WO2024046023A1 - 电化学装置及用电设备 - Google Patents

电化学装置及用电设备 Download PDF

Info

Publication number
WO2024046023A1
WO2024046023A1 PCT/CN2023/110806 CN2023110806W WO2024046023A1 WO 2024046023 A1 WO2024046023 A1 WO 2024046023A1 CN 2023110806 W CN2023110806 W CN 2023110806W WO 2024046023 A1 WO2024046023 A1 WO 2024046023A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical device
recess
sealing nail
thickness
weak area
Prior art date
Application number
PCT/CN2023/110806
Other languages
English (en)
French (fr)
Inventor
黄明悦
李洋
赵唯
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2024046023A1 publication Critical patent/WO2024046023A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of energy storage technology, and in particular to an electrochemical device and electrical equipment.
  • the casing is usually processed to form a weak area.
  • the gas in the battery can break through the weak area, so that the battery can exhaust and relieve pressure.
  • the casing of hard-shell batteries is thicker, when processing weak areas, a larger amount of removal is required in the weak areas, resulting in higher processing costs.
  • the casings of hard-shell batteries are mostly stamped parts, and their thickness fluctuates greatly, resulting in poor accuracy of the remaining thickness in weak areas, thus affecting the pressure relief effect.
  • Embodiments of the present application provide an electrochemical device, including a housing and a sealing nail.
  • the casing is provided with a through hole.
  • the sealing nail is arranged on the housing, and the sealing nail covers and seals the through hole.
  • the sealing nail includes a weak area, and the thickness of the weak area is smaller than the thickness of the sealing nail.
  • the weak area includes a starting end and a tail end, and the starting end and the tail end are separated from each other.
  • the thickness of the shell is H1
  • the thickness of the sealing nail is H2, 0.1 ⁇ H2/H1 ⁇ 0.7.
  • the thickness of the sealing nail is smaller than the thickness of the casing.
  • the weak area of the non-closed loop is located at the sealing nail.
  • the thickness of the weak area is smaller than the thickness of the sealing nail.
  • the ratio between the thickness of the sealing nail and the thickness of the casing is between Between 0.1 and 0.7, not only can the electrochemical device break through the weak area to exhaust and relieve pressure when the internal air pressure increases, but it can also reduce the amount of removal of weak areas and save processing costs while meeting the same pressure relief requirements.
  • the ratio between the thickness of the above-mentioned sealing nail and the thickness of the shell is between 1/3 and 1/2, which can reduce the amount of removal of weak areas and save processing costs while ensuring the structural strength of the sealing nail to ensure the sealing effect. .
  • the housing includes a top wall, a side wall and a bottom wall, the side wall connects the top wall and the bottom wall, and the through hole is provided on the top wall, the side wall or the bottom wall.
  • the thickness of the weak area is H3, 0.2 ⁇ H3/H2 ⁇ 0.9.
  • the ratio between the thickness of the above-mentioned weak area and the thickness of the sealing nail is between 0.2 and 0.9.
  • the weak area can be broken before the sealing nail to relieve the pressure. It can also reduce the size of the weak area. reduce the processing difficulty and improve the processing quality of weak areas.
  • the ratio between the thickness of the above-mentioned weak area and the thickness of the sealing nail is between 0.2 and 0.5, which can reduce the pressure relief threshold of the electrochemical device and further improve the safety performance of the electrochemical device.
  • the circumference of the sealing nail is L1
  • the length of the weak area is L2, 0.25 ⁇ L2/L1 ⁇ 1.4
  • the length L2 of the weak area is the total length from the beginning to the end of the weak area.
  • the ratio of the length of the above-mentioned weak area to the circumference of the sealing nail is between 0.25 and 1.4.
  • the ratio between the length of the above-mentioned weak area and the circumference of the sealing nail is between 0.35 and 0.8, which can improve the accuracy of the pressure relief in the electrochemical device and improve the safety control of the air pressure in the electrochemical device.
  • a first recess is provided on the sealing nail.
  • the first recess is formed by a depression on the surface of the sealing nail.
  • the bottom wall of the first recess constitutes part of the surface of the weak area.
  • the projection of the first recess overlaps the projection of the weak area.
  • the above-mentioned first recess forms a weak area on the sealing nail.
  • the air pressure in the electrochemical device increases, the internal gas can break through the weak area to exhaust the electrochemical device and relieve pressure, thereby improving the safety of the electrochemical device.
  • the width of the opening of the first recess is W1
  • the width of the bottom wall of the first recess is W2
  • a second recess is provided on the housing.
  • the second recess is formed by a recess on the surface of the housing.
  • the through hole penetrates the second recess.
  • At least part of the sealing nail is accommodated in the second recess and connected to the second recess.
  • the above-mentioned sealing nail is partially accommodated in the second recess and connected to the bottom wall of the second recess, which can reduce the impact of the volume of the sealing nail on the volume of the electrochemical device and reduce the impact of the sealing nail on the energy density of the electrochemical device.
  • the sealing nail is fixedly connected to the bottom wall of the second recess, and the portion of the sealing nail that contacts the bottom wall of the second recess forms a closed-loop connection area.
  • the connection area The projection surrounds the projection of the weak area.
  • the above-mentioned sealing nail is fixedly connected to the bottom wall of the second recess, and the projection of the connection area between the sealing nail and the second recess surrounds the projection of the weak area, so that the gas in the electrochemical device can act on the weak area, so that the weak area exists Possibility of breakthrough.
  • the depth of the second recess is H4, H4 ⁇ H2.
  • the depth of the second recess is not less than the thickness of the sealing nail.
  • the entire sealing nail is located in the second recess and does not protrude beyond the second recess, thereby reducing the thickness of the sealing nail. Effect on the volume or outer volume of the electrochemical device and increase the energy density of the electrochemical device.
  • the thickness range of the side wall and sealing nail mentioned above can ensure the structural strength of the side wall and sealing nail. Under the premise, the removal amount of the weak area is reduced, and the accuracy of the remaining thickness after processing of the weak area is improved.
  • the above-mentioned size range of the opening of the first recessed portion and the width of the bottom wall can form a weak area, reduce the amount of removal required for processing the first recessed portion, and save costs.
  • An embodiment of the present application also provides an electrical device, including the electrochemical device described in any of the above embodiments.
  • the electrochemical device can break through the weak area to exhaust the pressure when the internal air pressure increases. It can also reduce the amount of removal of the weak area, and can save electricity while improving the safety of the electrochemical device.
  • the cost of the chemical device reduces the impact of the excessive internal air pressure of the electrochemical device on the electrical equipment, and saves the cost of the electrical equipment.
  • Figure 1 is a first view of an electrochemical device in one embodiment of the present application.
  • Figure 2 is an exploded view of an electrochemical device in one embodiment of the present application.
  • Figure 3 is a second view of an electrochemical device in one embodiment of the present application.
  • Figure 4 is a partial structural schematic diagram of the IV-IV section in Figure 3.
  • Figure 5 is a schematic structural diagram of a sealing nail in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an expanded embodiment of the sealing nail shown in FIG. 5 .
  • FIG. 7 is a schematic structural diagram of an expanded embodiment of the sealing nail shown in FIG. 5 .
  • Figure 8 is a schematic structural diagram of the sealing nail in Comparative Example 4.
  • Figure 9 is a schematic structural diagram of electrical equipment in an embodiment of the present application.
  • Electrochemical device 100 Housing 10 top wall 11 Through hole 111 Second recess 112 Connection area 113 Cavity 12 Side wall 121 Bottom wall 122 Cavity space 13 Sealing nails 20 Weak area 21 Starting point 211 end 212 First recess 22 Base plate 23 Electrode assembly 30 Electrical equipment 200
  • Embodiments of the present application provide an electrochemical device, including a housing and a sealing nail.
  • the casing is provided with a through hole.
  • the sealing nail is arranged on the shell, and the sealing nail covers and seals the through hole.
  • the sealing nail includes a weak area, and the thickness of the weak area is less than the thickness of the sealing nail.
  • the weak area includes a starting end and a tail end, and the starting end and the tail end are separated.
  • the thickness of the shell is H1
  • the thickness of the sealing nail is H2, 0.1 ⁇ H2/H1 ⁇ 0.7.
  • the thickness of the sealing nail is smaller than the thickness of the casing.
  • the weak area of the non-closed loop is located at the sealing nail.
  • the thickness of the weak area is smaller than the thickness of the sealing nail.
  • the ratio between the thickness of the sealing nail and the thickness of the casing is between Between 0.1 and 0.7, not only can the electrochemical device break through the weak area to exhaust and relieve pressure when the internal air pressure increases, but it can also reduce the amount of removal of weak areas and save processing costs while meeting the same pressure relief requirements.
  • the embodiment of the present application provides an electrochemical device 100, which includes a housing 10, a sealing nail 20 and an electrode assembly 30.
  • the sealing nail 20 is provided in the housing 10, and the electrode assembly 30 is provided in the housing.
  • Inside the body 10. The housing 10 is provided with a penetrating through hole 111, and the sealing nail 20 is provided in the housing 10.
  • the sealing nail 20 covers and seals the through hole 111.
  • the sealing nail 20 includes a weak area 21, and the thickness of the weak area 21 is smaller than the thickness of the sealing nail 20.
  • the weak area 21 includes a starting end 211 and a tail end 212, and the starting end 211 and the tail end 212 are separated from each other.
  • the thickness of the housing 10 is H1, and the thickness of the sealing nail 20 is H2, 0.1 ⁇ H2/H1 ⁇ 0.7.
  • the sealing nail 20 is provided on the casing 10, and the thickness of the sealing nail 20 is smaller than the thickness of the casing 10.
  • the weak area 21 is provided on the sealing nail 20, and the thickness of the weak area 21 is smaller than the thickness of the sealing nail 20.
  • the ratio between the thickness of the sealing nail 20 and the thickness of the housing 10 is between 0.1 and 0.7, which not only enables the electrochemical device 100 to break through the weak area 21 to exhaust the pressure when the internal air pressure increases, but also allows the electrochemical device 100 to meet the same pressure requirements. Under the premise of reducing the processing requirements, the removal amount of the weak area 21 is reduced, and the processing cost is saved.
  • the starting end 211 and the tail end 212 of the weak area 21 are separated from each other, so that the weak area 21 is
  • the area surrounded by area 21 has a non-closed loop structure.
  • the damaged part of the weak area 21 forms an open structure, but the part between the starting end 211 and the end end 212 can As a connecting structure, it prevents the part surrounding the weak area 21 from being separated from the sealing nail 20, and reduces the impact of the upper part of the sealing nail 20 being blown away by the internal gas on the external environment, such as impact and injury to people.
  • 1/3 ⁇ H2/H1 ⁇ 1/2 can reduce the amount of removal of the weak area 21 and save processing costs while ensuring the structural strength of the sealing nail 20 to ensure the sealing effect, and, The thickness of the sealing nail 20 is thinner than that of the housing 10, and the thickness of the sealing nail 20 is more uniform. After processing the weak area 21, the accuracy of the remaining thickness of the sealing nail 20 is also higher, which is beneficial to improving the pressure relief effect.
  • H2/H1 0.4.
  • the material of the housing 10 is steel, which can reduce the thickness of the housing 10 while ensuring the structural strength of the housing 10 and reduce the impact of the thickness of the housing 10 on the energy density of the electrochemical device 100 .
  • 50 ⁇ m ⁇ H1 ⁇ 300 ⁇ m the thickness range of the housing 10 can ensure that its structural strength meets the design requirements of the electrochemical device 100 and can also reduce the impact of its thickness on the energy density of the electrochemical device 100 .
  • H1 150 ⁇ m.
  • the material of the sealing nail 20 is steel, which can reduce the thickness of the sealing nail 20 while ensuring the structural strength of the sealing nail 20, thereby reducing the amount of removal of the weak area 21, saving costs, and sealing
