に示すように、正極集電体111の集電部111aと接合されている。正極活物質層112は、集電部111aの両面に形成されていてもよい。正極活物質層112は、例えば、集電部111aの短手方向(高さ方向Z)に沿った全領域に対面している。
 正極活物質層112は、リチウム含有複合酸化物によって構成された正極活物質を含む。リチウム含有複合酸化物としては、例えば、ニッケル(Nickel)、コバルト(Cobalt)、マンガン(Manganese)のような金属元素と、リチウム(Lithium)とが用いられている。
 正極活物質を構成するリチウム含有複合酸化物としては、例えば、下記一般組成式
Li1+X   (1)
(式中、Xは、-0.15≦X≦0.15を満たし、Mは、Mn及びAlからなる群から選択される少なくとも一種の元素、Ni、並びにCoを含有する元素群を表す)
により表される三元系のリチウム含有複合酸化物でもよい。
 上記一般組成式(1)で表される三元系のリチウム含有複合酸化物は、熱安定性や高電位状態での安定性が高く、この酸化物を適用することで、電池1の安全性や各種電池特性を高めることができる。
 正極活物質層112は、正極活物質に加えて、例えば、導電助剤、バインダ等の添加剤をさらに含む。
 正極活物質層112の導電助剤としては、炭素系材料を用いることができる。炭素系材料としては、結晶性炭素、無定形炭素、又はこれらの混合物を用いることができる。結晶性炭素の例として、天然黒鉛(例えば鱗片状黒鉛)、人工黒鉛(人造黒鉛)、炭素繊維、又はこれらの混合物が挙げられる。無定形炭素の例として、カーボンブラック(例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、又はこれらの混合物)が挙げられる。炭素繊維の例として、カーボンナノチューブが挙げられる。
 正極活物質層112のバインダとしては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ポリアクリロニトリル、ポリフッ化ビニル、ポリフッ化プロピレン、ポリフッ化クロロプレン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム(SBR)、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリル系樹脂、又はこれらの混合物を用いることができる。
 正極110は、例えば、以下のようにして製造できる。まず、正極活物質層112に含まれる材料(例えば、正極活物質、導電助剤、バインダ等)を用意する。この材料は、粉末状でもよい。次に、この材料を混合し、得られた混合物を溶媒(例えば、N-メチル-2-ピロリドン(NMP)及び/又は水)に分散させて、正極スラリーを調製する。次に、正極スラリーを、公知技術により、正極集電体111の表面(片面又は両面)に塗布し、乾燥させ、必要に応じてカレンダー処理を施して、正極活物質層112を形成する。以上により、正極110が得られる。
 負極120は、リチウムイオン二次電池用負極であって、図3及び図4に示すように、負極集電体121と、負極集電体121に積層された負極活物質層122と、を備える。負極活物質層122は、負極集電体121に積層された負極第1活物質層123と、負極第1活物質層123に積層された負極第2活物質層124と、を含む。すなわち、負極120は、活物質層を複数備える。
 負極集電体121は、横幅方向Xに延びた長尺形状に形成されている。負極集電体121は、図3及び図4に示すように、集電部121aと、負極タブ121bと、を含む。集電部121aは、横幅方向Xに長尺であって、箔状に形成されている。負極120の集電部121aは、図4に示すように、正極110の集電部111aと比較して、短手方向(高さ方向Z)に沿った幅が長い。負極120の集電部121aの短手方向に沿った範囲(高さ方向Zの上端から下端)内に、セパレータ130を介して、正極110の集電部111aの短手方向に沿った両端(高さ方向Zの上端から下端)が位置している。負極タブ121bは、図3及び図4に示すように、集電部121aの長手方向に沿った側縁121cから、集電部121aの短手方向(高さ方向Zの上方)に突出している。負極タブ121bは、セパレータ130を介して正極110と積層された状態において、正極110の正極タブ111bと同じ方向(高さ方向Zの上方)に突出している。負極タブ121bは、セパレータ130を介して正極110と積層された状態において、正極110の正極タブ111bと横幅方向Xに離れている。負極タブ121bは、集電部121aと一体に形成されている。負極タブ121bは、集電部121aに、例えば1つ形成されている。集電部121aは、例えば、銅又は銅合金によって形成されている。
 図4に示すように、負極活物質層122の負極第1活物質層123は、負極集電体121の集電部121aと接合されている。負極第1活物質層123は、集電部121aの両面に形成されていてもよい。負極第1活物質層123は、例えば、集電部121aの短手方向(高さ方向Z)に沿った全領域に対面している。負極活物質層122の負極第2活物質層124は、負極第1活物質層123と接合されている。
 負極第1活物質層123は、負極第1活物質123aを含む。負極第1活物質123aは、ピッチコート天然黒鉛123a1と、表面がコートされずに露出する天然黒鉛123a2と、人工黒鉛(人造黒鉛)123a3と、を含有する。負極第1活物質層123は、負極第1活物質123aに加えて、例えば、導電助剤123c、バインダ123b等の添加剤をさらに含む。負極第1活物質層123は、相対的にリチウムイオンを多く貯蔵できる高容量層であり、一般的には、電気自動車(BEV:Battery Electric Vehicle)において用いられている負極活物質層に相当する。
 負極第2活物質層124は、図4に示すように、負極第2活物質124aを含む。負極第2活物質124aは、ピッチコート天然黒鉛124a1と、表面がコートされずに露出する天然黒鉛124a2と、を含有する。負極第2活物質層124は、負極第2活物質124aに加えて、例えば、導電助剤124c、バインダ124b等の添加剤をさらに含む。負極第2活物質層124は、一般的には、ハイブリッド自動車(HEV:Hybrid Electric Vehicle)において用いられている負極活物質層に相当する。
 負極活物質層122において、負極第2活物質層124の負極第2活物質124aの平均粒径が、負極第1活物質層123の負極第1活物質123aの平均粒径よりも小さくなっている。これにより、負極第2活物質層124の負極第2活物質124aのBET比表面積が、負極第1活物質層123の負極第1活物質123aのBET比表面積よりも大きくなっている。
 セパレータ130は、図3及び図4に示すように、正極110と負極120との間を絶縁し、正極110と負極120との間の短絡を防止する絶縁機能、及び非水電解液を保持する機能を有している。セパレータ130は、電解液を介して、リチウムイオンを通過させる。セパレータ130は、長尺状に形成されている。セパレータ130は、図4に示すように、正極110の集電部111a及び負極120の集電部121aと比較して、短手方向(高さ方向Z)に沿った幅が長い。セパレータ130の短手方向に沿った範囲(高さ方向Zの上端から下端)内に、正極110の集電部111aの短手方向に沿った両端(高さ方向Zの上端から下端)が位置し、且つ、負極120の集電部121aの短手方向に沿った両端(高さ方向Zの上端から下端)が位置している。セパレータ130は、多孔質の材料によって構成されている。セパレータ130としては、ポリエチレン(PE:PolyEthylene)、ポリプロピレン(PP:PolyPropylene)、ポリエステル、セルロース、ポリアミド等の樹脂製の多孔質シート、又はこれらの積層シート(例えば、PP/PE/PPの三層構成のシート)が用いられている。
 セパレータ130の一方の面又は両面には、無機材料(例えばアルミナ粒子等)及びバインダを含む層を設けてもよい。これにより、電池1が異常な状態で使用された場合(例えば、過充電や圧壊等でリチウムイオン二次電池の温度が160℃以上に上昇した場合)でも、セパレータ130の溶融が防止され、絶縁機能を保持できる。そのため、電池1の安全性が向上する。
 電解液は、セパレータ130に含侵され、正極110と負極120に接している。電解液は、有機溶媒と、支持塩(電解質)とを含み、SEI被膜形成剤等の添加剤をさらに含んでもよい。有機溶媒としては、例えば、炭酸エステル等が用いられている。支持塩としては、例えば、リチウム塩が用いられている。
 容器200は、図1に示すように、充放電体100が収容されている。容器200は、ケース201と、蓋202と、を含む。蓋202は、ケース201の開口に接合され、ケース201と共に充放電体100を封止している。ケース201と蓋202によって封止された充放電体100に、電解質が充填されている。
 外部端子300は、図1に示すように、正極端子301と、負極端子302と、を含む。正極端子301及び負極端子302は、充放電体100と外部機器の間において、電力の入出力を中継する。また、電池1を複数用いて組電池を構成する場合、隣り合う一方の正極端子301と隣り合う他方の負極端子302は、バスバを介して接合される。正極端子301は、正極タブ111bに対して、正極集電板を介して間接的に、又は直接的に接合されている。負極端子302は、負極タブ121bに対して、負極集電板を介して間接的に、又は直接的に接合されている。正極端子301及び負極端子302は、蓋202に取り付けられている。
(第1実施形態に係る一例の負極を備える電池の製造方法)
 第1実施形態に係る一例の負極を備える電池は、負極の製造方法以外は、本発明の技術分野で公知の技術を用いて製造できる。
 第1実施形態に係る一例の負極120は、例えば、以下のようにして製造できる。まず、負極第1活物質層123に含まれる材料(例えば、負極第1活物質、導電助剤やバインダ等の添加剤など)を用意する。この材料は、粉末状でもよい。次に、この材料を混合し、得られた混合物を溶媒(例えば、N-メチル-2-ピロリドン(NMP)及び/又は水)に分散させて、負極第1スラリーを調製する。次に、負極第1スラリーを、公知技術により、負極集電体121の表面(片面又は両面)に塗布し、乾燥させ、必要に応じてカレンダー処理を施して、負極第1活物質層123を形成する。
 続いて、負極第2活物質層124に含まれる材料(例えば、負極第2活物質、導電助剤やバインダ等の添加剤など)を用意する。この材料は、粉末状でもよい。次に、この材料を混合し、得られた混合物を溶媒(例えば、N-メチル-2-ピロリドン(NMP)及び/又は水)に分散させて、負極第2スラリーを調製する。次に、負極第2スラリーを、公知技術により、負極第1活物質層123の表面(片面又は両面)に塗布し、乾燥させ、必要に応じてカレンダー処理を施して、負極第2活物質層124を形成する。以上の製造方法により、負極120が得られる。ただし、負極120は、以上の製造方法で製造されたものに限定されず、他の方法で製造したものでもよい。
(第1実施形態に係る一例の負極を備える電池の効果)
 第1実施形態に係る一例の負極を備える電池の効果について、図4を参照して説明する。
 第1実施形態に係る一例の負極120では、負極活物質層122が、負極集電体121に積層された負極第1活物質層123と、負極第1活物質層123に積層された負極第2活物質層124と、を含む。そして、負極第2活物質層124の負極第2活物質124aの平均粒径が、負極第1活物質層123の負極第1活物質123aの平均粒径よりも小さくなっている。これにより、負極第2活物質層124の負極第2活物質124aのBET比表面積が、負極第1活物質層123の負極第1活物質123aのBET比表面積よりも大きくなっている。このため、負極活物質層122において、電池1の充電時にリチウムイオンの受入れ側となるセパレータ130側に、リチウムイオンとの反応面積が大きい負極第2活物質124aを含む負極第2活物質層124が配置される。このため、負極活物質層122のセパレータ130側でLiが析出してLiの析出に伴う副反応が起きることが抑制されるので、電池1の耐久性を改善でき、電池1の長寿命化を実現できる。さらに、電池1の急速充電性能を改善できる。一方、反対側の負極集電体121側には、リチウムイオンとの反応面積が小さい負極第1活物質123aを含む負極第1活物質層123が配置されるので、リチウムイオンが負極活物質にトラップされてそれ以後の電池反応に寄与しなくなる量が増大することを抑制できる。このため、電池1のサイクル特性を改善し、電池1の貯蔵耐久性を改善できる。よって、電池1の長寿命化を実現できる。従って、負極120では、充電性能及び長寿命の向上を実現できる。
 より具体的には、負極活物質層における単位体積当たりの負極活物質の反応面積は、高容量層である負極第1活物質層と比較して、高入出力層である負極第2活物質層の方が相対的に大きくなる。負極第1活物質層と比較して、負極第2活物質層の方が、リチウムイオンの拡散パスが相対的に短くなる。従って、負極第2活物質層において、電池の充電特性、特に急速充電特性を向上させることができる。一方、負極活物質層における単位体積当たりの負極活物質の反応面積は、高入出力層である負極第2活物質層と比較して、高容量層である負極第1活物質層の方が相対的に小さくなる。従って、高容量層である負極第1活物質層において、電池が充放電を繰り返した場合におけるサイクル耐久性とリチウムイオンの貯蔵耐久性を向上させることができる。
 また、負極120では、負極第1活物質層123に含まれる負極第1活物質123aが、ピッチコート天然黒鉛123a1と、表面がコートされずに露出する天然黒鉛123a2と、人工黒鉛123a3と、を含有する。ピッチコート天然黒鉛123a1は、その表面がピッチコートされているため、通常の天然黒鉛(表面がコートされずに露出する天然黒鉛)123a2よりも、導電性が高く、リチウムイオンとの反応面積が小さくなるが、硬質であるため、負極第1活物質123aをピッチコート天然黒鉛123a1のみから構成する場合、負極第1活物質層123の形成時のプレス成形性が低下する。これに対して、負極120では、ピッチコート天然黒鉛123に加えて、ピッチコート天然黒鉛123a1よりも柔軟な通常の天然黒鉛(表面がコートされずに露出する天然黒鉛)123a2をさらに負極第1活物質123aに含有させることにより、負極第1活物質123aの反応面積を抑制し、負極第1活物質123aの導電性を十分に確保しつつ、負極第1活物質層123の形成時のプレス成形性を向上できる。これにより、電池1のサイクル特性をさらに改善し、電池1のエネルギー密度を向上できる。さらに、プレスのし易さを任意に制御することができるので、負極第1活物質層を所定の密度に設定したり、厚みを所定の厚みに設定したりすることを容易にできる。
 負極第1活物質123aと同様に、負極第2活物質層124に含まれる負極第2活物質124aも、ピッチコート天然黒鉛124a1と、表面がコートされずに露出する天然黒鉛124a2と、を含有する。このため、同様に、負極第2活物質124aの反応面積を抑制し、負極第2活物質124aの導電性を十分に確保しつつ、負極第2活物質層124の形成時のプレス成形性を向上できる。これにより、電池1のサイクル特性をさらに改善し、電池1のエネルギー密度をさらに向上できる。さらに、プレスのし易さを任意に制御することができるので、負極第2活物質層を所定の密度に設定したり、厚みを所定の厚みに設定したりすることを容易にできる。
 さらに、負極120を備える電池1では、電解液がSEI被膜形成剤をさらに含んでいる場合には、負極活物質の表面及び電解液の反応を抑制することで、電池1のサイクル特性をさらに改善し、電池1の貯蔵耐久性をさらに改善できる。
 続いて、第1実施形態に係るリチウムイオン二次電池用負極及びその負極を備えるリチウムイオン二次電池の構成について、さらに詳細に説明する。
1.リチウムイオン二次電池用負極
 第1実施形態に係るリチウムイオン二次電池用負極は、負極集電体と、上記負極集電体に積層された負極活物質層と、を備え、上記負極活物質層は、上記負極集電体に積層された負極第1活物質層と、上記負極第1活物質層に積層された負極第2活物質層と、を含む。
(1)負極第1活物質層
 上記負極第1活物質層は、負極第1活物質を含む。負極第1活物質としては、リチウムイオンの挿入・脱離が可能な負極活物質材を含有するものであれば特に限定されないが、例えば、天然黒鉛、人工黒鉛(人造黒鉛)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料、非晶質炭素で被覆した黒鉛などからなる群から選択される少なくとも一種を含有するものである。
 負極第1活物質としては、中でも、ピッチコート天然黒鉛と、表面がコートされずに露出する天然黒鉛と、を含有するものが好ましく、特に、ピッチコート天然黒鉛と、表面がコートされずに露出する天然黒鉛と、人工黒鉛と、を含有するものが好ましい。負極第1活物質の反応面積を抑制し、負極第1活物質の導電性を十分に確保しつつ、負極第1活物質層の形成時のプレス成形性を向上できるからである。また、純度が高く、結晶の均一性が高い人造黒鉛によって、負極活物質の特性を向上させることができる。
 負極第1活物質層は、負極第1活物質を含むものであれば特に限定されないが、例えば、負極第1活物質に加えて、導電助剤及びバインダ等からなる群から選択される少なくとも一種の添加剤をさらに含むものが好ましい。
 負極第1活物質層の導電助剤としては、炭素系材料を用いることができる。炭素系材料としては、結晶性炭素、無定形炭素、又はこれらの混合物を用いることができる。結晶性炭素の例として、天然黒鉛(例えば鱗片状黒鉛)、人工黒鉛、炭素繊維、又はこれらの混合物が挙げられる。無定形炭素の例として、カーボンブラック(例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、又はこれらの混合物)が挙げられる。炭素繊維の例として、カーボンナノチューブが挙げられる。
 負極第1活物質層のバインダとしては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ポリアクリロニトリル、ポリフッ化ビニル、ポリフッ化プロピレン、ポリフッ化クロロプレン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム(SBR)、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリル系樹脂、ポリアミドイミド、ポリイミド、又はこれらの混合物を用いることができる。
 負極第1活物質層の総重量に対する負極第1活物質の重量の割合は、例えば、80重量%以上99重量%以下が好ましい。
 負極第1活物質層の積層方向(例えば、図4の奥行方向Y)の片側の厚み(例えば、図4の第1の厚みT1)は、例えば、平均厚みで、5μm以上且つ500μm以下であってもよいし、例えば、平均厚みで、10μm以上且つ300μm以下であってもよい。
(2)負極第2活物質層
 上記負極第2活物質層は、負極第2活物質を含む。負極第2活物質としては、リチウムイオンの挿入・脱離が可能な負極活物質材を含有するものであれば特に限定されないが、例えば、負極第1活物質と同様の群から選択される少なくとも一種を含有するものである。
 負極第2活物質としては、中でも、ピッチコート天然黒鉛と、表面がコートされずに露出する天然黒鉛と、を含有するものが好ましく、特に、ピッチコート天然黒鉛と、表面がコートされずに露出する天然黒鉛と、人工黒鉛と、を含有するものが好ましい。負極第1活物質の反応面積を抑制し、負極第1活物質の導電性を十分に確保しつつ、負極第1活物質層の形成時のプレス成形性を向上できるからである。また、純度が高く、結晶の均一性が高い人造黒鉛によって、負極活物質の特性を向上させることができる。
