CN208240660U - 高集成智能功率模块及空调器 - Google Patents

高集成智能功率模块及空调器 Download PDF

Info

Publication number
CN208240660U
CN208240660U CN201820928792.2U CN201820928792U CN208240660U CN 208240660 U CN208240660 U CN 208240660U CN 201820928792 U CN201820928792 U CN 201820928792U CN 208240660 U CN208240660 U CN 208240660U
Authority
CN
China
Prior art keywords
heat
radiating
radiating substrate
highly integrated
intelligent power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820928792.2U
Other languages
English (en)
Inventor
甘弟
冯宇翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
Chongqing Midea Refrigeration Equipment Co Ltd
Original Assignee
Midea Group Co Ltd
Chongqing Midea Refrigeration Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, Chongqing Midea Refrigeration Equipment Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201820928792.2U priority Critical patent/CN208240660U/zh
Application granted granted Critical
Publication of CN208240660U publication Critical patent/CN208240660U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Rectifiers (AREA)

Abstract

本实用新型公开一种高集成智能功率模块及空调器,该高集成智能功率模块包括:高导热封装壳体,高导热封装壳体具有相对设置的第一散热面和第二散热面;第一散热基板及第二散热基板,第一散热基板设于第一散热面,第二散热基板设于第二散热面;整流桥、PFC功率开关模块及多个IPM模块;整流桥、PFC功率开关模块和多个IPM模块设置于第一散热基板和第二散热基板之间。本实用新型解决了电控板采用多个分立的元器件实现时器件较多,导致空调器装配复杂,以及自身的功耗较大,发热等也较严重,导致空调的热效率,不利于空调器实现节能减排的问题。