  • the smaller thickness of the nail 20 can improve its thickness accuracy, thereby improving the accuracy of the remaining thickness of the weak area 21 and improving the pressure relief accuracy of the electrochemical device 100 .
  • 10 ⁇ m ⁇ H2 ⁇ 60 ⁇ m the thickness range of the sealing nail 20 can ensure that its structural strength meets the design requirements of the electrochemical device 100 , and can also reduce the amount of removal of the weak area 21 and save costs.
  • H2 30 ⁇ m.
  • the housing 10 includes a top wall 11 and a cavity 12 .
  • the cavity 12 has an opening.
  • the top wall 11 can connect the cavity 12 and close the opening of the cavity 12 , thereby forming a cavity space 13 that can accommodate the electrode assembly 30 .
  • the top wall 11 and the cavity 12 are connected by welding.
  • the material of the cavity 12 is steel, which can reduce the thickness of the cavity 12 while ensuring the structural strength of the cavity 12 and reduce the impact of the thickness of the cavity 12 on the energy density of the electrochemical device 100 .
  • the cavity 12 includes a side wall 121 and a bottom wall 122 .
  • the side wall 121 connects the top wall 11 and the bottom wall 122 .
  • the top wall 11 , the side wall 121 and the bottom wall 122 surround the cavity space 13 .
  • the side wall 121 and the bottom wall 122 are connected by welding.
  • the side wall 121 and the bottom wall 122 are an integrally formed structure and are formed by stamping.
  • the top wall 11 and the bottom wall 122 are an integral structure formed by stamping, and the side walls 121 and the bottom wall 122 are connected by welding.
  • the through hole 111 penetrates the top wall 11 , and the sealing nail 20 is provided on the top wall 11 . In one embodiment, the through hole 111 penetrates the bottom wall 122, and the sealing nail 20 is provided on the bottom wall 122 (not shown). As an example, the through hole 111 penetrates the top wall 11 and the sealing nail 20 is provided on the top wall 11 for further description.
  • the thickness of the top wall 11 is H1.
  • the thickness of the side wall 121 and the bottom wall 122 also for H1.
  • the sealing nail 20 includes a bottom plate 23 connected to the top wall 11 , the weak area 21 is provided on the bottom plate 23 , and the thickness H2 of the sealing nail 20 is the thickness of the bottom plate 23 .
  • the sealing nail 20 also includes other structures (not shown) provided on the bottom plate 23, such as rubber protrusions.
  • the electrode assembly 30 includes a first pole piece, a second pole piece and a diaphragm (not shown).
  • the diaphragm is disposed between the first pole piece and the second pole piece.
  • the first pole piece, the diaphragm and the third pole piece are The diode sheets are stacked or wound to form the electrode assembly 30 .
  • the first pole piece, the diaphragm and the second pole piece are stacked in sequence.
  • one of the first pole piece and the second pole piece is a positive pole piece, and the other of the first pole piece and the second pole piece is a negative pole piece.
  • first pole piece As an example, further description will be given below by taking the first pole piece, the diaphragm and the second pole piece being stacked in sequence as an example.
  • the electrode assembly 30 includes a plurality of first pole pieces, separators, and second pole pieces, and the separators are disposed between adjacent first pole pieces and second pole pieces.
  • the electrochemical device 100 further includes a pole (not shown).
  • the pole is disposed on the top wall 11 , and part of the pole is exposed on the top wall 11 .
  • At least one of the plurality of first pole pieces is electrically connected to the cavity 12
  • at least one of the plurality of second pole pieces is electrically connected to the pole.
  • the cavity 12 and the pole respectively constitute the positive electrode and the negative electrode of the electrochemical device 100 .
  • electrochemical device 100 is a coin cell battery.
  • the electrochemical device 100 further includes an insulating member (not shown). Part of the pole is located inside the housing 10. The insulating member connects the pole and the top wall 11 to insulate the connection between the pole and the top wall 11. This reduces the risk of a short circuit in the electrochemical device 100 due to electrical connection between the poles and the top wall 11 .
  • all first pole pieces are electrically connected to the cavity 12, and all second pole pieces are electrically connected to the poles.
  • a second recess 112 is provided on the top wall 11 .
  • the second recess 112 is formed by a depression in the surface of the top wall 11 .
  • the through hole 111 penetrates the second recess 112 .
  • At least part of the sealing nail 20 is located in the second recess 112 Inside, the sealing nail 20 is connected to the bottom wall of the second recess 112 .
  • the sealing nail 20 is partially accommodated in the second recess 112 and connected to the bottom wall of the second recess 112, which can reduce the impact of the volume of the sealing nail 20 on the volume of the electrochemical device 100 and reduce the impact of the sealing nail 20 on the energy density of the electrochemical device 100. Influence.
  • the bottom plate 23 is located in the second recess 112 .
  • the second recess 112 is provided on a side of the top wall 11 away from the cavity space 13 , and the sealing nail 20 is located outside the cavity space 13 . In other embodiments, the second recess 112 is provided on a side of the top wall 11 close to the cavity space 13 (not shown), and the portion of the sealing nail 20 is located in the cavity space 13 .
  • the bottom plate 23 is fixedly connected to the bottom wall of the second recess 112 , and the portion of the bottom plate 23 that contacts the bottom wall of the second recess 112 forms a closed-loop connection area 113 , along the thickness direction of the bottom plate 23, the projection of the connection area 113 surrounds the projection of the weak area 21, so that the gas in the electrochemical device 100 can act on the weak area 21, so that there is a possibility of breaking the weak area 21.
  • the projection of the weak area 21 is located within the projection of the through hole 111 .
  • the bottom plate 23 is fixedly connected to the bottom wall of the second recess 112 by welding.
  • the welding area between 23 and the bottom wall of the second recess 112 constitutes the connection area 113, which not only has a fixed connection effect, but also has a sealing effect, reducing the passage of materials in the housing 10 between the bottom plate 23 and the second recess 112. The risk of leakage from the gap.
  • the depth of the second recess 112 is H4, H4 ⁇ H2.
  • the entire bottom plate 23 is located in the second recess 112 and does not protrude from the second recess 112.