 負極第2活物質層は、負極第2活物質を含むものであれば特に限定されないが、例えば、負極第2活物質に加えて、導電助剤及びバインダ等からなる群から選択される少なくとも一種の添加剤をさらに含むものが好ましい。負極第2活物質層の導電助剤としては、例えば、負極第1活物質層と同様のものが用いられる。負極第2活物質層のバインダとしては、例えば、負極第1活物質層と同様のものが用いられる。
 負極第2活物質層の総重量に対する負極第2活物質の重量の割合は、例えば、80重量%以上99重量%以下が好ましい。
 負極第2活物質層の積層方向(例えば、図4の奥行方向Y)の片側の厚み(例えば、図4の第1の厚みT2)は、例えば、平均厚みで、5μm以上且つ500μm以下であってもよいし、例えば、平均厚みで、10μm以上且つ300μm以下であってもよい。
(3)負極活物質層
 上記負極活物質層は、上記負極第2活物質のBET比表面積が、上記負極第1活物質のBET比表面積よりも大きい。ここで、BET比表面積は、例えば、細孔分布測定装置を用いてBET法から算出することができる。負極第1活物質のBET比表面積は、例えば、負極第1活物質層の一部から負極第1活物質のみを試料として抽出し、その資料について、BET比表面積の測定を行うことで求められる。また、負極第1活物質のBET比表面積は、例えば、負極第1活物質層を形成時に用いられた負極第1活物質の粉末状の材料について、BET比表面積の測定を行うことで求めてもよい。負極第2活物質のBET比表面積についても、負極第1活物質のBET比表面積と同様の方法により求められる。
 負極活物質層としては、負極第2活物質のBET比表面積が、負極第1活物質のBET比表面積よりも大きいものであれば特に限定されないが、例えば、負極第1活物質のBET比表面積が1m/g以上6m/g以下であり、かつ負極第2活物質のBET比表面積が4m/g以上10m/g以下であることが好ましい。負極活物質層のセパレータ側でLi析出に伴う副反応が起きることが効果的に抑制され、電池の急速充電性能を効果的の改善できるからである。
 負極活物質層としては、負極第2活物質のBET比表面積が、負極第1活物質のBET比表面積よりも大きいものであれば特に限定されないが、例えば、上記負極第2活物質の平均粒径が、上記負極第1活物質の平均粒径よりも小さいものが好ましい。負極第2活物質の平均粒径を負極第1活物質の平均粒径よりも小さくするだけで、負極第2活物質のBET比表面積を負極第1活物質のBET比表面積よりも大きくすることができるので、電池の急速充電性能を容易に改善できるからである。
 ここで、平均粒径とは、例えば、メディアン径(D50)であり、メディアン径(D50)とは、レーザー回折散乱式粒度分布測定法で測定された粒度分布測定における、積算値が50%の場合における粒子の直径である。なお、メディアン径(D50)としては、電池の積層断面における各活物質層の顕微鏡観察画像に基づき、無作為に選択した100個以上の活物質の粒子の投影面積円相当径を測定し、その測定結果から得られる活物質の粒度分布における、積算値が50%の場合における粒子の直径を求めてもよい。
 負極第1活物質のメディアン径及び負極第2活物質のメディアン径は、負極第2活物質のメディアン径が、負極第1活物質のメディアン径よりも小さいことが好ましいが、中でも、例えば、負極第1活物質のメディアン径が10μm以上35μm以下であり、かつ負極第2活物質のメディアン径が2μm以上15μm以下であることが好ましい。負極活物質層のセパレータ側でLi析出に伴う副反応が起きることが効果的に抑制され、電池の急速充電性能を効果的の改善できるからである。
 負極活物質層としては、負極第2活物質の表面の平滑性が、負極第1活物質の表面の平滑性よりも小さいことにより、負極第2活物質のBET比表面積が、負極第1活物質のBET比表面積よりも大きいものでもよい。このような負極活物質層としては、例えば、負極第1活物質がピッチコート天然黒鉛を含有し、負極第2活物質が、表面がコートされずに露出する天然黒鉛を含有するものが挙げられる。
(4)製造方法
 第1実施形態に係るリチウムイオン二次電池用負極の製造方法としては、負極活物質層の負極第1活物質層及び負極第2活物質層を同時塗工で形成する製造方法を用いてもよい。以下、この製造方法について、図5を参照して説明する。
 この製造方法では、負極第1活物質層に含まれる材料(例えば、負極第1活物質、導電助剤やバインダ等の添加剤など)を用意する。この材料を混合し、得られた混合物を溶媒(例えば、N-メチル-2-ピロリドン(NMP)及び/又は水)に分散させて、負極第1スラリーを得る。また、負極第2活物質層に含まれる材料(例えば、負極第2活物質、導電助剤やバインダ等の添加剤など)を用意する。この材料を混合し、得られた混合物を溶媒(例えば、N-メチル-2-ピロリドン(NMP)及び/又は水)に分散させて、負極第2スラリーを得る。
 次に、例えば、図5に示すようなダイヘッド50を用いて、負極第1スラリー及び負極第2スラリーを負極集電体34a上に同時に塗布する。ダイヘッド50は、出側ブロック57、3次元シム58、及び入側ブロック59を有する。ダイヘッド50の内部には、負極第2スラリー用マニホールド52及び負極第1スラリー用マニホールド51が設けられている。バックローラ56に沿って搬送されている負極集電体34aに向かって、各マニホールド52、51から同時に負極第2スラリー及び負極第1スラリーを吐出する。それにより、負極第2スラリー層33d及び負極第1スラリー層33bが形成される。次に、乾燥炉等により、負極第1スラリー層33b及び負極第2スラリー層33dに含まれる溶媒を揮発させて、負極第1スラリー層33b及び負極第2スラリー層33dを乾燥させる。それにより、負極集電体34aの一方の面に負極第1活物質層(図示せず)及び負極第2活物質層(図示せず)が形成される。次に、負極集電体34a、負極第1活物質層及び負極第2活物質層をプレス加工する。具体的には、負極集電体34a、負極第1活物質層、及び負極第2活物質層を含む積層体を0~120℃のロールで挟んで圧力をかける。その後、この積層体を所定の幅にスリット加工する。それにより、負極が得られる。
 以上の二層の同時塗工が適用された製造方法で製造された負極を備える電池では、負極第1活物質層と負極第2活物質層の界面に負極第1活物質と負極第2活物質が混合した層ができる。その混合した層が負極第1活物質層と負極第2活物質層の膨張収縮の違いを緩和する緩衝層となるため、充放電時に負極第1活物質層と負極第2活物質層の間の剥離を緩和する効果が得られる。
 また、負極第1活物質層(負極第1スラリー層33b)の負極第2活物質層(負極第2スラリー層33d)との界面がロールによるプレスがされない。例えば、負極第2活物質層(負極第2スラリー層33d)の負極第1活物質層(負極第1スラリー層33b)と反対側の界面がロールによりプレスされる。これにより、負極第1活物質層(負極第1スラリー層33b)の負極第2活物質層(負極第2スラリー層33d)との界面は、負極第2活物質層(負極第2スラリー層33d)の反対側界面よりも、凹凸が大きい。これにより負極第1活物質層(負極第1スラリー層33b)は広い表面積を有する。このため、イオン伝導において好ましい。また、ロールに面する負極第2活物質層(負極第2スラリー層33d)の表面よりも、負極第1活物質層(負極第1スラリー層33b)と負極第2活物質層(負極第2スラリー層33d)の界面の方が凹凸を大きく形成すると、密着性もよく、安定したイオン伝導性が得られるので好ましい。
2.リチウムイオン二次電池
 第1実施形態に係るリチウムイオン二次電池は、正極と、負極と、電解質とを備えるリチウムイオン二次電池であって、上記負極が第1実施形態に係るリチウムイオン二次電池用負極である。
 第1実施形態に係るリチウムイオン二次電池としては、特に限定されないが、例えば、正極と、負極と、セパレータと、を有する充放電体とを備え、電解質がセパレータに含侵されたものである。第1実施形態に係るリチウムイオン二次電池としては、上記電解質が溶解した電解液を備え、上記電解液がSEI被膜形成剤等の添加剤をさらに含有するものでもよく、中でも、上記電解液がSEI被膜形成剤を含有するものが好ましい。SEI被膜形成剤によって、負極を保護することができる。従って、電池が充放電を繰り返した場合における負極活物質のサイクル耐久性を向上させることができる。
 ここで、SEI被膜とは、負極活物質層122の表面に形成されるSEI(Solid Electrolyte Interface)と呼ばれる有機被膜であって、電解液の余剰分解を抑制し、電池1のサイクル特性の劣化を防止する役割を担う被膜である。SEI被膜形成剤とは、SEI被膜が形成されるように電解液に添加する添加剤を指している。SEI被膜形成剤としては、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)等が用いられている。
 さらに、第1実施形態に係るリチウムイオン二次電池としては、電解質として、固体電解質を備える電池であって、正極と、負極と、固体電解質を含む固体電解質層と、を有し、固体電解質層が正極と負極との間に介在する充放電体とを備えるものでもよい。
 このような固体電解質を備える電池は、電解液を含む必要がないため、高い安全性有することができる。また、このような固体電解質を備える電池では、活物質粒子表面の反応性がたかいので、安定したイオン伝導に寄与できる。といった効果が得られる。
なお、負極第2活物質層の固体電解質層との界面は、固体電解質層の負極第2活物質層とは反対側の界面よりも厚さ方向の凹凸が大きいことが好ましい。密着性が高いのでリチウムイオン移動にとって好ましい。
 なお、固体電解質の例としては、硫化物系固体電解質、例えば、Li10GeP12、LiPSClや、LiS-P系ガラス、LiS-SiS系ガラス、LiS-P-GeS系ガラス、LiS-B系ガラス、酸化物系固体電解質、例えば、LiLaZr12、LiLaTiO、LiTi(PO、LiGe(PO、及び錯体水素化物系固体電解質、例えば、LiBH-LiI、LiBH-LiNH、並びにこれらの二種以上の混合物が挙げられる。
