CN216522083U - 电控板、空调室外机和空调器 - Google Patents

电控板、空调室外机和空调器 Download PDF

Info

Publication number
CN216522083U
CN216522083U CN202123316012.XU CN202123316012U CN216522083U CN 216522083 U CN216522083 U CN 216522083U CN 202123316012 U CN202123316012 U CN 202123316012U CN 216522083 U CN216522083 U CN 216522083U
Authority
CN
China
Prior art keywords
equal
circuit
mounting area
origin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202123316012.XU
Other languages
English (en)
Inventor
尚治国
龙芃吉
王明明
周坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD Midea Air Conditioning Equipment Co Ltd
Original Assignee
GD Midea Air Conditioning Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GD Midea Air Conditioning Equipment Co Ltd filed Critical GD Midea Air Conditioning Equipment Co Ltd
Priority to CN202123316012.XU priority Critical patent/CN216522083U/zh
Priority to PCT/CN2022/089349 priority patent/WO2023115773A1/zh
Application granted granted Critical
Publication of CN216522083U publication Critical patent/CN216522083U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

本实用新型公开了一种电控板、空调室外机和空调器,其中电控板划分为第一安装区、第二安装区、第三安装区和第四安装区,并将主控芯片电路、有源功率因数校正控制电路、变频控制电路、电源输入电路和功能接口电路分别安装在相应的安装区内,使主控芯片电路、有源功率因数校正控制电路、变频控制电路能够靠近在基板沿长度方向的第一侧边,使发热量较大的功率器件能够集中在同一侧;同时电源输入电路和功能接口电路能够靠近基板沿长度方向的第二侧边,使各个电路安装更加紧凑,布局设计更加合理,从而减小器件的占用面积,有效减小电控板的整体体积,安装灵活性更高,有利于提高空调室外机的装配效率。

Description

电控板、空调室外机和空调器
技术领域
本实用新型涉及家用电器相关技术领域,尤其是涉及一种电控板、空调室外机和空调器。
背景技术
相关技术中,空调器电控板的器件布局设计不合理,电控板体积大,占用空间较大,导致整机设计时灵活性小,且功率器件布局限制散热效率,无法适应更高频率控制,生产过程中装配插接也带来较大的不便。
实用新型内容
本实用新型旨在至少解决现有技术中存在的技术问题之一。为此,本实用新型提出一种电控板,对各个电路进行优化布局,设计更加合理,有效减小电控板的整体体积。
本实用新型还提供包括上述电控板的空调室外机和空调器。
根据本实用新型的第一方面实施例的电控板,包括:
基板,包括第一安装区、第二安装区、第三安装区和第四安装区,所述基板沿长度方向包括第一侧边和第二侧边,所述第一安装区和所述第二安装区靠近所述第一侧边且沿所述基板的宽度方向依次设置,所述第三安装区和所述第四安装区靠近所述第二侧边且沿所述基板的宽度方向依次设置;
主控芯片电路,设于所述第一安装区;
有源功率因数校正控制电路、变频控制电路,均设于所述第二安装区;
电源输入电路,设于所述第三安装区;
功能接口电路,设于所述第四安装区;
其中,所述电源输入电路、所述有源功率因数校正控制电路、所述变频控制电路与所述功能接口电路依次连接,所述变频控制电路和所述功能接口电路连接所述主控芯片电路。
根据本实用新型实施例的电控板,至少具有如下有益效果:
通过将电控板的基板划分为第一安装区、第二安装区、第三安装区和第四安装区,并将主控芯片电路、有源功率因数校正控制电路、变频控制电路、电源输入电路和功能接口电路分别安装在相应的安装区内,使主控芯片电路、有源功率因数校正控制电路、变频控制电路能够靠近在基板沿长度方向的第一侧边,使发热量较大的功率器件能够集中在同一侧,便于提升散热效果;同时电源输入电路和功能接口电路能够靠近基板沿长度方向的第二侧边,使各个电路安装更加紧凑,布局设计更加合理,从而减小器件的占用面积,有效减小电控板的整体体积,安装灵活性更高,有利于提高空调室外机的装配效率。
根据本实用新型的一些实施例,所述第一侧边位于所述基板的正面的左侧,所述第一侧边位于所述基板的正面的右侧,沿所述基板的左右方向,所述第一安装区与所述第四安装区相邻,所述第二安装区与所述第三安装区相邻。
根据本实用新型的一些实施例,垂直于所述基板的左右方向上,所述第一安装区与所述第二安装区自上至下依次设置,所述第四安装区与所述第三安装区自上至下依次设置。
根据本实用新型的一些实施例,所述电控板还包括电机控制电路,所述电机控制电路设于所述第四安装区。
根据本实用新型的一些实施例,所述主控芯片电路包括控制芯片,以所述基板的右上角为原点,所述控制芯片的中心与所述原点沿长度方向的距离为X1,所述控制芯片的中心与所述原点沿宽度方向的距离为Y1,满足:126mm≤X1≤170mm,4mm≤Y1≤21mm。
根据本实用新型的一些实施例,所述有源功率因数校正控制电路包括功率因数校正电感,以所述基板的右上角为原点,所述功率因数校正电感的中心与所述原点沿长度方向的距离为X2,所述功率因数校正电感的中心与所述原点沿宽度方向的距离为Y2,满足:71mm≤X2≤100mm,95mm≤Y2≤130mm。
根据本实用新型的一些实施例,所述有源功率因数校正控制电路还包括绝缘栅双极型晶体管,所述绝缘栅双极型晶体管的中心与所述原点沿长度方向的距离为X3,所述绝缘栅双极型晶体管的中心与所述原点沿宽度方向的距离为Y3,满足:156mm≤X3≤191mm,70mm≤Y3≤89mm。
根据本实用新型的一些实施例,所述有源功率因数校正控制电路还包括快速恢复二极管,所述快速恢复二极管的中心与所述原点沿长度方向的距离为X4,所述快速恢复二极管的中心与所述原点沿宽度方向的距离为Y4,满足:143mm≤X4≤148mm,70mm≤Y4≤89mm。
根据本实用新型的一些实施例,所述有源功率因数校正控制电路还包括电解电容,所述电解电容的中心与所述原点沿长度方向的距离为X5,所述电解电容的中心与所述原点沿宽度方向的距离为Y5,满足:63mm≤X5≤95mm,50mm≤Y5≤85mm。
根据本实用新型的一些实施例,所述变频控制电路包括第一智能功率模块,以所述基板的右上角为原点,所述第一智能功率模块的中心与所述原点沿长度方向的距离为X6,所述第一智能功率模块的中心与所述原点沿宽度方向的距离为Y6,满足:124mm≤X6≤174mm,31mm≤Y6≤66mm。
根据本实用新型的一些实施例,所述第二安装区还包括有整流电路,所述整流电路包括整流桥堆,以所述基板的右上角为原点,所述整流桥堆的中心与所述原点沿长度方向的距离为X7,所述整流桥堆的中心与所述原点沿宽度方向的距离为Y7,满足:133mm≤X7≤172mm,98mm≤Y7≤123mm。
根据本实用新型的一些实施例,所述电机控制电路包括第二智能功率模块,以所述基板的右上角为原点,所述第二智能功率模块的中心与所述原点沿长度方向的距离为X8,所述第二智能功率模块的中心与所述原点沿宽度方向的距离为Y8,满足:50mm≤X8≤100mm,18mm≤Y8≤50mm。
根据本实用新型的一些实施例,所述功能接口电路设有多个插座,多个所述插座沿所述基板的边缘排列。
根据本实用新型的一些实施例,所述基板的长度为L,所述基板的宽度为W,满足:L≤178mm,W≤138mm。
根据本实用新型的第二方面实施例的空调室外机,包括第一方面实施例所述的电控板。
根据本实用新型实施例的空调室外机,至少具有如下有益效果:
采用上述实施例的电控板,能够使发热量较大的功率器件集中在基板的同一侧,便于提升散热效果,使各个电路安装更加紧凑,布局设计更加合理,从而减小器件的占用面积,有效减小电控板的整体体积,安装灵活性更高,提高空调室外机的装配效率。
根据本实用新型的第三方面实施例的空调器,包括第二方面实施例所述的空调室外机。
空调器采用了上述实施例的空调室外机的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果。
本实用新型的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本实用新型而了解。
附图说明
本实用新型的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本实用新型一实施例的电控板的立体结构示意图;
图2是本实用新型一实施例的电控板的正面结构示意图;
图3是本实用新型一实施例的基板的安装区划分示意图;
图4是本实用新型一实施例的电控板带有支架的结构示意图;
图5是本实用新型一实施例的电控板带有散热器的结构示意图;
图6是本实用新型一实施例的电控盒组件的结构示意图。
附图标记:
基板100;第一安装区110;第二安装区120;第三安装区130;第四安装区140;
主控芯片电路200;控制芯片210;
有源PFC控制电路300;PFC电感310;IGBT320;FRD330;电解电容340;整流桥堆350;支架360;散热器370;
变频控制电路400;变频IPM模块410;
电源输入电路500;共模电感510;
功能接口电路600;插座610;
低功率变频IPM模块700;
电控板1000;
电控盒2000;盖板2100。
具体实施方式
下面详细描述本实用新型的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本实用新型,而不能理解为对本实用新型的限制。
在本实用新型的描述中,需要理解的是,术语上、下、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
在本实用新型的描述中,如果有描述到第一、第二等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本实用新型的描述中,需要说明的是,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本实用新型中的具体含义。
本实用新型的描述中,一些实施例、具体实施例等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
可理解到,空调器通常设置电控板,用于控制压缩机、风机等部件的工作,使制冷系统能够稳定运行,应用于分体式空调器、整体式空调器等。以变频空调器的电控板为示例,电控板上通常设置有主芯片模块、智能功率模块(Intelligent Power Module,IPM)、有源功率因数校正(Power Factor Correction,PFC)模块、电源模块等功能模块,这些功能模块的电路器件布局较为分散,排布在印刷电路板的各个部位,使得电控板的体积较大,不利于安装,与电控板小型化设计方向背道而驰;而且对于发热量较大的功率器件布局限制散热效率,无法兼容更高频率控制需求。器件分散部件会增加接线的难度,装配过程中连线插接极为不便,耗费工时,影响生产效率。
本实用新型的实施例通过合理设计各个模块电路的布局,使功率器件布局优化提升,便于提升散热效果,各个模块电路安装更加紧凑,减小器件的占用面积,从而有效减小电控板的整体体积,安装灵活性更高,有利于提高空调室外机的装配效率。
参考图1至图6描述本实用新型实施例的电控板1000,该电控板1000适用于空调器,具体应用于空调室外机,下面以具体示例对电控板1000进行说明。
参照图1所示,实施例的电控板1000包括基板100,该基板100为印制电路板,基板100大致呈长方形,在基板100上设置有主控芯片电路200、有源PFC控制电路300、变频控制电路400、电源输入电路500和功能接口电路600,各个电路均由相应的器件连接组成,主控芯片电路200、有源PFC控制电路300、变频控制电路400、电源输入电路500和功能接口电路600中的各个器件排布在基板100的正面,组成电控板1000的整体控制电路。
可以理解的是,主控芯片电路200包括控制芯片210和与控制芯片210连接的被动元器件,有源PFC控制电路300连接电源输入电路500,有源PFC控制电路300的输出负载连接变频控制电路400,通过有源PFC控制电路300能够在交流转换为直流时提高电源的利用率,减小转换过程的电能损耗,达到节能的目的。变频控制电路400用于控制压缩机运行,使压缩机的电机转速随电源的频率变化,从而控制压缩机实现变频工作。电源输入电路500用于空调室外机电源的输入,通过整流电路将输入的交流电转化为直流电,从而能够向控制芯片210及相关模块供电,也可输出对外部部件进行供电。功能接口电路600包括插座610和与插座610连接的外围电路,插座610用于相关负载接口的输出。
参照图2所示,图2所示为电控板1000的正面结构示意图,在基板100的正面进行区域划分,包括有第一安装区110、第二安装区120、第三安装区130和第四安装区140,其中,主控芯片电路200安装在第一安装区110,有源PFC控制电路300和变频控制电路400安装在第二安装区120,电源输入电路500安装在第三安装区130,功能接口电路600安装在第四安装区140,使得各个电路按区域进行布局,不同电路的器件相应地连接在基板100上不同安装区所在的位置。
以主控芯片电路200为示例,主控芯片电路200包括控制芯片210和外围的被动元器件,控制芯片210和被动元器件均焊接在基板100上第一安装区110所对应的位置,被动元器件通过基板100上布置的铜质线路与控制芯片210的引脚进行连接,各个被动元器件与控制芯片210之间相对位置可根据第一安装区110的区域大小进行排列,例如,被动元器件包括电阻、电容等,被动元器件可以环绕控制芯片210进行排布,也可以将被动元器件集中排布在控制芯片210的一侧。
参照图2所示,基板100的长度方向为图2中所示的左右方向,基板100的宽度方向为图2中所示的上下方向,其中,基板100沿长度方向包括第一侧边和第二侧边,第一侧边为基板100的左侧边,第二侧边为基板100的右侧边,第一安装区110和第二安装区120设置靠近左侧边,第三安装区130和第四安装区140设置靠近右侧边,沿基板100的宽度方向,第一安装区110和第二安装区120自上至下依次排列,第三安装区130和第四安装区140自下至上依次排列。
需要说明的是,第一安装区110和第二安装区120靠近基板100的左侧边应理解为第一安装区110和第二安装区120位于基板100沿左右方向的左侧,第一安装区110和第二安装区120的左侧边可以与基板100的左侧边接近或重合。同理,第三安装区130和第四安装区140靠近右侧边,理解为第三安装区130和第四安装区140位于基板100沿左右方向的右侧,第三安装区130和第四安装区140的右侧边可以与基板100的右侧边接近或重合。
参照图2所示,电控板1000还包括电机控制电路,电机控制电路用于驱动风机的直流电机运行,实施例中,电机控制电路安装在第四安装区140,也就是说,电机控制电路和功能接口电路600均安装在第四安装区140内。
可以理解的是,主控板通过上述电路能够实现有源PFC控制调节、变频压缩机控制、直流电机控制、交流电源输入和相关负载接口控制输出等功能。
参照图1和图2所示,具体来说,有源PFC控制电路300主要由绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、快速恢复二极管(Fast Recovery Diode,FRD)、PFC电感310和电解电容340组成。变频控制电路400主要由变频微控制单元(Microcontroller Unit,MCU)和第一智能功率模块组成,第一智能功率模块为变频IPM模块410。电机控制电路主要由第二智能功率模块和控制MCU组成,第二智能功率模块为低功率变频IPM模块700。
考虑到不同电路的器件形式、数量等均不相同,根据不同电路要求划分不同安装区的区域大小,各个安装区在基板100上所占的面积并不一致。具体来说,实施例中第一安装区110位于基板100的左上角位置,第二安装区120位于基板100的左下角位置,第三安装区130位于基板100的右下角位置,第四安装区140位于基板100的右上角位置,各个安装区的大小可根据器件的数量和安装间隔要求来分配,满足电气性能要求,使得各个电路的器件均能够充分利用基板100的安装空间,使得整体电路安装紧凑。
需要说明的是,各个安装区之间不具有物理分隔界限,主控芯片电路200、有源PFC控制电路300、变频控制电路400、电源输入电路500和功能接口电路600根据所在安装区域的大小进行合理排布,可以将各个电路中的主要功能器件所在的区域按一定的尺寸范围定义为其所对应的安装区,例如,在主控芯片电路200中,控制芯片210为主要功能器件,控制芯片210与外围的被动元器件组成电路,相邻器件之间具有一定的安全距离要求,根据上述安全距离要求进行排布,可以计算得到主控芯片电路200所需占用的面积,从而可对应设置第一安装区110的尺寸。为便于理解,以图2所示实施例为示例,图2中虚线位置可理解为各个安装区在基板100上大致划分的分界线,分界线根据各个电路的分布可进行调整。
可理解到,在满足强弱电隔离、防信号干扰、散热等要求的情况下,能够有效利用基板100的面积,使各个电路安装更加紧凑,有效缩小基板100的面积,从而有利于减小电控板1000整体的体积,而且可以节省基板100的材料,降低电控板1000的成本。
参照图1和图2所示,各个电路中的器件均布置在基板100的正面上,各器件的引脚可穿过基板100,在基板100的背面(附图未示出)将器件的引脚进行焊接固定,结构更加稳定可靠。
可以理解的是,参照图2所示,主控芯片电路200所占的面积较小,有源PFC控制电路300和变频控制电路400所占的面积较大,因此,实施例中将第一安装区110与第二安装区120配合并排设置,第二安装区120的长度大于第一安装区110的长度,第二安装区120的宽度大于第一安装区110的宽度,且第一安装区110的宽度与第二安装区120的宽度之和接近基板100的宽度,使第一安装区110和第二安装区120能够并列排布在基板100的左侧,能够沿宽度方向充分基板100左侧的空间。
由于第二安装区120占用的面积较大,为了充分利用基板100右侧的空间,实施例中将第三安装区130设置在第二安装区120的右侧,且第三安装区130沿基板100的宽度方向延伸,使第二安装区120的长度与第三安装区130的宽度之和接近基板100的长度,第二安装区120的宽度与第三安装区130的长度接近。
可理解到,第四安装区140与第三安装区130并列排布在基板100的右侧,使第四安装区140的宽度与第三安装区130的长度之和接近基板100的宽度。第四安装区140沿基板100的长度方向延伸,使第四安装区140的长度与第一安装区110的长度之和接近基板100的长度。考虑到电机控制电路所在空间较小,且电机控制电路需要通过相应的接口连接直流电机,因此将电机控制电路设置在第四安装区140内,布局更加合理,更节省基板100的空间。
参照图2所示,第一安装区110、第二安装区120、第三安装区130和第四安装区140均大致呈矩形,通过将四个安装区的长度和宽度尺寸进行合理设置,使得四个安装区能够紧密组合形成的面积与基板100的面积基本一致,使各个电路的布局能够充分利用基板100的面积,安装更加紧凑,布局设计得到优化,各个模块电路的分布更加合理,能够有效减小基板100的面积,从而减小电控板1000的整体体积,安装灵活性更高,更加便利,有利于提高空调室外机的装配效率。
可以理解的是,在基板100的长度方向上,安装区两两并排设置;同时在基板100的宽度方向上,安装区也是两两并排设置,相对于将四个安装区沿长度方向依次排列的布局结构,可有效缩小基板100的长度。
需要说明的是,各个安装区的位置不限于上述实施例所示的布局,在一些实施例中,可以将第一安装区110和第二安装区120设置靠近基板100的右侧,第三安装区130和第四安装区140设置靠近基板100的左侧。例如,第一安装区110位于基板100的右上角位置,第二安装区120位于基板100的右下角位置,第三安装区130位于基板100的左下角位置,第四安装区140位于基板100的左上角位置;也可以是第一安装区110与第二安装区120的位置交换,第三安装区130与第四安装区140的位置交换。
此外,安装区的形状不限于上述实施例中所示的矩形,也可以是方形或其它多边形形状。例如,第二安装区120的形状可以是方形,第一安装区110和第三安装区130的形状为矩形,第四安装区140的形状可调整为“L”形,第四安装区140均与第一安装区110、第二安装区120和第三安装区130相邻,使各个安装区能够紧密配合组成整体为矩形形状。
可以理解的是,采用上述图2所示实施例的布局,能够使各个电路安装更加紧凑,从而有效减小电路占用基板100的面积,也就是说,采用小尺寸基板100可以实现电控板1000各个模块电路的安装。在一些实施例中,基板100的长度L为178mm,基板100的宽度W为138mm,相对于传统的电控板1000,可大大减小电控板1000的整体体积,安装更加灵活方便。需要说明的是,通过对电控板1000的模块电路进行优化布局,可使基板100的尺寸满足L≤178mm且W≤138mm,具体可根据实际安装要求进行选择。
参照图3所示,图3所示为各个电路中的主要功能器件的布局示意图。实施例中以笛卡尔坐标系作为参考坐标,对主要功能器件的安装位置进行说明,根据笛卡尔坐标系对各电路的布局进行优化,使布局设计更加合理,可得到优选的布局方案。而且,电控板1000的布局综合考虑外部负载的位置,其中核心器件的模块电路区域布局综合考虑生产、电路信号质量问题,设计将核心器件在特定坐标范围内进行调整,达到优化布局的目的。
具体来说,参照图3所示,基板100的正面可理解为笛卡尔坐标所在的平面,其中,以基板100右上角的顶角位置作为坐标系的原点,基板100的长度方向为X轴的方向,基板100的宽度方向为Y轴的方向,不考虑Z轴方向,坐标系内的尺寸单位为mm(毫米)。
参照图3所示,在第一安装区110内,控制芯片210的中心与原点沿X轴方向的距离为X1,控制芯片210的中心与原点沿Y轴方向的距离为Y1,满足:126mm≤X1≤170mm,4mm≤Y1≤21mm,根据笛卡尔坐标系可理解到,控制芯片210的中心在坐标系中的坐标范围可以是(-170,-4)至(-126,-21),可理解到,该坐标范围在第一安装区110内且呈矩形区域,如图3中第一安装区110内的虚线区域为控制芯片210的中心可调整的区域范围。需要说明的是,控制芯片210的中心是以几何中心位置作为参照点,控制芯片210的中心位于上述区域范围内即可符合设计要求。
例如,控制芯片210的中心点坐标可以是(-170,-4)、(-150,-10)、(-126,-4)、(-126,-21)等,具体不再进一步限定,可根据实际安装要求进行选择,从而实现对控制芯片210的布局优化,被动元器件根据控制芯片210的位置进行排布,充分利用第一安装区110的面积。控制芯片210的安装区域无需散热器370进行散热,且远离空调室外机的冷凝器,保证控制芯片210不受干扰和温度影响,可在矩形范围内进行调整,不影响整体布局结构和装配。
需要说明的是,由于笛卡尔坐标系的原点位于基板100的右上角,根据坐标系的原理可理解到,第一安装区110、第二安装区120、第三安装区130和第四安装区140均位于坐标轴的负值区域,也就是说,在相应安装区内,在X轴和Y轴方向均采用负值表示相应的坐标,坐标点与原点的距离按正值来计算。
参照图2和图3所示,有源PFC控制电路300的主要功能器件包括PFC电感310、IGBT320、FRD330和电解电容340。其中,PFC电感310的中心与原点沿X轴方向的距离为X2,PFC电感310的中心与原点沿Y轴方向的距离为Y2,满足:71mm≤X2≤100mm,95mm≤Y2≤130mm,可理解到,PFC电感310的中心的坐标范围可以是(-100,-95)至(-71,-130),也就是说,图3中(-100,-95)至(-71,-130)的矩形区域为PFC电感310的中心可调整的区域范围。
需要说明的是,PFC电感310为有源PFC控制电路300的核心器件,工作温度高,且需综合考虑温度对周围器件的影响,将PFC电感310安装在上述(-100,-95)至(-71,-130)的区域,靠近基板100的边缘位置,根据电路结构和器件特性影响,使PFC电感310能够远离核心控制区域和其它大功率器件,防止温升叠加,有利于提高散热效率,并降低工作高频信号干扰对其它模块电路工作的影响。
参照图3所示,IGBT320的中心与原点沿X轴方向的距离为X3,IGBT320的中心与原点沿Y轴方向的距离为Y3,满足:156mm≤X3≤191mm,70mm≤Y3≤89mm,也就是说,IGBT320的中心可调整的坐标范围可以是(-191,-70)至(-156,-89)。
需要说明的是,IGBT320工作时发热量较大,图3所示实施例中,为了提高IGBT320的散热效率,将IGBT320器件本体延伸到基板100的坐标范围之外,可理解到,电控板1000的Y轴方向最大坐标为X=-178,通过散热器370和支架360配合可以对IGBT320器件本体进行散热,IGBT320器件的引脚通过焊接方式固定在基板100上,IGBT320器件本体不依赖于基板100,通过支架360对IGBT320进行支撑,散热器370位于第二安装区120且靠近空调室外机的风道区域,从而可以提高IGBT320的散热效率,实现更高载频控制下的器件散热。
参照图3所示,FRD330的中心与原点沿X轴方向的距离为X4,FRD330的中心与原点沿Y轴方向的距离为Y4,满足:143mm≤X4≤148mm,70mm≤Y4≤89mm,也就是说,FRD330的中心可调整的坐标范围可以是(-148,-70)至(-143,-89)。如图3所示,FRD330分布区域和IGBT320的中心线保持一致,有利于提升工厂生产插件效率,节约PCB板布局空间。
参照图3所示,电解电容340的中心与原点沿X轴方向的距离为X5,电解电容340的中心与原点沿Y轴方向的距离为Y5,满足:63mm≤X5≤95mm,50mm≤Y5≤85mm,也就是说,电解电容340的中心可调整的坐标范围可以是(-95,-50)至(-63,-85)。如图3所示,电解电容340和PFC电感310安装在第二安装区120的右侧并靠近第三安装区130,不影响散热器370的安装。
参照图2和图3所示,变频控制电路400包括变频IPM模块410和MCU(附图未示出),变频IPM模块410的中心与原点沿X轴方向的距离为X6,变频IPM模块410的中心与原点沿Y轴方向的距离为Y6,满足:124mm≤X6≤174mm,31mm≤Y6≤66mm,也就是说,变频IPM模块410的中心可调整的坐标范围可以是(-174,-31)至(-124,-66)。需要说明的是,变频IPM模块410的调整区域和控制芯片210的调整区域相邻,有利于控制信号最小回路降低干扰,而且功率器件位置远离冷凝器高温侧,降低冷凝器温度对功率器件散热的影响。
参照图2和图3所示,第二安装区120还设置有整流电路,该整流电路包括整流桥堆350,用于将输入的交流电源整流成直流电。整流桥堆350的中心与原点沿X轴方向的距离为X7,整流桥堆350的中心与原点沿Y轴方向的距离为Y7,满足:133mm≤X7≤172mm,98mm≤Y7≤123mm,也就是说,整流桥堆350的中心可调整的坐标范围可以是(-172,98)至(-133,-123)。
需要说明的是,整流桥堆350位置可通过实际布局需求调整方向,整流桥堆350安装的区域靠近基板100的顶角位置,与其它功率器件隔开有一定的距离,有利于提高散热效果。
参照图2和图3所示,电机控制电路包括低功率变频IPM模块700,低功率变频IPM模块700的中心与原点沿长度方向的距离为X8,低功率变频IPM模块700的中心与原点沿宽度方向的距离为Y8,满足:50mm≤X8≤100mm,18mm≤Y8≤50mm,也就是说,低功率变频IPM模块700的中心可调整的坐标范围可以是(-100,-18)至(-50,-50)。
可理解到,直流电机控制电路和主功率器件布局及强电部分分开,综合考虑器件发热和电磁干扰(Electromagnetic Interference,EMI)要求,因此,将低功率变频IPM模块700布局在第二安装区120和第三安装区130的上侧。此外,为了提高低功率变频IPM模块700的散热效果,在低功率变频IPM模块700位置设置散热器(附图未示出),提高散热效率。
需要说明的是,第四安装区140具有与直流电机插线连接的接口,而且电控板1000的安装结构件预留有与第四安装区140对应的开口,电机控制电路的原理是强电控制和MCU控制区域,实现风机控制和周围模块控制的相对独立,降低相互干扰,提升生产效率,低功率变频IPM模块700分布远离冷凝器的高温区域,具有较佳的散热性能以及方便插线。
可以理解的是,电控板1000的主要发热源为核心功率控制器件,包括IGBT320、变频IPM模块410、FRD330和整流桥堆350,通过上述实施例的布局方式,将IGBT320、变频IPM模块410、FRD330和整流桥堆350合理分布在第二安装区120,并在第二安装区120设置散热器370,通过散热器370对上述器件进行散热,实现高发热器件在散热器370表面热量均匀分布,而且高发热器件的安装区域靠近风道,能够有效提升散热效率。
参照图4和图5所示,在第二安装区120位置设置支架360,散热器370安装在支架360上,从而使散热器370得到支撑,减小散热器370对智能功率模块和整流模块的挤压。其中,实施例中散热器370的上表面分布有散热片,散热器370的底面为导热面,装配时,散热器370的底面与IGBT320、变频IPM模块410、FRD330和整流桥堆350的表面紧贴,从而使发热源的热量能够传递至散热器370,并通过散热片进行散热。
图4中示出支架360与基板100的连接示意图,其中,支架360设置在IGBT320、变频IPM模块410、FRD330和整流桥堆350的外围;图5中示出散热器370的装配示意图,散热片朝向垂直于基板100正面的方向延伸,散热器370与周边的器件隔开一定的安全距离,以保证散热性能。考虑到支架360在第二安装区120内占用一定的空间,因此第二安装区120的面积相对于其它安装区的面积会更大。
参照图1、图2和图4所示,电源输入电路500位于第三安装区130内,交流电经过电源输入电路500后通过整流电流转为直流电,其中,电源输入电路500包括有共模电感510,共模电感510设置靠近基板100的右下角,远离其它功率器件。
电控板1000采用上述布局进行优化,电控板1000的尺寸能够达到178mm*138mm或者更小的板型布局,功率器件布局优化满足在相同规格器件条件下,能够实现更高载波频率控制的要求,而且全变频控制和超高频PFC载频高集成化,实现EMI兼容性设计,能够实现高频低干扰的高集成控制方案。
参照图1和图2所示,功能接口电路600包括薄膜电容和多个插座610,插座610用于连接空调室外机内的相关负载,例如,风机、压缩机、传感器等,不同负载连接不同的插座610,在第四安装区140内设置有不同类型的插座610。实施例中,将多个插座610沿第四安装区140的长度方向排列,且多个插座610均设置靠近基板100的上侧边缘位置。
参照图3所示,插座610可调整的坐标范围可以是(-88,0)至(0,10),其中,坐标Y=0区域为基板100的上边缘位置,不同类型的插座610可根据实际负载调整位置。
参照图6所示,装配时,电控板1000安装在电控盒2000上组成电控盒组件,电控板1000与电控盒2000的盖板2100固定连接,电控盒组件倒置安装在空调室外机的机身上,也就是说,安装到位后电控板1000上的电路器件均朝向下方,且电控盒2000上预留有开口,插座610集中在电控板1000的一侧且靠近开口位置,开口朝向空调室外机的一侧,便于工人将各个负载接线的插头插接到相应插座610上,提高插线效率,而且接线可集中电控板1000的同一侧进行走线,使走线更合理,操作更简便,有效提高空调室外机的装配效率。
本实用新型实施例还提供的一种空调室外机(附图未示出),包括上述实施例的电控板1000。实施例的电控板1000安装在空调室外机内部,具体的,电控板1000可以安装在电控盒2000内组成电控盒组件,空调室外机内的风机、压缩机等部件均与电控板1000连接。电控板1000采用上述实施例的布局,使各个模块电路安装更加紧凑,布局设计更加合理,高发热器件安装靠近风道,能够有效提升散热效率,有效降低器件温升,功率器件布局优化满足在相同规格器件条件下,能够实现更高载波频率控制的要求,而且全变频控制和超高频PFC载频高集成化,实现EMI兼容性设计,能够实现高频低干扰的高集成控制方案。
本实用新型实施例还提供的一种空调器(附图未示出),包括上述实施例的空调室外机,空调器采用了上述实施例的空调室外机的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果。
上面结合附图对本实用新型实施例作了详细说明,但是本实用新型不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本实用新型宗旨的前提下作出各种变化。

Claims (16)

1.电控板,其特征在于,包括:
基板,包括第一安装区、第二安装区、第三安装区和第四安装区,所述基板沿长度方向包括第一侧边和第二侧边,所述第一安装区和所述第二安装区靠近所述第一侧边且沿所述基板的宽度方向依次设置,所述第三安装区和所述第四安装区靠近所述第二侧边且沿所述基板的宽度方向依次设置;
主控芯片电路,设于所述第一安装区;
有源功率因数校正控制电路、变频控制电路,均设于所述第二安装区;
电源输入电路,设于所述第三安装区;
功能接口电路,设于所述第四安装区;
其中,所述电源输入电路、所述有源功率因数校正控制电路、所述变频控制电路与所述功能接口电路依次连接,所述变频控制电路和所述功能接口电路连接所述主控芯片电路。
2.根据权利要求1所述的电控板,其特征在于,所述第一侧边位于所述基板的正面的左侧,所述第一侧边位于所述基板的正面的右侧,沿所述基板的左右方向,所述第一安装区与所述第四安装区相邻,所述第二安装区与所述第三安装区相邻。
3.根据权利要求2所述的电控板,其特征在于,垂直于所述基板的左右方向上,所述第一安装区与所述第二安装区自上至下依次设置,所述第四安装区与所述第三安装区自上至下依次设置。
4.根据权利要求3所述的电控板,其特征在于,所述电控板还包括电机控制电路,所述电机控制电路设于所述第四安装区。
5.根据权利要求3所述的电控板,其特征在于,所述主控芯片电路包括控制芯片,以所述基板的右上角为原点,所述控制芯片的中心与所述原点沿长度方向的距离为X1,所述控制芯片的中心与所述原点沿宽度方向的距离为Y1,满足:126mm≤X1≤170mm,4mm≤Y1≤21mm。
6.根据权利要求3所述的电控板,其特征在于,所述有源功率因数校正控制电路包括功率因数校正电感,以所述基板的右上角为原点,所述功率因数校正电感的中心与所述原点沿长度方向的距离为X2,所述功率因数校正电感的中心与所述原点沿宽度方向的距离为Y2,满足:71mm≤X2≤100mm,95mm≤Y2≤130mm。
7.根据权利要求6所述的电控板,其特征在于,所述有源功率因数校正控制电路还包括绝缘栅双极型晶体管,所述绝缘栅双极型晶体管的中心与所述原点沿长度方向的距离为X3,所述绝缘栅双极型晶体管的中心与所述原点沿宽度方向的距离为Y3,满足:156mm≤X3≤191mm,70mm≤Y3≤89mm。
8.根据权利要求6所述的电控板,其特征在于,所述有源功率因数校正控制电路还包括快速恢复二极管,所述快速恢复二极管的中心与所述原点沿长度方向的距离为X4,所述快速恢复二极管的中心与所述原点沿宽度方向的距离为Y4,满足:143mm≤X4≤148mm,70mm≤Y4≤89mm。
9.根据权利要求6所述的电控板,其特征在于,所述有源功率因数校正控制电路还包括电解电容,所述电解电容的中心与所述原点沿长度方向的距离为X5,所述电解电容的中心与所述原点沿宽度方向的距离为Y5,满足:63mm≤X5≤95mm,50mm≤Y5≤85mm。
10.根据权利要求3所述的电控板,其特征在于,所述变频控制电路包括第一智能功率模块,以所述基板的右上角为原点,所述第一智能功率模块的中心与所述原点沿长度方向的距离为X6,所述第一智能功率模块的中心与所述原点沿宽度方向的距离为Y6,满足:124mm≤X6≤174mm,31mm≤Y6≤66mm。
11.根据权利要求3所述的电控板,其特征在于,所述第二安装区还包括有整流电路,所述整流电路包括整流桥堆,以所述基板的右上角为原点,所述整流桥堆的中心与所述原点沿长度方向的距离为X7,所述整流桥堆的中心与所述原点沿宽度方向的距离为Y7,满足:133mm≤X7≤172mm,98mm≤Y7≤123mm。
12.根据权利要求4所述的电控板,其特征在于,所述电机控制电路包括第二智能功率模块,以所述基板的右上角为原点,所述第二智能功率模块的中心与所述原点沿长度方向的距离为X8,所述第二智能功率模块的中心与所述原点沿宽度方向的距离为Y8,满足:50mm≤X8≤100mm,18mm≤Y8≤50mm。
13.根据权利要求1所述的电控板,其特征在于,所述功能接口电路设有多个插座,多个所述插座沿所述基板的边缘排列。
14.根据权利要求1所述的电控板,其特征在于,所述基板的长度为L,所述基板的宽度为W,满足:L≤178mm,W≤138mm。
15.空调室外机,其特征在于,包括权利要求1至14中任一项所述的电控板。
16.空调器,其特征在于,包括权利要求15所述的空调室外机。
CN202123316012.XU 2021-12-24 2021-12-24 电控板、空调室外机和空调器 Active CN216522083U (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202123316012.XU CN216522083U (zh) 2021-12-24 2021-12-24 电控板、空调室外机和空调器
PCT/CN2022/089349 WO2023115773A1 (zh) 2021-12-24 2022-04-26 电控板、空调室外机和空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202123316012.XU CN216522083U (zh) 2021-12-24 2021-12-24 电控板、空调室外机和空调器

Publications (1)

Publication Number Publication Date
CN216522083U true CN216522083U (zh) 2022-05-13

Family

ID=81504428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202123316012.XU Active CN216522083U (zh) 2021-12-24 2021-12-24 电控板、空调室外机和空调器

Country Status (1)

Country Link
CN (1) CN216522083U (zh)

Similar Documents

Publication Publication Date Title
US7003970B2 (en) Power module and air conditioner
CN208240659U (zh) 高集成智能功率模块及空调器
CN208596670U (zh) 高集成智能功率模块及空调器
CN208257678U (zh) 高集成智能功率模块及电器设备
CN208240660U (zh) 高集成智能功率模块及空调器
CN208257677U (zh) 高集成智能功率模块及电器设备
CN216522083U (zh) 电控板、空调室外机和空调器
CN212566202U (zh) 空调器的控制装置和空调器
CN112701933B (zh) 一种逆变装置
WO2023115773A1 (zh) 电控板、空调室外机和空调器
CN116336572A (zh) 电控板、空调室外机和空调器
JP3651406B2 (ja) 電力変換装置
CN208596669U (zh) 高集成智能功率模块及空调器
CN216769625U (zh) 电控板、空调室外机和空调器
CN110601552A (zh) 高集成智能功率模块及电器设备
CN212163182U (zh) 集成功率模块、空调器的控制装置和空调器
WO2023097958A1 (zh) 电控板、空调室外机和空调器
CN213780903U (zh) 一种集成电源模块的芯片及板卡
CN116202145A (zh) 电控板、空调室外机和空调器
CN212339572U (zh) 一种空调电控板及空调
CN212585158U (zh) 空调器的控制装置和空调器
CN208596668U (zh) 高集成智能功率模块及空调器
CN110752758A (zh) 高集成智能功率模块及空调器
WO2022127008A1 (zh) 空调器的控制装置和空调器
CN208939831U (zh) 高集成智能功率模块及空调器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant