WO2024045696A1 - 一种工业烟气二氧化碳捕集转化方法及应用 - Google Patents

一种工业烟气二氧化碳捕集转化方法及应用 Download PDF

Info

Publication number
WO2024045696A1
WO2024045696A1 PCT/CN2023/094874 CN2023094874W WO2024045696A1 WO 2024045696 A1 WO2024045696 A1 WO 2024045696A1 CN 2023094874 W CN2023094874 W CN 2023094874W WO 2024045696 A1 WO2024045696 A1 WO 2024045696A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
cyclone
industrial flue
carbon dioxide
cylinder
Prior art date
Application number
PCT/CN2023/094874
Other languages
English (en)
French (fr)
Inventor
丁恩振
刘安钢
Original Assignee
领航国创(北京)科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 领航国创(北京)科技集团有限公司 filed Critical 领航国创(北京)科技集团有限公司
Priority to KR1020237028737A priority Critical patent/KR20240032703A/ko
Publication of WO2024045696A1 publication Critical patent/WO2024045696A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/24Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present application relates to the technical field of carbon dioxide capture, specifically, to a method and application for capturing and converting industrial flue gas carbon dioxide.
  • the adsorption method In the actual production process, the adsorption method has complicated processes, poor stability and safety, and high-pressure liquefaction is prone to leakage and other safety accidents. The cost is high, and it is difficult to promote and apply it on a large scale in industry.
  • the purpose of this application is to provide a method for capturing and converting carbon dioxide from industrial flue gas.
  • the entire process is simple and fast, can effectively capture carbon dioxide in industrial flue gas, has low cost, is safe and has high practical value.
  • Another object of the present application is to provide an application of an industrial flue gas carbon dioxide capture and conversion method in industrial flue gas purification.
  • Another purpose of this application is to provide an application of a method for capturing and converting industrial flue gas carbon dioxide in the preparation of compound fertilizer through the conversion of industrial flue gas.
  • embodiments of the present application provide a method for capturing and converting carbon dioxide from industrial flue gas, which includes the following steps: sending the industrial flue gas into the upper part of the cyclone cylinder so that the flue gas flow rotates downward along the wall of the cyclone cylinder at the upper part, and at the same time Send fresh air into the lower part of the cyclone, causing the air flow to rotate downward along the wall of the cyclone, and cool the cyclone so that the industrial flue gas and air react at a temperature of less than 10°C and a pressure of not less than 0.12MPa.
  • Generate mixed acid including carbonic acid to capture and convert carbon dioxide in industrial flue gas.
  • embodiments of the present application provide an application of a carbon dioxide capture and conversion method for industrial flue gas in industrial flue gas purification treatment.
  • embodiments of the present application provide an application of a method for capturing and converting industrial flue gas carbon dioxide in the conversion of industrial flue gas to prepare compound fertilizer.
  • the embodiments of the present application at least have the following advantages or beneficial effects:
  • embodiments of the present application provide a method for capturing and converting industrial flue gas carbon dioxide.
  • a blower, a nozzle or other equipment the industrial flue gas is sent into the cylindrical upper part of the cyclone, and the industrial flue gas is Pressurize and spray into the inside of the cyclone, causing the industrial flue gas to form an airflow that rotates downward at high speed along the side wall of the cyclone; similarly, use an air compressor, nozzle or other equipment to send fresh air from the outside into the cone of the cyclone.
  • fresh air is pressurized and sprayed into the interior of the cyclone, which also causes the fresh air to form an airflow that rotates downward at high speed along the side wall of the cyclone; during this process, the rotation speed of the air flow is greater than the rotation speed of the flue gas flow.
  • the flue gas flow in the upper part will be dragged and accelerated to rotate downward; at the same time, the cyclone tube will be cooled, Eventually, a wall-trending "supergravity centrifugal freezing pressure field" will be formed inside the cyclone, with the temperature less than 10°C and the pressure not less than 0.12MPa.
  • the moisture in the industrial flue gas condenses into droplets, and the carbon monoxide, carbon dioxide and fresh air in the flue gas change the pressure and temperature conditions provided by the "super-gravity centrifugal refrigeration pressure field", which is not easy to change under normal conditions.
  • the chemical reaction pressure balance parameter of the reaction allows the three to react quickly to produce carbonic acid; similarly, toxic substances such as nitric oxide, nitrogen dioxide, and sulfur dioxide contained in industrial flue gas can also be reacted to form corresponding acids.
  • the entire method has a simple process, can effectively capture carbon dioxide in industrial flue gas, and can also purify industrial flue gas. It is low-cost, economical and environmentally friendly, has a safe and stable process, and has high practical value.
  • embodiments of the present application provide an application of an industrial flue gas carbon dioxide capture and conversion method in industrial flue gas purification treatment.
  • the industrial flue gas can be repeatedly processed in multiple stages through this method to achieve different capture and purification methods. Effect.
  • the application embodiment provides an application of a carbon dioxide capture and conversion method of industrial flue gas in the preparation of compound fertilizer through the conversion of industrial flue gas.
  • the method can be By appropriately introducing liquid nitrogen or ammonia, under the conditions provided by the "ultragravity centrifugal refrigeration pressure field", it can react with the obtained carbonic acid to produce a small amount of ammonium nitrate and sulfuric acid.
  • Ammonium bicarbonate compound fertilizer can be simply dehydrated to obtain an agricultural compound fertilizer with an ammonium bicarbonate content of over 97%. Relevant reactions are as follows: H 2 CO 3 +NH 3 ⁇ NH 4 HCO 3 H 2 SO 4 +2NH 3 ⁇ (NH 4 ) 2 SO 4 HNO 3 +NH 3 ⁇ NH 4 NO 3
  • Figure 1 is a schematic structural diagram of a device capable of realizing the industrial flue gas carbon dioxide capture and conversion method provided by this application.
  • Icon 1. Shell; 11. Sealing baffle; 2. Cyclone; 21. Cylinder; 22. Cone; 23. Cooling chamber; 3. First chamber; 4. Second chamber; 5 , first air flow nozzle; 6. second air flow nozzle; 7. feeding pipe; 8. collection pipe; 81. exhaust pipe; 9. collection box; 100. circulation cooling device; 101. inlet; 102. outlet; 200. Medium and high pressure blower; 300, air compressor.
  • the conditions should be carried out according to the conventional conditions or the conditions recommended by the manufacturer. If the manufacturer of the reagents or instruments used is not indicated, they are all conventional products that can be purchased commercially.
  • the embodiment of the present application provides a method for capturing and converting carbon dioxide from industrial flue gas, which includes the following steps: sending the industrial flue gas into the upper part of the cyclone, causing the flue gas flow to rotate downward along the wall of the cyclone at the upper part, and at the same time, fresh air is The air flow is sent to the lower part of the cyclone to rotate downward along the wall of the cyclone, and the cyclone is cooled so that the industrial flue gas and air react at a temperature of less than 10°C and a pressure of not less than 0.12MPa to produce carbonic acid.
  • the mixed acid contained in it captures and transforms carbon dioxide in industrial flue gas.
  • the industrial flue gas is sent into the cylindrical upper part of the cyclone by using a blower, nozzle or other equipment, and the industrial flue gas is pressurized and sprayed into the interior of the cyclone, so that the industrial flue gas forms an air flow along the
  • the side wall of the cyclone rotates downward at high speed; similarly, an air compressor, nozzle or other equipment is used to send fresh air from the outside into the conical lower part of the cyclone, and the fresh air is pressurized and sprayed into the inside of the cyclone.
  • the fresh air forms an air flow and rotates downward at high speed along the side wall of the cyclone. During this process, the rotation speed of the air flow is greater than the rotation speed of the flue gas flow.