3.その他
 第1実施形態に係る他の例の負極を備える電池としては、セパレータの代わりに、正極に設けた正極電子絶縁層及び負極に設けた負極電子絶縁層を備えるセパレータレスの電池でもよい。
(実施形態に係る他の例の負極を備えるセパレータレスの電池の構成)
 以下、このようなセパレータレスの電池の構成について、図6及び図7を参照して説明する。
 図6に示すように、実施形態に係る他の例の負極32を備えるセパレータレスの電池1(リチウムイオン二次電池)では、正極34は、正極集電体34aと、正極集電体34aの両面に接合された正極活物質層34bと、正極活物質層34b(正極合剤層)の各々に接合された正極電子絶縁層34dとを備える。負極32は、負極集電体32aと、負極集電体32aの両面に接合された負極活物質層32b(負極合剤層)と、を備え、負極活物質層32bは、負極集電体32aの両面に接合された負極第1活物質層32b1と、負極第1活物質層32b1の各々に接合された負極第2活物質層32b2と、を含む。負極32は、負極第2活物質層32b2の各々に接合された負極電子絶縁層32dをさらに備える。
 正極集電体34aの一端には、正極活物質層34b又は正極電子絶縁層34dのいずれによっても被覆されていない部分(以後、「正極集電体露出部」と称する)34cが設けられる。正極集電体露出部34cは、捲回群(図示せず)の端面及びその近傍に設けられる。正極集電体露出部34cは、正極集電板(図示せず)の正極側接続端部(図示せず)に対向するともに電気的に接続される。同様に、負極集電体32aの一端には、負極活物質層32b又は負極電子絶縁層32dのいずれによっても被覆されていない部分(以後、「負極集電体露出部」と称する)32cが設けられる。負極集電体露出部32cは、捲回群の端面及びその近傍に設けられる。負極集電体露出部32cは、負極集電板(図示せず)の負極側接続端部(図示せず)に対向するともに電気的に接続される。
 正極電子絶縁層34d及び負極電子絶縁層32dは、正極活物質層34bと負極活物質層32bの間の短絡を防止する機能と、正極活物質層34bと負極活物質層32bの間でイオンを伝導する機能とを有する。正極電子絶縁層34d及び負極電子絶縁層32dは、電気絶縁性(すなわち、電子絶縁性且つイオン絶縁性)の材料から構成される多孔質層であってよい。多孔質層はその細孔中に電解液を保持することができ、この電解液を介して正極活物質層34bと負極活物質層32bの間でイオンを伝導することができる。
 多孔質の正極電子絶縁層34d及び負極電子絶縁層32dは、リチウムイオン二次電池100の充放電に伴う正極活物質層34b及び負極活物質層32bの膨張収縮を緩衝する機能も有し得る。電池1の充放電に伴う負極活物質層32bの膨張収縮は、一般に正極活物質層34bの膨張収縮よりも大きい。そこで、より大きい負極活物質層32bの膨張収縮を緩衝することができるように、負極電子絶縁層32dは正極電子絶縁層34dの平均細孔径よりも大きい平均細孔径を有してよい。なお、本願において、正極電子絶縁層34d及び負極電子絶縁層32dの平均細孔径は、水銀圧入法により測定される容積基準の細孔径の平均値を意味する。
 正極電子絶縁層34d及び負極電子絶縁層32dのNa及びFeの含有量の合計は、正極電子絶縁層34d及び負極電子絶縁層32dの重量を基準として300ppm以下であってよい。正極電子絶縁層34d及び負極電子絶縁層32dに含有される各元素の量は、ICP(Inductive Coupled Plasma)法により測定することができる。
 正極電子絶縁層34dは正極電子絶縁性粒子を含んでよく、負極電子絶縁層32dは負極電子絶縁性粒子を含んでよい。以下、適宜、正極電子絶縁性粒子及び負極電子絶縁性粒子を合わせて電子絶縁性粒子と称する。電子絶縁性粒子は、電気絶縁性粒子であってよい。電気絶縁性粒子の例として、セラミック粒子が挙げられる。セラミック粒子は、アルミナ(Al)、ベーマイト(Al水和物)、マグネシア(MgO)、ジルコニア(ZrO)、チタニア(TiO2)、酸化鉄、シリカ(SiO)、及びチタン酸バリウム(BaTiO)からなる群から選択される少なくとも一種を含有してよく、好ましくは、アルミナ、ベーマイト、マグネシア、ジルコニア、及びチタニアからなる群より選択される少なくとも一種を含有する。電子絶縁性粒子は、0.7~1.1μmの範囲内の平均粒子径を有してよい。電子絶縁性粒子の平均粒子径は、正極電子絶縁層34d及び負極電子絶縁層32dの顕微鏡観察画像に基づき、無作為に選択した100個以上の電子絶縁性粒子の投影面積円相当径の算術平均を計算することによって求めることができる。電子絶縁性粒子は、電子絶縁性粒子の重量を基準として、100~200ppmのNa、50~100ppmのFe、又は50~100ppmのCaの少なくとも一つを含有してよい。
 正極電子絶縁層34d及び負極電子絶縁層32dは、さらに、バインダを含んでよい。バインダは、水系溶媒又は非水系溶媒(例えば、N-メチル-2-ピロリドン(NMP))に分散又は溶解するものであってよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸(PAA)、及びカルボキシメチルセルロース(CMC)からなる群から選択される少なくとも一種を含有してよい。
 正極電子絶縁層34d及び負極電子絶縁層32dは、さらに、分散剤を含んでよい。分散剤は、カルボン酸化合物及びリン酸化合物からなる群から選択される少なくとも一種を含有してよい。
 正極電子絶縁層34dと正極活物質層34bの間の界面34eは凹凸形状を有し、その凹凸高さは、2μm以上であり、好ましくは2~4μmの範囲内である。負極電子絶縁層32dと負極活物質層32b(負極第2活物質層32b2)の間の界面32eは凹凸形状を有し、その凹凸高さは、2μm以上であり、好ましくは2~4μmの範囲内である。正極電子絶縁層34dと正極活物質層34bの間の界面34e及び負極電子絶縁層32dと負極活物質層32bの間の界面32eの凹凸高さが2μm以上であることより、正極電子絶縁層34dと正極活物質層34bの間の密着性、及び負極電子絶縁層32dと負極活物質層32bの間の密着性を向上させることができる。それにより、正極電子絶縁層34d及び負極電子絶縁層32dがそれぞれ正極活物質層34b及び負極活物質層32bから剥離することを防止又は低減することができ、リチウムイオン二次電池100の信頼性を向上させることができる。
 正極活物質層34bと正極電子絶縁層34dの間の界面34eの凹凸高さは、例えば、正極活物質層34bに含まれる正極活物質粒子(正極活物質)及び正極電子絶縁層34dに含まれる正極電子絶縁性粒子の粒子径により制御することができる。図7に示すように、正極活物質層34bに含まれる正極活物質粒子34bp(正極活物質)の平均粒子径が、正極電子絶縁層34dに含まれる正極電子絶縁性粒子34dpの平均粒子径よりも大きい場合、正極電子絶縁性粒子34dpが正極活物質粒子34bpの間の間隙に入り込み、正極活物質層34bと正極電子絶縁層34dの間の界面34eが凹凸形状になる。例えば、4.5~5.5μmの範囲内の平均粒子径を有する球状の正極活物質粒子34bp、及び0.7~1.1μmの範囲内の平均粒子径を有する正極電子絶縁性粒子34dpを用いることにより、正極活物質層34bと正極電子絶縁層34dの間の界面34eの凹凸高さを2μm以上、好ましくは2~4μmの範囲内とすることができる。
 負極活物質層32b(負極第2活物質層32b2)と負極電子絶縁層32dの間の界面32eの凹凸高さも同様に、負極第2活物質層32b2に含まれる負極第2活物質粒子(負極第2活物質)及び負極電子絶縁層32dに含まれる負極電子絶縁性粒子の粒子径により制御することができる。例えば、9~11μmの範囲内の平均粒子径を有する鱗片の負極第2活物質粒子、及び0.7~1.1μmの範囲内の平均粒子径を有する負極電子絶縁性粒子を用いることにより、負極活物質層32bと負極電子絶縁層32dの間の界面32eの凹凸高さを2μm以上、好ましくは2~4μmの範囲内とすることができる。
 本願において、正極電子絶縁層34dと正極活物質層34bの間の界面34e、負極活物質層32b(負極第2活物質層32b2)と負極電子絶縁層32dの間の界面32eの凹凸高さは、以下のようにして測定される。走査型電子顕微鏡(SEM)により正極34又は負極32の任意の3か所の断面SEM像を得、各断面SEM像において、界面34e、32e上の任意の10個以上の点から所定の基準面までの距離(例えば、界面34e、32e上の任意の10個以上の点から正極電子絶縁層34dの表面34f、負極電子絶縁層32dの32fまでの距離、すなわち、任意の10箇所以上の正極電子絶縁層34dの厚さ及び負極電子絶縁層32dの厚さ)を測定する。得られた距離の値の標準偏差を、界面34e、32eの凹凸高さとする。なお、正極電子絶縁層34dの表面34fと負極電子絶縁層32dの表面32fは、互いに対向する面であり、界面34e、32eと比較して十分に平坦であってよい。例えば、正極電子絶縁層34d及び負極電子絶縁層32dの表面34f、32fの凹凸高さは、それぞれ、界面34e、32eの凹凸高さの10分の1以下であってよい。
 「正極電子絶縁層34dと正極活物質層34bの間の界面34eが凹凸形状を有する」は、「正極電子絶縁層34dと正極活物質層34bの間に、正極活物質及び電子絶縁性材料を含む正極混合層を有する」と言い換えることもできる。同様に、「負極電子絶縁層32dと負極活物質層32bの間の界面32eが凹凸形状を有する」は、「負極電子絶縁層32dと負極活物質層32bの間に、負極活物質及び電子絶縁性材料を含む負極混合層を有する」と言い換えることができる。正極混合層の厚さは、2μm以上、好ましくは2~4μmの範囲内である。負極混合層の厚さは、2μm以上、好ましくは2~4μmの範囲内である。正極混合層及び負極混合層の厚さは、上述した正極電子絶縁層34d及び負極電子絶縁層32dと正極活物質層34b及び負極活物質層32bの間の界面34e、32eの凹凸高さと同様に測定することができる。
 正極電子絶縁層34dと負極電子絶縁層32dは互いに接触していてよい。好ましくは、正極電子絶縁層34dと負極電子絶縁層32dは互いに固定されずに接触していてよい。正極電子絶縁層34dと負極電子絶縁層32dが互いに固定されていないことにより、リチウムイオン二次電池100の充放電に伴う負極活物質層32b及び正極活物質層34bの膨張収縮により生じる応力を緩和することができるとともに、正極活物質層34bと負極活物質層32bの間の短絡を引き起こし得るデンドライトが、正極電子絶縁層34d及び負極電子絶縁層32dを貫通して成長することを防止又は低減させることができる。
 正極電子絶縁層34dの正極活物質層34bに対する剥離強度、及び負極電子絶縁層32dの負極活物質層32bに対する剥離強度は、正極電子絶縁層34dの負極電子絶縁層32dに対する剥離強度よりも大きくてよい。剥離強度は、例えば、JIS C 0806-3 1999に準拠した180°テープ剥離試験にて測定することができる。
 正極活物質層34bと正極電子絶縁層34dの間の界面34eの凹凸高さは、上述した正極活物質粒子及び正極電子絶縁性粒子の粒子径に加えて、正極活物質層34bの塗工による形成に用いる正極スラリー及び正極電子絶縁層34dの塗工による形成に用いる正極電子絶縁材スラリーの溶媒の種類及び粘度等によっても制御することができる。同様に、負極活物質層32b(負極第2活物質層32b2)と負極電子絶縁層32dの間の界面32eの凹凸高さも、負極活物質層32b(負極第2活物質層32b2)の塗工による形成に用いる負極スラリー(負極第2スラリー)及び負極電子絶縁層32dの塗工による形成に用いる負極電子絶縁材スラリーの溶媒の種類及び粘度等により制御することができる。
 電子絶縁性粒子の粒子径、並びにプレス加工におけるプレス圧等により、正極電子絶縁層34d及び負極電子絶縁層32dの平均細孔径を制御することができる。具体的には、プレス圧が高いほど平均細孔径が小さくなり、電子絶縁性粒子の粒子径が小さいほど、平均細孔径が小さくなる。
 以上の他の例の正極34を備えるセパレータレスの電池1では、負極活物質層32bと負極電子絶縁層32dとの間の密着性が高いので安定したイオン伝導が実現する。また、このような他の例の電池1は、特に、上述した二層の同時塗工が適用された製造方法で製造された電極、又は後述する三層の同時塗工が適用された製造方法で製造された電極を搭載することにより、高エネルギー密度で長寿命の電池の提供に寄与することができる。
(変形例)
 さらに、以上の他の例の負極32を備えるセパレータレスの電池1の変形例(リチウムイオン二次電池)では、正極電子絶縁層34d及び負極電子絶縁層32dの各々が固体電解質(すなわち、電子絶縁性且つイオン伝導性の材料)を含む層である。この変形例の電池(リチウムイオン二次電池)は、電解液を含む必要がないため、高い安全性有することができる。この変形例において、正極電子絶縁層34d及び負極電子絶縁層32dに含まれる電子絶縁性粒子は、固体電解質粒子であってよい。固体電解質はプレス成形により良好に成形することができるので、この場合には、正極電子絶縁層34d及び負極電子絶縁層32dがバインダ及び分散剤を含むことは必須ではない。
 さらに、正極活物質層34bが、活物質、並びに任意選択のバインダ、導電助剤、及び分散剤に加えて、固体電解質をさらに含有してもよい。それにより、正極活物質層34bのイオン伝導性を向上させることができる。
 負極活物質層32bに含まれる負極第1活物質層32b1及び負極第2活物質層32b2の少なくとも一方が、電極活物質、並びに任意選択のバインダ、導電助剤、及び分散剤に加えて、固体電解質をさらに含有してもよい。それにより、負極第1活物質層32b1及び負極第2活物質層32b2の少なくとも一方のイオン伝導性を向上させることができる。
 以上の変形例の電池では、電解液を含む必要がなく、かつ電子絶縁層(正極電子絶縁層34d及び負極電子絶縁層32d)の強度がセパレータより高いため、高い安全性を実現できる。また、このような変形例の電池は、特に、上述した二層の同時塗工が適用された製造方法で製造された電極、又は後述する三層の同時塗工が適用された製造方法で製造された電極を搭載することにより、高エネルギー密度で長寿命の電池の提供に寄与することができる。
(実施形態に係る他の例の負極を備えるセパレータレスの電池の製造方法)
 このようなセパレータレスの電池(リチウムイオン二次電池)は、実施形態に係る他の例の負極の製造方法以外は、本発明の技術分野で公知の技術を用いて製造できる。
 実施形態に係る他の例の負極32は、例えば、以下のようにして、負極活物質層32bの負極第1活物質層32b1及び負極第2活物質層32b2並びに負極電子絶縁層32dを同時塗工で製造できる。
 まず、負極第1活物質層32b1に含まれる材料(例えば、負極活物質、導電助剤、バインダ等)を用意する。この材料を混合し、得られた混合物を溶媒(例えば、N-メチル-2-ピロリドン(NMP)及び/又は水)に分散させて、負極第1スラリーを得る。また、負極第2活物質層32b2に含まれる材料(例えば、負極活物質、導電助剤、バインダ等)を用意する。この材料を混合し、得られた混合物を溶媒(例えば、N-メチル-2-ピロリドン(NMP)及び/又は水)に分散させて、負極第2スラリーを得る。さらに、負極電子絶縁層34dに含まれる材料(例えば、負極電子絶縁性粒子、バインダ、分散剤等)を用意する。この材料を混合し、得られた混合物を溶媒(例えば、N-メチル-2-ピロリドン(NMP)及び/又は水)に分散させて、負極電子絶縁材スラリーを得る。
 次に、負極第1スラリー、負極第2スラリー、及び負極電子絶縁材スラリーを負極集電体上に同時に塗布する。それにより、負極第1スラリー層、負極第2スラリー層、及び負極電子絶縁材スラリー層が形成される。次に、乾燥炉等により、負極第1スラリー層、負極第2スラリー層、及び負極電子絶縁材スラリー層に含まれる溶媒を揮発させて、負極第1スラリー層、負極第2スラリー層、及び負極電子絶縁材スラリー層を乾燥させる。それにより、負極集電体の一方の面に負極第1活物質層32b1及び負極第2活物質層32b2並びに負極電子絶縁層32dが形成される。次に、、負極集電体、負極第1活物質層及び負極第2活物質層32b2、並びに負極電子絶縁層32dをプレス加工する。具体的には、負極集電体、負極第1活物質層32b1及び負極第2活物質層32b2、並びに負極電子絶縁層32dを含む積層体を60~120℃に熱せられたロールで挟んで圧力をかける。その後、この積層体を所定の幅にスリット加工する。それにより、負極が得られる。
 以上の三層の同時塗工が適用された製造方法で製造された負極32を備える電池1では、図6にその正極32の構造が示されているように、各層の界面に凹凸を有するため強固に密着されているため、高い安全性と信頼性を得られる。さらに、上記変形例のリチウムイオン二次電池に、この製造方法を適用すれば、電解液を含む必要がなく、さらに高い安全性と信頼性を得られる。
 また、負極活物質層32b(負極第2活物質層32b2)の負極電子絶縁層32dとの界面がロールによるプレスがされない。例えば、負極電子絶縁層32dの負極活物質層32bと反対側の界面がロールによりプレスされる。これにより、負極活物質層32bの負極電子絶縁層32dとの界面は、負極電子絶縁層32dの反対側界面よりも、凹凸が大きい。これにより、負極活物質層32bは広い表面積を有する。このため、イオン伝導において好ましい。また、ロールに面する負極電子絶縁層32dの表面よりも、負極電子絶縁層32dと負極活物質層32bの界面の方が凹凸を大きく形成すると、密着性もよく、安定したイオン伝導性が得られるので好ましい。
[第2実施形態]
 第2実施形態に係るリチウムイオン二次電池用負極は、負極集電体と、上記負極集電体に積層された負極活物質層と、を備え、上記負極活物質層は、上記負極集電体に積層された負極第1活物質層と、上記負極第1活物質層に積層された負極第2活物質層と、を含み、上記負極第1活物質層が、負極第1活物質を含み、上記負極第2活物質層が、負極第2活物質を含み、上記負極第2活物質層の密度が、上記負極第1活物質層の密度より低いという第1条件、及び上記負極第1活物質層及び上記負極第2活物質層が、導電助剤を含み、上記負極第2活物質層の総重量に対する上記導電助剤の重量の割合が、上記負極第1活物質層の総重量に対する上記導電助剤の重量の割合よりも多いという第2条件のうちの少なくとも一方の条件を満たし、上記負極第1活物質が、Si系材料を含有する。Si系材料はリチウムがプレドープされていても良い。そして、第2実施形態に係るリチウムイオン二次電池は、正極と、負極と、電解質とを備えるリチウムイオン二次電池であって、上記負極が第2実施形態に係るリチウムイオン二次電池用負極である。
(第2実施形態に係る一例の負極を備える電池)
 第2実施形態に係る一例の負極を備える電池の構成について、図8を参照して、第1実施形態に係る一例の負極を備える電池の構成とは異なる点を中心に、説明する。
 第2実施形態に係る一例の負極120では、第1実施形態に係る一例の負極120と同様に、負極活物質層122が、負極集電体121に積層された負極第1活物質層123と、負極第1活物質層123に積層された負極第2活物質層124と、を含む。すなわち、負極120は、活物質層を複数備える。
 負極第1活物質層123は、図8に示すように、負極第1活物質123aを含む。負極第1活物質123aは、リチウムがプレドープされたSi系材料123a3を含有する。負極第1活物質層123は、負極第1活物質123aに加えて、例えば、導電助剤123c、バインダ123b等の添加剤をさらに含む。負極第1活物質層123は、導電助剤123cとして、カーボンナノチューブを含んでいる。負極第1活物質層123は、相対的にリチウムイオンを多く貯蔵できる高容量層であり、一般的には、電気自動車(BEV:Battery Electric Vehicle)において用いられている負極活物質層に相当する。負極第2活物質層124は、一般的には、ハイブリッド自動車(HEV:Hybrid Electric Vehicle)において用いられている負極活物質層に相当する。
 負極第2活物質層124は、図8に示すように、負極第2活物質124aを含む。負極第2活物質124aは、例えば、天然黒鉛、人工黒鉛(人造黒鉛)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料、非晶質炭素で被覆した黒鉛などからなる群から選択される少なくとも一種を含有する。負極第2活物質層124は、負極第2活物質124aに加えて、例えば、導電助剤124c、バインダ124b等の添加剤をさらに含む。
 負極活物質層122において、負極第2活物質層124の密度が、負極第1活物質層123の密度より低くなっている。さらに、負極第2活物質層124の総重量に対する導電助剤124cの重量の割合が、負極第1活物質層123の総重量に対する導電助剤123cの重量の割合よりも多くなっている。
 さらに、負極活物質層122において、負極第2活物質層124の負極第2活物質124aの平均粒径が、負極第1活物質層123の負極第1活物質123aの平均粒径よりも小さくなっている。このため、負極第2活物質層124の負極第2活物質124aのBET比表面積が、負極第1活物質層123の負極第1活物質123aのBET比表面積よりも大きくなっている。
 第2実施形態に係る一例の負極120を備える電池1の構成は、以上に説明した点を除いて、第1実施形態に係る一例の負極120を備える電池1の構成と同様である。
(第2実施形態に係る一例の負極を備える電池の製造方法)
 また、第2実施形態に係る一例の負極を備える電池の製造方法は、負極第1スラリーを調製するために負極第1活物質層123に含まれる材料として第2実施形態に係る一例の材料を用いる点、及び負極第2スラリーを調製するために負極第2活物質層124に含まれる材料として第2実施形態に係る一例の材料を用いる点を除いて、第1実施形態に係る一例の負極を備える電池の製造方法と同様である。なお、第2実施形態に係る一例の負極を備える電池の製造方法において、負極第2活物質層124の密度を、負極第1活物質層123の密度より低くするためには、例えば、負極第2活物質層124の形成時のプレス圧力を、負極第1活物質層123の形成時のプレス圧力よりも低くする方法が用いられる。
(第2実施形態に係る一例の負極を備える電池の効果)
 第2実施形態に係る一例の負極を備える電池の効果について、図8を参照して説明する。
 第2実施形態に係る一例の負極120では、負極活物質層122が、負極集電体121に積層された負極第1活物質層123と、負極第1活物質層123に積層された負極第2活物質層124と、を含む。そして、負極第2活物質層124の密度が、負極第1活物質層123の密度より低くなっている。これにより、負極活物質層122において、電池1の充電時にリチウムイオンの受入れ側となるセパレータ130側に、電解液の液回りが良好な負極第2活物質層124が配置されるので、電池1の急速充電性能を改善できる。また、負極第2活物質層124の総重量に対する導電助剤124cの重量の割合が、負極第1活物質層123の総重量に対する導電助剤123cの重量の割合よりも多くなっている。電池1の充電時にリチウムイオンの受入れ側となるセパレータ130側に、導電性が高い負極第2活物質層124が配置されるので、電池1の急速充電性能をさらに改善できる。
 一方、負極第2活物質層124の密度が低くなっている場合、あるいは負極第2活物質層124の総重量に対する導電助剤124cの重量の割合が多くなっている場合には、電池1のエネルギー密度が低減するおそれがある。これに対して、負極120では、負極第1活物質層123に含まれる負極第1活物質123aが、リチウムがプレドープされたSi系材料123a3を含有している。このため、電池1の初回の充放電時に正極110の正極活物質層112に含まれるリチウムイオンが消費されてそれ以後の電池反応に寄与しなくなることを抑制でき、電池1の充放電容量の低下を抑制できる。一方、Si系材料123a3は、リチウムイオンの挿入・脱離に伴う膨張及び収縮が大きいので、負極第1活物質123aがSi系材料123a3を含有していることで、負極第1活物質層123の導電性が低下し、負極120が変形するおそれがある。しかしながら、負極第1活物質層123は、導電助剤123cとして、導電性の向上作用が特に高いカーボンナノチューブを含み、さらに、Si系材料123a3どうしを結着するバインダ123bを含んでいる。このため、負極第1活物質層123の導電性の低下を抑制でき、負極120の変形を抑制できる。よって、負極120では、電池1のエネルギー密度の低減を抑制し、電池1のサイクル特性を改善できる。従って、負極120では、充電性能及び長寿命の向上を実現できる。
 より具体的には、負極活物質層における単位体積当たりの負極活物質が電解液と接触できる面積は、高容量層である負極第1活物質層と比較して、高入出力層である負極第2活物質層の方が相対的に大きくなる。すなわち、負極第2活物質層の方が、負極第1活物質層よりも相対的に負極活物質に電解液が接触し易くなる。従って、高入出力層である負極第2活物質層において、電池の充電特性、特に急速充電特性を向上させることができる。ここで、負極第1活物質は、例えば、シリコンに、リチウムがプレドープされた酸化シリコン(Li-SiO)である。シリコンは、電池の充電に伴い一定量のリチウムを取り込み保持するため、そのリチウムを予めドープすることによって、正極の正極活物質量を減らすことができる。電池の充放電に伴う単位体積当たりの負極活物質の膨張収縮は、高入出力層である負極第2活物質層と比較して、高容量層である負極第1活物質層の方が相対的に大きくなる。特に、負極第1活物質に含有されるSi系材料は、炭素系材料と比較して、膨張収縮が大きい。しかしながら、負極第1活物質層に含まれるカーボンナノチューブとバインダによって、負極第1活物質等の膨張収縮を吸収することができる。従って、高容量層である負極第1活物質層において、電池が充放電を繰り返した場合における負極第1活物質等のサイクル耐久性とリチウムイオンの貯蔵耐久性を向上させることができる。
 負極第2活物質層の総重量に対する導電助剤の重量の割合が、負極第1活物質層の総重量に対する導電助剤の重量の割合よりも多くなっている場合、負極活物質層における導通性は、高容量層である負極第1活物質層と比較して、高入出力層である負極第2活物質層の方が相対的に大きくなる。従って、負極第2活物質層において、電池の充電特性、特に急速充電特性を向上させることができる。一方、負極第1活物質層は導電助剤の割合が負極第2活物質層よりも少ないので反応面積が相対的に小さくなる。従って、負極第1活物質層において、電池が充放電を繰り返した場合における負極第1活物質等のサイクル耐久性とリチウムイオンの貯蔵耐久性を向上させることができる。
 さらに、負極第2活物質層124の負極第2活物質124aの平均粒径が、負極第1活物質層123の負極第1活物質123aの平均粒径よりも小さくなっている。これにより、負極第2活物質層124の負極第2活物質124aのBET比表面積が、負極第1活物質層123の負極第1活物質123aのBET比表面積よりも大きくなっている。このため、負極活物質層122において、電池1の充電時にリチウムイオンの受入れ側となるセパレータ130側に、リチウムイオンとの反応面積が大きい負極第2活物質124aを含む負極第2活物質層124が配置されるので、電池1の急速充電性能をさらに改善できる。
 さらに、負極120を備える電池1では、電解液がSEI被膜形成剤をさらに含んでいる場合には、負極活物質の表面及び電解液の反応を抑制することで、電池1のサイクル特性をさらに改善し、電池1の貯蔵耐久性をさらに改善できる。
 続いて、第2実施形態に係るリチウムイオン二次電池用負極及びその負極を備えるリチウムイオン二次電池の構成について、さらに詳細に説明する。
1.リチウムイオン二次電池用負極
 第2実施形態に係るリチウムイオン二次電池用負極は、負極集電体と、上記負極集電体に積層された負極活物質層と、を備え、上記負極活物質層は、上記負極集電体に積層された負極第1活物質層と、上記負極第1活物質層に積層された負極第2活物質層と、を含む。
(1)負極第1活物質層
 上記負極第1活物質層は、負極第1活物質を含む。上記負極第1活物質は、リチウムイオンの挿入・脱離が可能な負極活物質材として、Si系(ケイ素系)材料を含有する。Si系材料はリチウムがプレドープされていても良い。
 ここで、リチウムがプレドープされたSi系材料とは、Si系材料にリチウムがプレドープされた負極活物質材を指す。リチウムがプレドープされたSi系材料としては、例えば、Si単体(ケイ素単体)、例えば、SiO、SiO等のSi化合物(ケイ素化合物)に、リチウムがプレドープされた負極活物質材が挙げられる。
 負極第1活物質としては、負極活物質材として、Si系材料を含有するものであれば特に限定されないが、負極活物質材として、Si系材料の他に、例えば、天然黒鉛、人工黒鉛(人造黒鉛)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料、非晶質炭素で被覆した黒鉛などからなる群から選択される少なくとも一種をさらに含有するものでもよい。Si系材料よりも柔軟なこれらの材料を含有することで、負極の損傷を抑制できるからである。
 負極第1活物質としては、上記群から選択される少なくとも一種を含さらに有するものの中でも、ピッチコート天然黒鉛と、表面がコートされずに露出する天然黒鉛と、を含有するものが好ましく、特に、ピッチコート天然黒鉛と、表面がコートされずに露出する天然黒鉛と、人工黒鉛と、を含有するものが好ましい。
 負極第1活物質層は、負極第1活物質を含むものであれば特に限定されないが、例えば、負極第1活物質に加えて、導電助剤及びバインダ等からなる群から選択される少なくとも一種の添加剤をさらに含むものが好ましい。負極第1活物質層の導電助剤としては、第1実施形態に係る負極第1活物質層と同様のものが用いられる。負極第1活物質層のバインダとしては、第1実施形態に係る負極第1活物質層と同様のものが用いられる。