Description

高集成智能功率模块及空调器
技术领域
本实用新型涉及集成电路技术领域,特别涉及一种高集成智能功率模块及空调器。
背景技术
随着科技进步和社会生产力的发展,资源过度消耗、环境污染、生态破坏、气候变暖等问题日益突出,绿色发展、节能减排成为各企业及工业领域的转变发展方向。因此,空调、冰箱等耗能较大的制冷设备如何实现降低能耗,节约能量成为研究人员的努力方向。
实用新型内容
本实用新型的主要目的是提出一种高集成智能功率模块及空调器,旨在提高集成智能高集成智能功率模块的集成度,实现风机及压缩机的一体化驱动控制,减小电控板的体积,方便安装问题,实现节能减排。
为实现上述目的,本实用新型提出一种高集成智能功率模块,所述高集成智能功率模块包括:
高导热封装壳体,所述高导热封装壳体具有相对设置的第一散热面和第二散热面;
第一散热基板及第二散热基板,所述第一散热基板设于所述第一散热面,所述第二散热基板设于所述第二散热面;
整流桥、PFC功率开关模块及多个IPM模块;所述整流桥、所述PFC功率开关模块和多个所述IPM模块设置于所述第一散热基板和所述第二散热基板之间。
可选地,所述整流桥、所述PFC功率开关模块及多个所述IPM模块固定设置于所述第一散热基板朝向所述第二散热基板的一侧。
可选地,所述第二散热基板背离所述第一散热基板的一侧设置有多个散热部。
可选地,所述散热部的横截面积自靠近所述第二散热基板的一端向该散热部远离所述第二散热基板的一端递减。
所述散热部呈齿状设置。
可选地,所述多个高集成智能功率模块至少包括风机IPM模块和压缩机IPM模块。
可选地,所述高集成智能功率模块还包括绝缘层,所述绝缘层贴设于所述第一散热基板朝向于所述第二散热基板的一侧;其中,
所述绝缘层的厚度为70~150um。
可选地,所述高集成智能功率模块还包括金属绑线及电路布线层,
所述电路布线层设置于所述绝缘层上,所述金属绑线通过超声波粘合工艺连接所述整流桥、所述PFC功率开关模块、多个所述IPM模块及所述电路布线层。
可选地,所述第一散热基板和/或所述第二散热基板为高导热散热基板;
所述第一散热基板背离所述第二散热基板的一侧呈平面设置。
可选地,所述第一散热基板背离所述第二散热面的一侧裸露设置,和/或所述第二散热基板背离所述第一散热面的一侧裸露设置。
本实用新型还提出一种空调器,包括如上所述的高集成智能功率模块;所述高集成智能功率模块包括:高导热封装壳体,所述高导热封装壳体具有相对设置的第一散热面和第二散热面;第一散热基板及第二散热基板,所述第一散热基板设于所述第一散热面,所述第二散热基板设于所述第二散热面;整流桥、PFC功率开关模块及多个IPM模块;所述整流桥、所述PFC功率开关模块和多个所述IPM模块设置于所述第一散热基板和所述第二散热基板之间。
本实用新型高集成智能功率模块通过设置高导热封装壳体,以将整流桥、PFC功率开关模块及多个IPM模块集成于高导热封装壳体内,并在高导热封装壳体上设置了第一散热面和第二散热面,并将第一散热基板设置在第一散热面,将第二散热基板设置在第二散热面上。整流桥、PFC功率开关模块及多个IPM模块及其他电子元件产生的热量通过高导热封装壳体传导至第一散热基板和第二散热基板上,从而将热量通过第一散热基板和第二散热基板辐射至空气中。如此设置,增大了热量与空气的接触面积,从而提高了高集成智能功率模块的散热速率。本实用新型本实用新型高集成智能功率模块中的各元器件之间无需导线连接,可以缩短整流桥、PFC功率开关模块及多个IPM模块之间的距离,进而缩小高集成智能功率模块的体积。同时还可以减小跳线过长及过多引起的电磁干扰,此外将以上各功能模块集成在一个散热基板上,可以提高集成智能功率模块的集成度,实现多个负载,例如风机及压缩机的一体化驱动控制,从而减小电控板的体积,方便安装。同时还可以减少电控板的元器件,简化了电控板的PCB板布局,有效的降低了空调器的生产成本。本实用新型解决了电控板采用多个分立的元器件实现时器件较多,导致空调器装配复杂,以及自身的功耗较大,发热等也较严重,导致空调的热效率,不利于空调器实现节能减排的问题。本实用新型高集成智能功率模块集成度高,且体积较小,抗干扰能力强,适用于驱动电机的变频器及各种逆变电源中,以实现变频调速、冶金机械、电力牵引、伺服驱动等功能,尤其适用于驱动空调、冰箱等压缩机和风机的电机工作。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本实用新型高集成智能功率模块一实施例的功能模块示意图;
图2为图1中高集成智能功率模块一实施例的电路结构示意图;
图3为本实用新型高集成智能功率模块一实施例的结构示意图。
附图标号说明:
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
需要说明,若本实用新型实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本实用新型实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。
本实用新型提出一种高集成智能功率模块。