  • the recess 112 can reduce the influence of the thickness of the bottom plate 23 on the volume or outer volume of the electrochemical device 100 and improve the energy density of the electrochemical device 100 .
  • the perimeter of the bottom plate 23 is L1
  • the length of the weak area 21 is L2, 0.25 ⁇ L2/L1 ⁇ 1.4.
  • the length L2 of the weak area 21 is the total length from the starting end 211 to the end 212 of the weak area 21 .
  • 0.35 ⁇ L2/L1 ⁇ 0.8 can improve the accuracy of the pressure relief pressure in the electrochemical device 100 and improve the safety control of the air pressure in the electrochemical device 100.
  • L2/L1 0.5.
  • the thickness of the weak area 21 is H3, 0.2 ⁇ H3/H2 ⁇ 0.9.
  • the weak area 21 can be broken before other parts of the bottom plate 23 to relieve the pressure. It can also improve the processing difficulty of reducing the weak area 21 and improve the processing quality of the weak area 21.
  • 0.2 ⁇ H3/H2 ⁇ 0.5 can reduce the pressure relief threshold of the electrochemical device 100 and further improve the safety performance of the electrochemical device 100.
  • the value of H3/H2 is any one of 0.2, 0.3, 0.4 and 0.5.
  • the bottom plate 23 is provided with a first recess 22 .
  • the first recess 22 is formed by a depression in the surface of the bottom plate 23 .
  • the bottom wall of the first recess 22 constitutes part of the surface of the weak area 21 .
  • the projection of the first recess 22 overlaps with the projection of the weak area 21 .
  • the first recess 22 reduces the thickness of some areas of the bottom plate 23, thereby forming a weak area 21.
  • the width of the opening of the first recess 22 is W1
  • the width of the bottom wall of the first recess 22 is W2, W1/W2 ⁇ 1.1
  • the cross-section of the first recess 22 has a concave structure with a larger opening than the bottom.
  • W2 ⁇ 0 allows the bottom of the first recess 22 to form a weak area 21 of the sealing nail 20 so that it can be broken through and then exhausted when the air pressure in the electrochemical device 100 increases.
  • the opening of the first recess 22 faces in a direction away from the cavity space 13 . In other embodiments, the opening of the first recess 22 faces the cavity space 13 and communicates with the cavity space 13 (not shown).
  • the first recessed portion 22 is processed by laser etching.
  • the electrochemical device 100 injects electrolyte into the housing 10 through the through hole 111 , and the sealing nail 20 is connected to the bottom wall of the second groove to seal the through hole 111 .
  • the bottom plate 23 is a plate-like structure, and the thickness of the bottom plate 23 is relatively uniform.
  • the cavity 12 is a stamping structure, and the thickness error of the cavity 12 is large. Compared with arranging the weak area 21 on the cavity 12, Providing the weak area 21 on the bottom plate 23 can improve the dimensional accuracy of processing the remaining thickness of the weak area 21, thereby improving the pressure relief effect of the electrochemical device 100.
  • the trajectory shape of the weak area 21 is approximately arc-shaped, and the central angle of the weak area 21 between the starting end 211 and the end end 212 is R1, R1>180°.
  • R1 270°.
  • R1 180°.
  • the track shape of the weak area 21 when viewed along the thickness direction of the bottom plate 23 , is approximately e-shaped, which can extend the length of the weak area 21 and thereby reduce the number of passes through the weak area in the electrochemical device 100 21 Air pressure threshold for pressure relief.
  • the electrochemical device 100 described in any embodiment of this application is used, in which the top wall 11 , the cavity 12 and the sealing nail 20 are all made of 316L stainless steel, the thickness of the top wall 11 and the cavity 12 are both 150 ⁇ m, and the bottom plate 23
  • the thickness is 45 ⁇ m
  • the circumference of the sealing nail 20 is 2.1* ⁇ mm
  • the circumference of the connection area 113 is 1.6* ⁇ mm
  • the width of the opening of the first recess 22 is 110 ⁇ m
  • the depth of the first recess 22 is 24 ⁇ 6 ⁇ m
  • the trajectory of 21 is in the shape shown in Figure 5, and the trajectory length of the weak area 21 is 1.2* ⁇ mm.
  • the test environment is as follows: the electrochemical device 100 is placed in a hot box in a fully charged state.
  • the internal ambient temperature of the hot box is 180°C to 200°C, and the placement time is 30 minutes.
  • the only difference between the test conditions and environment and the first embodiment is the shape and length of the weak area 21.
  • the trajectory of the weak area 21 is as shown in Figure 6, and the length is ⁇ /2mm.
  • the only difference between the test conditions and environment and the first embodiment is the shape and length of the weak area 21.
  • the trajectory of the weak area 21 is as shown in Figure 7, and the length is (1.2* ⁇ +1.2) mm.
  • the only difference between the test conditions and environment and Embodiment 1 is the shape and length of the weak area 21.
  • the trajectory of the weak area 21 is a straight line as shown in Figure 8, with a length of 1.2 mm.
  • the sealing nail 20 is provided on the casing 10 , and the thickness of the sealing nail 20 is smaller than the thickness of the casing 10 .
  • the non-closed loop weak area 21 is provided on the sealing nail 20 , and the weak area 21 The thickness is smaller than the thickness of the sealing nail 20, and the ratio of the thickness of the sealing nail 20 to the thickness of the housing 10 is between 0.1 and 0.7, which not only enables the electrochemical device 100 to break through the weak area 21 to exhaust gas when the internal air pressure increases. Pressure relief can also reduce the amount of removal of weak areas 21 and save processing costs while meeting the same pressure requirements.
  • an embodiment of the present application also provides an electrical device 200 , including the electrochemical device 100 described in any of the above embodiments.
  • the electrochemical device 100 can provide electrical energy to the electrical device 200 .
  • the power-consuming device 200 includes electronic devices such as drones, mobile phones, watches, tablet computers, and laptop computers.
  • the electrochemical device 100 can break through the weak area 21 to exhaust the pressure when the internal air pressure increases, and can also reduce the removal amount of the weak area 21 to improve the safety of the electrochemical device 100. In this way, the cost of the electrochemical device 100 can also be saved, the impact of excessive internal air pressure of the electrochemical device 100 on the electrical equipment 200 is reduced, and the cost of the electrical equipment 200 is saved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电化学装置及用电设备,电化学装置包括壳体和密封钉。壳体设有贯穿的通孔。密封钉设于壳体,密封钉将通孔遮蔽密封,密封钉包括薄弱区域,薄弱区域的厚度小于密封钉的厚度,薄弱区域包括起始端和末尾端,起始端和末尾端相离。壳体的厚度为H1,密封钉的厚度为H2,0.1≤H2/H1≤0.7。上述的电化学装置不仅使电化学装置在内部气压增大时能够冲破薄弱区域以排气泄压,还能够减少加工薄弱区域的去除量,节约加工成本。