 負極第1活物質層としては、中でも、導電助剤としてカーボンナノチューブを含み、バインダを含むものが好ましい。
 負極第1活物質層の総重量に対する負極第1活物質の重量の割合は、例えば、80重量%以上99重量%以下が好ましい。
 負極第1活物質層の積層方向(例えば、図8の奥行方向Y)の片側の厚み(例えば、図8の第1の厚みT1)は、第1実施形態に係る負極第1活物質層と同様であるため、ここでの説明は省略する。
(2)負極第2活物質層
 上記負極第2活物質層が、負極第2活物質を含む。負極第2活物質としては、リチウムイオンの挿入・脱離が可能な負極活物質材を含有するものであれば特に限定されないが、例えば、天然黒鉛、人工黒鉛(人造黒鉛)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料、非晶質炭素で被覆した黒鉛などからなる群から選択される少なくとも一種を含有するものである。
 負極第2活物質としては、例えば、上記群から選択される少なくとも一種を含有するものであるが、中でも、ピッチコート天然黒鉛と、表面がコートされずに露出する天然黒鉛と、を含有するものが好ましく、特に、ピッチコート天然黒鉛と、表面がコートされずに露出する天然黒鉛と、人工黒鉛と、を含有するものが好ましい。
 負極第2活物質層は、負極第2活物質を含むものであれば特に限定されないが、例えば、負極第2活物質に加えて、導電助剤及びバインダ等からなる群から選択される少なくとも一種の添加剤をさらに含むものが好ましい。負極第2活物質層の導電助剤としては、例えば、負極第1活物質層と同様のものが用いられる。負極第2活物質層のバインダとしては、例えば、負極第1活物質層と同様のものが用いられる。
 負極第2活物質層の総重量に対する負極第2活物質の重量の割合は、例えば、80重量%以上99重量%以下が好ましい。
 負極第2活物質層の積層方向(例えば、図8の奥行方向Y)の片側の厚み(例えば、図8の第2の厚みT2)は、第1実施形態に係る負極第2活物質層と同様であるため、ここでの説明は省略する。
(3)負極活物質層
 負極活物質層は、上記負極第2活物質層の密度が、上記負極第1活物質層の密度より低いという第1条件、及び上記負極第1活物質層及び上記負極第2活物質層が、導電助剤を含み、上記負極第2活物質層の総重量に対する上記導電助剤の重量の割合が、上記負極第1活物質層の総重量に対する上記導電助剤の重量の割合よりも多いという第2条件のうちの少なくとも一方の条件を満たす。
 負極活物質層は、上記第1及び第2条件のうちの少なくとも一方の条件を満たすものであれば特に限定されないが、上記第1条件を満たす負極活物質層としては、中でも、上記負極第2活物質層の空隙の割合が、上記負極第1活物質層の空隙の割合より高いという条件を満たすものが好ましい。負極第2活物質層での電解液の液回りが、負極第1活物質層より良好となり易いからである。
 上記第1条件を満たす負極活物質層としては、例えば、負極第1活物質層の密度が1.4g/cm以上2.0g/cm以下であり、かつ負極第2活物質層の密度が1.0g/cm以上1.6g/cm以下であるものが好ましい。負極第1活物質層の密度が大きいことで電解液との反応が抑制される。それに伴い寿命性能が向上するからである。負極第2活物質層の密度が小さいことで電解液との反応が促進される。それに伴い充電性能が向上するからである。
 なお、負極第1活物質層及び負極第2活物質層の空隙の割合の算出方法は、特に限定されないが、例えば「3D-SEM」を用いて算出することができる。電池の積層断面における負極第1活物質層及び負極第2活物質層の2D写真群を得る。そして、2D写真群中に存在する空隙の面積を算出して、当該面積を積分し3D領域の空隙の体積を算出する。そして、3D領域全体の体積に対する空隙の体積を算出することで空隙の割合を算出することができる。
 上記第2条件を満たす負極活物質層としては、例えば、上記負極第1活物質層の総重量に対する上記導電助剤の重量の割合が0.5重量%以上10重量%以下であり、かつ上記負極第2活物質層の総重量に対する上記導電助剤の重量の割合が1重量%以上15重量%以下であるものが好ましい。重量の割合が大きいとエネルギー密度が小さくなってしまい、重量の割合が小さいと電極内部の導電性が悪くなってしまうからである。
 負極活物質層としては、上記負極第2活物質のBET比表面積が、上記負極第1活物質のBET比表面積よりも大きいものが好ましい。負極第1活物質及び負極第2活物質のBET比表面積の求め方、並びに負極第1活物質のBET比表面積及び負極第2活物質のBET比表面積の好ましい範囲については、第1実施形態と同様である。
 負極活物質層としては、負極第2活物質のBET比表面積が、負極第1活物質のBET比表面積よりも大きいものの中でも、例えば、上記負極第2活物質の平均粒径が、上記負極第1活物質の平均粒径よりも小さいものが好ましい。負極第2活物質の平均粒径を負極第1活物質の平均粒径よりも小さくするだけで、負極第2活物質のBET比表面積を負極第1活物質のBET比表面積よりも大きくすることができるので、電池の急速充電性能を容易に改善できるからである。なお、平均粒径の定義、並びに負極第1活物質のメディアン径及び負極第2活物質のメディアン径の好ましい範囲については、第1実施形態と同様である。
(4)製造方法
 第2実施形態に係るリチウムイオン二次電池用負極の製造方法としては、負極活物質層の負極第1活物質層及び負極第2活物質層を同時塗工で形成する製造方法を用いてもよい。この製造方法は、第1実施形態に係る負極活物質層の負極第1活物質層及び負極第2活物質層を同時塗工で形成する製造方法と同様である。
(5)リチウムイオン二次電池用負極
 第2実施形態に係るリチウムイオン二次電池用負極としては、負極第1活物質層及び負極第2活物質層の活物質のBET比表面積及び平均粒径を調整した他の例の負極でもよい。
 このような他の例の負極において、負極第1活物質層は、リチウムがプレドープされた、酸化シリコン(SiO)等のSi系材料を含有する負極第1活物質と、カーボンナノチューブと、バインダとを含んでいる。負極第2活物質層は、炭素系の負極第2活物質を含んでいる。負極第2活物質層の負極第2活物質のBET比表面積は、負極第1活物質層の負極第1活物質のBET比表面積よりも大きい。負極第2活物質層の負極第2活物質の平均粒径は、負極第1活物質層の負極第1活物質の平均粒径よりも小さい。
 このような構成によれば、負極活物質層における単位体積当たりの負極活物質の反応面積は、高容量層である負極第1活物質層と比較して、高入出力層である負極第2活物質層の方が相対的に大きくなる。従って、高入出力層である負極第2活物質層において、電池の充電特性、特に急速充電特性を向上させることができる。一方、電池の充放電に伴う単位体積当たりの負極活物質の膨張収縮は、高入出力層である負極第2活物質層と比較して、高容量層である負極第1活物質層の方が相対的に大きくなる。すなわち、シリコン系の負極第1活物質は、炭素系の負極第2活物質と比較して、膨張収縮が大きい。しかしながら、負極第1活物質層では、カーボンナノチューブとバインダによって、負極第1活物質等の膨張収縮を吸収することができる。したがって、高容量層である負極第1活物質層において、電池が充放電を繰り返した場合における負極第1活物質等のサイクル耐久性とリチウムイオンの貯蔵耐久性を向上させることができる。
2.リチウムイオン二次電池
 第2実施形態に係るリチウムイオン二次電池は、正極と、負極と、電解質とを備えるリチウムイオン二次電池であって、上記負極が第2実施形態に係るリチウムイオン二次電池用負極である。
 第2実施形態に係るリチウムイオン二次電池としては、特に限定されないが、例えば、正極と、負極と、セパレータと、を有する充放電体とを備え、電解質がセパレータに含侵されたものである。第2実施形態に係るリチウムイオン二次電池としては、上記電解質が溶解した電解液を備え、上記電解液がSEI被膜形成剤等の添加剤をさらに含有するものでもよく、中でも、上記電解液がSEI被膜形成剤を含有するものが好ましい。SEI被膜及びSEI被膜形成剤については、第1実施形態と同様である。
 さらに、第2実施形態に係るリチウムイオン二次電池としては、電解質として、固体電解質を備える電池であって、正極と、負極と、固体電解質を含む固体電解質層と、を有し、固体電解質層が正極と負極との間に介在する充放電体とを備えるものでもよい。このような固体電解質を備える電池、及び固体電解質の例については、第1実施形態と同様である。
3.その他
 第2実施形態に係る他の例の負極を備える電池としては、セパレータの代わりに、正極に設けた正極電子絶縁層及び負極に設けた負極電子絶縁層を備えるセパレータレスの電池でもよい。このようなセパレータレスの電池の構成、変形例、及び製造方法については、第1実施形態と同様である。
 本発明は、以下の態様を含む。
[項1]
 正極集電体、前記正極集電体上に設けられた正極合剤層、及び前記正極合剤層上に設けられた正極電子絶縁層を備える正極と、
 負極集電体、前記負極集電体上に設けられた負極合剤層、及び前記負極合剤層上に設けられた負極電子絶縁層を備える負極と、
を備え、
 前記正極合剤層と前記正極電子絶縁層の間の界面の凹凸高さが2μm以上であり、
 前記負極合剤層と前記負極電子絶縁層の間の界面の凹凸高さが2μm以上である、リチウムイオン二次電池。
[項2]
 前記正極電子絶縁層と前記負極電子絶縁層が互いに接触している、項1に記載のリチウムイオン二次電池。
[項3]
 前記正極電子絶縁層と前記負極電子絶縁層が互いに固定されずに接触している、項1又は2に記載のリチウムイオン二次電池。