在空调器、洗衣机、冰箱等电器设备中,大多设置有电机,并通过电机来驱动其他负载工作。例如空调器,传统的空调器一般包括室内机和室外机,室外机和室内机中均设置电机及驱动电机工作的电控板。以室外机的电控板为例,室外机的电控板上大多设置有驱动压缩机的IPM模块,驱动风机的IPM模块,电源模块等功能模块。这些功能模块大多采用分立或者部分集成的电路模块来实现,且分散的排布在电控PCB板的各个部分,但是由于电控板自身结构、强弱电隔离、防信号干扰、散热等要求,要求各功能模块之间的间距保证在安全距离内,使得室外机电控板的体积较大,不利于安装。或者将这些分散在多块电路板上,再采用跳线的方式来实现主控制模块与其他功能模块之间,以及各功能模块之间相互的电气连接,但是分散设置各功能模块会导致跳线较多且长,导致电器EMC性能下降。并且这两种结构的电控板均会出现电控板的器件较多,导致室外机的装配复杂,同时还会增加空调器的生产成本,且维修率也会增加,不利于空调器的稳定使用。更重要的是,电控板在采用多个元器件来实现时,多个元器件自身的能耗较大,发热等也较严重,导致空调的热效率低,不利于空调器实现节能减排。
为了解决上述问题,参照图1至图3,在本实用新型一实施例中,该高集成智能功率模块包括:
高导热封装壳体100,所述高导热封装壳体100具有相对设置的第一散热面和第二散热面;
第一散热基板200及第二散热基板300,所述第一散热基板200设于所述第一散热面,所述第二散热基板300设于所述第二散热面;
整流桥10、PFC功率开关模块20及多个IPM模块30;所述整流桥10、所述PFC功率开关模块20和多个所述IPM模块30设置于所述第一散热基板200和所述第二散热基板300之间。
本实施例中,PFC功率开关模块20将所述整流桥10输出的直流电压进行校正后输出至各IPM模块,并在输出相应的控制信号,以控制多个IPM模块30驱动对应的负载工作。
本实施例中,高导热封装壳体100可以采用环氧树脂11、氧化铝、高导热填充材料13等材料制成,其中,高导热填充材料13可以是氮化硼、氮化铝材质,氮化铝和氮化硼的绝缘性较好,且导热率较高,耐热性及热传导性较佳,使得氮化铝和氮化硼有较高的传热能力。在制作高导热封装壳体100时,可以将环氧树脂11、氧化铝、氮化硼或者氮化铝等材料进行混料,然后将混合好的高导热封装壳体100材料进行加热;待冷却后,粉碎所述高导热封装壳体100材料,再以锭粒成型工艺将高导热封装壳体100材料进行轧制成形,以形成高导热封装壳体100后将整流桥10、PFC功率开关模块20及多个IPM模块30进行封装。或者通过注塑工艺将整流桥10、PFC功率开关模块20及多个IPM模块30进行封装。
本实施例中,第一散热基板200和第二散热基板300可以采用PCB板、引线框架、纸板、半玻纤板、玻纤板等材料所制成的电路基板实现,还可以是铝及铝制合金,铜及铜制合金,或者氧化铝(Al2O3)或氮化铝(AlN)陶瓷等具有高导热散热性能的材料制得的基板,或者采用上述材料混合制作形成的基板。本实施例可选选采用铝质基板,成本较低,且散热效果较佳。其中,第一散热基板200和第二散热基板300中,第一散热基板200可用于安装整流桥10、PFC功率开关模块20及多个IPM模块30,并对上述功能模块中的功率元件进行散热。第二散热基板300可用于对整流桥10、PFC功率开关模块20及多个IPM模块30产生的热量进行快速散热,提高高集成智能功率模块的散热速率。第一散热基板200和第二散热基板300的形状可以整流桥10、PFC功率开关模块20及多个IPM模块30的具体位置及大小确定,可以为方形,但不限于方形。可以理解的是,在具体实现时,整流桥10、PFC功率开关模块20及多个IPM模块30可以设置在第一散热基板200上以一体设置成高集成智能功率模块,也可以分设于第一散热基板200和第二散热基板300两个散热基板上后通过封装材料封装成一个整体。
在一些实施例中,高集成智能功率模块还可以根据安装有电子元件的散热基板的材质设置一绝缘层120,例如在该散热基板采用铝材或者铜材等具有导电性能的材质来实现时,绝缘层120可选采用热塑性胶或者热固性胶等材料制成,以实现散热基板与电路布线层110之间的固定连接且绝缘。绝缘层120可以采用环氧树脂、氧化铝、高导热填充材料一种或多种材质混合实现的高导热绝缘层120来实现。
本实施例中,在设置有整流桥10、PFC功率开关模块20及多个IPM模块30的散热基板上还设置有电路布线层110,电路布线层110根据高集成智能功率模块的电路设计,在该散热基板上形成对应的线路以及对应供整流桥10、PFC功率开关模块20及多个IPM模块30中的各电子元件安装的安装位,即焊盘。具体地,在散热基板上设置好绝缘层120后,将铜箔铺设在绝缘层120上,并按照预设的电路设计蚀刻所述铜箔,从而形成电路布线层110。在将整流桥10、PFC功率开关模块20及多个IPM模块30等电路模块的电子元件集成于散热基板上的电路布线层110后,还可以通过金属绑线130实现各电路模块之间的电气连接。
本实施例中,整流桥10可以采用四个贴片二极管来组合实现,四个贴片二极管组成的整流桥10将输入的交流电转换成直流电后输出。
本实施例中,PFC功率开关模块20可以仅由PFC功率开关管Q21来实现,或者还与二极管D21、电感等其他元器件组成PFC电路来实现对直流电源的功率因素校正。PFC电路可以采用无源PFC电路来实现,以构成升压型PFC电路,或者降压型PFC电路,或者升降压型PFC电路。可以理解的是,在实际应用中,PFC功率开关模块20与整流桥10位置及连接关系可以根据PFC电路设置类型进行适应性调整,此处不做限制。PFC功率开关模块20将整流桥10输入的直流电进行功率因素调整,调整后的直流电输出至各IPM模块的电源输入端,以使各高集成智能功率模块驱动相应的负载工作。调整后的直流电还可以通过外部开关电源电路,产生各种数值的驱动电压,例如产生5V、15V等电压,以为各IPM的驱动IC供电。
本实施例中,各IPM模块中均集成了多个功率开关管,多个功率开关管组成驱动逆变电路,例如可以由六个功率开关管组成三相逆变桥电路,或者由四个功率开关管组成两相逆变器桥电路。其中,各功率开关管可以采用MOS管或者IGBT来实现。多个功率开关管组成功率逆变桥电路,用于驱动风机、压缩机等负载工作,各个功率开关管设置在电路布线层110对应的安装位上后,可通过焊锡等导电材料与电路布线层110实现电连接,并形成电流回路。各功率开关管还可以通过倒装的工艺贴设于电路布线层110对应的安装位上,并通过电路布线层110及金属绑线130与各电路元件之间形成电流回路。可以理解的是,上述PFC功率开关模块20、整流桥10及多个IPM模块中的电子元件可以采用裸晶圆来实现,也可以采用经过封装后的贴片元件来实现。
本实用新型高集成智能功率模块通过设置高导热封装壳体100,以将整流桥10、PFC功率开关模块20及多个IPM模块30集成于高导热封装壳体100内,并在高导热封装壳体100上设置了第一散热面和第二散热面,并将第一散热基板200设置在第一散热面,将第二散热基板300设置在第二散热面上。整流桥10、PFC功率开关模块20及多个IPM模块30及其他电子元件产生的热量通过高导热封装壳体100传导至第一散热基板200和第二散热基板300上,从而将热量通过第一散热基板200和第二散热基板300辐射至空气中。如此设置,增大了热量与空气的接触面积,从而提高了高集成智能功率模块的散热速率。本实用新型本实用新型高集成智能功率模块中的各元器件之间无需导线连接,可以缩短整流桥10、PFC功率开关模块20及多个IPM模块30之间的距离,进而缩小高集成智能功率模块的体积。同时还可以减小跳线过长及过多引起的电磁干扰,此外将以上各功能模块集成在一个散热基板上,可以提高集成智能功率模块的集成度,实现多个负载,例如风机及压缩机的一体化驱动控制,从而减小电控板的体积,方便安装。同时还可以减少电控板的元器件,简化了电控板的PCB板布局,有效的降低了空调器的生产成本。本实用新型解决了电控板采用多个分立的元器件实现时器件较多,导致空调器装配复杂,以及自身的功耗较大,发热等也较严重,导致空调的热效率,不利于空调器实现节能减排的问题。本实用新型高集成智能功率模块集成度高,且体积较小,抗干扰能力强,适用于驱动电机的变频器及各种逆变电源中,以实现变频调速、冶金机械、电力牵引、伺服驱动等功能,尤其适用于驱动空调、冰箱等压缩机和风机的电机工作。
参照图1至图3,在一可选的实施例中,所述多个IPM模块30至少包括风机IPM模块31和压缩机IPM模块32。
本实施例中,IPM模块30中集成的风机IPM模块32用于驱动风轮电机,压缩机IPM模块31用于驱动压缩机电机,当然在其他实施例中,IPM模块30还可以用于驱动其他电机的变频器和各种逆变电源,并应用于变频调速,冶金机械,电力牵引,伺服驱动,及空调等变频家电等领域中。风机IPM模块32和压缩机IPM模块31中分别集成有多个IGBT、MOS管等功率开关管,多个功率开关管的数量可以为四个或六个,其具体数量可以根据电机类型、驱动功率等设置,此处不做限制。其中,压缩机IPM模块31中,集成有压缩机功率驱动芯片311,以及六个第一功率开关管,该六个第一功率开关管标记为Q311、Q312、Q313、Q314、Q315、Q316,对应每一第一功率开关管设置的快速恢复二极管的数量可选为六个,六个快速恢复二极管分别标记为标记为D11、D12、D13、D14、D15、D16;风机IPM模块32中,集成有风机功率驱动芯片321,以及六个第二功率开关管,该六个第二功率开关管标记为Q321、Q322、Q323、Q324、Q325、Q326。
参照图3,图3为本实用新型高集成智能功率模块剖面结构示意图,在一可选实施例中,所述整流桥10、所述PFC功率开关模块20及多个所述IPM模块固定设置于所述第一散热基板200朝向所述第二散热基板300的一侧。
本实施例中,第一散热基板200还可以作为电路基板,将整流桥10、所述PFC功率开关模块20及多个所述IPM模块固定安装在第一散热基板200上,无需另行设置整流桥10、所述PFC功率开关模块20及多个所述IPM模块的安装基板,从而可以减少高集成智能功率模块的物料组件。当然在其他实施例中,整流桥10、所述PFC功率开关模块20中的部分或者全部元件也可以安装在第二散热基板300上,此处不做限制。
