WO2024045522A1 - 控制器、空调室外机及空调器 - Google Patents

控制器、空调室外机及空调器 Download PDF

Info

Publication number
WO2024045522A1
WO2024045522A1 PCT/CN2023/078756 CN2023078756W WO2024045522A1 WO 2024045522 A1 WO2024045522 A1 WO 2024045522A1 CN 2023078756 W CN2023078756 W CN 2023078756W WO 2024045522 A1 WO2024045522 A1 WO 2024045522A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
module
circuit board
current loop
controller
Prior art date
Application number
PCT/CN2023/078756
Other languages
English (en)
French (fr)
Inventor
刘胜利
廖建珍
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2024045522A1 publication Critical patent/WO2024045522A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/22Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the technical field of air conditioning, and in particular to a controller, an air conditioning outdoor unit and an air conditioner.
  • the controller is the core component of the air conditioner.
  • the controller requires a smaller circuit board to reduce costs, and an independent power module is required to drive the fan and compressor.
  • the circuit board The area is larger and the cost is higher, and the power module of the fan will affect the power module current of the compressor, thereby affecting the work of the compressor.
  • the present invention aims to at least partially solve one of the technical problems existing in the prior art. To this end, the present invention proposes a controller with a smaller circuit board area and the power module of the fan will not affect the power module current of the compressor.
  • the present invention also provides an air-conditioning outdoor unit and an air conditioner having the above-mentioned controller.
  • a controller includes a circuit board and a module assembly.
  • the module assembly is provided on the circuit board.
  • the module assembly includes a first power module for driving a first fan. a second power module for the second fan and a third power module for driving the compressor;
  • the circuit board is provided with a first current loop connected to the first power module, a third current loop connected to the second power module Two current loops, and a third current loop connected to the third power module, the first current loop and the second current loop share part of the circuit structure.
  • the controller according to the embodiment of the present invention at least has the following beneficial effects: since the circuit board is provided with a first current loop connected to the first power module and a second current loop connected to the second power module, and the second current loop is connected to The first current loop shares part of the circuit structure, which reduces the total number of circuit structures provided on the circuit board, thereby reducing the area of the circuit board and reducing the production cost of the circuit board; in addition, the third current loop and the first current loop Set up separately, and also set up separately from the second current loop, that is, the third current loop does not share the circuit structure with the first current loop or the second current loop, then the first power module that drives the first fan and the second power module that drives the second fan The power module has no influence on the current flow of the third power module that drives the compressor.
  • the circuit structure includes a first capacitor, and the third current loop includes a second capacitor.
  • the side of the circuit board facing the module assembly is the front and the other side is the back.
  • the circuit board is also provided with an output line connected to the second power module.
  • the output lines are located on the front side of the circuit board, and the lines of the circuit structure are located on the back side of the circuit board.
  • the first current loop includes a first sampling resistor for sampling the first fan current
  • the second current loop includes a first sampling resistor for sampling the second fan current.
  • a second sampling resistor for sampling the compressor current.
  • the controller further includes a heat sink, and the first power module, the second power module and the third power module are all in contact with the heat sink.
  • the heat sink is in the shape of a rectangular plate, and the length direction of the first power module, the second power module and the third power module is the same as the length direction of the heat sink. , and the first power module, the second power module and the third power module are arranged in sequence along the length direction of the heat sink.
  • the heights of the first power module and the second power module are equal to and smaller than the height of the third power module
  • the heat sink is provided with a first stepped surface and a second Step surface, the first step surface is in contact with the first power module and the second power module, and the second step surface is in contact with the third power module.
  • the module assembly further includes a rectifier module, an insulated gate bipolar transistor module and a fast recovery diode module provided on the circuit board.
  • the rectifier module, the insulated gate bipolar transistor module and the fast recovery diode module are The transistor module and the fast recovery diode module are arranged in sequence along the length direction of the heat sink, and are both in contact with the heat sink.
  • the controller further includes a bracket fixed on the circuit board, the bracket extends along the length direction of the radiator, and is provided on the circuit board and the radiator. between to support the module components.
  • the bracket is provided with a first slot body matching the first power module, a second slot body matching the second power module, and a first slot body matching the third power module.
  • the third tank body, the bottom walls of the first tank body and the second tank body are hollow structures, and the bottom wall of the third tank body is the first support plate that supports the third power module, so The first support plate is provided with a first through hole for the third power module pin to pass through.
  • the circuit board is a rectangular board, and the length of the circuit board is a, satisfying: 233mm ⁇ a ⁇ 253mm.
  • An air-conditioning outdoor unit includes the controller of the first embodiment of the present invention.
  • the air-conditioning outdoor unit at least has the following beneficial effects: because the production cost of the circuit board is reduced, the overall cost of the air-conditioning outdoor unit is reduced; in addition, because the third power module is not affected by other current loops when driving the compressor The current influence of the air conditioner outdoor unit will make the compressor in the outdoor unit of the air conditioner work more stably.
  • the air-conditioning outdoor unit further includes an electric control box, the controller is installed in the electric control box, and the module assembly is located on the bottom of the circuit board facing the electric control box. side of the wall.
  • An air conditioner according to a third embodiment of the present invention includes the air conditioning outdoor unit of the second embodiment of the present invention.