  • the upper flue gas flow Under the action of the pressure difference, the upper flue gas flow will be dragged and accelerated. It rotates downward; at the same time, the cyclone is cooled, and eventually a wall-trending "supergravity centrifugal freezing pressure field" will be formed inside the cyclone, with a temperature less than 10°C and a pressure not less than 0.12MPa. Under this condition, the moisture in the industrial flue gas condenses into droplets. The carbon monoxide, carbon dioxide and fresh air in the flue gas change the pressure and temperature conditions provided by the "super-gravity centrifugal refrigeration pressure field", which is not easy to change under normal conditions.
  • the chemical reaction pressure balance parameter of the reaction allows the three to react quickly to produce carbonic acid; similarly, toxic substances such as nitric oxide, nitrogen dioxide, and sulfur dioxide contained in industrial flue gas can also be reacted to form corresponding acids.
  • the entire method has a simple process, can effectively capture carbon dioxide in industrial flue gas, and can also purify industrial flue gas. It is low-cost, economical and environmentally friendly, has a safe and stable process, and has high practical value.
  • industrial flue gas is sent into the upper part of the cyclone through a medium and high-pressure blower, and the pressure is 4500-7500Pa; fresh air is sent into the lower part of the cyclone through an air compressor, and the pressure is 0.6-0.8 MPa.
  • the tangential speed of the flue gas flow when rotating is 14-40m/s; the tangential speed of the air flow when rotating is 60-150m/s.
  • the cyclone is cooled by a cooling medium, and the cooling medium temperature is 5°C to -15°C.
  • a wall-oriented "supergravity centrifugal freezing pressure field" can be formed inside the cyclone, which is more conducive to the progress of the reaction and improves the efficiency of carbon dioxide capture and conversion. The effect is more conducive to industrial production and use.
  • the present application it is implemented by the following device: including a housing 1, a cyclone 2 is provided in the housing 1, and the bottom of the cyclone 2 is connected to the bottom of the housing 1; A cavity is formed between the cyclone 2 and the housing 1.
  • a sealing baffle 11 is provided in the cavity.
  • the sealing baffle 11 is sleeved on the cyclone 2 and connected to the inner wall of the housing 1.
  • the sealing baffle 11 The above-mentioned cavity is divided into a first chamber 3 and a second chamber 4.
  • the above-mentioned first chamber 3 is located above the above-mentioned second chamber 4; the side wall of the above-mentioned cyclone cylinder 2 is provided with a cooling chamber 23.
  • the side wall of the above-mentioned cyclone cylinder 2 is The wall is also provided with a first injection assembly and a second injection assembly.
  • the first injection assembly is located in the first chamber 3 and the second injection assembly is located in the second chamber 4 .
  • the industrial flue gas is sent through equipment such as a blower into the first chamber 3 inside the casing 1, and spray the flue gas into the interior of the cyclone 2 at high speed through the first injection assembly to cause the flue gas to rotate downward along the inner wall of the cyclone 2.
  • the cooling cavity 23 is filled with cooling medium, which can cool the rotating flue gas; at the same time, fresh air is sent into the second chamber 4, and the fresh air is sprayed at high speed through the second injection assembly.
  • the upper part of the above-mentioned conical tube is a high-speed downward rotating flue gas flow
  • the lower part is a high-speed downward rotating air flow.
  • the high-speed airflow in the upper part is dragged by the pressure difference generated by the high-speed airflow in the lower part, causing the upper flue gas to rotate downward around the inner wall of the above-mentioned cyclone 2 more quickly.
  • liquid nitrogen or ammonia is properly introduced into the above-mentioned cyclone 2, under the conditions provided by the "supergravity centrifugal refrigeration pressure field", it can react with the obtained carbonic acid to generate an ammonium bicarbonate compound fertilizer containing a small amount of ammonium nitrate and ammonium sulfate. , and then simply dehydrate it to obtain an agricultural compound fertilizer with an ammonium bicarbonate content of over 97%.
  • the entire equipment has a simple structure and can purify the flue gas while capturing carbon dioxide from the flue gas. At the same time, it can further convert the captured carbon dioxide into compound nitrogen fertilizer to realize resource recycling and reuse; the entire process is safe when used. It is stable, simple and fast, has high stability, low cost, has the characteristics of energy saving and emission reduction, economical and environmental protection, resource saving, etc., and has high practical value.
  • the above-mentioned first injection component includes a plurality of first airflow nozzles 5
  • the above-mentioned second injection component includes a plurality of second airflow nozzles 6, and the above-mentioned first airflow nozzle
  • the nozzle 5 and the second airflow nozzle 6 are both disposed on the side wall of the cyclone 2.
  • the air inlet ends of the first airflow nozzle 5 and the second airflow nozzle 6 are located in the cavity, and the air outlet ends are located in the cyclone. 2 is inside and located lower than the air intake end.
  • the plurality of first airflow nozzles 5 and the plurality of second airflow nozzles 6 that are inclined downward toward the inside of the cyclone 2 can better realize the high-speed downward rotation of the airflow along the inner wall of the cyclone 2 ,Better results.
  • the airflow injection speed of the above-mentioned second nozzle is greater than the above-mentioned first airflow nozzle 5, so as to accelerate and drag the upper flue gas flow through the pressure difference.
  • the above-mentioned cyclone cylinder 2 includes a cylinder cylinder 21 and a cone cylinder 22.
  • the larger diameter end of the above-mentioned cone cylinder 22 is connected to the end of the above-mentioned cylinder cylinder 21.
  • the above-mentioned cone cylinder 21 The smaller diameter end of the body barrel 22 is connected to the bottom of the housing 1 and communicates with the outside world; the sealing baffle 11 is located between the cylinder barrel 21 and the cone barrel 22, and the cylinder barrel 21 is located in the first In the chamber 3 , the cone cylinder 22 is located in the second chamber 4 .
  • such an arrangement can make the structure of the device more reasonable and help enhance the capture effect.
  • the above-mentioned device also includes a circulating cooling device 100.
  • the above-mentioned circulating cooling device 100 is provided with an outlet 102 and an inlet 101.
  • the above-mentioned outlet 102 is connected to the bottom of the above-mentioned cooling cavity 23 through a pipeline, and the above-mentioned inlet 101 is connected to the top of the above-mentioned cooling chamber 23 through a pipe.
  • liquid nitrogen or ammonia water can be added while fresh air is sent into the second chamber 4 through the feeding pipe 7 to react and convert the captured carbon dioxide into ammonium bicarbonate compound fertilizer. Achieve resource reuse.
  • the embodiments of the present application also provide a method for capturing and converting carbon dioxide from industrial flue gas in industrial flue gas. Application in gas purification treatment.
  • the embodiments of this application also provide the application of a carbon dioxide capture and conversion method of industrial flue gas in the preparation of compound fertilizer through the conversion of industrial flue gas.
  • This embodiment provides a method for capturing and converting carbon dioxide from industrial flue gas, which includes the following steps: sending the industrial flue gas into the upper part of the cyclone cylinder through a medium-high pressure blower at a pressure of 4500 Pa, so that the flue gas flow flows along the upper part of the cyclone cylinder along the cylinder wall. It rotates downward at a tangential speed of 14m/s.
  • fresh air is sent into the lower part of the cyclone tube through an air compressor at a pressure of 0.6MPa, so that the air flow rotates downward at a tangential speed of 60m/s along the wall of the cyclone tube in the lower part of the cyclone tube.