参照图1至图3,在一可选实施例中,所述第二散热基板300背离所述第一散热基板200的一侧设置有多个散热部310。
本实施例中,通过在第二散热基板300上设置多个散热部310,以增加第二散热基板300与空气的接触面积,也即在第二散热基板300工作时,增加第二散热基板300上的热量与空气的接触面积,以加快整流桥10、所述PFC功率开关模块20及多个所述IPM模块产生的热量在第二散热基板300上的散热速率。同时还可以减少第二散热基板300的物料,降低第二散热基板300的生产成本。
参照图3,进一步地,上实施例中,所述散热部310的横截面积自靠近所述第二散热基板300的一端向该散热部310远离所述第二散热基板300的一端递减。
所述散热部310呈齿状设置。
可以理解的是,多个散热部310呈齿状设置,使得相邻两个散热部310之间形成散热槽,也即褶皱,通过设置散热槽,增大了热量与空气的接触面积,可以进一步加快流桥、所述PFC功率开关模块20及多个所述IPM模块产生的热量在第二散热基板300上的散热速率,提高高集成智能功率模块的散热效率。
参照图1至图3,在一可选实施例中,所述高集成智能功率模块还包括绝缘层120,所述绝缘层120贴设于所述第一散热基板200朝向于所述第二散热基板300的一侧;其中,
所述绝缘层120的厚度为70~150um。
本实施例中,绝缘层120可选采用高导热绝缘材料来实现,该绝缘层120用于实现电路布线层110与散热基板之间的电气隔离以及电磁屏蔽,以及对外部电磁干扰进行反射,从而避免外部电磁辐射干扰PFC功率开关模块2030及多个IPM模块30正常工作,降低周围环境中的电磁辐射对高集成智能功率模块中的电子元件的干扰影响。其中,第一散热基板200与绝缘层120可以采用陶瓷以及金属一体压合设置,通过陶瓷的高绝缘性及高导热性以加速高集成智能功率模块的散热能力。
绝缘层120的厚度可选为70~150um,如此设置,有利于缩短散热基板与功率开关管、整流桥10等功率元器件之间的距离,以加快功率开关管通过散热基板散热的速率。
参照图1至图3,在一可选实施例中,所述高集成智能功率模块还包括金属绑线130及电路布线层110,
所述电路布线层110设置于所述绝缘层120上,所述金属绑线130通过超声波粘合工艺连接所述整流桥10、所述PFC功率开关模块20、多个所述IPM模块及所述电路布线层110。
本实施例中,金属绑线130用于实现整流桥10、所述PFC功率开关模块20、多个所述IPM模块及所述电路布线层110之间的电气连接。金属绑线130可以通过超声波粘合工艺来连接整流桥10与电路布线层110,或者PFC功率开关模块20与电路布线层110,或者多个IPM模块30与电路布线层110,以使各模块之间通过金属引线及电路布线层110实现电气连接。可以理解的是,各模块之间的金属绑线130的弧度可调,通过调整金属绑线130的弧度可以减小高集成智能功率模块的体积。
参照图1至图3,在一可选实施例中,所述第一散热基板200和/或所述第二散热基板300为高导热散热基板;
所述第一散热基板200背离所述第二散热基板300的一侧呈平面设置。
本实施例中,可以理解的是,第一散热基板200背离第二散热基板300的呈平面设置,以便在第一散热基板200上安装散热器,以提高高集成智能功率模块的散热效率。
参照图1至图3,在一可选实施例中,所述第一散热基板200背离所述第二散热面的一侧裸露设置,和/或所述第二散热基板300背离所述第一散热面的一侧裸露设置。
本实施例中,高导热封装壳体100可以罩设于所述第一散热基板200和第二散热基板300上,或者所述高导热封装壳体100包裹于所述第一散热基板200、第二散热基板300及所述功率组件40的外周,或者第一散热基板200和第二散热基板300分别嵌设于第一散热面和第二散热面上,以使第一散热基板200背离所述第二散热面的一侧裸露设置,第二散热基板300背离所述第一散热面的一侧裸露设置高导热封装壳体100外,从而增大第一散热基板200和第二散热基板300与空气的接触面积,加速功率元件的散热。如此设置,使得整流桥1020、PFC功率开关模块2030、多个IPM模块30产生的热量通过绝缘层120传导至第一散热基板200后,可以经第一散热基板200直接向空气散热,以增大热量与空气的接触面积,提高散热速率。或者热量经高导热封装壳体100传导至第二散热基板300后,可以经第二散热基板300直接向空气散热,进一步增大热量与空气的接触面积,提高散热速率。
本实用新型还提出一种空调器,所述空调器包括如上所述的高集成智能功率模块。该高集成智能功率模块的详细结构可参照上述实施例,此处不再赘述;可以理解的是,由于在本实用新型空调器中使用了上述高集成智能功率模块,因此,本实用新型空调器的实施例包括上述高集成智能功率模块全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
以上所述仅为本实用新型的可选实施例,并非因此限制本实用新型的专利范围,凡是在本实用新型的实用新型构思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型的专利保护范围内。