1 電池(リチウムイオン二次電池)、100 充放電体、110 正極、111 正極集電体、111a 集電部、111b 正極タブ、111c 側縁、112 正極活物質層、120 負極(リチウムイオン二次電池用負極)、121 負極集電体、121a 集電部、121b 負極タブ、121c 側縁、122 負極活物質層、123 負極第1活物質層、124 負極第2活物質層、130 セパレータ、200 容器、201 ケース、202 蓋、300 外部端子、301 正極端子、302 負極端子、X 電池1の横幅方向、Y 電池1の奥行方向、Z 電池1の高さ方向。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (10)

  1.  負極集電体と、
     前記負極集電体に積層された負極活物質層と、を備え、
     前記負極活物質層は、前記負極集電体に積層された負極第1活物質層と、前記負極第1活物質層に積層された負極第2活物質層と、を含み、
     前記負極第1活物質層が、負極第1活物質を含み、
     前記負極第2活物質層が、負極第2活物質を含み、
     前記負極第2活物質のBET比表面積が、前記負極第1活物質のBET比表面積よりも大きい、リチウムイオン二次電池用負極。
  2.  前記負極第2活物質の平均粒径が、前記負極第1活物質の平均粒径よりも小さい、請求項1に記載のリチウムイオン二次電池用負極。
  3.  負極集電体と、
     前記負極集電体に積層された負極活物質層と、を備え、
     前記負極活物質層は、前記負極集電体に積層された負極第1活物質層と、前記負極第1活物質層に積層された負極第2活物質層と、を含み、
     前記負極第1活物質層が、負極第1活物質を含み、
     前記負極第2活物質層が、負極第2活物質を含み、
     前記負極第2活物質層の密度が、前記負極第1活物質層の密度より低いという第1条件、及び前記負極第1活物質層及び前記負極第2活物質層が、導電助剤を含み、前記負極第2活物質層の総重量に対する前記導電助剤の重量の割合が、前記負極第1活物質層の総重量に対する前記導電助剤の重量の割合よりも多いという第2条件のうちの少なくとも一方の条件を満たし、
     前記負極第1活物質が、Si系材料を含有する、リチウムイオン二次電池用負極。
  4.  前記負極第1活物質に含有される前記Si系材料は、リチウムがプレドープされている、請求項3に記載のリチウムイオン二次電池用負極。
  5.  前記負極第1活物質層が、導電助剤としてカーボンナノチューブを含み、バインダを含む、請求項3又は4に記載のリチウムイオン二次電池用負極。
  6.  前記負極第2活物質のBET比表面積が、前記負極第1活物質のBET比表面積よりも大きい、請求項3又は4に記載のリチウムイオン二次電池用負極。
  7.  前記負極第2活物質の平均粒径が、前記負極第1活物質の平均粒径よりも小さい、請求項6に記載のリチウムイオン二次電池用負極。
  8.  前記負極第1活物質及び前記負極第2活物質の少なくとも一方が、ピッチコート天然黒鉛、及び表面がコートされずに露出する天然黒鉛を含有する、請求項1~4のいずれか1項に記載のリチウムイオン二次電池用負極。
  9.  正極と、負極と、電解質とを備えるリチウムイオン二次電池であって、前記負極が請求項1~4のいずれか1項に記載のリチウムイオン二次電池用負極である、リチウムイオン二次電池。
  10.  前記電解質が溶解した電解液を備え、前記電解液がSEI被膜形成剤を含有する、請求項9に記載のリチウムイオン二次電池。
PCT/JP2022/033038 2022-09-01 2022-09-01 リチウムイオン二次電池用負極及びリチウムイオン二次電池 WO2024047853A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033038 WO2024047853A1 (ja) 2022-09-01 2022-09-01 リチウムイオン二次電池用負極及びリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033038 WO2024047853A1 (ja) 2022-09-01 2022-09-01 リチウムイオン二次電池用負極及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2024047853A1 true WO2024047853A1 (ja) 2024-03-07

Family

ID=90099056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033038 WO2024047853A1 (ja) 2022-09-01 2022-09-01 リチウムイオン二次電池用負極及びリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2024047853A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273183A (ja) * 2006-03-30 2007-10-18 Sony Corp 負極及び二次電池
WO2011114433A1 (ja) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 リチウム二次電池
WO2016035289A1 (ja) * 2014-09-05 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2016081801A (ja) * 2014-10-20 2016-05-16 株式会社リコー 正極用電極、非水電解液蓄電素子
WO2019131195A1 (ja) * 2017-12-27 2019-07-04 パナソニック株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2021128845A (ja) * 2020-02-12 2021-09-02 パナソニック株式会社 非水電解質二次電池及び二次電池モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273183A (ja) * 2006-03-30 2007-10-18 Sony Corp 負極及び二次電池
WO2011114433A1 (ja) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 リチウム二次電池
WO2016035289A1 (ja) * 2014-09-05 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2016081801A (ja) * 2014-10-20 2016-05-16 株式会社リコー 正極用電極、非水電解液蓄電素子
WO2019131195A1 (ja) * 2017-12-27 2019-07-04 パナソニック株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2021128845A (ja) * 2020-02-12 2021-09-02 パナソニック株式会社 非水電解質二次電池及び二次電池モジュール

Similar Documents

Publication Publication Date Title
JP5828346B2 (ja) リチウム二次電池
US9478784B2 (en) Nonaqueous electrolyte secondary battery
US9240701B2 (en) Lithium-ion secondary battery
US9847516B2 (en) Non-aqueous electrolyte secondary battery
US9966605B2 (en) Non-aqueous electrolyte secondary battery
US9997768B2 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
KR102391375B1 (ko) 비수전해질 이차 전지
JP2015076120A (ja) 非水電解質二次電池
JP2016181409A (ja) 蓄電素子
JP6008198B2 (ja) 二次電池および該電池用のセパレータ
US20220302436A1 (en) Electrode, energy storage device, and method for manufacturing electrode
WO2018168607A1 (ja) 電極及び蓄電素子
JP5999433B2 (ja) 非水電解液二次電池及びその製造方法
JP2000090932A (ja) リチウム二次電池
CN112640164A (zh) 非水电解质二次电池用负极活性物质、非水电解质二次电池用负极、以及非水电解质二次电池
WO2024047853A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
US20160049651A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2019022063A1 (ja) 電極、蓄電素子、及び電極の製造方法
JP2016015245A (ja) リチウムイオン二次電池
JP2023072261A (ja) セパレータおよびこれを備える非水電解液二次電池
US20220190321A1 (en) Energy storage device
WO2024047854A1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2024048609A1 (ja) 負極及び電池
WO2024048611A1 (ja) 負極及び電池
WO2015077686A1 (en) High capacity lithium ion battery button cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957447

Country of ref document: EP

Kind code of ref document: A1