  • the cyclone is cooled by a cooling medium with a temperature of 5°C, so that the industrial flue gas and air react at a temperature of less than 10°C and a pressure of not less than 0.12MPa to generate a mixed acid including carbonic acid, and the carbon dioxide in the industrial flue gas is removed. Capture transformation.
  • This embodiment provides a method for capturing and converting carbon dioxide from industrial flue gas, which includes the following steps: sending the industrial flue gas into the upper part of the cyclone cylinder through a medium-high pressure blower at a pressure of 7500 Pa, so that the flue gas flow flows along the upper part of the cyclone cylinder along the cylinder wall. It rotates downward at a tangential speed of 40m/s.
  • fresh air is sent into the lower part of the cyclone tube through an air compressor at a pressure of 0.8MPa, so that the air flow rotates downward at a tangential speed of 150m/s along the wall of the cyclone tube in the lower part of the cyclone tube.
  • the cyclone is cooled by the cooling medium with a temperature of -15°C, so that the industrial flue gas and air react at a temperature of less than 10°C and a pressure of not less than 0.12MPa to generate a mixed acid including carbonic acid, which can reduce the carbon dioxide in the industrial flue gas. Capture and transform.
  • This embodiment provides a method for capturing and converting carbon dioxide from industrial flue gas, which includes the following steps: sending the industrial flue gas into the upper part of the cyclone cylinder through a medium-high pressure blower at a pressure of 6000 Pa, so that the flue gas flow flows along the upper part of the cyclone cylinder along the cylinder wall. It rotates downward at a tangential speed of 30m/s.
  • fresh air is sent into the lower part of the cyclone cylinder through an air compressor at a pressure of 0.8MPa, so that the air flow rotates downward at a tangential speed of 120m/s along the wall of the cyclone cylinder in the lower part of the cyclone cylinder.
  • the cyclone is cooled by a cooling medium with a temperature of -10°C, so that the industrial flue gas and air react at a temperature of less than 10°C and a pressure of not less than 0.12MPa to generate a mixed acid including carbonic acid, which can effectively reduce the carbon dioxide in the industrial flue gas. Capture and transform.
  • This embodiment provides a method for capturing and converting industrial flue gas carbon dioxide, which is implemented by the following device:
  • the sealing baffle 11 is sleeved on the cyclone 2 and connected to the inner wall of the housing 1. The sealing baffle 11 divides the cavity into a first chamber 3 and a second chamber 4.
  • the above-mentioned first chamber 3 is located above the above-mentioned second chamber 4; the side wall of the above-mentioned cyclone 2 is provided with a cooling chamber 23, and the side wall of the above-mentioned cyclone 2 is also provided with a first injection assembly and a second injection assembly.
  • the component is located in the above-mentioned first chamber 3, and the above-mentioned second injection component is located in the above-mentioned second chamber 4.
  • the first spray assembly includes a plurality of first airflow nozzles 5, and the second spray assembly includes a plurality of second airflow nozzles 6. Both the first airflow nozzles 5 and the second airflow nozzles 6 are disposed on the side of the cyclone tube 2. The air inlet end of the first airflow nozzle 5 and the second airflow nozzle 6 is located in the cavity, and the air outlet end is located inside the cyclone 2 and is lower than the air inlet end.
  • the above-mentioned cyclone cylinder 2 includes a cylinder cylinder 21 and a cone cylinder 22.
  • the larger diameter end of the above-mentioned cone cylinder 22 is connected to the end of the above-mentioned cylinder cylinder 21, and the smaller end of the above-mentioned cone cylinder 22 is connected to the above-mentioned shell.
  • the bottom of 1 is connected and communicates with the outside world; the above-mentioned sealing baffle 11 is located between the above-mentioned cylindrical cylinder 21 and the above-mentioned cone cylinder 22.
  • the above-mentioned cylindrical cylinder 21 is located in the above-mentioned first chamber 3
  • the above-mentioned cone cylinder 22 is located in the above-mentioned first chamber 3. inside the second chamber 4.
  • the circulating cooling device 100 is provided with an outlet 102 and an inlet 101.
  • the outlet 102 is connected to the bottom of the cooling cavity 23 through a pipe, and the inlet 101 is connected to the top of the cooling cavity 23 through a pipe.
  • the specific method is: sending the industrial flue gas into the above-mentioned first chamber 3 through the medium and high-pressure blower 200 at a pressure of 6000Pa, and spraying the flue gas into the cyclone 2 through the above-mentioned first airflow nozzle 5 to form a flue gas flow.
  • the upper part of the above-mentioned cyclone cylinder 2 rotates downward along the cylinder wall at a tangential speed of 30m/s; at the same time, fresh air is sent into the above-mentioned second chamber 4 through the above-mentioned second air flow through the air compressor 300 at a pressure of 0.8MPa.
  • the nozzle 6 injects air into the cyclone 2 to form an air flow and rotates downward along the cylinder wall at the lower part of the cyclone 2 at a tangential speed of 120m/s; at the same time, the cooling medium with a temperature of -10°C is cooled through the above-mentioned circulating cooling device 100
  • the cyclone 2 is cooled by passing into the cooling chamber 23 through the outlet 102, and the circulating medium in the cooling chamber 23 is recovered through the inlet 101; finally, the industrial flue gas and air are kept at a temperature of less than 10°C and a pressure of Under conditions of not less than 0.12MPa, the reaction generates mixed acid including carbonic acid, which captures and transforms carbon dioxide in industrial flue gas.
  • the flue gas generated by tire burning is processed using an industrial flue gas carbon dioxide capture and conversion method provided in Example 4 of this application, and the detailed state data changes before and after the flue gas treatment are detected and recorded.
  • the specific items and results are as shown in Table 1 Shown:
  • embodiments of the present application provide a method and application for capturing and converting industrial flue gas carbon dioxide.
  • This method uses a blower, nozzle or other equipment to send industrial flue gas into a cyclone.
  • the cylindrical upper part pressurizes and injects industrial flue gas into the interior of the cyclone, causing the industrial flue gas to form an airflow that rotates downward at high speed along the side wall of the cyclone; similarly, an air compressor, nozzle or other equipment is used to inject the outside air into the cyclone.
  • Fresh air is fed into the conical lower part of the cyclone, and the fresh air is pressurized and sprayed into the interior of the cyclone, which also causes the fresh air to form an airflow and rotate downward at high speed along the side wall of the cyclone; during this process, the rotation speed of the airflow Greater than the rotation speed of the flue gas flow, under the action of the pressure difference, the upper flue gas flow will be dragged and accelerated to rotate downward; at the same time, the cyclone will be cooled, and eventually a wall-trending "super-gravity centrifugal force" will be formed inside the cyclone.
  • Freezing pressure field the temperature is less than 10°C and the pressure is not less than 0.12MPa.
  • the carbon monoxide, carbon dioxide and fresh air in the flue gas change the pressure and temperature conditions provided by the "super-gravity centrifugal refrigeration pressure field", which is not easy to change under normal conditions.
  • the chemical reaction pressure balance parameter of the reaction allows the three to react quickly to produce carbonic acid; similarly, toxic substances such as nitric oxide, nitrogen dioxide, and sulfur dioxide contained in industrial flue gas can also be reacted to form corresponding acids.
  • the entire method has a simple process, can effectively capture carbon dioxide in industrial flue gas, and can also purify industrial flue gas. It is low-cost, economical and environmentally friendly, the process is safe and stable, has high practical value, and can also be applied to industrial flue gas. Purification and transformation to prepare compound fertilizer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种工业烟气二氧化碳捕集转化方法及应用,涉及二氧化碳捕集技术领域。一种工业烟气二氧化碳捕集转化方法,其包括如下步骤:将工业烟气送入旋风筒(2)上部使烟气气流在旋风筒(2)上部沿筒壁向下旋转,同时将新鲜空气送入旋风筒(2)下部使空气气流在旋风筒(2)下部沿筒壁向下旋转,并对旋风筒(2)进行冷却,使工业烟气与空气在温度小于10℃,压力不小于0.12MPa的条件下反应生成包含碳酸在内的混酸,对工业烟气中二氧化碳进行捕集转化;其整个工艺方法流程简单快捷,能够有效捕集工业烟气中的二氧化碳,成本低,安全性和实用价值高,还能够应用于烟气净化以及复合肥制备。

Description

一种工业烟气二氧化碳捕集转化方法及应用 技术领域
本申请涉及二氧化碳捕集技术领域,具体而言,涉及一种工业烟气二氧化碳捕集转化方法及应用。
背景技术
目前工业上对二氧化碳进行捕集的常有方法有化学吸附、物理吸附、高压液化、分子筛等技术手段。如公开号CN114602294A公开了一种用于捕集CO2的两相吸收剂,通过化学吸收的手段对二氧化碳进行捕集;又如授权公告号CN214222307U公开了一种工业废气二氧化碳富集液化工艺集成系统,采用高压液化的方式对二氧化碳进行捕集储存。
而在实际生产的过程中,吸附法工艺繁杂,稳定性和安全性较差,高压液化容易产生泄露等安全事故,成本较高,难以在工业上大规模推广应用。
发明内容
本申请的目的在于提供一种工业烟气二氧化碳捕集转化方法,其整个工艺方法流程简单快捷,能够有效捕集工业烟气中的二氧化碳,成本低,安全性和实用价值高。
本申请的另一目的在于提供一种工业烟气二氧化碳捕集转化方法在工业烟气净化方面上的应用。
本申请还有一目的在于提供一种工业烟气二氧化碳捕集转化方法在工业烟气转化制备复合肥方面上的应用。
本申请解决其技术问题是采用以下技术方案来实现的。
第一方面,本申请实施例提供一种工业烟气二氧化碳捕集转化方法,其包括如下步骤:将工业烟气送入旋风筒上部使烟气气流在旋风筒上部沿筒壁向下旋转,同时将新鲜空气送入旋风筒下部使空气气流在旋风筒下部沿筒壁向下旋转,并对旋风筒进行冷却,使工业烟气与空气在温度小于10℃,压力不小于0.12MPa的条件下反应生成包含碳酸在内的混酸,对工业烟气中二氧化碳进行捕集转化。
第二方面,本申请实施例提供一种工业烟气二氧化碳捕集转化方法在工业烟气净化处理上的应用。
第三方面,本申请实施例提供一种工业烟气二氧化碳捕集转化方法在工业烟气转化制备复合肥上的应用。
相对于现有技术,本申请实施例至少具有如下优点或有益效果:
针对第一方面,本申请实施例提供了一种工业烟气二氧化碳捕集转化方法,通过使用鼓风机、喷嘴或其他设备将工业烟气送入至旋风筒的柱形上半部分,将工业烟气加压喷射至旋风筒内部,使工业烟气形成气流沿着旋风筒侧壁高速向下旋转;同样的,利用空气压缩机、喷嘴或其他设备将外界的新鲜空气送入至旋风筒的锥形下半部分,将新鲜空气加压喷射至旋风筒内部,同样使新鲜空气形成气流沿旋风筒侧壁高速向下旋转;此过程中,空气气流的旋转速度大于烟气气流的旋转速度,在压差的作用下,位于上部的烟气气流会被拖拽加速向下旋转运动;同时对旋风筒进行冷却, 最终会在旋风筒内部形成趋壁“超重离心冷冻压力场”,温度小于10℃,压力不小于0.12MPa。在此条件下,工业烟气中的水分凝结成滴,烟气中的一氧化碳、二氧化碳与新鲜空气中在“超重离心冷冻压力场”所提供的压力及温度条件下,改变了在平常条件下不易反应的化学反应压力平衡参数,使得三者能够迅速反应生产碳酸;同理的,还可以将工业烟气中含有的一氧化氮、二氧化氮、二氧化硫等毒害物质反应形成相应的酸。相关反应如下:
2CO+2CO2+4H2O+O2→4H2CO3
CO2+H2O→H2CO3
4NO+2H2O+3O2→4HNO3
4NO2+2H2O+O2→4HNO3
2SO2+2H2O+O2→2H2SO4
整个方法流程简单,能够有效对工业烟气中的二氧化碳进行捕集,同时还能够对工业烟气进行净化,成本低廉且经济环保,工艺过程安全稳定,实用价值高。
针对第二方面,本申请实施例提供一种工业烟气二氧化碳捕集转化方法在工业烟气净化处理上的应用,可以将工业烟气通过该方法反复多级处理以达到不同的捕集、净化效果。
针对第三方面,申请实施例提供一种工业烟气二氧化碳捕集转化方法在工业烟气转化制备复合肥上的应用,在通过该方法对工业烟气进行处理的过程中,可以在旋风筒内适当引入液氮或氨水,在“超重离心冷冻压力场”所提供的条件下就能够使其与得到的碳酸反应生成含有少量硝酸铵和硫酸 铵的碳酸氢铵复合肥,再对其进行简单的脱水处理即可得到碳酸氢铵含量高达97%以上的农用复合肥。相关反应如下:
H2CO3+NH3→NH4HCO3
H2SO4+2NH3→(NH4)2SO4
HNO3+NH3→NH4NO3
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定。对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为能够实现本申请提供的工业烟气二氧化碳捕集转化方法的装置的结构示意图。
图标:1、壳体;11、密封挡板;2、旋风筒;21、柱体筒;22、锥体筒;23、冷却腔;3、第一腔室;4、第二腔室;5、第一气流喷嘴;6、第二气流喷嘴;7、加料管;8、收集管;81、排气管;9、收集箱;100、循环冷却装置;101、进口;102、出口;200、中高压鼓风机;300、空气压缩机。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。 通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,“多个”代表至少2个。
在本申请实施例的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“连接”等应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接; 可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考具体实施例来详细说明本申请。
本申请实施例提供了一种工业烟气二氧化碳捕集转化方法,其包括如下步骤:将工业烟气送入旋风筒上部使烟气气流在旋风筒上部沿筒壁向下旋转,同时将新鲜空气送入旋风筒下部使空气气流在旋风筒下部沿筒壁向下旋转,并对旋风筒进行冷却,使工业烟气与空气在温度小于10℃,压力不小于0.12MPa的条件下反应生成包含碳酸在内的混酸,对工业烟气中二氧化碳进行捕集转化。
在上述实施例中,通过使用鼓风机、喷嘴或其他设备将工业烟气送入至旋风筒的柱形上半部分,将工业烟气加压喷射至旋风筒内部,使工业烟气形成气流沿着旋风筒侧壁高速向下旋转;同样的,利用空气压缩机、喷嘴或其他设备将外界的新鲜空气送入至旋风筒的锥形下半部分,将新鲜空气加压喷射至旋风筒内部,同样使新鲜空气形成气流沿旋风筒侧壁高速向下旋转;此过程中,空气气流的旋转速度大于烟气气流的旋转速度,在压差的作用下,位于上部的烟气气流会被拖拽加速向下旋转运动;同时对旋风筒进行冷却,最终会在旋风筒内部形成趋壁“超重离心冷冻压力场”,温度小于10℃,压力不小于0.12MPa。在此条件下,工业烟气中的水分凝结成滴,烟气中的一氧化碳、二氧化碳与新鲜空气中在“超重离心冷冻压力场”所提供的压力及温度条件下,改变了在平常条件下不易反应的化学反应压力平衡参数,使得三者能够迅速反应生产碳酸;同理的,还可以将工业烟气中含有的一氧化氮、二氧化氮、二氧化硫等毒害物质反应形成相应的酸。
整个方法流程简单,能够有效对工业烟气中的二氧化碳进行捕集,同时还能够对工业烟气进行净化,成本低廉且经济环保,工艺过程安全稳定,实用价值高。
进一步的,在本申请的一些实施例中,通过中高压鼓风机将工业烟气送入旋风筒上部,压力为4500~7500Pa;通过空气压缩机将新鲜空气送入旋风筒下部,压力为0.6~0.8MPa。
进一步的,在本申请的一些实施例中,烟气气流旋转时的切线速度为14~40m/s;空气气流旋转时切线速度为60~150m/s。
进一步的,在本申请的一些实施例中,通过冷却介质对旋风筒进行冷却,冷却介质温度为5℃~-15℃。
在上述实施例中,通过对压力、气流流速、冷却温度等条件进行控制,能够在旋风筒内部形成趋壁“超重离心冷冻压力场”,更有助于反应的进行,提高二氧化碳捕集转化的效果,更有利于工业生产使用。
进一步的,在本申请的一些实施例中,其通过如下装置实现:包括壳体1,上述壳体1内设置有旋风筒2,上述旋风筒2的底部与上述壳体1的底部连接;上述旋风筒2与上述壳体1之间形成腔体,上述腔体内设置有密封挡板11,上述密封挡板11套设于上述旋风筒2且与上述壳体1内壁连接,上述密封挡板11将上述腔体分割为第一腔室3和第二腔室4,上述第一腔室3位于上述第二腔室4上方;上述旋风筒2侧壁设置有冷却腔23,上述旋风筒2侧壁还设置有第一喷射组件和第二喷射组件,上述第一喷射组件位于上述第一腔室3,上述第二喷射组件位于上述第二腔室4。
在上述实施例中,实际使用的时候,将工业烟气通过鼓风机等设备送 入至上述壳体1内部的上述第一腔室3内,并通过上述第一喷射组件将烟气高速喷入至上述旋风筒2内部使烟气沿上述旋风筒2内壁向下旋转。在此过程中,上述冷却腔23内填充有冷却介质,能够对旋转的烟气进行冷却;同时将新鲜空气送入至上述第二腔室4内,并通过上述第二喷射组件将新鲜空气高速喷入至上述旋风筒2的下部使新鲜空气同样沿旋风筒2内壁旋转;此时,上述锥形筒的上部为高速向下旋转的烟气气流,下部分为高速向下旋转的空气气流,上部的高速气流在下部的高速气流所产生的压差拖拽下,会使得上部烟气更加快速的环绕上述旋风筒2内壁向下旋转运动,同时在上述冷却腔23内冷却介质的作用下,最终会在上述旋风筒2的内部形成趋壁“超重离心冷冻压力场”。在此条件下,工业烟气中的水分凝结成滴,烟气中的一氧化碳、二氧化碳与新鲜空气中在“超重离心冷冻压力场”所提供的压力及温度条件下,改变了在平常条件下不易反应的化学反应压力平衡参数,使得三者能够迅速反应生产碳酸;同理的,还可以将工业烟气中含有的一氧化氮、二氧化氮、二氧化硫等毒害物质反应形成相应的酸。若在上述旋风筒2内适当引入液氮或氨水,在“超重离心冷冻压力场”所提供的条件下就能够使其与得到的碳酸反应生成含有少量硝酸铵和硫酸铵的碳酸氢铵复合肥,再对其进行简单的脱水处理即可得到碳酸氢铵含量高达97%以上的农用复合肥。
整个设备结构简单,能够在实现对烟气二氧化碳捕集的同时对烟气进行净化,同时还能够进一步将捕集得到的二氧化碳转化为复合氮肥,实现资源的回收再利用;使用时整个工艺过程安全稳定,简单快捷,稳定性高,成本低廉,具有节能减排、经济环保、节约资源等特点,实用价值高。
进一步的,在本申请的一些实施例中,上述第一喷射组件包括多个第一气流喷嘴5,上述第二喷射组件包括多个第二气流喷嘴6,上述第一气流 喷嘴5和上述第二气流喷嘴6均穿设于上述旋风筒2侧壁,上述第一气流喷嘴5和上述第二气流喷嘴6的进气端均位于上述腔体内,出气端均位于上述旋风筒2内部且位置低于进气端。
在上述实施例中,通过朝向上述旋风筒2内部倾斜向下的多个上述第一气流喷嘴5和多个上述第二气流喷嘴6能够更好的实现气流沿上述旋风筒2内壁高速向下旋转,效果更好。其中上述第二喷嘴的气流喷射速度大于上述第一气流喷嘴5,以便通过压差来加速拖拽上方的烟气气流。
进一步的,在本申请的一些实施例中,上述旋风筒2包括柱体筒21和锥体筒22,上述锥体筒22口径较大的一端与上述柱体筒21的端部连接,上述锥体筒22口径较小的一端与上述壳体1的底部连接且与外界连通;上述密封挡板11位于上述柱体筒21和上述锥体筒22之间,上述柱体筒21位于上述第一腔室3内,上述锥体筒22位于上述第二腔室4内。
在上述实施例中,这样设置能够使装置结构更加合理,有助于增强捕集效果。
进一步的,在本申请的一些实施例中,上述装置还包括循环冷却装置100,上述循环冷却装置100设置有出口102和进口101,上述出口102通过管道与上述冷却腔23的底部连通,上述进口101通过管道与上述冷却腔23的顶部连通。
在上述实施例中,能够通过上述加料管7在向上述第二腔室4内送入新鲜空气的同时加入液氮或氨水,用以将捕集到的二氧化碳反应转化为碳酸氢铵复合肥,实现资源的再利用。
本申请实施例还提供了一种工业烟气二氧化碳捕集转化方法在工业烟 气净化处理上的应用。
本申请实施例还提供了一种工业烟气二氧化碳捕集转化方法在工业烟气转化制备复合肥上的应用。
以下结合实施例对本申请的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种工业烟气二氧化碳捕集转化方法,其包括如下步骤:通过中高压鼓风机在压力4500Pa下将工业烟气送入旋风筒上部,使烟气气流在旋风筒上部沿筒壁以14m/s的切线速度向下旋转,同时通过空气压缩机在压力0.6MPa下将新鲜空气送入旋风筒下部,使空气气流在旋风筒下部沿筒壁以60m/s的切线速度向下旋转,并通过温度为5℃冷却介质对旋风筒进行冷却,使工业烟气与空气在温度小于10℃,压力不小于0.12MPa的条件下反应生成包含碳酸在内的混酸,对工业烟气中二氧化碳进行捕集转化。
实施例2
本实施例提供一种工业烟气二氧化碳捕集转化方法,其包括如下步骤:通过中高压鼓风机在压力7500Pa下将工业烟气送入旋风筒上部,使烟气气流在旋风筒上部沿筒壁以40m/s的切线速度向下旋转,同时通过空气压缩机在压力0.8MPa下将新鲜空气送入旋风筒下部,使空气气流在旋风筒下部沿筒壁以150m/s的切线速度向下旋转,并通过温度为-15℃冷却介质对旋风筒进行冷却,使工业烟气与空气在温度小于10℃,压力不小于0.12MPa的条件下反应生成包含碳酸在内的混酸,对工业烟气中二氧化碳进行捕集转化。
实施例3
本实施例提供一种工业烟气二氧化碳捕集转化方法,其包括如下步骤:通过中高压鼓风机在压力6000Pa下将工业烟气送入旋风筒上部,使烟气气流在旋风筒上部沿筒壁以30m/s的切线速度向下旋转,同时通过空气压缩机在压力0.8MPa下将新鲜空气送入旋风筒下部,使空气气流在旋风筒下部沿筒壁以120m/s的切线速度向下旋转,并通过温度为-10℃冷却介质对旋风筒进行冷却,使工业烟气与空气在温度小于10℃,压力不小于0.12MPa的条件下反应生成包含碳酸在内的混酸,对工业烟气中二氧化碳进行捕集转化。
实施例4
请参照图1,本实施例提供一种工业烟气二氧化碳捕集转化方法,其通过如下装置实现:
包括壳体1,上述壳体1内设置有旋风筒2,上述旋风筒2的底部与上述壳体1的底部连接;上述旋风筒2与上述壳体1之间形成腔体,上述腔体内设置有密封挡板11,上述密封挡板11套设于上述旋风筒2且与上述壳体1内壁连接,上述密封挡板11将上述腔体分割为第一腔室3和第二腔室4,上述第一腔室3位于上述第二腔室4上方;上述旋风筒2侧壁设置有冷却腔23,上述旋风筒2侧壁还设置有第一喷射组件和第二喷射组件,上述第一喷射组件位于上述第一腔室3,上述第二喷射组件位于上述第二腔室4。
上述第一喷射组件包括多个第一气流喷嘴5,上述第二喷射组件包括多个第二气流喷嘴6,上述第一气流喷嘴5和上述第二气流喷嘴6均穿设于上述旋风筒2侧壁,上述第一气流喷嘴5和上述第二气流喷嘴6的进气端均位于上述腔体内,出气端均位于上述旋风筒2内部且位置低于进气端。
上述旋风筒2包括柱体筒21和锥体筒22,上述锥体筒22口径较大的一端与上述柱体筒21的端部连接,上述锥体筒22口径较小的一端与上述壳体1的底部连接且与外界连通;上述密封挡板11位于上述柱体筒21和上述锥体筒22之间,上述柱体筒21位于上述第一腔室3内,上述锥体筒22位于上述第二腔室4内。
还包括循环冷却装置100,上述循环冷却装置100设置有出口102和进口101,上述出口102通过管道与上述冷却腔23的底部连通,上述进口101通过管道与上述冷却腔23的顶部连通。
具体方法为:通过中高压鼓风机200在压力6000Pa下将工业烟气送入至上述第一腔室3,并通过上述第一气流喷嘴5将烟气喷入至旋风筒2内形成烟气气流并在上述旋风筒2上部沿筒壁以30m/s的切线速度向下旋转;同时通过空气压缩机300在压力0.8MPa下将新鲜空气送入至上述第二腔室4,并通过上述第二气流喷嘴6将空气喷入至旋风筒2内形成空气气流并在上述旋风筒2下部沿筒壁以120m/s的切线速度向下旋转;同时通过上述循环冷却装置100将温度为-10℃冷却介质通过上述出口102通入至上述冷却腔23内对旋风筒2进行冷却,并通过上述进口101对上述冷却腔23内的循环介质进行回收;最终使工业烟气与空气在温度小于10℃,压力不小于0.12MPa的条件下反应生成包含碳酸在内的混酸,对工业烟气中二氧化碳进行捕集转化。
试验例
对轮胎焚烧产生的烟气采用本申请实施例4中所提供的一种工业烟气二氧化碳捕集转化方法进行处理,检测并记录烟气处理前后的详细状态数据变化,具体项目及结果如表1所示:
表1
通过结果可见,通过本申请提供的一种工业烟气二氧化碳捕集转化方法对轮胎焚烧烟气进行处理,外排烟气总量减少53.6%,水蒸气凝结为液态水回收89.7%,CO2转化为H2CO3高达66.5%,SOX转化为H2SO499.8%,NOX转化为HNO381.2%,效果明显。
综上,本申请的实施例提供一种工业烟气二氧化碳捕集转化方法及应用,该方法通过使用鼓风机、喷嘴或其他设备将工业烟气送入至旋风筒的 柱形上半部分,将工业烟气加压喷射至旋风筒内部,使工业烟气形成气流沿着旋风筒侧壁高速向下旋转;同样的,利用空气压缩机、喷嘴或其他设备将外界的新鲜空气送入至旋风筒的锥形下半部分,将新鲜空气加压喷射至旋风筒内部,同样使新鲜空气形成气流沿旋风筒侧壁高速向下旋转;此过程中,空气气流的旋转速度大于烟气气流的旋转速度,在压差的作用下,位于上部的烟气气流会被拖拽加速向下旋转运动;同时对旋风筒进行冷却,最终会在旋风筒内部形成趋壁“超重离心冷冻压力场”,温度小于10℃,压力不小于0.12MPa。在此条件下,工业烟气中的水分凝结成滴,烟气中的一氧化碳、二氧化碳与新鲜空气中在“超重离心冷冻压力场”所提供的压力及温度条件下,改变了在平常条件下不易反应的化学反应压力平衡参数,使得三者能够迅速反应生产碳酸;同理的,还可以将工业烟气中含有的一氧化氮、二氧化氮、二氧化硫等毒害物质反应形成相应的酸。整个方法流程简单,能够有效对工业烟气中的二氧化碳进行捕集,同时还能够对工业烟气进行净化,成本低廉且经济环保,工艺过程安全稳定,实用价值高,还能够应用于工业烟气净化及转化制备复合肥。
以上仅为本申请的优选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种工业烟气二氧化碳捕集转化方法,其特征在于,其包括如下步骤:将工业烟气送入旋风筒上部使烟气气流在旋风筒上部沿筒壁向下旋转,同时将新鲜空气送入旋风筒下部使空气气流在旋风筒下部沿筒壁向下旋转,并对旋风筒进行冷却,使工业烟气与空气在温度小于10℃,压力不小于0.12MPa的条件下反应生成包含碳酸在内的混酸,对工业烟气中二氧化碳进行捕集转化。
  2. 根据权利要求1所述的工业烟气二氧化碳捕集转化方法,其特征在于,通过中高压鼓风机将工业烟气送入旋风筒上部,压力为4500~7500Pa;通过空气压缩机将新鲜空气送入旋风筒下部,压力为0.6~0.8MPa。
  3. 根据权利要求1所述的工业烟气二氧化碳捕集转化方法,其特征在于,烟气气流旋转时的切线速度为14~40m/s;空气气流旋转时切线速度为60~150m/s。
  4. 根据权利要求1所述的工业烟气二氧化碳捕集转化方法,其特征在于,通过冷却介质对旋风筒进行冷却,冷却介质温度为5℃~-15℃。
  5. 根据权利要求1所述的工业烟气二氧化碳捕集转化方法,其特征在于,其通过如下装置实现:包括壳体,所述壳体内设置有旋风筒,所述旋风筒的底部与所述壳体的底部连接;所述旋风筒与所述壳体之间形成腔体,所述腔体内设置有密封挡板,所述密封挡板套设于所述旋风筒且与所述壳体内壁连接,所述密封挡板将所述腔体分割为第一腔室和第二腔室,所述第一腔室位于所述第二腔室上方;所述旋风筒侧壁设置有冷却腔,所述旋风筒侧壁还设置有第一喷射组件和第二喷射组件,所述第一喷射组件位于所 述第一腔室,所述第二喷射组件位于所述第二腔室。
  6. 根据权利要求5所述的工业烟气二氧化碳捕集转化方法,其特征在于,所述第一喷射组件包括多个第一气流喷嘴,所述第二喷射组件包括多个第二气流喷嘴,所述第一气流喷嘴和所述第二气流喷嘴均穿设于所述旋风筒侧壁,所述第一气流喷嘴和所述第二气流喷嘴的进气端均位于所述腔体内,出气端均位于所述旋风筒内部且位置低于进气端。
  7. 根据权利要求5所述的工业烟气二氧化碳捕集转化方法,其特征在于,所述旋风筒包括柱体筒和锥体筒,所述锥体筒口径较大的一端与所述柱体筒的端部连接,所述锥体筒口径较小的一端与所述壳体的底部连接且与外界连通;所述密封挡板位于所述柱体筒和所述锥体筒之间,所述柱体筒位于所述第一腔室内,所述锥体筒位于所述第二腔室内。
  8. 根据权利要求5所述的工业烟气二氧化碳捕集转化方法,其特征在于,所述装置还包括循环冷却装置,所述循环冷却装置设置有出口和进口,所述出口通过管道与所述冷却腔的底部连通,所述进口通过管道与所述冷却腔的顶部连通。
  9. 一种如权利要求1-8任意一项所述的工业烟气二氧化碳捕集转化方法在工业烟气净化处理上的应用。
  10. 一种如权利要求1-8任意一项所述的工业烟气二氧化碳捕集转化方法在工业烟气转化制备复合肥上的应用。
PCT/CN2023/094874 2022-08-27 2023-05-17 一种工业烟气二氧化碳捕集转化方法及应用 WO2024045696A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237028737A KR20240032703A (ko) 2022-08-27 2023-05-17 산업 연도가스 중의 이산화탄소 포집 전환 방법 및 활용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211036073.7 2022-08-27
CN202211036073.7A CN115608128A (zh) 2022-08-27 2022-08-27 一种工业烟气二氧化碳捕集转化方法及应用

Publications (1)

Publication Number Publication Date
WO2024045696A1 true WO2024045696A1 (zh) 2024-03-07

Family

ID=84857213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094874 WO2024045696A1 (zh) 2022-08-27 2023-05-17 一种工业烟气二氧化碳捕集转化方法及应用

Country Status (4)

Country Link
KR (1) KR20240032703A (zh)
CN (1) CN115608128A (zh)
CZ (1) CZ2024118A3 (zh)
WO (1) WO2024045696A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608128A (zh) * 2022-08-27 2023-01-17 领航国创等离子研究院(阜阳)有限公司 一种工业烟气二氧化碳捕集转化方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265199A1 (en) * 2003-06-30 2004-12-30 Honeywell International Inc. Direct contact liquid air contaminant control system
CN102287841A (zh) * 2011-06-26 2011-12-21 华北电力大学(保定) 一种增压富氧燃煤锅炉排烟冷凝除尘的方法
KR20150021759A (ko) * 2013-08-21 2015-03-03 한국에너지기술연구원 수직형 통합반응기
CN112915754A (zh) * 2021-02-01 2021-06-08 合肥中科远望环保科技有限公司 一种硫硝一体脱酸除尘烟气净化方法与装置
CN214222307U (zh) * 2020-12-08 2021-09-17 青岛安泰科气体有限公司 一种工业废气二氧化碳富集液化工艺集成系统
CN217939717U (zh) * 2022-08-27 2022-12-02 领航国创等离子研究院(阜阳)有限公司 一种工业烟气二氧化碳捕集转化装置
CN115608128A (zh) * 2022-08-27 2023-01-17 领航国创等离子研究院(阜阳)有限公司 一种工业烟气二氧化碳捕集转化方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265199A1 (en) * 2003-06-30 2004-12-30 Honeywell International Inc. Direct contact liquid air contaminant control system
CN102287841A (zh) * 2011-06-26 2011-12-21 华北电力大学(保定) 一种增压富氧燃煤锅炉排烟冷凝除尘的方法
KR20150021759A (ko) * 2013-08-21 2015-03-03 한국에너지기술연구원 수직형 통합반응기
CN214222307U (zh) * 2020-12-08 2021-09-17 青岛安泰科气体有限公司 一种工业废气二氧化碳富集液化工艺集成系统
CN112915754A (zh) * 2021-02-01 2021-06-08 合肥中科远望环保科技有限公司 一种硫硝一体脱酸除尘烟气净化方法与装置
CN217939717U (zh) * 2022-08-27 2022-12-02 领航国创等离子研究院(阜阳)有限公司 一种工业烟气二氧化碳捕集转化装置
CN115608128A (zh) * 2022-08-27 2023-01-17 领航国创等离子研究院(阜阳)有限公司 一种工业烟气二氧化碳捕集转化方法及应用

Also Published As

Publication number Publication date
CN115608128A (zh) 2023-01-17
CZ2024118A3 (cs) 2024-05-29
KR20240032703A (ko) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2024045696A1 (zh) 一种工业烟气二氧化碳捕集转化方法及应用
CN102000486B (zh) 活性碳酸钠捕集烟气中二氧化碳的方法及其设备
CN102247748B (zh) 一种乙二醛硝酸氧化生产乙醛酸的尾气处理方法和处理系统
CN104028100B (zh) 氮氧化合物气体的常压吸收工艺及装置
CN103363537B (zh) 一种富氧燃烧烟气净化装置
CN100562354C (zh) 硝酸磷肥尾气中脱氨脱氮除湿工艺及装置
CN114225671B (zh) 一种氮氧化物尾气处理工艺
CN105457460A (zh) 一种高效烟气处理工艺及装置
CN111183726B (zh) 一种二硝基甲苯硝化废酸的处理方法
CN108079758A (zh) 谷氨酸发酵废液浓缩液烘干造粒有机肥烟气治理方法
CN103691287B (zh) 一种四氧化二氮尾气的回收利用系统
CN217939717U (zh) 一种工业烟气二氧化碳捕集转化装置
CN203507794U (zh) 硝基甲苯硝酸氧化尾气中氮氧化物的处理系统
CN101095998A (zh) 呋喃胺盐废气的回收利用方法
WO2020108029A1 (zh) 一种不锈钢混酸废液再生酸设备
CN107261805A (zh) 一种烟囱烟气脱硫脱硝专用联氨溶液及其制备方法
CN209740714U (zh) 一种氮氧化物高效氧化吸收制硝酸的装置
CN106076305B (zh) 一种毫米级球形催化剂及其制备方法及其在烟气脱硝中的应用
CN106964245B (zh) 氧化铁颜料生产时的氮氧化物废气高效处理装置
CN205773482U (zh) 一种氨氮废水两级吹脱吸附装置
CN104108734A (zh) 一种利用硝酸尾气制备硝酸镁溶液的方法及其装置
CN209735348U (zh) 一种烟气氨法脱硫脱硝超低排放一体塔
CN104108689B (zh) 一种利用氨肟化反应放空尾气提取一氧化氮的方法及装置
CN111408238B (zh) 合成气制乙二醇的物料回收利用装置及其方法
CN101310829B (zh) 鱼粉干燥尾气的处理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112024000042475

Country of ref document: IT

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858735

Country of ref document: EP

Kind code of ref document: A1