  • the air conditioner according to the embodiment of the present invention at least has the following beneficial effects: since the overall cost of the air conditioner outdoor unit is reduced and the compressor in the air conditioner outdoor unit works more stably, the air conditioner has a higher cost performance and is more favored by users. .
  • Figure 1 is a schematic layout diagram of a controller module assembly, a rectifier module, an insulated gate bipolar transistor module and a fast recovery diode module installed on a circuit board according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the first current loop of the controller according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the second current loop of the controller according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the third current loop of the controller according to an embodiment of the present invention.
  • Figure 5 is an exploded schematic diagram of a controller according to an embodiment of the present invention.
  • Figure 6 is an exploded schematic diagram of the controller from another angle according to an embodiment of the present invention.
  • Figure 7 is an exploded side view of a controller according to an embodiment of the present invention.
  • controller1000 circuit board 100; second screw hole 110; Module assembly 200; first power module 210; first current loop 211; first capacitor 2111; third capacitor 2112; The first sampling resistor 2113; the first bootstrap circuit 212; the second power module 220; the second current loop 221; the second sampling resistor 2211; the second bootstrap circuit 222; the output line 223; the third power module 230; the third Current loop 231; second capacitor 2311; fourth capacitor 2312; third sampling resistor 2313; third bootstrap circuit 232; Radiator 300; first stepped surface 311; second stepped surface 312; first screw hole 320; mounting groove 330; Rectifier module 410; insulated gate bipolar transistor module 420; fast recovery diode module 430; Bracket 500; first tank body 510; second tank body 520; third tank body 530; first support plate 532; first through hole 5321; fourth tank body 540; second support plate 542; second through hole 5421; fifth tank body 550; third support plate 552; third through hole 55
  • the controller is the core component of the air conditioner.
  • the controller requires a smaller circuit board to reduce costs, and an independent power module is required to drive the fan and compressor.
  • the circuit board area is large and the cost is high, and the power module of the fan will affect the power module current of the compressor, which in turn affects the work of the compressor.
  • an embodiment of the first aspect of the present invention provides a controller 1000, specifically refer to FIGS. 1 to 7 of the accompanying drawings.
  • a controller 1000 includes a circuit board 100 and a module assembly 200 .
  • a module assembly 200 is provided on a circuit board 100 .
  • the module assembly 200 includes a first power module 210 , a second power module 220 and a third power module 230 .
  • the first power module 210 is used to drive the first fan
  • the second power module 220 is used to drive the second fan
  • the third power module 230 is used to drive the compressor.
  • the first fan and the second fan are both variable frequency fans
  • the compressor is a variable frequency compressor
  • the first power module 210, the second power module 220 and the third power module 230 are all intelligent power modules (Intelligent Power Module).
  • the first power module 210 , the second power module 220 and the third power module 230 all have pins (not shown in the figure), and the pins are all soldered to the circuit board 100 by wave soldering.
  • Wave soldering refers to spraying molten solder (such as lead-tin alloy) into the solder wave peak required by the design through an electric pump or electromagnetic pump.
  • Nitrogen gas is injected into the material pool to form a printed board (i.e., in this embodiment of the present invention) pre-installed with components (such as the first power module 210, the second power module 220 and the third power module 230 in the embodiment of the present invention).
  • the circuit board 100 realizes soft soldering of mechanical and electrical connections between the component soldering terminals or pins and the printed board pads through solder wave peaks.
  • the circuit board 100 is provided with a first current loop 211 , and the first current loop 211 is connected to the first power module 210 and extends toward the first power module 210 Supply power to enable the first power module 210 to drive the first fan; in one embodiment, the circuit structure of the first current loop 211 includes a first capacitor 2111, a third capacitor 2112 and a first sampling resistor 2113.
  • the first capacitor 2111 is an electrolytic capacitor, which plays the role of filtering and voltage stabilization.
  • the third capacitor 2112 is a bypass capacitor, which is used to filter out high-frequency interference signals.
  • the first sampling resistor 2113 is a current sampling resistor.
  • the circuit board 100 is provided with a first bootstrap circuit 212 , and the first bootstrap circuit 212 is connected to the first power module 210 to improve the working stability of the first power module 210 .
  • the circuit board 100 is also provided with a second current loop 221 , and the second current loop 221 is connected to the second power module 220 and extends toward the second power module. 220 supplies power so that the second power module 220 drives the second fan; in one embodiment, the circuit structure of the second current loop 221 includes a first capacitor 2111, a third capacitor 2112 and a second sampling resistor 2211.
  • the first capacitor 2111 is an electrolytic capacitor, which plays the role of filtering and voltage stabilization.
  • the third capacitor 2112 is a bypass capacitor, which is used to filter out high-frequency interference signals.
  • the second sampling resistor 2211 is a current sampling resistor.
  • the circuit board 100 is provided with a second bootstrap circuit 222 , and the second bootstrap circuit 222 is connected to the second power module 220 to improve the working stability of the second power module 220 .
  • the first current loop 211 and the second current loop 221 share part of the circuit structure.
  • the circuit structure shared by the first current loop 211 and the second current loop 221 is a first capacitor 2111 and a third capacitor 2112 . It can be understood that since the first current loop 211 and the second current loop 221 are both provided on the circuit board 100, and the second current loop 221 and the first current loop 211 share part of the circuit structure, the number of circuits provided on the circuit board 100 is reduced. The total number of circuit structures is reduced, thereby reducing the area of the circuit board 100 and reducing the production cost of the circuit board 100 .
  • the circuit board 100 facing the module assembly 200 is the front and the other side is the back.
  • the circuit board 100 is also provided with an output line 223 connected to the second power module 220 .
  • the output line 223 is located on the front of the circuit board 100
  • the circuit structure lines are located on the back of the circuit board 100 . It can be understood that through the above arrangement, the layout area of the circuit board 100 is smaller, thereby saving the material of the circuit board 100 .
  • the circuit board 100 is also provided with a third current loop 231 .
  • the third current loop 231 is connected to the third power module 230 and is directed toward the third power module. 230 powered so that the The three power module 230 drives the compressor; in one embodiment, the circuit structure of the third current loop 231 includes a second capacitor 2311, a fourth capacitor 2312 and a third sampling resistor 2313.
  • the second capacitor 2311 is an electrolytic capacitor, which plays the role of filtering and voltage stabilization.
  • the fourth capacitor 2312 is a bypass capacitor, which is used to filter out high-frequency interference signals.
  • the third sampling resistor 2313 is a current sampling resistor.
  • the third current loop 231 is used for current sampling of the compressor.
  • the first capacitor 2111 and the second capacitor 2311 are adjacent, making the installation of the first capacitor 2111 and the second capacitor 2311 more convenient.
  • the third current loop 231 is set up separately from the first current loop 211 and is also set up separately from the second current loop 221, that is, the third current loop 231 is not shared with the first current loop 211 or the second current loop 221.
  • the first power module 210 that drives the first fan and the second power module 220 that drives the second fan will not affect the current of the third power module 230 that drives the compressor.
  • the circuit board 100 is provided with a third bootstrap circuit 232 , and the third bootstrap circuit 232 is connected to the third power module 230 to improve the working stability of the third power module 230 .
  • a controller 1000 further includes a radiator 300 , and the first power module 210 , the second power module 220 and the third power module 230 are all in contact with the radiator 300 . connected to dissipate heat through the heat sink 300.
  • the first power module 210 , the second power module 220 and the third power module 230 are all configured in a rectangular parallelepiped shape, and the above three power modules all have two opposite faces with the largest area, one of which has the largest area. Facing the electric control board, the other surface is in contact with the radiator 300 .
  • the radiator 300 is provided with an installation groove 330 extending along its length direction, and the refrigerant pipe is installed in the installation groove 330 to take away the heat absorbed by the radiator 300 .
  • the radiator 300 is provided with a mounting hole (not shown in the figure) extending along its length direction, and the refrigerant pipe is installed in the mounting hole to take away the heat absorbed by the radiator 300 .
  • the circuit board 100 is in the shape of a rectangular plate, and the length of the circuit board 100 is a, which satisfies: 233mm ⁇ a ⁇ 253mm. Within this range, the circuit board 100 It can meet the needs of setting up multiple power modules in the length direction. In one embodiment, the length of circuit board 100 is 243 mm.
  • the heat sink 300 is also in the shape of a rectangular plate.
  • the length direction of the first power module 210 , the second power module 220 and the third power module 230 is the same as the length direction of the heat sink 300 , and the first power module 210 , the second power module 220 and the third power module 230 are arranged in sequence along the length direction of the heat sink 300 . It can be understood that through the above arrangement, all parts of the radiator 300 can be utilized, reducing the volume of the radiator 300, thereby reducing the manufacturing and processing costs of the radiator 300.
  • the length direction of the heat sink 300 is the same as the length direction of the circuit board 100 . It should be noted that the length direction of the circuit board 100 is consistent with the wave peak direction of the controller 1000 during wave soldering.
  • the one-pass peak rate is improved.
  • the pin welding of the above three modules is reduced and production efficiency is improved.
  • the heights of the first power module 210 and the second power module 220 are equal and smaller than the height of the third power module 230 , and the radiator 300 is provided with a first step. surface 311 and the second step surface 312. It can be understood that the first step surface 311 and the second step surface 312 are both provided on the side of the heat sink 300 facing the circuit board 100 .
  • the first step surface 311 is in contact with the first power module 210 and the second power module 220
  • the second step surface 312 is in contact with the third power module 230
  • the difference is approximately equal to the height difference between the third power module 230 and the first power module 210
  • the height difference between the first step surface 311 and the second step surface 312 is approximately equal to the height difference between the third power module 230 and the second power module 220 . It can be understood that by providing the first step surface 311 and the second step surface 312, the first power module 210, the second power module 220 and the third power module 230 can all be in contact with the heat sink 300, and will work during operation.
  • the heat sink 300 may be provided with a flat surface instead of a step surface, or may be provided with multiple step surfaces.
  • the heat sink 300 may be provided with a flat surface instead of a step surface, or may be provided with multiple step surfaces.
  • the module assembly 200 also includes a rectifier module 410 , an insulated gate bipolar transistor module 420 and a fast recovery diode module 430 provided on the circuit board 100 .
  • the rectifier module 410 has a rectifier bridge
  • the insulated gate bipolar transistor module 420 has an insulated gate bipolar transistor (IGBT)
  • the fast recovery diode module 430 has a fast recovery diode (FRD).
  • the module assembly 200 rectifies the input alternating current into direct current through the rectifier module 410, the insulated gate bipolar transistor module 420 and the fast recovery diode module 430.
  • the rectifier module 410 , the insulated gate bipolar transistor module 420 and the fast recovery diode module 430 are arranged in sequence along the length direction of the heat sink 300 , and are all in contact with the heat sink 300 . It can be understood that when the rectifier module 410, the insulated gate bipolar transistor module 420 and the fast recovery diode module 430 perform rectification work, heat will be generated, and the generated heat will be transferred to the radiator 300 and taken away by the refrigerant tube, thereby Achieve heat dissipation.
  • the diode modules 430 are arranged sequentially along the length direction of the heat sink 300 . It can be understood that through the above arrangement, only one rectangular plate-shaped heat sink 300 can be used to realize the control of the first power module 210, the second power module 220, and the third power module. 230.
  • the heat dissipation of the six modules of the rectifier module 410, the insulated gate bipolar transistor module 420 and the fast recovery diode module 430 greatly reduces the number of components of the controller 1000 and also reduces the cost of the controller 1000.
  • a controller 1000 further includes a bracket 500 fixed on the circuit board 100.
  • the bracket 500 extends along the length direction of the radiator 300, and Disposed between the circuit board 100 and the heat sink 300 to support the module assembly 200 .
  • the bracket 500 can be fixedly connected to the circuit board 100 through threaded connection or other means.
  • the heat sink 300 is provided with a first screw hole 320
  • the circuit board 100 is provided with a second screw hole 110
  • the bracket 500 is provided with a third screw hole 570
  • the screws are inserted through the first screw hole 320 and the third screw hole 570.
  • the second screw hole 110 and the third screw hole 570 are used to fix the bracket 500 and the heat sink 300 to the circuit board 100, and to enable the bracket 500 to support the module assembly 200, so that the first power module 210, the second power module 220 and the third power module The module 230 is in contact with the heat sink 300 .
  • the bracket 500 is provided with a first tank body 510 , a second tank body 520 and a third tank body 530 .
  • the first slot body 510 matches the first power module 210.
  • the first power module 210 is installed in the first slot body 510 and connected to the circuit board 100;
  • the second slot body 520 and the second power module 220 Matching, it can be understood that the second power module 220 is installed in the second slot 520 and connected to the circuit board 100;
  • the third slot 530 matches the third power module 230, it can be understood that the third power module 230 is installed in the third groove body 530 and connected with the circuit board 100 .
  • the bottom walls of the first tank body 510 and the second tank body 520 are hollow structures.
  • the first power module 210 that drives the first fan and the second power module 220 that drives the second fan have shorter pins, and the bottom walls of the first tank body 510 and the second tank body 520 are hollow structures.
  • the first tank body 510 plays a supporting role on the peripheral side of the first power module 210; the second power module 220 is installed in the second tank body 520.
  • the second groove body 520 supports the peripheral side of the second power module 220 .
  • the bottom wall of the third tank body 530 is a first support plate 532 that supports the third power module 230.
  • the first support plate 532 is provided with a first through hole 5321 for the pins of the third power module 230 to pass through. It should be noted that the pins of the third power module 230 for driving the compressor are longer, and the first support plate 532 can support the third power module 230, making the installation of the third power module 230 more stable. It should be noted that after the pins of the third power module 230 pass through the first through holes 5321 and are installed in the third slot body 530, the third slot body 530 also supports the peripheral side of the third power module 230. .
  • the bracket 500 is also provided with a fourth tank 540 , a fifth tank 550 and a sixth tank 560 .
  • the fourth tank body 540 matches the insulated gate bipolar transistor module 420. It can be understood that the insulated gate bipolar transistor module 420 is installed in the fourth tank body 540 and connected to the circuit board 100. It should be noted that the bottom wall of the fourth tank body 540 is a second support plate 542 that supports the insulated gate bipolar transistor module 420. The second support plate 542 is provided with a pin for the insulated gate bipolar transistor module 420 to pass through.
  • the second through hole 5421, the pin of the insulated gate bipolar transistor module 420 is longer, the second support plate 542 can support the insulated gate bipolar transistor module 420, so that the insulated gate bipolar transistor module 420 The installation is more stable. It should be noted that the pins of the insulated gate bipolar transistor module 420 pass through the second through holes 5421 and are installed in the fourth tank body 540. The fourth tank body 540 also supports the pins of the insulated gate bipolar transistor module 420. The peripheral side plays a supporting role.
  • the fifth tank body 550 matches the fast recovery diode module 430 .
  • the fast recovery diode module 430 is installed in the fifth tank 550 and connected to the circuit board 100 .
  • the bottom wall of the fifth tank body 550 is a third support plate 552 that supports the fast recovery diode module 430.
  • the third support plate 552 is provided with a third through hole 5521 for the pin of the fast recovery diode module 430 to pass through. .
  • the sixth tank 560 matches the rectifier module 410 . It can be understood that the rectifier module 410 is installed in the sixth slot 560 and connected to the circuit board 100 . It should be noted that the bottom wall of the sixth tank body 560 is a fourth support plate 562 that supports the rectifier module 410. The fourth support plate 562 is provided with a fourth through hole 5621 for the pins of the rectifier module 410 to pass through.
  • the specific functions of the sixth groove body 560, the fourth support plate 562 and the fourth through hole 5621 can be similar to the above-mentioned fourth groove body 540, the second support plate 542 and the second through hole 5421, and will not be described again here.
  • An embodiment of the second aspect of the present invention also provides an air-conditioning outdoor unit, which is not shown in the figure.
  • the air-conditioning outdoor unit includes the controller 1000 of the embodiment of the first aspect.
  • the air conditioner outdoor unit since the production cost of the circuit board 100 is reduced, the overall cost of the air conditioner outdoor unit is reduced; in addition, because the third power module 230 is not affected by the current of other current circuits when driving the compressor, Then the compressor in the outdoor unit of the air conditioner will work more stably.
  • An air conditioner outdoor unit further includes an electric control box.
  • the controller 1000 is installed in the electric control box.
  • the module assembly 200 is located on the side of the circuit board 100 facing the bottom wall of the electric control box. Through the above arrangement, the module assembly 200 can be prevented from accumulating dust and affecting the operation of the controller 1000 .
  • An embodiment of the third aspect of the present invention also provides an air conditioner, which is not shown in the figure.
  • the air conditioner includes the air conditioning outdoor unit of the embodiment of the second aspect.
  • the air conditioner since the overall cost of the air conditioner outdoor unit is reduced and the compressor in the air conditioner outdoor unit works more stably, the air conditioner has a higher cost performance and is more favored by users.

Abstract

本发明公开了一种控制器、空调室外机及空调器,其中控制器(1000)包括电路板(100)和模块组件(200),模块组件(200)设于电路板(100)。模块组件(200)包括用于驱动第一风机的第一功率模块(210)、用于驱动第二风机的第二功率模块(220)和用于驱动压缩机的第三功率模块(230)。电路板(100)设有与第一功率模块(210)连接的第一电流回路(211)、与第二功率模块(220)连接的第二电流回路(221),以及与第三功率模块(230)连接的第三电流回路(231),第一电流回路(211)和第二电流回路(221)共用部分电路结构。

Description

控制器、空调室外机及空调器
相关申请的交叉引用
本申请要求于2022年08月31日提交的申请号为202211057445.4、名称为“控制器、空调室外机及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调技术领域,特别涉及一种控制器、空调室外机及空调器。
背景技术
控制器是空调的核心部件,对于双外置风机的空调室外机,控制器需要更小面积的电路板以降低成本,还需要独立的功率模块驱动风机和压缩机,然而相关技术中,电路板面积较大,成本较高,且风机的功率模块会对压缩机的功率模块电流产生影响,进而影响了压缩机的工作。
发明内容
本发明旨在至少部分解决现有技术中存在的技术问题之一。为此,本发明提出一种控制器,电路板的面积较小,且风机的功率模块不会对压缩机的功率模块电流产生影响。
本发明还提出一种具有上述控制器的空调室外机及空调器。
根据本发明第一方面实施例的控制器,包括电路板和模块组件,所述模块组件设于所述电路板,所述模块组件包括用于驱动第一风机的第一功率模块、用于驱动第二风机的第二功率模块和用于驱动压缩机的第三功率模块;所述电路板设有与所述第一功率模块连接的第一电流回路、与所述第二功率模块连接的第二电流回路,以及与所述第三功率模块连接的第三电流回路,所述第一电流回路和所述第二电流回路共用部分电路结构。
根据本发明实施例的控制器,至少具有如下有益效果:由于电路板设有与第一功率模块连接的第一电流回路和与第二功率模块连接的第二电流回路,且第二电流回路与第一电流回路共用部分电路结构,则减少了电路板上设置的电路结构的总数,从而减小了电路板的面积,降低了电路板的生产成本;另外,第三电流回路与第一电流回路分开设置,也与第二电流回路分开设置,即第三电流回路不与第一电流回路或第二电流回路共用电路结构,则驱动第一风机的第一功率模块和驱动第二风机的第二功率模块不会对驱动压缩机的第三功率模块的电流产生影响。
根据本发明的一种实施例,所述电路结构包括第一电容,所述第三电流回路包括第二电容。
根据本发明的一种实施例,所述电路板朝向所述模块组件的侧面为正面,另一侧面为背面,所述电路板还设有与所述第二功率模块连接的输出线路,所述输出线路位于所述电路板的所述正面,所述电路结构的线路位于所述电路板的所述背面。
根据本发明的一种实施例,所述第一电流回路包括用于对所述第一风机电流采样的第一采样电阻,所述第二电流回路包括用于对所述第二风机电流采样的第二采样电阻,所述第三电流回路包括用于对所述压缩机电流采样的第三采样电阻。
根据本发明的一种实施例,所述控制器还包括散热器,所述第一功率模块、所述第二功率模块和所述第三功率模块均与所述散热器抵接。
根据本发明的一种实施例,所述散热器呈长方形板状,所述第一功率模块、所述第二功率模块和所述第三功率模块的长度方向与所述散热器的长度方向相同,且所述第一功率模块、所述第二功率模块和所述第三功率模块沿所述散热器的长度方向依次排列设置。
根据本发明的一种实施例,所述第一功率模块与所述第二功率模块的高度相等,且小于所述第三功率模块的高度,所述散热器设有第一台阶面和第二台阶面,所述第一台阶面抵接于所述第一功率模块和所述第二功率模块,所述第二台阶面抵接于所述第三功率模块。
根据本发明的一种实施例,所述模块组件还包括设于所述电路板的整流模块、绝缘栅双极型晶体管模块和快恢复二极管模块,所述整流模块、所述绝缘栅双极型晶体管模块和所述快恢复二极管模块沿所述散热器的长度方向依次排列设置,且均与所述散热器抵接。
根据本发明的一种实施例,所述控制器还包括固设于所述电路板的支架,所述支架沿所述散热器的长度方向延伸,并设于所述电路板和所述散热器之间,以支撑所述模块组件。
根据本发明的一种实施例,所述支架设有与所述第一功率模块匹配的第一槽体、与所述第二功率模块匹配的第二槽体和与所述第三功率模块匹配的第三槽体,所述第一槽体和所述第二槽体的底壁为镂空结构,所述第三槽体的底壁为支撑所述第三功率模块的第一支撑板,所述第一支撑板设有供所述第三功率模块引脚穿设的第一通孔。
根据本发明的一种实施例,所述电路板为长方形板,所述电路板的长度为a,满足:233mm≤a≤253mm。
根据本发明第二方面实施例的空调室外机,其包括本发明第一方面实施例的控制器。
根据本发明实施例的空调室外机,至少具有如下有益效果:由于电路板的生产成本降低,则空调室外机的整体成本降低;另外,由于第三功率模块在驱动压缩机时不受到其他电流回路的电流影响,则空调室外机中压缩机的工作更加稳定。
根据本发明的一种实施例,所述空调室外机还包括电控盒,所述控制器安装于所述电控盒内,所述模块组件位于所述电路板朝向所述电控盒的底壁的侧面。
根据本发明第三方面实施例的空调器,包括本发明第二方面实施例的空调室外机。
根据本发明实施例的空调器,至少具有如下有益效果:由于空调室外机的整体成本降低,且空调室外机中的压缩机工作更加稳定,则空调器的性价比更高,更能够得到用户的青睐。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明一种实施例的控制器的模块组件、整流模块、绝缘栅双极型晶体管模块和快恢复二极管模块安装于电路板的布局示意图;
图2为本发明一种实施例的控制器的第一电流回路的示意图;
图3为本发明一种实施例的控制器的第二电流回路的示意图;
图4为本发明一种实施例的控制器的第三电流回路的示意图;
图5为本发明一种实施例的控制器的分解示意图;
图6为本发明一种实施例的控制器的另一角度的分解示意图;以及
图7为本发明一种实施例的控制器的分解侧视图。
附图标记:
控制器1000;
电路板100;第二螺孔110;
模块组件200;第一功率模块210;第一电流回路211;第一电容2111;第三电容2112;
第一采样电阻2113;第一自举电路212;第二功率模块220;第二电流回路221;第二采样电阻2211;第二自举电路222;输出线路223;第三功率模块230;第三电流回路231;第二电容2311;第四电容2312;第三采样电阻2313;第三自举电路232;
散热器300;第一台阶面311;第二台阶面312;第一螺孔320;安装槽330;
整流模块410;绝缘栅双极型晶体管模块420;快恢复二极管模块430;
支架500;第一槽体510;第二槽体520;第三槽体530;第一支撑板532;第一通孔
5321;第四槽体540;第二支撑板542;第二通孔5421;第五槽体550;第三支撑板552;第三通孔5521;第六槽体560;第四支撑板562;第四通孔5621;第三螺孔570。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、内、外等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
众所周知,控制器是空调的核心部件,对于双外置风机的空调室外机,控制器需要更小面积的电路板以降低成本,还需要独立的功率模块驱动风机和压缩机,然而相关技术中,电路板面积较大,成本较高,且风机的功率模块会对压缩机的功率模块电流产生影响,进而影响了压缩机的工作。
为此,本发明第一方面的一种实施例提出一种控制器1000,具体参照说明书附图的图1至图7所示。
参照图1所示,本发明一种实施例的控制器1000,包括电路板100和模块组件200。参照图1所示,模块组件200设于电路板100,模块组件200包括第一功率模块210、第二功率模块220和第三功率模块230。其中,第一功率模块210用于驱动第一风机、第二功率模块220用于驱动第二风机、第三功率模块230用于驱动压缩机。需要说明的是,第一风机、第二风机均为变频风机,压缩机为变频压缩机,第一功率模块210、第二功率模块220和第三功率模块230均为智能功率模块(Intelligent Power Module,IPM)。可以理解的是,智能功率模块体积小且可靠性高,能够满足驱动变频风机和变频压缩机的需求。可以理解的是,第一功率模块210、第二功率模块220和第三功率模块230均具有引脚(图中未示出),且引脚均通过波峰焊的方式焊接于电路板100。波峰焊是指将熔化的软钎焊料(如铅锡合金),经电动泵或电磁泵喷流成设计要求的焊料波峰,亦可通过向焊 料池注入氮气来形成,使预先装有元器件(如本发明实施例中的第一功率模块210、第二功率模块220和第三功率模块230)的印制板(即本发明实施例中的电路板100)通过焊料波峰,实现元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。
参照图1和图2所示,本发明一种实施例的控制器1000,电路板100设有第一电流回路211,第一电流回路211与第一功率模块210连接并向第一功率模块210供电,使第一功率模块210驱动第一风机;在一种实施例中,第一电流回路211的电路结构包括第一电容2111、第三电容2112和第一采样电阻2113。其中,第一电容2111为电解电容,起到滤波稳压作用,第三电容2112为旁路电容,用于滤去高频干扰信号,第一采样电阻2113为电流采样电阻,在第一电流回路211中用于对第一风机进行电流采样。参照图1所示,电路板100设有第一自举电路212,第一自举电路212与第一功率模块210连接,以提高第一功率模块210的工作稳定性。
参照图1和图3所示,本发明一种实施例的控制器1000,电路板100还设有第二电流回路221,第二电流回路221与第二功率模块220连接并向第二功率模块220供电,使第二功率模块220驱动第二风机;在一种实施例中,第二电流回路221的电路结构包括第一电容2111、第三电容2112和第二采样电阻2211。其中,第一电容2111为电解电容,起到滤波稳压作用,第三电容2112为旁路电容,用于滤去高频干扰信号,第二采样电阻2211为电流采样电阻,在第二电流回路221中用于对第二风机进行电流采样。参照图1所示,电路板100设有第二自举电路222,第二自举电路222与第二功率模块220连接,以提高第二功率模块220的工作稳定性。
需要说明的是,第一电流回路211和第二电流回路221共用部分电路结构。参照图1、图2和图3所示,在一种实施例中,第一电流回路211和第二电流回路221共用的电路结构为第一电容2111和第三电容2112。可以理解的是,由于第一电流回路211和第二电流回路221均设于电路板100,且第二电流回路221与第一电流回路211共用部分电路结构,则减少了电路板100上设置的电路结构的总数,从而减小了电路板100的面积,降低了电路板100的生产成本。需要说明的是,电路板100朝向模块组件200的侧面为正面,另一侧面为背面,电路板100还设有与第二功率模块220连接的输出线路223,输出线路223位于电路板100的正面,电路结构的线路位于电路板100的背面。可以理解的是,通过上述设置,电路板100的布板面积较小,节省电路板100材料。
参照图1和图4所示,本发明一种实施例的控制器1000,电路板100还设有第三电流回路231,第三电流回路231与第三功率模块230连接并向第三功率模块230供电,使第 三功率模块230驱动压缩机;在一种实施例中,第三电流回路231的电路结构包括第二电容2311、第四电容2312和第三采样电阻2313。其中,第二电容2311为电解电容,起到滤波稳压作用,第四电容2312为旁路电容,用于滤去高频干扰信号,第三采样电阻2313为电流采样电阻,在第三电流回路231中用于对压缩机进行电流采样。参照图1所示,第一电容2111与第二电容2311邻近,使得第一电容2111和第二电容2311在安装时更加方便。可以理解的是,由于第三电流回路231与第一电流211回路分开设置,也与第二电流回路221分开设置,即第三电流回路231不与第一电流回路211或第二电流回路221共用电路结构,则驱动第一风机的第一功率模块210和驱动第二风机的第二功率模块220不会对驱动压缩机的第三功率模块230的电流产生影响。参照图1所示,电路板100设有第三自举电路232,第三自举电路232与第三功率模块230连接,以提高第三功率模块230的工作稳定性。
参照图5所示,本发明一种实施例的控制器1000,控制器1000还包括散热器300,且第一功率模块210、第二功率模块220和第三功率模块230均与散热器300抵接,以通过散热器300进行散热。需要说明的是,第一功率模块210、第二功率模块220和第三功率模块230均设置为长方体形状,且上述的三个功率模块均具有相背的两个面积最大的面,其中一个面朝向电控板,另一个面与散热器300抵接。可以理解的是,通过上述设置,第一功率模块210、第二功率模块220和第三功率模块230在工作时所产生的热量能够最大限度地传递至散热器300中,并通过散热器300进行散热。在一种实施例中,散热器300设有沿其长度方向延伸的安装槽330,冷媒管安装于安装槽330内,以带走散热器300吸收的热量。在另一种实施例中,散热器300设有沿其长度方向延伸的安装孔(图中未示出),冷媒管安装于安装孔内,以带走散热器300吸收的热量。
参照图1所示,本发明一种实施例的控制器1000,电路板100呈长方形板状,且电路板100的长度为a,满足:233mm≤a≤253mm,在此范围内,电路板100能够满足在长度方向上设置多个功率模块的需求。在一种实施例中,电路板100的长度为243mm。参照图5所示,散热器300也呈长方形板状,第一功率模块210、第二功率模块220和第三功率模块230的长度方向与散热器300的长度方向相同,且第一功率模块210、第二功率模块220和第三功率模块230沿散热器300的长度方向依次排列设置。可以理解的是,通过上述设置,使散热器300的各处地方都能够得到利用,减少了散热器300的体积,从而降低了散热器300的制造和加工成本。在一种实施例中,散热器300的长度方向与电路板100的长度方向相同。需要说明的是,电路板100的长度方向与控制器1000波峰焊时的过波峰方 向相同,由于第一功率模块210、第二功率模块220和第三功率模块230沿散热器300的长度方向(即沿电路板100的长度方向)依次排列设置,则提高了一次过波峰率,减少了上述三个模块的引脚连焊,提高生产效率。
参照图6所示,本发明一种实施例的控制器1000,第一功率模块210与第二功率模块220的高度相等,且小于第三功率模块230的高度,散热器300设有第一台阶面311和第二台阶面312。可以理解的是,第一台阶面311和第二台阶面312均设于散热器300朝向电路板100的一侧。其中,第一台阶面311抵接于第一功率模块210和第二功率模块220,第二台阶面312抵接于第三功率模块230,即第一台阶面311与第二台阶面312的高度差约等于第三功率模块230与第一功率模块210的高度差,或第一台阶面311与第二台阶面312的高度差约等于第三功率模块230与第二功率模块220的高度差。可以理解的是,通过设置第一台阶面311和第二台阶面312,可以使第一功率模块210、第二功率模块220和第三功率模块230都能够与散热器300接触,并将工作时产生的热量传递至散热器300以进行散热。需要说明的是,根据第一功率模块210、第二功率模块220和第三功率模块230的具体高度,散热器300可以不设置台阶面而设置为平面,也可以设置多个台阶面,在此不作具体限定。
参照图1和图5所示,本发明一种实施例的控制器1000,模块组件200还包括设于电路板100的整流模块410、绝缘栅双极型晶体管模块420和快恢复二极管模块430。其中,整流模块410具有整流桥,绝缘栅双极型晶体管模块420具有绝缘栅双极型晶体管(Insulate Gate Bipolar Transistor,IGBT),快恢复二极管模块430具有快恢复二极管(Fast Recovery Diode,FRD)。需要说明的是,模块组件200通过整流模块410、绝缘栅双极型晶体管模块420和快恢复二极管模块430对输入的交流电进行整流,使其整流为直流电。整流模块410、绝缘栅双极型晶体管模块420和快恢复二极管模块430沿散热器300的长度方向依次排列设置,且均与散热器300抵接。可以理解的是,在整流模块410、绝缘栅双极型晶体管模块420和快恢复二极管模块430进行整流工作时,会产生热量,产生的热量传递给散热器300,并被冷媒管带走,从而实现散热。
继续参照图1和图5所示,在一种实施例中,第一功率模块210、第二功率模块220、第三功率模块230、整流模块410、绝缘栅双极型晶体管模块420和快恢复二极管模块430沿散热器300的长度方向依次排列设置。可以理解的是,通过上述设置,只采用一个长方形板状的散热器300,即可实现对第一功率模块210、第二功率模块220、第三功率模块 230、整流模块410、绝缘栅双极型晶体管模块420和快恢复二极管模块430六个模块的散热,大大减小了控制器1000的部件数量,也降低了控制器1000的成本。
参照图5、图6和图7所示,本发明一种实施例的控制器1000,控制器1000还包括固设于电路板100的支架500,支架500沿散热器300的长度方向延伸,并设于电路板100和散热器300之间,以支撑模块组件200。需要说明的是,支架500可以通过螺纹连接等方式固定连接于电路板100。在一种实施例中,散热器300设有第一螺孔320,电路板100设有第二螺孔110,支架500设有第三螺孔570,螺钉穿设于第一螺孔320、第二螺孔110和第三螺孔570,以将支架500和散热器300固定于电路板100,并使支架500支撑模块组件200,使第一功率模块210、第二功率模块220和第三功率模块230与散热器300抵接。
参照图5所示,本发明一种实施例的控制器1000,支架500设有第一槽体510、第二槽体520和第三槽体530。其中,第一槽体510与第一功率模块210匹配,可以理解的是,第一功率模块210安装于第一槽体510并与电路板100连接;第二槽体520与第二功率模块220匹配,可以理解的是,第二功率模块220安装于第二槽体520并与电路板100连接;第三槽体530与第三功率模块230匹配,可以理解的是,第三功率模块230安装于第三槽体530内并与电路板100连接。
参照图5所示,本发明一种实施例的控制器1000,第一槽体510和第二槽体520的底壁为镂空结构。需要说明的是,驱动第一风机的第一功率模块210和驱动第二风机的第二功率模块220的引脚较短,将第一槽体510和第二槽体520的底壁为镂空结构,方便对第一功率模块210和第二功率模块220进行安装。可以理解的是,第一功率模块210安装于第一槽体510后,第一槽体510对第一功率模块210的周侧起到支撑作用;第二功率模块220安装于第二槽体520后,第二槽体520对第二功率模块220的周侧起到支撑作用。第三槽体530的底壁为支撑第三功率模块230的第一支撑板532,第一支撑板532设有供第三功率模块230引脚穿设的第一通孔5321。需要说明的是,驱动压缩机的第三功率模块230的引脚较长,第一支撑板532能够对第三功率模块230起到支撑作用,使第三功率模块230的安装更加稳固。需要说明的是,第三功率模块230的引脚穿过第一通孔5321,并安装于第三槽体530后,第三槽体530还对第三功率模块230的周侧起到支撑作用。
参照图5所示,本发明一种实施例的控制器1000,支架500还设有第四槽体540、第五槽体550和第六槽体560。其中,第四槽体540与绝缘栅双极型晶体管模块420匹配,可以理解的是,绝缘栅双极型晶体管模块420安装于第四槽体540并与电路板100连接。 需要说明的是,第四槽体540的底壁为支撑绝缘栅双极型晶体管模块420的第二支撑板542,第二支撑板542设有供绝缘栅双极型晶体管模块420引脚穿设的第二通孔5421,绝缘栅双极型晶体管模块420的引脚较长,第二支撑板542能够对绝缘栅双极型晶体管模块420起到支撑作用,使绝缘栅双极型晶体管模块420的安装更加稳固。需要说明的是,绝缘栅双极型晶体管模块420的引脚穿过第二通孔5421,并安装于第四槽体540后,第四槽体540还对绝缘栅双极型晶体管模块420的周侧起到支撑作用。
参照图5所示,本发明一种实施例的控制器1000,第五槽体550与快恢复二极管模块430匹配。可以理解的是,快恢复二极管模块430安装于第五槽体550并与电路板100连接。需要说明的是,第五槽体550的底壁为支撑快恢复二极管模块430的第三支撑板552,第三支撑板552设有供快恢复二极管模块430引脚穿设的第三通孔5521。第五槽体550、第三支撑板552和第三通孔5521的具体功能可类比上述第四槽体540、第二支撑板542和第二通孔5421,在此不再赘述。继续参照图5所示,本发明一种实施例的控制器1000,第六槽体560与整流模块410匹配。可以理解的是,整流模块410安装于第六槽体560并与电路板100连接。需要说明的是,第六槽体560的底壁为支撑整流模块410的第四支撑板562,第四支撑板562设有供整流模块410引脚穿设的第四通孔5621。第六槽体560、第四支撑板562和第四通孔5621的具体功能可类比上述第四槽体540、第二支撑板542和第二通孔5421,在此不再赘述。
本发明第二方面的一种实施例还提出了一种空调室外机,图中未示出,空调室外机包括第一方面实施例的控制器1000。
根据本发明实施例的空调室外机,由于电路板100的生产成本降低,则空调室外机的整体成本降低;另外,由于第三功率模块230在驱动压缩机时不受到其他电流回路的电流影响,则空调室外机中压缩机的工作更加稳定。
本发明一种实施例的空调室外机,空调室外机还包括电控盒,控制器1000安装于电控盒内,模块组件200位于电路板100朝向电控盒的底壁的侧面。通过上述设置,能够防止模块组件200积灰而影响控制器1000的工作。
本发明第三方面的一种实施例还提出了一种空调器,图中未示出,空调器包括第二方面实施例的空调室外机。
根据本发明实施例的空调器,由于空调室外机的整体成本降低,且空调室外机中的压缩机工作更加稳定,则空调器的性价比更高,更能够得到用户的青睐。
上面结合附图对本发明实施例作了详细说明,最后应说明的是:以上各实施例仅用以 说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明的各实施例技术方案的范围。

Claims (14)

  1. 控制器,包括:
    电路板;以及
    模块组件,设于所述电路板,所述模块组件包括用于驱动第一风机的第一功率模块、用于驱动第二风机的第二功率模块和用于驱动压缩机的第三功率模块;以及
    其中,所述电路板设有与所述第一功率模块连接的第一电流回路、与所述第二功率模块连接的第二电流回路,以及与所述第三功率模块连接的第三电流回路,所述第一电流回路和所述第二电流回路共用部分电路结构。
  2. 根据权利要求1所述的控制器,其中,所述电路结构包括第一电容,所述第三电流回路包括第二电容。
  3. 根据权利要求1所述的控制器,其中,所述电路板朝向所述模块组件的侧面为正面,另一侧面为背面,所述电路板还设有与所述第二功率模块连接的输出线路,所述输出线路位于所述电路板的所述正面,所述电路结构的线路位于所述电路板的所述背面。
  4. 根据权利要求1所述的控制器,其中,所述第一电流回路包括用于对所述第一风机电流采样的第一采样电阻,所述第二电流回路包括用于对所述第二风机电流采样的第二采样电阻,所述第三电流回路包括用于对所述压缩机电流采样的第三采样电阻。
  5. 根据权利要求1所述的控制器,还包括散热器,其中所述第一功率模块、所述第二功率模块和所述第三功率模块均与所述散热器抵接。
  6. 根据权利要求5所述的控制器,其中,所述散热器呈长方形板状,所述第一功率模块、所述第二功率模块和所述第三功率模块的长度方向与所述散热器的长度方向相同,且所述第一功率模块、所述第二功率模块和所述第三功率模块沿所述散热器的长度方向依次排列设置。
  7. 根据权利要求6所述的控制器,其中,所述第一功率模块与所述第二功率模块的高度相等,且小于所述第三功率模块的高度,所述散热器设有第一台阶面和第二台阶面,所述第一台阶面抵接于所述第一功率模块和所述第二功率模块,所述第二台阶面抵接于所述第三功率模块。
  8. 根据权利要求6所述的控制器,其中,所述模块组件还包括设于所述电路板的整流模块、绝缘栅双极型晶体管模块和快恢复二极管模块,所述整流模块、所述绝缘栅双极型晶体管模块和所述快恢复二极管模块沿所述散热器的长度方向依次排列设置,且均与所述散热器抵接。
  9. 根据权利要求6、7或8所述的控制器,还包括固设于所述电路板的支架,其中,所述支架沿所述散热器的长度方向延伸,并设于所述电路板和所述散热器之间,以支撑所述模块组件。
  10. 根据权利要求9所述的控制器,其中,所述支架设有与所述第一功率模块匹配的第一槽体、与所述第二功率模块匹配的第二槽体和与所述第三功率模块匹配的第三槽体,所述第一槽体和所述第二槽体的底壁为镂空结构,所述第三槽体的底壁为支撑所述第三功率模块的第一支撑板,所述第一支撑板设有供所述第三功率模块引脚穿设的第一通孔。
  11. 根据权利要求6所述的控制器,其中,所述电路板为长方形板,所述电路板的长度为a,满足:233mm≤a≤253mm。
  12. 空调室外机,包括权利要求1至11任一项所述的控制器。
  13. 根据权利要求12所述的空调室外机,还包括电控盒,其中,所述控制器安装于所述电控盒内,所述模块组件位于所述电路板朝向所述电控盒的底壁的侧面。
  14. 空调器,包括权利要求12或13所述的空调室外机。
PCT/CN2023/078756 2022-08-31 2023-02-28 控制器、空调室外机及空调器 WO2024045522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211057445.4 2022-08-31
CN202211057445.4A CN117663428A (zh) 2022-08-31 2022-08-31 控制器、空调室外机及空调器

Publications (1)

Publication Number Publication Date
WO2024045522A1 true WO2024045522A1 (zh) 2024-03-07

Family

ID=90075768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078756 WO2024045522A1 (zh) 2022-08-31 2023-02-28 控制器、空调室外机及空调器

Country Status (2)

Country Link
CN (1) CN117663428A (zh)
WO (1) WO2024045522A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112585A (ja) * 2008-11-04 2010-05-20 Daikin Ind Ltd ヒートポンプ装置
CN104010438A (zh) * 2013-02-22 2014-08-27 广东美的制冷设备有限公司 Pcb板组件及具有其的空调器室外机
JP2015210019A (ja) * 2014-04-25 2015-11-24 シャープ株式会社 空気調和機の室外機
CN206222614U (zh) * 2016-10-27 2017-06-06 广东美的制冷设备有限公司 空调器外机控制电路及空调器
CN107436024A (zh) * 2017-08-21 2017-12-05 广东美的暖通设备有限公司 电控箱组件和空调系统
CN109194243A (zh) * 2018-10-31 2019-01-11 广东美的制冷设备有限公司 电器和智能功率模块
CN110601552A (zh) * 2018-06-13 2019-12-20 重庆美的制冷设备有限公司 高集成智能功率模块及电器设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112585A (ja) * 2008-11-04 2010-05-20 Daikin Ind Ltd ヒートポンプ装置
CN104010438A (zh) * 2013-02-22 2014-08-27 广东美的制冷设备有限公司 Pcb板组件及具有其的空调器室外机
JP2015210019A (ja) * 2014-04-25 2015-11-24 シャープ株式会社 空気調和機の室外機
CN206222614U (zh) * 2016-10-27 2017-06-06 广东美的制冷设备有限公司 空调器外机控制电路及空调器
CN107436024A (zh) * 2017-08-21 2017-12-05 广东美的暖通设备有限公司 电控箱组件和空调系统
CN110601552A (zh) * 2018-06-13 2019-12-20 重庆美的制冷设备有限公司 高集成智能功率模块及电器设备
CN109194243A (zh) * 2018-10-31 2019-01-11 广东美的制冷设备有限公司 电器和智能功率模块

Also Published As

Publication number Publication date
CN117663428A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US6501662B2 (en) Motor driving inverter
JP5842905B2 (ja) 冷凍装置
WO2024045522A1 (zh) 控制器、空调室外机及空调器
CN105674643B (zh) 制冷装置
CN210534699U (zh) 服务器用散热模组结构
CN210641225U (zh) 智能功率模块的散热结构及空调器
JP2018121406A (ja) 電力変換装置
CN211650663U (zh) 电控组件及空调器
JP6811762B2 (ja) 電力変換装置、及び、これを備える冷凍サイクル装置
CN111442419A (zh) 一种电器盒结构及空调室外机
WO2023115773A1 (zh) 电控板、空调室外机和空调器
CN213955476U (zh) 制冷设备及空调系统
CN215637645U (zh) 一种控制器及制冷设备
CN116916633B (zh) 谐振变换器和储能电源
CN220417604U (zh) 控制板、电控组件及空调器
WO2022127008A1 (zh) 空调器的控制装置和空调器
CN217741984U (zh) 一种复合式电路板
CN216769625U (zh) 电控板、空调室外机和空调器
WO2023097958A1 (zh) 电控板、空调室外机和空调器
CN216959666U (zh) 高密度电源
WO2018087893A1 (ja) 電力変換装置及びこれを用いた空気調和装置
CN216522083U (zh) 电控板、空调室外机和空调器
WO2023162029A1 (ja) 駆動装置および空気調和装置
CN110752758A (zh) 高集成智能功率模块及空调器
CN210638191U (zh) 功率器件的散热装置及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858565

Country of ref document: EP

Kind code of ref document: A1