Description

电化学装置及用电设备 技术领域
本申请涉及储能技术领域,特别涉及一种电化学装置及用电设备。
背景技术
目前,为了提高硬壳电池的安全性能,通常会在壳体上加工以形成薄弱区域,在电池内气压较大时,电池内的气体能够冲破该薄弱区域,以使得电池能够排气泄压。由于硬壳电池的壳体较厚,在加工薄弱区域时,薄弱区域的去除量较大,导致加工成本较高。并且,硬壳电池的壳体多为冲压件,其厚度波动较大,导致薄弱区域的剩余厚度精度较差,从而影响泄压效果。
发明内容
鉴于上述状况,有必要提供一种电化学装置,能够减少薄弱区域的去除量。
本申请的实施例提供一种电化学装置,包括壳体和密封钉。壳体上设有贯穿的通孔。密封钉设于壳体上,密封钉将通孔遮蔽密封,密封钉包括薄弱区域,薄弱区域的厚度小于密封钉的厚度,薄弱区域包括起始端和末尾端,起始端和末尾端相离。壳体的厚度为H1,密封钉的厚度为H2,0.1≤H2/H1≤0.7。
上述的电化学装置中,密封钉的厚度小于壳体的厚度,非闭环的薄弱区域设于密封钉,薄弱区域的厚度小于密封钉的厚度,且密封钉的厚度与壳体的厚度比值介于0.1至0.7之间,不仅使电化学装置在内部气压增大时能够冲破薄弱区域以排气泄压,还能够在满足同等泄压要求的前提下减少加工薄弱区域的去除量,节约加工成本。
在本申请的一些实施例中,1/3≤H2/H1≤1/2。
上述密封钉的厚度与壳体的厚度比值介于1/3至1/2之间,能够在保证密封钉的结构强度以保证密封效果的前提下,减少加工薄弱区域的去除量,节约加工成本。
在本申请的一些实施例中,壳体包括顶壁、侧壁和底壁,侧壁连接顶壁和底壁,通孔设置在顶壁、侧壁或底壁上。
在本申请的一些实施例中,薄弱区域的厚度为H3,0.2≤H3/H2≤0.9。
上述的薄弱区域的厚度与密封钉的厚度比值介于0.2至0.9之间,能够在电化学装置内气压增大时,使薄弱区域较密封钉先破裂以泄压,还能够提高减小薄弱区域的加工难度,提高薄弱区域的加工质量。
在本申请的一些实施例中,0.2≤H3/H2≤0.5。
上述的薄弱区域的厚度与密封钉的厚度比值介于0.2至0.5之间,能够降低电化学装置的泄压压强阈值,进一步提高电化学装置的安全性能。
在本申请的一些实施例中,密封钉的周长为L1,薄弱区域的长度为L2,0.25≤L2/L1≤1.4,薄弱区域的长度L2为薄弱区域的起始端至末尾端的总长度。
上述的薄弱区域的长度与密封钉的周长比值介于0.25至1.4之间,在电化学装置内部气压增大时,能够使薄弱区域较密封钉先破损,从而实现排气泄压。
在本申请的一些实施例中,0.35≤L2/L1≤0.8。
上述的薄弱区域的长度与密封钉的周长比值介于0.35至0.8之间,能够提高电化学装置内泄压压强的精度,提高对电化学装置内气压的安全控制。
在本申请的一些实施例中,密封钉上设有第一凹部,第一凹部由密封钉的表面凹陷形成,第一凹部的底壁构成薄弱区域的部分表面,沿密封钉的厚度方向观察,第一凹部的投影与薄弱区域的投影重叠。
上述第一凹部构成密封钉上的薄弱区域,在电化学装置内气压增大时,内部气体能够将薄弱区域冲破以使电化学装置排气泄压,提升电化学装置的安全性。
在本申请的一些实施例中,第一凹部开口处的宽度为W1,第一凹部底壁的宽度为W2,W1/W2≥1.1。
在本申请的一些实施例中,壳体上设有第二凹部,第二凹部由壳体的表面凹陷形成,通孔贯穿第二凹部,密封钉的至少部分容置于第二凹部并连接于第二凹部的底壁。
上述的密封钉部分容置于第二凹部并连接于第二凹部的底壁,可减少密封钉的体积对电化学装置体积的影响,减少密封钉对电化学装置能量密度的影响。
在本申请的一些实施例中,密封钉固定连接于第二凹部的底壁,密封钉与第二凹部的底壁接触的部分形成闭环的连接区域,沿密封钉的厚度方向上,连接区域的投影将薄弱区域的投影包围。
上述的密封钉固定连接于第二凹部的底壁,且密封钉与第二凹部连接区域的投影将薄弱区域的投影包围,使电化学装置内的气体能够作用于薄弱区域,以存在将薄弱区域冲破的可能性。
在本申请的一些实施例中,第二凹部的深度为H4,H4≥H2。
上述第二凹部的深度不小于密封钉的厚度,在密封钉连接第二凹部的底壁时,使密封钉的全部位于第二凹部内并不凸伸出于第二凹部,能够减少密封钉厚度对电化学装置的容积或外廓体积的影响,提高电化学装置的能量密度。
在本申请的一些实施例中,10μm≤H2≤60μm,50μm≤H1≤300μm。
上述的侧壁和密封钉的厚度范围,能够在保证侧壁和密封钉结构强度的 前提下,减少加工薄弱区域的去除量,及提高薄弱区域加工后的剩余厚度的精度。
在本申请的一些实施例中,60μm≤W1≤200μm,W2≥0。
上述的第一凹部开口处及底壁宽度的尺寸范围,能够形成薄弱区域,及减少加工第一凹部的去除量,节约成本。
本申请的实施例还提供一种用电设备,包括上述任一项实施例所述的电化学装置。
上述的用电设备中,电化学装置在内部气压增大时能够冲破薄弱区域以排气泄压,还能够减少加工薄弱区域的去除量,在提高电化学装置安全性的情况下,能够节约电化学装置的成本,减少了电化学装置因内部气压过大对用电设备的影响,及节约了用电设备的成本。
附图说明
图1是本申请的一个实施例中电化学装置的第一视图。
图2是本申请的一个实施例中电化学装置的爆炸图。
图3是本申请的一个实施例中电化学装置的第二视图。
图4是图3中IV-IV截面的部分结构示意图。
图5是本申请的一个实施例中密封钉的结构示意图。
图6是图5所示密封钉的扩展实施例的结构示意图。
图7是图5所示密封钉的扩展实施例的结构示意图。
图8是对比例四中密封钉的结构示意图。
图9是本申请的一个实施例中用电设备的结构示意图。
主要元件符号说明
电化学装置                              100
壳体                                    10
顶壁                                    11
通孔                                    111
第二凹部                                112
连接区域                                113
腔体                                    12
侧壁                                    121
底壁                                    122
容腔空间                                13
密封钉                                  20
薄弱区域                                21
起始端                                  211
末尾端                                  212
第一凹部                                22
底板                                   23
电极组件                               30
用电设备                               200