Claims (10)

1.一种高集成智能功率模块,其特征在于,所述高集成智能功率模块包括:
高导热封装壳体,所述高导热封装壳体具有相对设置的第一散热面和第二散热面;
第一散热基板及第二散热基板,所述第一散热基板设于所述第一散热面,所述第二散热基板设于所述第二散热面;
整流桥、PFC功率开关模块及多个IPM模块;所述整流桥、所述PFC功率开关模块和多个所述IPM模块设置于所述第一散热基板和所述第二散热基板之间。
2.如权利要求1所述的高集成智能功率模块,其特征在于,所述整流桥、所述PFC功率开关模块及多个所述IPM模块固定设置于所述第一散热基板朝向所述第二散热基板的一侧。
3.如权利要求1所述的高集成智能功率模块,其特征在于,所述第二散热基板背离所述第一散热基板的一侧设置有多个散热部。
4.如权利要求3所述的高集成智能功率模块,其特征在于,所述散热部的横截面积自靠近所述第二散热基板的一端向该散热部远离所述第二散热基板的一端递减;
所述散热部呈齿状设置。
5.如权利要求1所述的高集成智能功率模块,其特征在于,所述多个高集成智能功率模块至少包括风机IPM模块和压缩机IPM模块。
6.如权利要求1所述的高集成智能功率模块,其特征在于,所述高集成智能功率模块还包括绝缘层,所述绝缘层贴设于所述第一散热基板朝向于所述第二散热基板的一侧;其中,
所述绝缘层的厚度为70~150um。
7.如权利要求6所述的高集成智能功率模块,其特征在于,所述高集成智能功率模块还包括金属绑线及电路布线层,
所述电路布线层设置于所述绝缘层上,所述金属绑线通过超声波粘合工艺连接所述整流桥、所述PFC功率开关模块、多个所述IPM模块及所述电路布线层。
8.如权利要求1至7任意一项所述的高集成智能功率模块,其特征在于,所述第一散热基板和/或所述第二散热基板为高导热散热基板;
所述第一散热基板背离所述第二散热基板的一侧呈平面设置。
9.如权利要求1至7任意一项所述的高集成智能功率模块,其特征在于,所述第一散热基板背离所述第二散热面的一侧裸露设置,和/或所述第二散热基板背离所述第一散热面的一侧裸露设置。
10.一种空调器,其特征在于,包括如权利要求1至9任意一项所述的高集成智能功率模块。
CN201820928792.2U 2018-06-13 2018-06-13 高集成智能功率模块及空调器 Active CN208240660U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820928792.2U CN208240660U (zh) 2018-06-13 2018-06-13 高集成智能功率模块及空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820928792.2U CN208240660U (zh) 2018-06-13 2018-06-13 高集成智能功率模块及空调器