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中设置的元件。当一个元件被认为是“设置在”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中设置的元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请的实施例提供一种电化学装置,包括壳体和密封钉。壳体上设有贯穿的通孔。密封钉设于壳体,密封钉将通孔遮蔽密封,密封钉包括薄弱区域,薄弱区域的厚度小于密封钉的厚度,薄弱区域包括起始端和末尾端,起始端和末尾端相离。壳体的厚度为H1,密封钉的厚度为H2,0.1≤H2/H1≤0.7。
上述的电化学装置中,密封钉的厚度小于壳体的厚度,非闭环的薄弱区域设于密封钉,薄弱区域的厚度小于密封钉的厚度,且密封钉的厚度与壳体的厚度比值介于0.1至0.7之间,不仅使电化学装置在内部气压增大时能够冲破薄弱区域以排气泄压,还能够在满足同等泄压要求的前提下减少加工薄弱区域的去除量,节约加工成本。
下面结合附图,对本申请的实施例作进一步的说明。
如图1和图2所示,本申请的实施方式提供一种电化学装置100,包括壳体10、密封钉20和电极组件30,密封钉20设于壳体10,电极组件30设于壳体10内部。壳体10设有贯穿的通孔111,密封钉20设于壳体10,密封钉20将通孔111遮蔽密封,密封钉20包括薄弱区域21,薄弱区域21的厚度小于密封钉20的厚度,薄弱区域21包括起始端211和末尾端212,起始端211和末尾端212相离。壳体10的厚度为H1,密封钉20的厚度为H2,0.1≤H2/H1≤0.7。
上述的电化学装置100中,密封钉20设于壳体10,密封钉20的厚度小于壳体10的厚度,薄弱区域21设于密封钉20,薄弱区域21的厚度小于密封钉20的厚度,且密封钉20的厚度与壳体10的厚度比值介于0.1至0.7之间,不仅使电化学装置100在内部气压增大时能够冲破薄弱区域21以排气泄压,还能够在满足同等泄压要求的前提下减少加工薄弱区域21的去除量,节约加工成本。并且,薄弱区域21的起始端211与末尾端212相离,使薄弱 区域21围设的区域为非闭环的结构,当电化学装置100内的气体将薄弱区域21冲破时,薄弱区域21破损的部分形成开口结构,但起始端211与末尾端212之间的部分能够作为连接结构,避免薄弱区域21围设的部分与密封钉20脱离,减少密封钉20上部分结构被内部气体冲飞对外界环境造成的影响,例如冲击伤人等。
在一实施例中,1/3≤H2/H1≤1/2,能够在保证密封钉20的结构强度以保证密封效果的前提下,减少加工薄弱区域21的去除量,节约加工成本,并且,密封钉20的厚度较壳体10薄,密封钉20的厚度更加均匀,加工薄弱区域21后,密封钉20的剩余厚度的精度也较高,有利于提高泄压效果。可选的,H2/H1=0.4。
在一实施例中,壳体10的材质为钢,能够在保证壳体10结构强度的前提下,减小壳体10的厚度,减小壳体10厚度对电化学装置100能量密度的影响。在一实施例中,50μm≤H1≤300μm,壳体10的厚度范围,能够保证其结构强度满足电化学装置100的设计要求,还能够减小其厚度对电化学装置100能量密度的影响。在一实施例中,100μm≤H1≤200μm。可选的,H1=150μm。
在一实施例中,密封钉20的材质为钢,能够在保证密封钉20结构强度的前提下,减小密封钉20的厚度,从而减少加工薄弱区域21的去除量,节约成本,并且,密封钉20厚度较小,能够提高其厚度精度,进而提高薄弱区域21的剩余厚度的精度,提高电化学装置100的泄压精度。在一实施例中,10μm≤H2≤60μm,密封钉20的厚度范围,能够保证其结构强度满足电化学装置100的设计要求,还能够减少加工薄弱区域21的去除量,节约成本。在一实施例中,20μm≤H2≤40μm。可选的,H2=30μm。
壳体10包括顶壁11和腔体12,腔体12具有开口,顶壁11能够连接腔体12并将腔体12的开口封闭,从而形成能够容纳电极组件30的容腔空间13。在一实施例中,顶壁11与腔体12通过焊接连接。在一实施例中,腔体12的材质为钢,能够在保证腔体12结构强度的前提下,减小腔体12的厚度,减小腔体12厚度对电化学装置100能量密度的影响。
腔体12包括侧壁121和底壁122,侧壁121连接顶壁11和底壁122,顶壁11、侧壁121和底壁122围设形成容腔空间13。在一实施例中,侧壁121和底壁122通过焊接连接。在一实施例中,侧壁121和底壁122为一体成型结构,通过冲压形成。在一实施例中,顶壁11和底壁122为通过冲压形成的一体结构,侧壁121和底壁122通过焊接连接。
在一实施例中,通孔111贯穿顶壁11,密封钉20设于顶壁11。在一实施例中,通孔111贯穿底壁122,密封钉20设于底壁122(图未示)。作为示例性的,下面以通孔111贯穿顶壁11,密封钉20设于顶壁11为例作进一步的说明。
本申请中,顶壁11的厚度为H1。可选的,侧壁121和底壁122的厚度 也为H1。
在一实施例中,密封钉20的包括底板23,底板23连接于顶壁11,薄弱区域21设于底板23,密封钉20的厚度H2为底板23的厚度。在其他实施例中,密封钉20还包括设于底板23上的其他结构(图未示),例如橡胶凸起等。
在一实施例中,电极组件30包括第一极片、第二极片和隔膜(图未示),隔膜设于第一极片和第二极片之间,第一极片、隔膜和第二极片层叠或卷绕设置形成电极组件30。可选的,第一极片、隔膜和第二极片依次层叠设置。
在一实施例中,第一极片和第二极片中的其中一个为正极片,第一极片和第二极片中的另一个为负极片。
作为示例性的,下面以第一极片、隔膜和第二极片依次层叠设置为例作进一步的说明。
在一实施例中,电极组件30包括多个第一极片、隔膜和第二极片,隔膜设于相邻的第一极片和第二极片之间。
在一实施例中,电化学装置100还包括极柱(图未示),极柱设于顶壁11,极柱的部分显露于顶壁11。多个第一极片中的至少一个电连接于腔体12,多个第二极片中的至少一个电连接于极柱,腔体12和极柱分别构成电化学装置100的正极和负极。在一实施例中,电化学装置100为纽扣电池。
在一实施例中,电化学装置100还包括绝缘件(图未示),极柱的部分位于壳体10内部,绝缘件连接极柱和顶壁11使极柱和顶壁11绝缘的连接,减少极柱电连接顶壁11从而导致电化学装置100短路的风险。
在一实施例中,所有的第一极片电连接于腔体12,所有的第二极片电连接于极柱。
在一实施例中,顶壁11上设有第二凹部112,第二凹部112由顶壁11的表面凹陷形成,通孔111贯穿第二凹部112,密封钉20的至少部分位于第二凹部112内,密封钉20连接于第二凹部112的底壁。密封钉20部分容置于第二凹部112并连接于第二凹部112的底壁,可减少密封钉20的体积对电化学装置100体积的影响,减少密封钉20对电化学装置100能量密度的影响。在一实施例中,底板23位于第二凹部112内。
在一实施例中,第二凹部112设于顶壁11背离容腔空间13的一侧,密封钉20位于容腔空间13外。在其他实施例中,第二凹部112设于顶壁11靠近容腔空间13的一侧(图未示),密封钉20的部分位于容腔空间13内。
如图2、图3和图4所示,在一实施例中,底板23固定连接于第二凹部112的底壁,底板23与第二凹部112的底壁接触的部分形成闭环的连接区域113,沿底板23的厚度方向上,连接区域113的投影将薄弱区域21的投影包围,使电化学装置100内的气体能够作用于薄弱区域21,以存在将薄弱区域21冲破的可能性。在一实施例中,沿底板23的厚度方向上,薄弱区域21的投影位于通孔111的投影内。
在一实施例中,底板23通过焊接固定连接于第二凹部112的底壁,底板 23与第二凹部112底壁之间的焊接区域构成连接区域113,不仅能够起到固定连接的效果,还能够起到密封作用,减少壳体10内物质通过底板23与第二凹部112之间的缝隙外流的风险。
在一实施例中,第二凹部112的深度为H4,H4≥H2,在底板23连接第二凹部112的底壁时,底板23的全部位于第二凹部112内并不凸伸出于第二凹部112,能够减少底板23厚度对电化学装置100的容积或外廓体积的影响,提高电化学装置100的能量密度。可选的,H4>H2。
在一实施例中,底板23的周长为L1,薄弱区域21的长度为L2,0.25≤L2/L1≤1.4,在电化学装置100内部气压增大时,能够使薄弱区域21较底板23的其他部分先破损,从而实现排气泄压。其中,薄弱区域21的长度L2为薄弱区域21的起始端211至末尾端212的总长度。
在一实施例中,0.35≤L2/L1≤0.8,能够提高电化学装置100内泄压压强的精度,提高对电化学装置100内气压的安全控制。可选的,L2/L1=0.5。
在一实施例中,薄弱区域21的厚度为H3,0.2≤H3/H2≤0.9,能够在电化学装置100内气压增大时,使薄弱区域21较底板23的其他部分先破裂以泄压,还能够提高减小薄弱区域21的加工难度,提高薄弱区域21的加工质量。
在一实施例中,0.2≤H3/H2≤0.5,能够降低电化学装置100的泄压压强阈值,进一步提高电化学装置100的安全性能。可选的,H3/H2的值为0.2、0.3、0.4和0.5中的任一个。
在一实施例中,底板23上设有第一凹部22,第一凹部22由底板23的表面凹陷形成,第一凹部22的底壁构成薄弱区域21的部分表面,沿底板23的厚度方向观察,第一凹部22的投影与薄弱区域21的投影重叠。第一凹部22使底板23的部分区域厚度减薄,继而形成薄弱区域21,在电化学装置100内气压增大时,内部气体能够将薄弱区域21冲破以使电化学装置100排气泄压,提升电化学装置100的安全性。
在一实施例中,第一凹部22开口处的宽度为W1,第一凹部22底壁的宽度为W2,W1/W2≥1.1,第一凹部22的横截面呈开口比底部大的凹陷结构,在电化学装置100内部气体将薄弱区域21冲破时,第一凹部22的底壁破损,气体从第一凹部22的底部经由第一凹部22的开口处流出,第一凹部22的开口大于底部的结构能够减小对气体流动阻力,减小气体在第一凹部22内积压的风险,使气体快速排出。可选的,W1/W2=1.5。可选的,第一凹部22的横截面为梯形结构。
在一实施例中,60μm≤W1≤200μm,第一凹部22开口处宽度的尺寸范围能够减少加工第一凹部22时的去除量,节约成本。在一实施例中,100μm≤W1≤160μm。可选的,W1=120μm。
在一实施例中,W2≥0,能够使第一凹部22的底部形成密封钉20的薄弱区域21,以在电化学装置100内气压增大时能够被冲破继而排气泄压。
在一实施例中,第一凹部22的开口朝向背离容腔空间13的方向。在其他实施例中,第一凹部22的开口朝向容腔空间13,并连通容腔空间13(图未示)。
在一实施例中,第一凹部22通过激光刻蚀加工而成。
在一实施例中,电化学装置100通过通孔111向壳体10内注入电解液,密封钉20连接第二凹槽的底壁用于将通孔111密封。
在一实施例中,底板23为板状结构,底板23的厚度比较均匀,腔体12为冲压结构,腔体12的厚度误差较大,相较于在腔体12上设置薄弱区域21,在底板23上设置薄弱区域21,能够提高加工薄弱区域21的剩余厚度的尺寸精度,进而提高电化学装置100的泄压效果。
如图5所示,在一实施例中,沿底板23的厚度方向观察,薄弱区域21的轨迹形状近似呈圆弧状,起始端211和末尾端212之间薄弱区域21的部分的圆心角为R1,R1>180°。可选的,R1=270°。
如图6所示,在一实施例中,R1=180°。
如图7所示,在一实施例中,沿底板23的厚度方向观察,薄弱区域21的轨迹形状近似呈e型,能够延长薄弱区域21的长度,进而减小电化学装置100内通过薄弱区域21泄压的气压阈值。
为了验证本申请中电化学装置100的泄压效果,进行了测试,具体信息如下:
实施例一:
采用本申请任一实施例所述的电化学装置100,其中,顶壁11、腔体12和密封钉20的材质均为316L不锈钢,顶壁11和腔体12的厚度均为150μm,底板23厚度为45μm,密封钉20的周长为2.1*πmm,连接区域113的周长为1.6*πmm,第一凹部22开口处的宽度为110μm,第一凹部22的深度为24±6μm,薄弱区域21的轨迹为如图5所示的形状,薄弱区域21的轨迹长度为1.2*πmm。
测试环境为:将电化学装置100在满充状态下置于热箱中,热箱的内部环境温度为180℃至200℃,放置时间为30分钟。
将10组完全一样的电化学装置100置于上述的测试环境中,待测试完成后,记录10组电化学装置100状态及薄弱区域21破损的状态及数量。由于在高温(180℃至200℃)环境下,电化学装置100内部产生大量气体和热量,若电化学装置100无爆炸且薄弱区域21出现开裂现象,表示该电化学装置100可以完成排气泄压,测试结果为合格;若电化学装置100爆炸或薄弱区域21完好无损,表示该电化学装置100无法在薄弱区域21完成排气泄压,测试结果为不合格。
实施例二:
测试条件及环境与实施例一的不同点仅在于薄弱区域21的形状及长度,实施例二中薄弱区域21的轨迹为如图6所示的形状,长度为π/2mm。
实施例三:
测试条件及环境与实施例一的不同点仅在于薄弱区域21的形状及长度,实施例三中薄弱区域21的轨迹为如图7所示的形状,长度为(1.2*π+1.2)mm。
记录实施例一、实施例二和实施例三测试实验各10组电化学装置100中薄弱区域21破损的数量。
对比例:
测试条件及环境与实施例一的不同点仅在于薄弱区域21的形状及长度,对比例中薄弱区域21的轨迹为如图8所示的直线,长度为1.2mm。
记录对比例实验10组电化学装置100中薄弱区域21破损的数量。
将以上四组数据进行对比,如下表所示:
结合上表可知,三个实施例中所有的电化学装置100均能够通过薄弱区域21成功排气泄压,对比例中的电化学装置100未采用本申请的实施例,对比例中的电化学装置100几乎不能通过薄弱区域21排气泄压。
综上所述,本申请的电化学装置100中,密封钉20设于壳体10,密封钉20的厚度小于壳体10的厚度,非闭环的薄弱区域21设于密封钉20,薄弱区域21的厚度小于密封钉20的厚度,且密封钉20的厚度与壳体10的厚度比值介于0.1至0.7之间,不仅使电化学装置100在内部气压增大时能够冲破薄弱区域21以排气泄压,还能够在满足同等下压要求的前提下减少加工薄弱区域21的去除量,节约加工成本。
如图9所示,本申请的实施方式还提供一种用电设备200,包括上述任一项实施例所述的电化学装置100,电化学装置100可为用电设备200提供电能。
在一实施例中,用电设备200包括无人机、手机、手表、平板电脑和笔记本电脑等电子设备。
上述的用电设备200中,电化学装置100在内部气压增大时能够冲破薄弱区域21以排气泄压,还能够减少加工薄弱区域21的去除量,在提高电化学装置100安全性的情况下,还能够节约电化学装置100的成本,减少了电化学装置100因内部气压过大对用电设备200的影响,及节约了用电设备200的成本。
另外,本领域技术人员还可在本申请精神内做其它变化,当然,这些依据本申请精神所做的变化,都应包含在本申请所公开的范围。

Claims (15)

  1. 一种电化学装置,其特征在于,包括:
    壳体,所述壳体上设有贯穿的通孔;
    密封钉,设于所述壳体上,所述密封钉将所述通孔遮蔽密封,所述密封钉包括薄弱区域,所述薄弱区域的厚度小于所述密封钉的厚度,所述薄弱区域包括起始端和末尾端,所述起始端和所述末尾端相离;
    所述壳体的厚度为H1,所述密封钉的厚度为H2,0.1≤H2/H1≤0.7。
  2. 如权利要求1所述的电化学装置,其特征在于,所述壳体包括顶壁、侧壁和底壁,所述侧壁连接所述顶壁和所述底壁,所述通孔设置在所述顶壁、所述侧壁或所述底壁上。
  3. 如权利要求1所述的电化学装置,其特征在于,1/3≤H2/H1≤1/2。
  4. 如权利要求1所述的电化学装置,其特征在于,所述薄弱区域的厚度为H3,0.2≤H3/H2≤0.9。
  5. 如权利要求4所述的电化学装置,其特征在于,0.2≤H3/H2≤0.5。
  6. 如权利要求1所述的电化学装置,其特征在于,所述密封钉的周长为L1,所述薄弱区域的长度为L2,0.25≤L2/L1≤1.4,所述薄弱区域的长度L2为所述薄弱区域的所述起始端至所述末尾端的总长度。
  7. 如权利要求6所述的电化学装置,其特征在于,0.35≤L2/L1≤0.8。
  8. 如权利要求1所述的电化学装置,其特征在于,所述密封钉上设有第一凹部,所述第一凹部由所述密封钉的表面凹陷形成,所述第一凹部的底壁构成所述薄弱区域的部分表面,沿所述密封钉的厚度方向观察,所述第一凹部的投影与所述薄弱区域的投影重叠。
  9. 如权利要求8所述的电化学装置,其特征在于,所述第一凹部开口处的宽度为W1,所述第一凹部底壁的宽度为W2,W1/W2≥1.1。
  10. 如权利要求1所述的电化学装置,其特征在于,所述壳体上设有第二凹部,所述第二凹部由所述壳体的表面凹陷形成,所述通孔贯穿所述第二凹部,所述密封钉的至少部分容置于所述第二凹部并连接于所述第二凹部的底壁。
  11. 如权利要求10所述的电化学装置,其特征在于,所述密封钉固定连接于所述第二凹部的底壁,所述密封钉与所述第二凹部的底壁接触的部分形成闭环的连接区域,沿所述密封钉的厚度方向上,所述连接区域的投影将所述薄弱区域的投影包围。
  12. 如权利要求10所述的电化学装置,其特征在于,所述第二凹部的深度为H4,H4≥H2。
  13. 如权利要求1所述的电化学装置,其特征在于,10μm≤H2≤60μm,50μm≤H1≤300μm。
  14. 如权利要求9所述的电化学装置,其特征在于,60μm≤W1≤200μm,W2≥0。
  15. 一种用电设备,其特征在于,包括如权利要求1至14任一项所述的电化学装置。
PCT/CN2023/110806 2022-08-31 2023-08-02 电化学装置及用电设备 WO2024046023A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211054875.0 2022-08-31
CN202211054875.0A CN115275502A (zh) 2022-08-31 2022-08-31 电化学装置及用电设备

Publications (1)

Publication Number Publication Date
WO2024046023A1 true WO2024046023A1 (zh) 2024-03-07

Family

ID=83753755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110806 WO2024046023A1 (zh) 2022-08-31 2023-08-02 电化学装置及用电设备

Country Status (2)

Country Link
CN (1) CN115275502A (zh)
WO (1) WO2024046023A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275502A (zh) * 2022-08-31 2022-11-01 宁德新能源科技有限公司 电化学装置及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140956A (zh) * 2010-08-17 2013-06-05 锂电池科技有限公司 具有至少一个减压设备的电化学单元
EP3297062A1 (de) * 2016-09-19 2018-03-21 VARTA Microbattery GmbH Elektrochemische zelle zur erzeugung von wasserstoff oder sauerstoff
CN111933833A (zh) * 2020-09-21 2020-11-13 江苏时代新能源科技有限公司 端盖组件、电池单体、电池及用电装置
CN113544890A (zh) * 2020-08-11 2021-10-22 宁德新能源科技有限公司 一种电化学装置及电子设备
CN217158535U (zh) * 2022-02-10 2022-08-09 湖北亿纬动力有限公司 一种电池的盖板组件、圆柱电池及电池包
CN115275502A (zh) * 2022-08-31 2022-11-01 宁德新能源科技有限公司 电化学装置及用电设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120094693A (ko) * 2011-02-17 2012-08-27 주식회사 엘지화학 안전판이 구비된 각형 이차전지
CN203707194U (zh) * 2014-01-16 2014-07-09 深圳市豪鹏科技有限公司 二次电池
CN208014752U (zh) * 2018-04-27 2018-10-26 深圳市比克动力电池有限公司 一种圆柱锂离子电池防爆外壳及其成型模具
CN110400895B (zh) * 2019-07-30 2021-03-09 宁德时代新能源科技股份有限公司 电池模组、二次电池及其顶盖组件
CN112736363B (zh) * 2021-04-01 2021-07-20 江苏时代新能源科技有限公司 电池单体、电池、用电装置、制备电池单体的方法及设备
CN215989098U (zh) * 2021-07-21 2022-03-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN215578755U (zh) * 2021-09-24 2022-01-18 宁德时代新能源科技股份有限公司 一种端盖、端盖组件、电池单体、电池及用电设备
CN216903232U (zh) * 2022-01-26 2022-07-05 宁德时代新能源科技股份有限公司 泄压装置、电池单体、电池及用电设备
CN217158380U (zh) * 2022-03-04 2022-08-09 宁德时代新能源科技股份有限公司 电池单体的端盖、端盖组件、电池单体、电池及用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140956A (zh) * 2010-08-17 2013-06-05 锂电池科技有限公司 具有至少一个减压设备的电化学单元
EP3297062A1 (de) * 2016-09-19 2018-03-21 VARTA Microbattery GmbH Elektrochemische zelle zur erzeugung von wasserstoff oder sauerstoff
CN113544890A (zh) * 2020-08-11 2021-10-22 宁德新能源科技有限公司 一种电化学装置及电子设备
CN111933833A (zh) * 2020-09-21 2020-11-13 江苏时代新能源科技有限公司 端盖组件、电池单体、电池及用电装置
CN217158535U (zh) * 2022-02-10 2022-08-09 湖北亿纬动力有限公司 一种电池的盖板组件、圆柱电池及电池包
CN115275502A (zh) * 2022-08-31 2022-11-01 宁德新能源科技有限公司 电化学装置及用电设备

Also Published As

Publication number Publication date
CN115275502A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
EP3817131A1 (en) Battery
JP4499683B2 (ja) 二次電池
JP2004103579A (ja) キャップ組立体を具備した2次電池及びその密閉部材
JP4537361B2 (ja) 円筒型リチウムイオン二次電池
WO2024046023A1 (zh) 电化学装置及用电设备
US20230299447A1 (en) Electrochemical apparatus and electronic device
KR100788554B1 (ko) 이차전지
JP2010135303A (ja) 二次電池
JP4535699B2 (ja) 開裂溝付き密閉型電池
US20230126021A1 (en) Battery
KR20120096239A (ko) 이차 전지
JP2006093146A (ja) キャップ組立体及びこれを備えるリチウム二次電池
KR100646522B1 (ko) 리튬 이차전지
JP2004039294A (ja) 開裂溝付き密閉型電池
KR100502347B1 (ko) 각형 이차전지
KR100420150B1 (ko) 각형 밀폐전지
KR101136215B1 (ko) 이차 전지
KR101285898B1 (ko) 이차전지
KR101136162B1 (ko) 이차 전지
JP4624004B2 (ja) 電池
KR100822193B1 (ko) 캡조립체와, 이를 채용한 이차전지
WO2023245350A1 (zh) 电化学装置及用电设备
KR101084919B1 (ko) 이차전지
CN209526123U (zh) 电池外壳及二次电池
WO2024082112A1 (zh) 电池单体、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859058

Country of ref document: EP

Kind code of ref document: A1