Publications (1)

Publication Number Publication Date
CN208240660U true CN208240660U (zh) 2018-12-14

Family

ID=64575698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820928792.2U Active CN208240660U (zh) 2018-06-13 2018-06-13 高集成智能功率模块及空调器

Country Status (1)

Country Link
CN (1) CN208240660U (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413846A (zh) * 2018-12-29 2019-03-01 广东美的制冷设备有限公司 高集成电控板及电器
CN109779892A (zh) * 2019-01-18 2019-05-21 广东美的制冷设备有限公司 电控组件及空调器
CN110289764A (zh) * 2019-05-29 2019-09-27 中国国家铁路集团有限公司 功率转换装置
CN110601556A (zh) * 2018-06-13 2019-12-20 重庆美的制冷设备有限公司 高集成智能功率模块及空调器
US11994328B2 (en) 2019-01-18 2024-05-28 Gd Midea Air-Conditioning Equipment Co., Ltd. Electric control assembly and air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601556A (zh) * 2018-06-13 2019-12-20 重庆美的制冷设备有限公司 高集成智能功率模块及空调器
CN109413846A (zh) * 2018-12-29 2019-03-01 广东美的制冷设备有限公司 高集成电控板及电器
CN109779892A (zh) * 2019-01-18 2019-05-21 广东美的制冷设备有限公司 电控组件及空调器
CN109779892B (zh) * 2019-01-18 2020-12-11 广东美的制冷设备有限公司 电控组件及空调器
US11994328B2 (en) 2019-01-18 2024-05-28 Gd Midea Air-Conditioning Equipment Co., Ltd. Electric control assembly and air conditioner
CN110289764A (zh) * 2019-05-29 2019-09-27 中国国家铁路集团有限公司 功率转换装置

Similar Documents

Publication Publication Date Title
CN208240659U (zh) 高集成智能功率模块及空调器
CN208240660U (zh) 高集成智能功率模块及空调器
CN208596670U (zh) 高集成智能功率模块及空调器
CN208296199U (zh) 空调器和集成式空调控制器
CN208257678U (zh) 高集成智能功率模块及电器设备
CN108091619A (zh) 智能功率模块及其制造方法、空调器
CN209545420U (zh) 智能功率模块及空调器
CN110010599A (zh) 高集成智能功率模块及其制作方法以及空调器
CN110112111A (zh) 智能功率模块、电控板及空调器
CN109300883A (zh) 高集成电控板和电器
CN208257677U (zh) 高集成智能功率模块及电器设备
CN208596669U (zh) 高集成智能功率模块及空调器
CN110085581A (zh) 高集成智能功率模块及空调器
CN209545454U (zh) 智能功率模块及空调器
CN108054148A (zh) 智能功率模块及其制造方法、空调器
CN110060991B (zh) 智能功率模块及空调器
CN110085579B (zh) 高集成智能功率模块及其制作方法以及空调器
CN208241587U (zh) 高集成智能功率模块及电器设备
CN208596668U (zh) 高集成智能功率模块及空调器
CN209461457U (zh) 高集成智能功率模块及空调器
CN110601552A (zh) 高集成智能功率模块及电器设备
CN209181194U (zh) 空调器和集成式空调控制器
CN207690782U (zh) 功率模块及空调器
CN207690784U (zh) 功率模块及空调器
CN209607738U (zh) 高集成智能功率模块及空调器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant