WO2024043743A1 - Flt3 유전자 증폭용 조성물 및 이의 용도 - Google Patents

Flt3 유전자 증폭용 조성물 및 이의 용도 Download PDF

Info

Publication number
WO2024043743A1
WO2024043743A1 PCT/KR2023/012622 KR2023012622W WO2024043743A1 WO 2024043743 A1 WO2024043743 A1 WO 2024043743A1 KR 2023012622 W KR2023012622 W KR 2023012622W WO 2024043743 A1 WO2024043743 A1 WO 2024043743A1
Authority
WO
WIPO (PCT)
Prior art keywords
flt3
primer
seq
itd
aml
Prior art date
Application number
PCT/KR2023/012622
Other languages
English (en)
French (fr)
Inventor
박소진
권빛나
김지연
김명신
김용구
이종미
Original Assignee
주식회사 엔젠바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔젠바이오 filed Critical 주식회사 엔젠바이오
Publication of WO2024043743A1 publication Critical patent/WO2024043743A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Definitions

  • the present invention relates to a composition for amplifying the FLT3 gene and its use. More specifically, it relates to a composition comprising a primer set capable of simultaneously amplifying the ITD detection region and the TKD mutation region of the FLT3 gene and its use.
  • Fms-Like Tyrosine Kinase-3 is one of the most frequently mutated genes in Acute Myeloid Leukemia (AML).
  • Mutant FLT3 refers to a mutation expressed in leukemia cells in a subpopulation of acute myeloid leukemia (AML) patients.
  • Activating mutations in FLT3, such as internal tandem duplication (ITD) in the juxtamembrane domain occur in approximately 25-30% of newly diagnosed AML cases (Korean Patent No. 10-2018-0124055).
  • FLT3-ITD mutations overlapping 3 to 400 or more bases occur in approximately 25%, and point mutations in the Tyrosine Kinase Domain occur in 7-10%.
  • AML Acute Myeloid Leukemia
  • MRD minimal residual disease
  • FLT3-ITD FLT3 internal tandem duplication
  • FLT3-ITD mutation detection detected some mutations in the ITD and TKD regions through length differences through PCR and electrophoresis, but the sensitivity was very low at 10% and had the disadvantage of not being able to accurately measure the mutation length and sequence.
  • FA fragment analysis
  • the fragment analysis method has improved sensitivity to about 3% compared to the PCR method and has the advantage of being able to measure ITD length and ITD burden (ratio), but sequence analysis is still not possible, and the sensitivity (at least 10 -4 ) level required for MRD detection has the disadvantage of not being achieved.
  • Invivoscribe developed the AML-FLT3 ITD MRD Assay service using NGS, but the sensitivity is at the level of 5x10 -5 and it has the disadvantage of not simultaneously detecting mutations in the TKD region, which is important for MRD detection.
  • FLT3 inhibitors are largely divided into type 1 inhibitors (type I inhibitors) and type 2 inhibitors (type II inhibitors).
  • Type 1 inhibitors work in patients with FLT3-ITD or FLT3 kinase domain point mutation
  • type 2 inhibitors work in patients with FLT3-ITD or FLT3 kinase domain point mutation.
  • a type inhibitor refers to an inhibitor that works in patients with a FLT-ITD mutation, but does not work in patients with a FLT3 kinase domain point mutation.
  • First-generation inhibitors include Sunitinib, Sorafenib, Midostaurin, Lestaurtinib, and Tandutinib, which have specificity for FLT3. It is known that there are none.
  • second-generation inhibitors Quizartinib, Crenolanib, and Gilteritinib are known to act more specifically on FLT3 (Larrosa-Garcia M, et al., Mol Cancer Ther. 2017 Jun;16(6):991-1001).
  • the FLT3 inhibitor develops severe drug resistance when mutations occur or exist in the tyrosine kinase domain (TKD) region of the FLT3 gene.
  • TKD tyrosine kinase domain
  • the present inventors have made diligent efforts to develop a composition that can simultaneously diagnose, confirm drug resistance, and predict prognosis in AML patients with FLT3-ITD mutations at high speed and large volume.
  • the ITD region and TKD region of the FLT3 gene can be amplified. It was confirmed that when the FLT3 gene is amplified using a primer set that can be used to determine the diagnosis, drug resistance, and prognosis of AML patients with FLT3-ITD mutations, it can be determined quickly, with high sensitivity and accuracy. And the present invention was completed.
  • the purpose of the present invention is to provide a composition for amplifying the FLT3 gene with improved sensitivity and accuracy.
  • Another object of the present invention is to provide a kit for FLT3 gene amplification comprising the above composition.
  • Another object of the present invention is to provide a method for diagnosing acute myeloid leukemia (AML) in patients with FLT3-ITD mutations using the composition.
  • AML acute myeloid leukemia
  • Another object of the present invention is to provide a method of prescribing a targeted anticancer agent for AML patients with FLT3-ITD mutation using the composition.
  • Another object of the present invention is to provide a method for detecting minimal residual disease (MRD) in patients with acute myeloid leukemia (AML) with FLT3-ITD mutation using the composition.
  • MRD minimal residual disease
  • Another object of the present invention is to provide a method for predicting the prognosis of Acute Myeloid Leukemia (AML) patients with FLT3-ITD mutations using the composition.
  • AML Acute Myeloid Leukemia
  • Another object of the present invention is to provide a method for confirming resistance to a tyrosine kinase inhibitor, a treatment for acute myeloid leukemia (AML), in patients with FLT3-ITD mutations using the composition.
  • composition for amplifying the FLT3 gene comprising the following primer sets:
  • the present invention also provides a composition for amplifying the FLT3 gene comprising the following primer set:
  • the present invention also provides a kit for amplifying the FLT3 gene, including the primer set.
  • the present invention also includes the steps of (a) extracting nucleic acids from a biological sample and obtaining sequence information using the primer set; (b) aligning sequence information (reads) to a standard chromosome sequence database (reference genome database); (c) detecting ITD mutation of FLT3 in the aligned sequence information (reads); and (d) if an ITD mutation in FLT3 is detected, determining that AML has a FLT3-ITD mutation; A method of diagnosing acute myeloid leukemia (AML) in a patient with the FLT3-ITD mutation, or a method of providing information for diagnosing acute myeloid leukemia (AML) in a patient with the FLT3-ITD mutation. provides.
  • the present invention also includes the steps of (a) extracting nucleic acids from a biological sample and obtaining sequence information using the primer set; (b) aligning sequence information (reads) to a standard chromosome sequence database (reference genome database); (c) detecting ITD mutation of FLT3 in the aligned sequence information (reads); and (d) when an ITD mutation in FLT3 is detected, determining a targeted anticancer drug prescription;
  • a method of treating acute myeloid leukemia (AML) in patients with the FLT3-ITD mutation, or a method of providing information for the treatment of acute myeloid leukemia (AML) in patients with the FLT3-ITD mutation. provides.
  • the present invention also includes the steps of (a) extracting nucleic acids from a biological sample and obtaining sequence information using the primer set; (b) aligning sequence information (reads) to a standard chromosome sequence database (reference genome database); (c) detecting ITD mutation of FLT3 in the aligned sequence information (reads); and (d) determining that minimal residual disease (MRD) exists when an ITD mutation in FLT3 is detected; Method for detecting minimal residual disease (MRD) in patients with Acute Myeloid Leukemia (AML) with FLT3-ITD mutation or Acute Myeloid Leukemia (AML) with FLT3-ITD mutation ) Provides a method of providing information for detecting minimal residual disease (MRD) in patients.
  • the present invention also includes the steps of (a) extracting nucleic acids from a biological sample and obtaining sequence information using the primer set; (b) aligning sequence information (reads) to a standard chromosome sequence database (reference genome database); (c) detecting ITD mutation of FLT3 in the aligned sequence information (reads); and (d) predicting prognosis according to the length and VAF of the detected ITD mutation of FLT3; Method for predicting the prognosis of Acute Myeloid Leukemia (AML) patients with FLT3-ITD mutations, or for predicting the prognosis of Acute Myeloid Leukemia (AML) patients with FLT3-ITD mutations, including Provides a method of providing information.
  • AML Acute Myeloid Leukemia
  • AML Acute Myeloid Leukemia
  • the present invention also provides use of the primer set for preparing a diagnostic agent for acute myeloid leukemia (AML) in patients with FLT3-ITD mutations.
  • AML acute myeloid leukemia
  • the present invention also provides the use of the primer set for preparing an agent for detecting minimal residual disease (MRD) in patients with acute myeloid leukemia (AML) in patients with FLT3-ITD mutations.
  • MRD minimal residual disease
  • AML acute myeloid leukemia
  • the present invention also provides the use of the primer set for preparing an agent for predicting the prognosis of patients with acute myeloid leukemia (AML) in patients with FLT3-ITD mutations.
  • AML acute myeloid leukemia
  • the present invention also provides the use of the primer set for producing an agent for confirming resistance to a tyrosine kinase inhibitor in patients with acute myeloid leukemia (AML) with FLT3-ITD mutation.
  • AML acute myeloid leukemia
  • Figure 1 is a schematic diagram showing the region of the FLT3 gene amplified by the primer set according to the present invention.
  • Figure 2 is a schematic diagram showing the amplification regions of primer pairs constituting the first primer set capable of simultaneously amplifying the ITD region and the TKD region according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the amplification regions of primer pairs constituting the second primer set (A) and the third primer set (B) according to an embodiment of the present invention.
  • Figure 4 (A) is a schematic diagram showing the process of producing an amplicon using the first primer set according to the present invention, and (B) is a schematic diagram showing the process of producing an amplicon using the second primer set and the third primer set simultaneously. This is a schematic diagram showing the manufacturing process.
  • Figure 5 (A) is the result of confirming the linearity and sensitivity of the FLT3 mutation detected using the first primer set according to the present invention, and (B) is the result of detection using the second primer set and the third primer set simultaneously. This is the result of confirming the linearity and sensitivity of one FLT3 mutation.
  • NGS refers to Next Generation Sequencing, and also refers to next-generation sequencing and next-generation nucleotide sequencing.
  • This refers to a technology that fragments the whole genome and performs large-scale sequencing of the fragments based on chemical reaction (hybridization), or amplifies target gene regions using multiplex PCR to perform large-scale sequencing. It includes technologies from Agilent, Illumina, Roche, and Life Technologies, and in a broad sense, it is defined to include third-generation technology such as Pacificbio's technology and Nanopore Technology, as well as fourth-generation technology.
  • NGS Next Generation Sequencing
  • the technology originally referred to as Next Generation Sequencing (NGS) corresponds to the second generation of automated technology.
  • NGS is a name used to distinguish it from the first automated device and to differentiate it from the Next NGS device that was created later (also referred to as the next generation or third generation NGS).
  • NGS is used in a broad sense encompassing all base sequencing technologies following automated Sanger base sequencing technology.
  • NGS NGS technologies introduced in NGS can be broadly divided into three types: clonal amplification, massively parallel, and a new readable base sequencing method (non-Sanger method) (base/color calling).
  • Clone amplification has the effect of eliminating the cloning process by eliminating the library construction process, and the mass parallel method improves efficiency by handling hundreds of thousands of clones at the same time.
  • the new readable base sequencing method eliminates the capillary electrophoresis process.
  • the process of obtaining a template clone has been simplified by clonal amplification. Sequencing using the Sanger method requires template DNA with a length of approximately 500 base pairs. After constructing a BAC library, short fragments must be cloned through subcloning and then amplified in bacteria. The new method eliminates all cumbersome library construction and cloning processes and allows the DNA to be cut into appropriately short fragments and then directly amplified by PCR using primers to obtain a template clone. Strategies such as bead-based, solid-state, and DNA nanoball generation are used for clonal amplification.
  • Emulsion PCR involves spatially separating a DNA library, which is an aggregate obtained by fragmenting genomic DNA, into small aqueous droplets in oil, and then placing them in an emulsion together with microbeads with one PCR primer modified on the surface. Amplified within (emulsion). This is a method in which more than 1 million clone DNA fragments derived from a single DNA fragment are immobilized on one bead created in this way. A representative solid-state method is bridge-amplification.
  • the bridge-amplification method connects adapter oligonucleotides to both ends of the fragmented DNA and then flows them onto the surface of a glass flow cell, where they randomly bind to primers complementary to the adapter immobilized on the surface.
  • PCR is performed in this state, the free ends of the DNA fixed to the surrounding free primers are combined to form a bridge and amplification proceeds.
  • amplification proceeds in this way, a cluster is formed that plays the same role as the beads.
  • NGS adopts a massively parallel method to arrange the clones in a plate and conduct base sequence analysis. There are so many template clones that preparing them separately takes a lot of time. The process of reading the base sequence signal from the template is also a serious limiting factor that reduces efficiency. Processing hundreds of thousands of different clones in massive parallel can dramatically shorten the time.
  • the SBL method uses repetitive ligation of DNA fragments, in which an anchor with n bases is complementary to the template DNA, and two randomly encoded bases labeled with a fluorescent label are added.
  • a probe with a subsequent degenerate or universal base is added to the DNA library slide on which the beads or clusters are deposited.
  • a probe with two encoded sequences complementary to the template DNA fragment immediately following the anchor is ligated to the anchor, and the two encoded sequences are analyzed through fluorescent label imaging on the slide.
  • the degenerate base sequences and fluorescent particles are removed, and then the above process of adding probes is repeated.
  • This is a method of analyzing the sequence of the entire template DNA fragment by using and repeatedly analyzing anchors with n+2 and n+4 bases in addition to the n anchor mentioned above.
  • SBS is further divided into Cyclic Reversible Termination (CRT) and Single Nucleotide Addition (SNA).
  • the CRT method uses a process similar to the automated Sanger method, adding a mixture of primers, DNA polymerase, and modified nucleotides to a slide containing amplified DNA clusters using a solid-state method.
  • the modified nucleotides are blocked with 3'-O-azidomethyl to prevent further polymerization from occurring and are labeled with a fluorescent label that is unique to each base and can be removed later.
  • the unpolymerized base is washed away and the base is identified through imaging using a total internal reflection fluorescence (TIRF) microscope. Once the base is identified, the fluorescent label is decomposed and the 3'-OH is regenerated with the reducing agent Tris 2-Carboxyethyl)phosphine (TCEP). This method repeats this process to analyze the sequence of the template DNA without electrophoresis.
  • TIRF total internal reflection fluorescence
  • the SNA method is a method of analyzing base sequences by converting ions generated when DNA polymerase attaches a single nucleotide into light.
  • the SNA method is represented by the pyrosequencing method used by Roche's 454 device, which reads pyrophosphate released when nucleotides bind with light.
  • dNTPs A, G, T, C
  • Representative analysis devices using SBL include the SOLiD series from the former Life Technologies company, and representative analysis devices using SBS include Illumina's Hiseq and MiSeq series (CRT method) and Roche's 454 series (SNA method).
  • both the ITD region and the TKD mutation region of the FLT3 gene were simultaneously amplified and analyzed using the NGS method, resulting in FLT3 of a length that could not be detected by the existing method with high sensitivity and accuracy. Not only can it detect ITD, but it can also identify mutations in the TKD region at the same time, making it possible to diagnose AML; drug resistance; prognosis prediction; It was confirmed that residual disease detection can be performed simultaneously (Tables 10 and 11).
  • the present invention relates to a composition for amplifying the FLT3 gene comprising the following primer set:
  • the present invention also relates to a composition for amplifying the FLT3 gene comprising the following primer sets:
  • a method of diagnosing acute myeloid leukemia (AML) in a patient with the FLT3-ITD mutation or a method of providing information for diagnosing acute myeloid leukemia (AML) in a patient with the FLT3-ITD mutation. It's about.
  • step (a) may be performed by a method comprising the following steps:
  • nucleic acid For purified nucleic acid or nucleic acid randomly fragmented by enzymatic cleavage, grinding, or hydroshear method, the nucleic acid is amplified using the primer set of paragraph 1 or 2. Next, creating a single-end sequencing or pair-end sequencing library;
  • the biological sample refers to any material, biological fluid, tissue or cell obtained from or derived from an individual, for example, whole blood, leukocytes, peripheral blood mononuclear cells. May include, but is not limited to, peripheral blood mononuclear cells, buffy coat, blood (including plasma and serum), bone marrow, and mixtures thereof. no.
  • a method of treating acute myeloid leukemia (AML) in patients with the FLT3-ITD mutation or a method of providing information for the treatment of acute myeloid leukemia (AML) in patients with the FLT3-ITD mutation. It's about.
  • the targeted anti-cancer treatment can be used without limitation as long as it is a targeted anti-cancer treatment related to mutations in the FLT3-ITD region, and is preferably used to block the biological pathway in which the FLT3 protein participates by inhibiting the expression or reducing the activity of FLT3.
  • Any delaying agent can be used without limitation, preferably one or more selected from the group consisting of small molecules, antibodies or antigen-binding fragments thereof, aptamers, siRNA, shRNA, microRNA, and pharmaceutically acceptable salts thereof. It may be possible, but it is not limited to this.
  • MRD minimal residual disease
  • AML acute myeloid leukemia
  • MRD microscopic residual disease
  • microresidual disease refers to a condition in which, after therapy for a tumor (e.g., chemotherapy, immunotherapy, or targeted therapy), a morphologically normal sample (e.g., normal blood) still contains residual malignant cells. This means a situation where a relative amount of can be held. Detection of minimal residual disease (MRD) is a new practical tool for more accurate measurement of remission induction during therapy. In the case of liquid tumors (e.g.
  • MRD may relate to a limit of detection of 10 -4 or less, for example 10 -5 , or even 10 -6 (Bettegowda et al., Sci Transl Med., 6(224), 224ra24, 2014).
  • the biological sample may be derived from a patient judged to have cured AML or a patient receiving anticancer treatment after being diagnosed with AML, but is not limited thereto.
  • the ITD may be the same as the ITD found at the time of AML diagnosis, but is not limited thereto.
  • prognosis prediction is used with the same meaning as “prognosis” and refers to the act of predicting the course and outcome of a disease in advance. More specifically, prognosis prediction refers to the fact that the course of a disease after treatment may vary depending on the patient's physiological or environmental condition, and is interpreted to mean all activities that predict the course of the disease after treatment by comprehensively considering the patient's condition. It can be.
  • the prognosis prediction can be interpreted as the act of predicting the risk of cancer progression, cancer recurrence, and/or cancer metastasis by predicting the course of the disease after treatment of AML.
  • the term “good prognosis” means that the patient's risk of cancer progression, cancer recurrence, and/or cancer metastasis after treatment for AML is lower than 1, meaning that the AML patient is likely to survive; In another sense, it is also expressed as “positive prognosis.”
  • the term “poor prognosis” means that the patient's risk of cancer progression, cancer recurrence, and/or cancer metastasis after AML treatment is higher than 1, meaning that the AML patient is likely to die, and in other words, " It is also expressed as “negative prognosis.”
  • the term “risk” refers to the odds ratio, risk ratio, etc. for the probability that a patient will experience cancer progression, recurrence, and/or cancer metastasis after treatment of AML.
  • Method for predicting the prognosis of Acute Myeloid Leukemia (AML) patients with a FLT3-ITD mutation or information for predicting the prognosis of Acute Myeloid Leukemia (AML) patients with the FLT3-ITD mutation. It's about how to provide it.
  • the prognosis prediction according to the ITD length and VAF can be used without limitation as long as it is a known value based on the correlation between the prognosis prediction of the patient and the length and VAF.
  • the prognosis is poor (Polak TB et al., Haematologica. 2022 Jul 7.).
  • the reference value of ITD VAF is set at 0.33 in the European Leukemia Net (ELN) and the National Comprehensive Cancer Network (NCCN).
  • the prognosis prediction is the worst prognosis when the length of the ITD mutation is more than 39 bp and the VAF is more than 0.33, and the worst prognosis is when the length of the ITD mutation is more than 33 bp or the ITD VAF is more than 0.33. If the length of the ITD mutation is less than 33bp or the ITD VAF is less than 0.33, the prognosis can be expected to be average, and if the length of the ITD mutation is less than 33bp and the ITD VAF is less than 0.33, the best prognosis can be predicted, but it is not limited to this.
  • the term “prognosis” in the present invention refers to the prediction of the possibility of cancer progression, cancer recurrence, and/or cancer metastasis.
  • the prediction method of the present invention can be used clinically to make treatment decisions by selecting the most appropriate treatment modality for any particular patient.
  • the prediction method of the present invention is a valuable tool for assisting diagnosis and/or diagnosis in determining whether a patient's cancer progresses, cancer recurs, and/or cancer metastasis is likely to occur.
  • Method for confirming resistance to tyrosine kinase inhibitor, a treatment for acute myeloid leukemia (AML) in patients with FLT3-ITD mutation, or Acute myeloid leukemia (Acute) in patients with FLT3-ITD mutation This relates to a method of providing information to confirm resistance to a tyrosine kinase inhibitor, a treatment for Myeloid Leukemia (AML).
  • the tyrosine kinase inhibitor can be used without limitation as long as it is a tyrosine kinase inhibitor that can treat AML, and is preferably a FLT3 inhibitor, but is not limited thereto.
  • the “inhibitor” may refer to a substance that blocks or delays the biological pathway in which the FLT3 protein participates by inhibiting the expression or reducing the activity of the FLT3 protein.
  • the FLT3 inhibitor is sufficient as long as it can interact with FLT3 and inhibit its activity, and is one or more from the group consisting of antibodies or antigen-binding fragments thereof, aptamers, siRNA, shRNA, microRNA, inhibitory compounds, and pharmaceutically acceptable salts thereof. It may be selected, but is not limited to this.
  • the FTL3 inhibitor is Sunitinib, Lestaurtinib, Sorafenib, Quizartinib, Midostaurin, Pacritinib, Gil It may be characterized as one or more selected from the group consisting of Gilteritinib, Crenolanib, and Tandutinib, but is not limited thereto.
  • the point mutation in the TKD region of the FLT3 gene may include, but is not limited to, the point mutations listed in Table 2 below.
  • composition of the present invention simultaneously amplifies the ITD region and the TKD mutation region of the FLT3 gene, it can be used to diagnose AML and at the same time, if the sample is diagnosed as AML positive, the corresponding analysis results Based on this, it can be easily expected that it is possible to simultaneously predict prognosis and select appropriate treatments excluding drugs with drug resistance.
  • MRD is continuously analyzed to detect MRD. If MRD is detected, this is combined with the patient's TKD mutation information to provide medication. It can be easily expected that it can be used to determine resistance and establish a treatment plan.
  • 'Oligonucleotide' of the present invention generally refers to a nucleotide polymer composed of about 10 to about 100 nucleotides. However, the length of the nucleotides may be more than 100 or less than 10 nucleotides.
  • 'Nucleotide' of the present invention is a basic unit of nucleic acid consisting of a phosphate group, a 5-carbon sugar, and a nitrogen base.
  • the 5-carbon sugar in RNA is ribose.
  • the 5-carbon sugar in DNA is 2-deoxyribose.
  • the sugar contains a hydroxyl group (-OH) at the 5-carbon sugar-2.
  • the term also includes analogs of this basic unit, such as a methoxy group at the 2 position of the ribose.
  • the primers of the present invention can be cloned by cloning the target sequence using a conventional cloning method (Maniatis, T., et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1982) or by using a commercially available DNA synthesizer. It can be obtained in large quantities by chemical synthesis.
  • Primers of the present invention are preferably isolated or purified. “Isolated or purified” means that an operation is applied to remove ingredients other than the desired ingredient from its natural or synthetic state.
  • the purity (percentage of target primer contained in the total nucleic acid) of the isolated or purified primer in (w/w)% is generally at least 50%, preferably at least 70%, more preferably at least 90%, and most preferably at least 90%. is 95% or more (eg, 100%).
  • the purity of the primer may vary appropriately depending on the solvent and solid or liquid state.
  • the unit of purity may be (w/v)% or (v/v)%, and the desired purity may be appropriately calculated considering the definition of purity in (w/w)% mentioned above.
  • primers may be provided as solids in a dry or alcohol-precipitated state, or may be provided dissolved in water or a suitable buffer (e.g., TE buffer, etc.).
  • a suitable buffer e.g., TE buffer, etc.
  • Amplicon of the present invention refers to an amplification product amplified by primers.
  • the primer can amplify each gene, maintains a GC ratio in the range of 20 to 60%, and is complementary to a gene sequence without a tandem repeat sequence.
  • amplification refers to a reaction that amplifies nucleic acid molecules.
  • Various amplification reactions have been reported in the art, including polymerase chain reaction (hereinafter referred to as PCR) (US Patent Nos. 4,683,195, 4,683,202, and 4,800,159), reverse transcription-polymerase chain reaction (hereinafter referred to as RT-PCR) (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed.
  • PCR is the best-known nucleic acid amplification method, and many modifications and applications have been developed. For example, touchdown PCR, hot start PCR, nested PCR, and booster PCR have been developed by modifying traditional PCR procedures to increase the specificity or sensitivity of PCR.
  • real-time PCR differential display PCR (D-PCR), rapid amplification of cDNA ends (RACE), DL-PCR (PC), and inverse polymerase chain reaction. (inverse polymerase chain reaction: IPCR), vectorette PCR, and thermal asymmetric interlaced PCR (TAIL-PCR) have been developed for specific applications.
  • D-PCR differential display PCR
  • RACE rapid amplification of cDNA ends
  • PC DL-PCR
  • IPCR inverse polymerase chain reaction
  • vectorette PCR vectorette PCR
  • thermal asymmetric interlaced PCR TAIL-PCR
  • the primer set may be characterized as including primer pairs represented by the combinations in Table 1 below.
  • DNA serving as a template for PCR can be prepared from a test sample.
  • Test samples are not particularly limited and include, for example, whole blood, leukocytes, peripheral blood mononuclear cells, buffy coat, (plasma and serum). including) blood and bone marrow.
  • DNA can be prepared using known methods such as protease K/phenol extraction, phenol/chloroform extraction, alkaline dissolution, boiling, etc. Using a commercially available DNA/RNA extraction kit, highly pure DNA can be produced quickly and easily from trace samples.
  • reaction conditions of PCR for gene amplification using the primer set of the present invention may be, for example, the following conditions:
  • Heat denaturation step (e.g., 92°C to 98°C)
  • Annealing step (e.g., 55°C to 72°C)
  • Elongation phase (e.g., 65°C to 80°C)
  • the annealing step and the elongation step can be performed in one step (shuttle method), or a method involves setting the annealing temperature higher and gradually lowering the temperature in each cycle. Can be adopted (touchdown method). Alternatively, they may be combined.
  • the temperature of the annealing step and elongation step is typically 65 to 72° C.
  • the annealing step and the elongation step can be performed in one step (shuttle method), or a method involves setting the annealing temperature higher and gradually lowering the temperature in each cycle. Can be adopted (touchdown method). Alternatively, they may be combined.
  • the temperature of the annealing step and elongation step is typically 65 to 72° C.
  • the method of sequence analysis using NGS varies depending on the type of NGS, and can be performed, for example, according to each company's manual (e.g., NexteraR XT DNA Library Prep Reference Guide). Paired-end analysis is preferably used to sequence the obtained samples. Next, Illumina, Inc. A summary of the sequencing procedure using MiSeq is described. Even when using other devices (Ion Proton manufactured by Life Technologies, GS FLX+ by Roche Diagnostics K.K., etc.), the nucleotide sequence can be similarly determined by a method appropriate for the device.
  • the amplification product of each sample is tagged using a kit (e.g., Nextera XT DNA Sample Preparation Kit (Illumina, Inc.)).
  • a kit e.g., Nextera XT DNA Sample Preparation Kit (Illumina, Inc.)
  • index sequences different for each sample are added to both sides of the obtained fragment sequence and PCR is performed.
  • the presence or absence of a mutation in a gene can be determined using a database (hereinafter referred to as read) based on the nucleotide sequence information of the amplification product obtained by NGS.
  • the present invention relates to a kit for amplifying the FLT3 gene, including the primer set.
  • the kit of the present invention may include other reagents required for PCR in addition to the primer set of the present invention mentioned above. If the above-mentioned reagents coexist with the primer set of the present invention and do not adversely affect the reaction after preservation, they may be mixed with the primer set and included in the kit. Alternatively, the above-mentioned reagents and the primer set of the present invention may be provided separately without mixing. Examples of the above-mentioned reagents include DNA extraction reagents, DNA polymerase enzymes, dNTPs, reaction buffers, DNA molecules containing target sequences that serve as positive controls in PCR, instructions, etc. The above-mentioned DNA polymerase enzyme may be a commercially available product.
  • the present invention relates to the use of the primer set for preparing a diagnostic agent for acute myeloid leukemia (AML) in patients with FLT3-ITD mutations.
  • AML acute myeloid leukemia
  • the diagnostic agent includes the steps of (a) extracting nucleic acids from a biological sample and obtaining sequence information using the diagnostic agent; (b) aligning sequence information (reads) to a standard chromosome sequence database (reference genome database); (c) detecting ITD mutation of FLT3 in the aligned sequence information (reads); and (d) if an ITD mutation in FLT3 is detected, determining that AML has a FLT3-ITD mutation; It can be used in AML diagnostic methods including, but is not limited to.
  • the present invention relates to the use of the primer set for the preparation of a treatment agent for patients with acute myeloid leukemia (AML) in patients with FLT3-ITD mutations.
  • AML acute myeloid leukemia
  • the present invention relates to the use of the primer set for manufacturing an agent for detecting minimal residual disease (MRD) in patients with acute myeloid leukemia (AML) in patients with FLT3-ITD mutations. It's about.
  • MRD minimal residual disease
  • AML acute myeloid leukemia
  • the agent for detecting MRD includes the steps of (a) extracting nucleic acids from a biological sample and obtaining sequence information using the primer set; (b) aligning sequence information (reads) to a standard chromosome sequence database (reference genome database); (c) detecting ITD mutation of FLT3 in the aligned sequence information (reads); and (d) determining that minimal residual disease (MRD) exists when an ITD mutation in FLT3 is detected; It can be used in a method for detecting minimal residual disease (MRD) in acute myeloid leukemia (AML) patients with FLT3-ITD mutations, but is not limited to this.
  • the present invention also provides the use of the primer set for preparing an agent for predicting the prognosis of patients with acute myeloid leukemia (AML) in patients with FLT3-ITD mutations.
  • AML acute myeloid leukemia
  • the agent for predicting prognosis includes the steps of (a) extracting nucleic acids from a biological sample and obtaining sequence information using the primer set; (b) aligning sequence information (reads) to a standard chromosome sequence database (reference genome database); (c) detecting ITD mutation of FLT3 in the aligned sequence information (reads); and (d) predicting prognosis according to the length and VAF of the detected ITD mutation of FLT3; It can be used to predict the prognosis of Acute Myeloid Leukemia (AML) patients with FLT3-ITD mutations, but is not limited to this.
  • AML Acute Myeloid Leukemia
  • the present invention relates to the use of the primer set for producing an agent for confirming resistance to a tyrosine kinase inhibitor in patients with acute myeloid leukemia (AML) with FLT3-ITD mutation. to provide.
  • AML acute myeloid leukemia
  • the agent for confirming resistance includes the steps of (a) extracting nucleic acids from a biological sample and obtaining sequence information using the primer set; (b) aligning sequence information (reads) to a standard chromosome sequence database (reference genome database); (c) detecting mutations in the TKD region of FLT3 from the aligned sequence information (reads); and (d) detecting a mutation in the TKD region of FLT3 and determining a resistant drug according to the type of mutation in the TKD region; It can be used to confirm resistance to a tyrosine kinase inhibitor, a treatment for acute myeloid leukemia (AML) in patients with FLT3-ITD mutations, but is not limited to this.
  • AML acute myeloid leukemia
  • primers of SEQ ID NOs 1 to 18 were designed as shown in Table 1 above, and then, to improve the speed of future work, an Illumina Nextera adapter sequence was added to the 5' end of each primer.
  • the primers shown in Table 3 below were prepared and attached to.
  • each primer pair is different across the ITD region and the TKD region, so a primer set capable of efficiently amplifying them was constructed as shown in Table 4 below.
  • Example 2 Amplicon amplification and library construction of the ITD and TKD regions of the FLT3 gene using the prepared primers
  • the first amplification reaction was performed on the reactants in Table 5 under the reaction conditions in Table 6, and then indexing-PCR was performed on the reactants in Table 7 under the conditions in Table 8 to generate the final amplicon to produce a library.
  • the reagent used in the first amplification reaction was KOD -Multi & Epi-TM (TOYOBO, KME-101), and the reagent used in the second amplification reaction was NEBNext® UltraTM II Q5® Master Mix (New England BioLabs, M0544). and IDT® for Illumina® DNA/RNA UD Indexes (Illumina, 20026121).
  • the reactants in Table 5 were each independently amplified in the target region under the reaction conditions in Table 6. After amplification, each reaction in Table 9 was subjected to indexing-PCR under the conditions in Table 8 to generate the final amplicon to prepare a library.
  • the library produced by the method of Example 2 was sequenced using MiSeq or MiSeqDx equipment to produce leads, and then the accuracy of mutation detection in the corresponding region in each sample was confirmed.
  • the most widely used and least sensitive method for detecting existing FLT3-ITD mutations is fragment analysis.
  • the fragment analysis method is known to have a sensitivity of about 3%.
  • a library was created using standard materials and clinical specimens in which ITD and TKD mutations were not detected by directly performed fragment analysis (FLT3 Mutation Assay, Invivoscribe, 14120031) using the method of Example 2, and sequencing was performed using MiSeq or MiSeqDx equipment. After producing the reads, mutations in the corresponding region in each sample were detected and compared with the fragment analysis results.
  • the HD829 standard material No. 1 in Table 12 has a 300bp ITD of about 5%.
  • fragment analysis can detect an ITD of about 270bp, and the sensitivity is about 3%, so undetected results exceed the ITD detectable length. It was analyzed that this was because
  • clinical specimen No. 2 in Table 13 has a TKD mutation at amino acid 676. Since only TKD mutations at positions 835 and 836 can be detected using existing fragment analysis methods, the non-detection result was analyzed to be due to deviating from the TKD detection location. .
  • Example 5 Comparison of the ITD mutation and TKD mutation detection method of the FLT3 gene using the prepared primers with existing products and methods
  • the library produced by the method of Example 2 was sequenced using MiSeq or MiSeqDx to produce leads, and then mutations in the corresponding region in each sample were detected and compared with existing products and technologies.
  • the method of the present invention not only has a detectable ITD length that is more than twice as long as that of the existing NGS method, but also can detect all TKD mutations, and can process many samples in a faster time than sanger sequencing. It was confirmed that it could be processed.
  • the library produced by the method of Example 2 was sequenced using MiSeq or MiSeqDx to produce leads, and then clinical specimen #3 containing a 97bp ITD mutation was subdiluted to detect mutations in the corresponding region in each sample. Then, linearity was analyzed.
  • a library of clinical specimen #3 was created using the method of Example 2, and leads were produced using MiSeq or MiSeqDx. ITD mutations were detected through a bioinformatic analysis pipeline, and the mutation rate (allelic fraction) was confirmed.
  • This program is one of the widely used programs when detecting FLT3-ITD mutations using NGS data, and it allows you to know the length, sequence information, occurrence location, and mutation rate of the ITD mutation. It is a characteristic.
  • composition for gene amplification according to the present invention is useful for diagnosing acute myeloid leukemia (AML) in patients with FLT3-ITD mutations; Determination of targeted anticancer treatment regimen for AML patients with FLT3-ITD mutation; Detection of minimal residual disease (MRD) in AML patients; Predicting prognosis in AML patients; and AML tyrosine kinase inhibitor drug resistance can be checked at the same time, shortening the time to derive analysis results from samples and enabling efficient testing, which is of utmost importance in the treatment of patients with acute myeloid leukemia. It is useful because it allows you to choose the right and quick diagnosis and treatment method, allowing for early treatment and preventing recurrence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 FLT3 유전자 증폭용 조성물 및 이의 용도에 관한 것으로, 더욱 자세하게는 FLT3 유전자의 ITD 검출 영역과 TKD 변이 영역을 동시에 증폭할 수 있는 프라이머 세트를 포함하는 조성물 및 이의 용도에 관한 것이다. 본 발명에 따른 유전자 증폭용 조성물은 FLT3-ITD 변이가 있는 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단; FLT3-ITD 변이가 있는 AML 환자의 표적항암치료제 처방의 결정; AML 환자에서의 미세잔존질환(Minimal Residual Disease, MRD) 검출; AML 환자의 예후 예측; 및 AML 티로신 키나제 저해제(tyrosine kinase inhibitor)의 약제 내성 여부 확인을 동시에 진행할 수 있어, 샘플로부터 분석 결과를 도출하는 시간을 단축시키고, 효율적인 검사를 가능하게 하며, 이는 급성 골수성 백혈병 환자의 치료에 있어 올바르고 빠른 진단 및 치료 방법을 선택할 수 있도록 하여 조기 치료와 재발을 방지할 수 있어 유용하다.

Description

FLT3 유전자 증폭용 조성물 및 이의 용도
본 발명은 FLT3 유전자 증폭용 조성물 및 이의 용도에 관한 것으로, 더욱 자세하게는 FLT3 유전자의 ITD 검출 영역과 TKD 변이 영역을 동시에 증폭할 수 있는 프라이머 세트를 포함하는 조성물 및 이의 용도에 관한 것이다.
백혈병 케이스의 90% 이상이 20세 이상의 성인에서 진단되고 있고, 그 중 가장 보편적인 유형은 만성 림프성 백혈병(35%) 및 급성 골수성(골수구성) 백혈병(Acute Myeloid Leukemia, AML)(32%)이다(Cancer Facts & Figures, Atlanta, American Cancer Society; 2014). 국립암센터 중앙암등록본부에 따르면, AML 환자의 20.4%는 70대 이상이고, 60대도 18.4%인 것으로 보고되었다.
혈액종양 초진단 검사항목 지침 개정(In-Suk Kim et al., Lab Med Online 2020; 10(1): 10-24)에서는 AML의 1차 진단 검사로 유전자 변이를 필수적으로 수행해야 하며, 대상 유전자는 FLT3-ITD, NPM1, CEBPA, RUNX1 및 KIT 유전자로 권고하고 있다. 또한 2차 검사로 FLT3-TKD, NRAS, TP53, ABL1 kinase mutation, DNMT3A, IDH1, IDH2, TET2, MLL-PTD, ASXL1, ETV6, EZH2, CBL 및 JAK2 유전자의 변이를 검사하되, NGS 패널을 이용한 검사를 권고하고 있다.
Fms-유사 티로신 키나아제-3(Fms-Like Tyrosine kinase-3: FLT3)는 급성 골수성 백혈병(Acute Myeloid Leukemia: AML)에서 가장 빈번히 돌연변이가 되는 유전자 중 하나이다. 돌연변이 FLT3(Mutant FLT3)는 급성 골수성 백혈병(AML) 환자의 소집단(subpopulation)에서 나타나는 백혈병 세포에서 발현되는 돌연변이를 말한다. 막근접 도메인에서 유전자내 종렬 중복(internal tandem duplication; ITD)과 같은 FLT3내 활성화 돌연변이가 신규 진단되는 AML 케이스에서 약 25-30%로 나타난다(대한민국 특허 제10-2018-0124055호). 이중 3개에서 400개 이상의 염기의 중복되는 FLT3-ITD 변이는 약 25%로 나타나며, 티로신 키나아제 영역(Tyrosine Kinase Domain)에서 나타나는 점돌연변이는 7-10%로 나타난다. (Tamara Castano-Bonilla et a., Scientific Reports. 2021 Oct volume 11, Article number: 20745, 2021)
한편, 급성골수성백혈병(Acute Myeloid Leukemia, AML)에서 유전자변이를 검사하는 것은 진단뿐만 아니라 미세잔존질환(Minimal Residual Disease, MRD)의 검출, 재발 유무, 생존율과 같은 예후를 예측하는 지표로 사용되고 있다. 이 중 FLT3 (fims-like tyrosine kinase-3) 유전자 변이는 AML에서 가장 흔히 나타나는 변이로 진단 시에 FLT3 내부 직렬 중복(FLT3 internal tandem duplication, FLT3-ITD)이 존재하면 예후가 불량하며 재발율과 생존율에 영향을 미치는 것으로 보고되어 왔다. 아울러, 티로신 키나제의 활성을 초래한다. 또한, FLT3의 ITD는 그 길이가 매우 다양하며, 길이가 길수록 증상이 심각하고, 예후가 좋지 않다고 보고되고 있다(Kayser S et a., Blood. 2009 Sep 17;114(12):2386-92; Liu SB, et al., Haematologica. 2019 Jan;104(1):e9-e12).
초창기 FLT3-ITD 변이 검출은 PCR과 전기영동을 통해 길이 차이를 통해 ITD 및 TKD 영역의 변이 일부를 검출하였으나, 민감도가 10%로 매우 낮고, 정확한 변이 길이 및 서열 측정이 불가능한 단점이 있었다. 이를 극복하기 위하여 PCR 이후 증폭산물을 정량적으로 분석하는 절편분석법(Fragment Analysis, FA)이 개발되었다(대한민국특허 제10-2041001; LeukoStrat CDx FLT3 Mutation assay, Invivoscribe). 절편분석법은 PCR 방법에 비해 민감도가 약 3%로 향상되었으며, ITD 길이 및 ITD burden(ratio)이 측정 가능한 장점이 있으나, 여전히 서열 분석이 불가능하고, MRD 검출에 필요한 민감도(최소 10-4) 수준에는 달성하지 못했다는 단점이 있다. 이러한 단점을 극복하기 위하여 Invivoscribe 사에서는 NGS를 이용한 AML-FLT3 ITD MRD Assay 서비스를 개발하였으나, 민감도가 5x10-5 수준이며, MRD 검출에 중요한 TKD 영역의 변이를 동시에 검출하지 못한다는 단점이 있다.
한편, AML 치료제로서 다양한 종류의 FLT3 저해제가 사용되고 있다. FLT3 저해제는 크게 제1형 저해제(type I inhibitor)와 제2형 저해제(type II inhibitor)로 구분되는데, 제1형 저해제는 FLT3-ITD 또는 FLT3 kinase domain point mutation이 있는 환자에서 작동하고, 제2형 저해제는 FLT-ITD 변이가 있는 환자에서는 작용하나, FLT3 kinase domain point mutation이 있는 환자에서는 작동하지 않는 저해제를 의미한다. 제1세대 저해제로는 수니티닙(Sunitinib), 소라페닙(Sorafenib), 미도스타우린(Midostaurin), 레스타우티닙(Lestaurtinib) 및 탄듀티닙(Tandutinib)이 있으며, 이들은 FLT3에 대한 특이성(specificity)은 없다고 알려져 있다. 이에 비해, 제2세대 저해제인 퀴자티닙(Quizartinib), 크레놀라닙(Crenolanib) 및 길테리티닙(Gilteritinib)은 FLT3에 보다 특이적으로 작용하는 것으로 알려져 있다(Larrosa-Garcia M, et al., Mol Cancer Ther. 2017 Jun;16(6):991-1001).
하지만 상기 FLT3 저해제는 FLT3 유전자의 tyrosine kinase domain (TKD) 영역의 변이가 발생하거나, 존재할 경우 심각한 약제 내성을 가지게 된다. 예를 들어, FLT3 TKD1 영역에서 F961L 변이가 있을 경우, 제1형 저해제인 길테리티닙(Gilteritinib) 및 크레놀라닙(Crenolanib)에 대하여 약제 내성이 나타나는 것이 보고되었으며, FLT3 TKD2의 D835 영역에서의 변이는 수니티닙(Sunitinib), 소라페닙(Sorafenib), 탄듀티닙(Tandutinib)및 퀴자티닙(Quizartinib)의 약제 내성을 유발한다고 보고되었다(Dilana Staudt et al., Int. J. Mol. Sic. 2018, 19, 3198).
따라서, FLT3-ITD 변이를 가진 AML 환자의 진단, 예후 예측, 치료 방향 설계, 치료, 모니터링을 종합적으로 시행하기 위해 FLT3-ITD 및 TKD 영역의 변이를 높은 민감도로 검출할 수 있는 기술이 필요한 실정이다.
이에 본 발명자들은 FLT3-ITD 변이를 가진 AML 환자의 진단과 약제 내성 여부 확인, 예후 예측을 동시에 고속 대용량으로 진행할 수 있는 조성물을 개발하기 위하여 예의 노력한 결과, FLT3 유전자의 ITD 영역 및 TKD 영역을 증폭할 수 있는 프라이머 세트를 이용하여 FLT3 유전자를 증폭한 다음, 분석할 경우, FLT3-ITD 변이를 가진 AML 환자의 진단, 약제 내성 여부 및 예후 예측을 빠른 속도와 함께 높은 민감도와 정확도로 결정할 수 있음을 확인하고, 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 민감도와 정확도가 향상된 FLT3 유전자 증폭용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 조성물을 포함하는 FLT3 유전자 증폭용 키트를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물을 이용한 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물을 이용한 FLT3-ITD 변이를 가진 AML 환자의 표적항암제 처방방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물을 이용한 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 미세 잔존 질환(Minimal Residual Disease, MRD) 검출방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물을 이용한 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 예후 예측방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물을 이용한 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료제인 티로신 키나제 저해제(tyrosine kinase inhibitor)의 내성 확인방법을 제공하는 것이다.
상기 목적을 달성하기 위해서, 본 발명은
아래의 프라이머 세트를 포함하는 FLT3 유전자 증폭용 조성물을 제공한다:
(i) 서열번호 1의 정방향 프라이머 및 서열번호 2의 역방향 프라이머로 구성되는 제1 프라이머 쌍; (ii) 서열번호 3의 정방향 프라이머 및 서열번호 4의 역방향 프라이머로 구성되는 제2 프라이머 쌍; (iii) 서열번호 13의 정방향 프라이머 및 서열번호 14의 역방향 프라이머로 구성되는 제7 프라이머 쌍; (iv) 서열번호 15의 정방향 프라이머 및 서열번호 16의 역방향 프라이머로 구성되는 제8 프라이머 쌍; 및 (v) 서열번호 17의 정방향 프라이머 및 서열번호 18의 역방향 프라이머로 구성되는 제9 프라이머 쌍.
본 발명은 또한, 아래의 프라이머 세트를 포함하는 FLT3 유전자 증폭용 조성물을 제공한다:
(i) 서열번호 5의 정방향 프라이머 및 서열번호 6의 역방향 프라이머로 구성되는 제3 프라이머 쌍; (ii) 서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성되는 제5 프라이머 쌍; (iii) 서열번호 13의 정방향 프라이머 및 서열번호 14의 역방향 프라이머로 구성되는 제7 프라이머 쌍; (iv) 서열번호 17의 정방향 프라이머 및 서열번호 18의 역방향 프라이머로 구성되는 제9 프라이머 쌍; (v) 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성되는 제4 프라이머 쌍; (vi) 서열번호 11의 정방향 프라이머; 서열번호 12의 역방향 프라이머로 구성되는 제6 프라이머 쌍; 및 (vii) 서열번호 15의 정방향 프라이머 및 서열번호 16의 역방향 프라이머로 구성되는 제8 프라이머 쌍.
본 발명은 또한, 상기 프라이머 세트를 포함하는, FLT3 유전자 증폭용 키트(kit)를 제공한다.
본 발명은 또한, (a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계; (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및 (d) FLT3의 ITD 변이가 검출될 경우, FLT3-ITD 변이가 있는 AML인 것으로 결정하는 단계; 를 포함하는 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단방법 또는 상기 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단을 위한 정보의 제공방법을 제공한다.
본 발명은 또한, (a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계; (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및 (d) FLT3의 ITD 변이가 검출될 경우, 표적항암제 처방을 결정하는 단계; 를 포함하는 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료방법 또는 상기 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료를 위한 정보의 제공방법을 제공한다.
본 발명은 또한, (a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계; (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및 (d) FLT3의 ITD 변이가 검출될 경우, 미세 잔존 질환(Minimal Residual Disease, MRD)이 있는 것으로 결정하는 단계; 를 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 미세 잔존 질환(Minimal Residual Disease, MRD) 검출방법 또는 상기 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 미세 잔존 질환(Minimal Residual Disease, MRD) 검출을 위한 정보의 제공방법을 제공한다.
본 발명은 또한, (a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계; (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및 (d) 검출된 FLT3의 ITD 변이의 길이 및 VAF에 따라 예후를 예측하는 단계; 를 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 예후 예측방법 또는 상기 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 예후 예측을 위한 정보의 제공방법을 제공한다.
본 발명은 또한, (a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계; (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (c) 상기 정렬된 서열정보(reads)에서 FLT3의 TKD 영역 변이를 검출하는 단계; 및 (d) FLT3의 TKD 영역 변이가 검출되고, TKD 영역 변이의 종류에 따라 내성이 있는 약제를 결정하는 단계; 를 포함하는 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료제인 티로신 키나제 저해제(tyrosine kinase inhibitor)의 내성 확인방법 또는 상기 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료제인 티로신 키나제 저해제(tyrosine kinase inhibitor)의 내성 확인을 위한 정보의 제공방법을 제공한다.
본 발명은 또한, FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단용 제제 제조를 위한 상기 프라이머 세트의 사용을 제공한다.
본 발명은 또한, FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 미세 잔존 질환(Minimal Residual Disease, MRD) 검출용 제제 제조를 위한 상기 프라이머 세트의 사용을 제공한다.
본 발명은 또한, FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 예후 예측용 제제 제조를 위한 상기 프라이머 세트의 사용을 제공한다.
본 발명은 또한, FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 티로신 키나제 저해제(tyrosine kinase inhibitor)의 내성 확인용 제제 제조를 위한 상기 프라이머 세트의 사용을 제공한다.
도 1은 본 발명에 따른 프라이머 세트가 증폭하는 FLT3 유전자의 영역을 나타낸 개략도이다.
도 2는 본 발명의 일 실시예에 따른 ITD 영역과 TKD 영역을 동시에 증폭할 수 있는 제1프라이머 세트를 구성하는 프라이머 쌍들의 증폭 영역을 나타낸 개략도이다.
도 3은 본 발명의 일 실시예에 따른 제2프라이머 세트(A)와 제3프라이머 세트(B)를 구성하는 프라이머 쌍들의 증폭 영역을 나타낸 개략도이다.
도 4의 (A)는 본 발명에 따른 제1 프라이머 세트를 사용하여, 앰플리콘을 제작하는 과정을 나타낸 개략도이고, (B)는 제2 프라이머 세트 및 제3 프라이머 세트를 동시에 사용하여 앰플리콘을 제작하는 과정을 나타낸 개략도이다.
도 5의 (A)는 본 발명에 따른 제1 프라이머 세트를 사용하여, 검출한 FLT3 변이의 직선성과 민감도를 확인한 결과이고, (B)는 제2 프라이머 세트 및 제3 프라이머 세트를 동시에 사용하여 검출한 FLT3 변이의 직선성과 민감도를 확인한 결과이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서의 용어 “NGS”는 Next Generation Sequencing을 의미하는 것으로, 차세대 시퀀싱, 차세대 염기서열 분석을 의미하기도 한다. 이는 전장유전체(Whole genome)를 조각 내고, 상기 조각을 화학적인 반응(hybridization)에 기초하여 대용량으로 시퀀싱을 수행하거나, multiplex PCR로 표적 유전자 영역들을 증폭시켜 대용량으로 시퀀싱을 수행하는 기술을 의미하고, Agilent, Illumina, Roche 및 Life Technologies사의 기술을 포함하고, 넓은 의미로는 제3세대 기술인 Pacificbio사의 기술, Nanopore Technology 등의 기술 및 제 4세대 기술을 포함하는 것으로 정의한다.
본래 차세대 염기서열 분석(Next Generation Sequencing, NGS)으로 지칭되는 기술은 자동화로는 제2세대 기술에 해당된다. NGS는 이전의 첫 자동화 기기와 구분하고, 이후에 탄생한 Next NGS 기기(차차세대, 혹은 제3세대 NGS라고도 지칭됨)와 따로 구분하기 위하여 불리는 이름이다. 그러나, 효율적인 염기서열 분석 기술의 개발경쟁이 가속화되고 새로운 기술의 도입 및 플랫폼의 사용 목적에 기초한 염기서열 분석 기술이 지속적으로 개발됨에 따라, 각 세대의 염기서열 분석기술은 그 구분이 모호해지고, NGS는 자동화된 생어 염기서열 분석기술 이후의 염기서열 분석기술을 모두 아우르는 광의의 의미로 사용되고 있다.
NGS에 도입된 기술은 크게 클론 증폭(clonal amplification), 대량병렬법(massively parallel), 바로 읽을 수 있는 새로운 염기서열결정법(비 Sanger법)(base/color calling) 등 3가지로 나눌 수 있다. 클론 증폭은 라이브러리(library) 구축과정을 제거하여 클로닝 과정이 제거되는 효과를 가지며, 대량병렬법은 동시에 수십만 개의 클론을 취급하므로 효율이 향상된다. 바로 읽을 수 있는 새로운 염기서열결정법은 모세관 전기영동 과정이 제거된 효과를 나타낸다.
클론 증폭(clonal amplification)에 의해 주형 clone을 얻는 과정이 단순화되었다. Sanger법으로 시퀀싱을 하려면 약 500염기쌍의 길이를 가진 주형 DNA가 필요하다. BAC library를 구축한 후 subcloning을 통해서 짧은 단편을 cloning한 다음 bacteria에서 증폭해야 한다. 새로운 방법은 번거로운 library 구축과 cloning 과정을 모두 없애고 DNA를 바로 적절히 짧은 단편으로 자른 다음 프라이머를 이용하여 PCR로 바로 증폭하여 주형 clone을 얻을 수 있게 한다. 클론 증폭에는 비드 기반(bead-based), 솔리드-스테이트(solid-satate), DNA 나노볼 생성(DNA nanoball generation)과 같은 전략들이 사용된다.
비드 기반의 클론 증폭의 경우, 에멀젼 PCR을 이용한다. 에멀전 PCR은 게놈 DNA를 단편화(fragmentation)하여 얻은 집합체인 DNA 라이브러리(DNA library)를 기름 속에서 작은 수용액 방울로 공간적으로 분리(separation)한 다음 한쪽 PCR primer가 표면에 수식된 미세비드와 함께 유탁액(emulsion)안에서 증폭한다. 이렇게 만들어진 한 개의 비드에 하나의 단일 DNA 단편에서 유래한 100만개 이상의 클론 DNA 조각이 고정되어 있게 하는 방법이다. 솔리드 스테이트 방법에는 대표적으로 브릿지-증폭방법(Bridge-amplification)이 있다. 브릿지-증폭방법은 단편화한 DNA의 양 말단에 어댑터 올리고뉴크레오타이드(adaptor oligonucleotide)를 연결시킨 후, 이를 glass flow cell의 표면에 흘려주면 표면에 고정된 어댑터와 상보적인 primer에 무작위로 결합된다. 이 상태에서 PCR을 행하면 주변에 존재하는 free primer에 고정된 DNA의 자유 말단이 결합되어 브릿지 형태를 이루고 증폭이 진행된다. 이렇게 증폭이 진행을 하면 상기 비드와 동일한 역할을 하는 클러스터(cluster)가 형성된다.
NGS는 대량병렬(massively parallel) 방식을 도입하여 상기 클론들을 판상으로 배치하여 염기서열 분석을 진행한다. 주형 clone은 숫자가 매우 많아서 이를 따로 준비하면 시간이 많이 소요된다. 주형에서 염기서열신호를 읽어내는 과정도 효율을 떨어뜨리는 심각한 제한요인이 된다. 수십만 개의 다른 clone을 대량병렬 방식으로 처리하면 시간을 획기적으로 단축할 수 있다.
번거로운 전기영동 과정을 없애기 위해서 주형에 반응을 일으킨 다음, 반응에서 나오는 시그널로 각 주형의 서열정보를 바로 읽는 Sanger법을 탈피한 새로운 방법이 개발되었다. Sanger법을 대체하는 염기서열 결정법은 크게 DNA 결찰(ligation)을 통한 서열 분석 방법(Sequencing By Ligation, SBL)과 중합을 통한 서열 분석 방법(Sequencing By Synthesis, SBS)으로 나뉜다.
SBL방식은 DNA단편의 반복적인 결찰(ligation)을 이용하는 것으로 주형 DNA에 n개의 염기를 갖는 앵커가 상보적으로 결합되며, 형광라벨로 표지 되는 2개의 무작위적으로 인코딩된 염기(encoded base)와 그 뒤에 따라오는 퇴화염기 또는 범용염기(degenerate or universial bases)를 갖는 프로브가 상기한 비드 나 클러스터가 침전된 DNA 라이브러리 슬라이드에 추가된다. 앵커의 바로 뒤에 따라오는 주형 DNA 단편과 상보적인 2개의 엔코딩된 서열을 가지는 프로브가 앵커에 라이게이션되고, 슬라이드의 형광라벨 이미징을 통해 2개의 인코딩된 염기서열을 분석한다. 2개의 서열이 분석되면 퇴화염기서열과 형광입자는 제거된 후 프로브를 추가하는 상기 과정을 반복한다. 상기한 n의 앵커 외에 n+2, n+4의 염기를 갖는 앵커를 이용 및 반복적으로 분석하여 전체 주형 DNA단편의 서열을 분석하는 방법이다.
SBS는 다시 사이클릭 리버서블 터미네이션 방식(Cyclic Reversible Termination, CRT)과 단일 뉴클레오타이드 추가 방식(Single Nucleotide Addition, SNA)으로 구분된다.
CRT방식은 자동화된 Sanger 방식과 유사한 과정을 이용하는데, 솔리드 스테이트 방법을 이용해 증폭된 DNA 클러스터를 갖는 슬라이드에 프라이머, DNA 중합효소, 변형 뉴클레오타이드 혼합물을 추가한다. 상기 변형 뉴클레오타이드는 추가적인 중합과정이 일어날 수 없도록 3`-O-아지도메틸(3`-O-azidomethyl)로 차단되며 각 베이스 특유적인 그리고 추후 제거가능한 형광라벨로 표지 된다. 중합 후 중합되지 않은 베이스는 씻어내고 총 내부 반사형 형광체(total internal reflection fluorescence, TIRF) 현미경을 이용하여 이미징을 통해 염기를 식별한다. 염기가 식별되면, 형광라벨은 분해되고 3'-OH는 환원제 Tris 2-Carboxyethyl)phosphine (TCEP)으로 재생된다. 이러한 과정을 반복하여 전기영동 없이 주형 DNA의 서열을 분석하는 방식이다.
SNA방식은 DNA 중합효소가 단일 뉴클레오타이드를 붙일 때 생성되는 이온등을 빛으로 전환하여 염기서열을 분석하는 방식이다. SNA방식은 Roche사의 454기기가 이용하는 파이로시퀀싱 방법으로 대표되는데, 이는 뉴클레오타이드가 결합할 때 방출되는 이인산(pyrophosphate)를 빛으로 읽어내는 방식이다. 4가지의 dNTP(A, G, T, C)를 순차적으로 넣어서 반응시키고 씻어내기를 반복하면 중합반응이 될 때마다 빛을 발산하므로 이를 통해 염기서열을 알아내는 방식이다.
SBL을 이용한 대표적인 분석기기로는 구 Life Technologies사의 SOLiD 시리즈가 있으며, SBS를 이용한 대표적 분석기기로는 Illumina사의 Hiseq, MiSeq 시리즈(CRT 방식), Roche사의 454 시리즈(SNA 방식)가 있다.
본 발명에서는 AML 환자를 진단함과 동시에 약제 내성 여부, 예후 예측, 잔여 질병 검출을 높은 민감도와 정확도로 수행하기 위해, 정확하고 충분한 양의 증폭산물을 수득할 수 있는 조성물을 설계하고자 하였다.
즉, 본 발명의 일 실시예에서는 FLT3 유전자의 ITD 발생 영역과 TKD 변이 발생 영역을 동시에 모두 증폭한 다음, NGS 방법으로 분석한 결과, 높은 민감도와 정확도로 기존의 방법을 검출할 수 없었던 길이의 FLT3의 ITD를 검출할 수 있을 뿐만 아니라, 동시에 TKD 영역의 변이도 확인할 수 있어, AML의 진단; 약제 내성 여부; 예후 예측; 잔여 질병 검출을 동시에 수행할 수 있다는 것을 확인하였다(표 10 및 표 11).
따라서, 본 발명은 일 관점에서 아래의 프라이머 세트를 포함하는 FLT3 유전자 증폭용 조성물에 관한 것이다:
(i) 서열번호 1의 정방향 프라이머 및 서열번호 2의 역방향 프라이머로 구성되는 제1 프라이머 쌍;
(ii) 서열번호 3의 정방향 프라이머 및 서열번호 4의 역방향 프라이머로 구성되는 제2 프라이머 쌍;
(iii) 서열번호 13의 정방향 프라이머 및 서열번호 14의 역방향 프라이머로 구성되는 제7 프라이머 쌍;
(iv) 서열번호 15의 정방향 프라이머 및 서열번호 16의 역방향 프라이머로 구성되는 제8 프라이머 쌍; 및
(v) 서열번호 17의 정방향 프라이머 및 서열번호 188의 역방향 프라이머로 구성되는 제9 프라이머 쌍.
본 발명은 또한, 아래의 프라이머 세트를 포함하는 FLT3 유전자 증폭용 조성물에 관한 것이다:
(i) 서열번호 5의 정방향 프라이머 및 서열번호 6의 역방향 프라이머로 구성되는 제3 프라이머 쌍;
(ii) 서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성되는 제5 프라이머 쌍;
(iii) 서열번호 13의 정방향 프라이머 및 서열번호 14의 역방향 프라이머로 구성되는 제7 프라이머 쌍;
(iv) 서열번호 17의 정방향 프라이머 및 서열번호 18의 역방향 프라이머로 구성되는 제9 프라이머 쌍;
(v) 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성되는 제4 프라이머 쌍;
(vi) 서열번호 11의 정방향 프라이머; 서열번호 12의 역방향 프라이머로 구성되는 제6 프라이머 쌍; 및
(vii) 서열번호 15의 정방향 프라이머 및 서열번호 16의 역방향 프라이머로 구성되는 제8 프라이머 쌍.
본 발명은 다른 관점에서,
(a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계;
(b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
(c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및
(d) FLT3의 ITD 변이가 검출될 경우, FLT3-ITD 변이를 가진 AML인 것으로 결정하는 단계;
를 포함하는 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단방법 또는 상기 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단을 위한 정보의 제공방법에 관한 것이다.
본 발명에 있어서, 상기 (a) 단계는 다음의 단계를 포함하는 방법으로 수행되는 것을 특징으로 할 수 있다:
(a-i) 생체시료에서 핵산을 수득하는 단계;
(a-ii) 채취된 핵산에서 솔팅-아웃 방법(salting-out method), 컬럼 크로마토그래피 방법(column chromatography method) 또는 비드 방법(beads method)을 사용하여 단백질, 지방, 및 기타 잔여물을 제거하고 정제된 핵산을 수득하는 단계;
(a-iii) 정제된 핵산 또는 효소적 절단, 분쇄, 수압 절단 방법(hydroshear method)으로 무작위 단편화(random fragmentation)된 핵산에 대하여, 제1항 또는 제2항의 프라이머 세트를 이용하여 핵산을 증폭한 다음, 싱글 엔드 시퀀싱(single-end sequencing) 또는 페어 엔드 시퀀싱(pair-end sequencing) 라이브러리(library)를 제작하는 단계;
(a-iv) 제작된 라이브러리를 차세대 유전자서열검사기(next-generation sequencer)에 반응시키는 단계; 및
(a-v) 차세대 유전자서열검사기에서 핵산의 서열정보(reads)를 획득하는 단계.
본 발명에 있어서, 상기 생체시료는 개체로부터 얻어지거나 개체로부터 유래된 임의의 물질, 생물학적 체액, 조직 또는 세포를 의미하는 것으로, 예를 들면, 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), (혈장(plasma) 및 혈청(serum)을 포함하는) 혈액, 골수(Bone Marrow), 및 이의 혼합물을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명은 또 다른 관점에서,
(a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계;
(b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
(c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및
(d) FLT3의 ITD 영역의 변이가 검출될 경우, 표적항암치료제를 처방하는 것으로 결정하는 단계;
를 포함하는 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료방법 또는 상기 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료를 위한 정보의 제공방법에 관한 것이다.
본 발명에서 상기 표적항암치료제는 FLT3-ITD 영역의 변이와 관련된 표적항암치료제이면 제한없이 이용가능하며, 바람직하게는 FLT3의 발현을 억제하거나 활성을 저하시켜 상기 FLT3 단백질이 관여하는 생물학적 경로를 차단하거나 지연시키는 물질이면 제한없이 이용가능하며, 바람직하게는 소분자 화합물(small molecule), 항체 또는 이의 항원 결합 단편, 압타머, siRNA, shRNA, microRNA 및 이의 약학적으로 허용 가능한 염으로 이루어진 군에서 하나 이상 선택될 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 또 다른 관점에서,
(a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계;
(b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
(c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및
(d) FLT3의 ITD 변이가 검출될 경우, 미세 잔존 질환(Minimal Residual Disease, MRD)이 있는 것으로 결정하는 단계;
를 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 미세잔존질환(MRD) 검출방법 또는 상기 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 미세잔존질환(MRD) 검출을 위한 정보의 제공방법에 관한 것이다.
본 발명에서, 미세잔존질환(MRD)은 종양에 대한 요법 (예를 들어, 화학요법, 면역요법 또는 표적화 요법) 이후에, 형태학적으로 정상 샘플(예를 들어, 정상 혈액)이 여전히 잔류 악성 세포의 상대량을 보유할 수 있는 상황을 의미한다. 미세잔존질환(MRD)의 검출은 요법 동안 관해 유도의 보다 정확한 측정을 위한 새로운 실용적인 도구이다. 액상 종양 (예를 들어, 림프종 또는 골수종)의 경우에, 용어 MRD는 10-4 이하, 예를 들어, 10-5, 또는 심지어 10-6의 검출 한계에 관한 것일 수 있다(Bettegowda et al., Sci Transl Med., 6(224), 224ra24, 2014).
본 발명에서, 상기 생체 시료는 AML이 완치되었다고 판단되는 환자나, AML 진단 후, 항암 치료 중인 환자에서 유래한 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서, 상기 ITD는 AML 진단시 발견된 ITD와 동일할 수 있으나, 이에 한정되는 것은 아니다.
AML이 재발하지 않았더라도, 완치되었다고 판단되던 환자에서 MRD가 증가하는 단계에서 치료를 다시 받을 경우, 진행 후보다 치료에 대한 반응이 더 좋은 것으로 알려져 있다(C. Rautenberg et al., Int. J. Mol. Sci. 2019, 20(1), 228.).
본 발명에서 용어 "예후 예측"이란, "예후"와 동일한 의미로 사용되는데, 질환의 경과 및 결과를 미리 예측하는 행위를 의미한다. 보다 구체적으로, 예후예측이란 질환의 치료 후 경과는 환자의 생리적 또는 환경적 상태에 따라 달라질 수 있으며, 이러한 환자의 상태를 종합적으로 고려하여 치료 후 병의 경과를 예측하는 모든 행위를 의미하는 것으로 해석될 수 있다.
본 발명의 목적상 상기 예후 예측은 AML의 치료 후, 질환의 경과를 미리 예상하여 암의 진행, 암의 재발 및/또는 암의 전이의 위험도를 예측하는 행위로 해석될 수 있다. 예를 들어, 용어 "좋은 예후"는 AML 치료 후 환자의 암의 진행, 암의 재발 및/또는 암의 전이의 위험도가 1보다 낮은 값을 나타내어, AML 환자가 생존할 가능성이 높다는 것을 의미하고, 다른 의미로 "긍정적 예후"로도 표현된다. 용어 "나쁜 예후"는 AML 치료 후 환자의 암의 진행, 암의 재발 및/또는 암의 전이의 위험도가 1보다 높은 값을 나타내어, AML 환자가 사망할 가능성이 높다는 것을 의미하고, 다른 의미로 "부정적 예후"로도 표현된다.
본 발명에서 용어 "위험도"란, AML의 치료 후, 환자가 암의 진행, 재발 및/또는 암의 전이 등이 나타날 확률에 대한 오즈비, 위험비 등을 의미한다.
본 발명은 또 다른 관점에서,
(a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계;
(b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
(c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및
(d) 검출된 FLT3의 ITD 변이의 길이 및 대립유전자빈도 값(variant allele frequency, VAF)에 따라 예후를 예측하는 단계;
를 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 예후 예측방법 또는 상기 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 예후 예측을 위한 정보의 제공방법에 관한 것이다.
본 발명에 있어서, 상기 ITD 길이 및 VAF에 따른 예후 예측은 상기 환자의 예후 예측과 상기 길이 및 VAF의 연관성에 따라 알려진 값이면 제한 없이 사용가능하다. 일반적으로 ITD의 길이는 길수록 VAF는 높을수록 예후가 나쁘다는 것은 통상의 기술자에게 잘 알려져 있다.
예를 들어, ITD 길이는 적게는 39bp, 많게는 70bp 이상일 경우, 예후가 나쁜 것으로 알려져 있다(Polak TB et al., Haematologica. 2022 Jul 7.).
또한, 상기 ITD VAF에 따른 예후 예측은 ITD VAF의 기준값을 유럽백혈병네트워크(European Leukemia Net, ELN) 및 미국국립종합 암센터 네트워크(National Comprehensive Cancer Network, NCCN)에서는 0.33으로 정하고 있다.
따라서, 본 발명에서 상기 예후 예측은 ITD 변이의 길이가 39bp 이상이고 VAF가 0.33 이상일 경우, 가장 나쁜 예후, ITD 변이의 길이가 33bp 이상이거나 ITD VAF가 0.33 이상일 경우, 나쁜 예후, ITD 변이의 길이가 33bp 미만이거나, ITD VAF가 0.33 미만일 경우, 보통 예후, ITD 변이의 길이가 33bp 미만이고, ITD VAF가 0.33 미만일 경우, 가장 좋은 예후로 예측할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 용어 “예후(prognosis)”는 암의 진행, 암의 재발 및/또는 암의 전이 가능성의 예측을 의미한다. 본 발명의 상기 예측 방법은 임의의 특정환자에 대한 가장 적절한 치료 양식을 선택하는 것으로 임상적으로 치료 결정을 내리기 위해 사용될 수 있다. 본 발명의 상기 예측 방법은 환자의 암의 진행, 암의 재발 및/또는 암의 전이가 발생할 가능성이 높은지를 판단하는 것에 대한 진단 및/또는 진단을 보조하는 가치있는 도구이다.
본 발명은 또 다른 관점에서,
(a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계;
(b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
(c) 상기 정렬된 서열정보(reads)에서 FLT3의 TKD 영역 변이를 검출하는 단계; 및
(d) FLT3의 TKD 영역 변이가 검출되고, TKD 영역 변이의 종류에 따라 내성이 있는 티로신 저해제를 결정하는 단계;
를 포함하는 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료제인 티로신 키나제 저해제(tyrosine kinase inhibitor)의 내성 확인방법 또는 상기 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료제인 티로신 키나제 저해제(tyrosine kinase inhibitor)의 내성 확인을 위한 정보의 제공방법에 관한 것이다.
본 발명에 있어서, 상기 티로신 키나제 저해제는 AML을 치료할 수 있는 티로신 키나제 저해제이면 제한없이 이용가능 하며, 바람직하게는 FLT3 저해제(inhibitor)인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서, 상기 “저해제”는 상기 FLT3의 발현을 억제하거나 활성을 저하시켜 상기 FLT3 단백질이 관여하는 생물학적 경로를 차단하거나 지연시키는 물질을 의미할 수 있다.
상기 FLT3 억제제는 상기 FLT3와 상호 작용하여 활성을 억제할 수 있으면 족하고, 항체 또는 이의 항원 결합 단편, 압타머, siRNA, shRNA, microRNA, 저해 화합물 및 이의 약학적으로 허용 가능한 염으로 이루어진 군에서 하나 이상 선택될 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 FTL3 저해제는 수니티닙(Sunitinib), 레스타우티닙(Lestaurtinib), 소라페닙(Sorafenib), 퀴자티닙(Quizartinib), 미도스타우린(Midostaurin), 파크리티닙(Pacritinib), 길테리티닙(Gilteritinib), 크레놀라닙(Crenolanib) 및 탄듀티닙(Tandutinib)으로 구성된 군에서 선택되는 어느 하나 이상인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 FLT3 유전자 TKD 영역의 점 돌연변이는 하기 표 2에 기재된 점 돌연변이를 포함할 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2023012622-appb-img-000001
아울러, 통상의 기술자는 본 발명의 조성물이 FLT3 유전자의 ITD 발생 영역과 TKD 변이 발생 영역을 동시에 증폭하기 때문에, 이를 이용하여 AML을 진단함과 동시에 샘플이 AML 양성인 것으로 진단될 경우, 해당 분석 결과를 바탕으로 예후를 예측하고, 약제 내성이 있는 약제를 제외한 적합한 치료제를 선별하는 것을 동시에 수행할 수 있다는 것을 쉽게 예상할 수 있다.
뿐만 아니라, 최초 샘플이 AML 양성이고, 해당 샘플을 제공한 환자가 치료를 받는 동안 제공한 샘플을 지속적으로 분석하여 MRD를 검출하고, MRD가 검출될 경우, 이를 환자의 TKD 변이 정보와 병합하여 약제 내성 여부를 판단해 치료 계획을 수립하는데 이용할 수 있다는 것을 쉽게 예상할 수 있다.
본 발명의 '올리고뉴클레오타이드'는 일반적으로 약 10개 내지 약 100개의 뉴클레오타이드로 구성된 뉴클레오타이드 고분자를 의미한다. 그러나, 뉴클레오타이드의 길이는 100개 이상이거나 10개 이하일 수 있다.
본 발명의 '뉴클레오타이드'는 포스페이트 그룹, 5-탄당 및 질소 염기로 구성된 핵산의 기본 단위이다. RNA에서 5-탄당은 리보스이다. DNA에서 5-탄당은 2-데옥시리보스이다. 5-뉴클레오타이드의 경우, 당은 5-탄당-2에서 하이드록실그룹(-OH)을 함유한다. 이 용어는 또한 리보스의 2 위치에 메톡시 그룹과 같이 상기 기본 단위의 유사체를 포함한다.
본 발명의 프라이머는 통상의 클로닝 방법(Maniatis, T., et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1982)을 이용하여 목적하는 서열을 클로닝하거나 시판되는 DNA 합성기를 이용하여 화학적으로 합성하여 다량으로 얻을 수 있다.
본 발명의 프라이머는 바람직하게 단리 또는 정제된다. "단리 또는 정제된"이라는 것은 천연 또는 합성된 상태로부터 목적 성분 이외의 성분을 제거하는 조작이 적용됨을 의미한다. (w/w)%에서 단리 또는 정제된 프라이머의 순도(총 핵산에 포함된 표적 프라이머의 백분율)는 일반적으로 50% 이상, 바람직하게는 70% 이상, 보다 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상(예컨대, 100 %)이다. 프라이머의 순도는 용매 및 고체 또는 액체의 상태에 따라 적절히 변화될 수 있다. 순도의 단위는 (w/v)% 또는 (v/v)%일 수 있고, 목적하는 순도는 상기 언급된 (w/w)%에서 순도의 정의를 고려하여 적절하게 계산될 수 있다.
이들 프라이머는 건조 상태 또는 알코올 침전 상태에서 고체로 제공될 수 있거나, 또는 물 또는 적합한 완충액(예컨대, TE 완충액 등)에 용해시켜 제공될 수도 있다.
본 발명의 ‘앰플리콘’은 프라이머에 의해 증폭되는 증폭 산물을 의미한다.
본 발명에 있어서, 상기 프라이머는 각 유전자를 증폭할 수 있고, GC 비율이 20 내지 60% 범위를 유지하며, 종열반복 배열이 없는 유전자 서열과 상보적인 것을 특징으로 할 수 있다.
본 발명에서 용어 ‘증폭’은 핵산 분자를 증폭하는 반응을 의미한다. 다양한 증폭 반응들이 당업계에 보고되어 있으며, 이는 중합효소 연쇄반응(이하 PCR이라 한다)(미국 특허 제4,683,195, 4,683,202, 및 4,800,159호), 역전사-중합효소 연쇄반응(이하 RT-PCR로 표기한다)(Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)), WO 89/06700 및 EP 329,822의 방법, 리가아제 연쇄 반응(ligase chain reaction; LCR, WO 90/01069), 복구 연쇄 반응(repair chain reaction; EP 439,182), 전사-중재 증폭(transcription-mediated amplification; MA, WO 88/10315), 자가 유지 염기서열 복제(self-sustained sequence replication, WO 90/06995), 타깃 폴리뉴클레오티드 염기서열의 선택적 증폭(selective amplification of target polynucleotide sequences, 미국 특허 제6,410,276호), 컨센서스 서열 프라이밍 중합효소 연쇄 반응(consensus sequence primed polymerase chain reaction; CP-PCR, 미국 특허 제4,437,975호), 임의적 프라이밍 중합효소 연쇄 반응(arbitrarily primed polymerase chain reaction; AP-PCR, 미국 특허 제5,413,909호 및 제5,861,245호), 핵산 염기서열 기반 증폭(nucleic acid sequence based amplification; NASBA, 미국 특허 제5,130,238호, 제5,409,818호, 제5,554,517호, 및 제6,063,603호), 가닥 치환 증폭(strand displacement amplification) 및 고리-중재 항온성 증폭(loop-mediated isothermal amplification; LAMP)을 포함하나, 이에 한정되지는 않는다.
사용 가능한 다른 증폭 방법들은 미국특허 제5,242,794, 5,494,810, 4,988,617호 및 미국 특허 제09/854,317호에 기술되어 있다.
PCR은 가장 잘 알려진 핵산 증폭 방법으로, 그의 많은 변형과 응용들이 개발되어 있다. 예를 들어, PCR의 특이성 또는 민감성을 증진시키기 위해 전통적인 PCR 절차를 변형시켜 터치다운(touchdown) PCR, 핫 스타트(hot start) PCR, 네스티드(nested) PCR 및 부스터(booster) PCR이 개발되었다. 또한, 실시간(real-time) PCR, 분별 디스플레이 PCR(differential display PCR, D-PCR), cDNA 말단의 신속 증폭(rapid amplification of cDNA ends, RACE), DL-PCR(PC), 인버스 중합효소 연쇄반응(inverse polymerase chain reaction: IPCR), 벡토레트(vectorette) PCR, 및 TAIL-PCR(thermal asymmetric interlaced PCR)이 특정한 응용을 위해 개발되었다. PCR에 대한 자세한 내용은 McPherson, M.J., 및 Moller, S.G. PCR. BIOS Scientific Publishers, Springer-Verlag New York Berlin Heidelberg, N.Y. (2000)에 기재되어 있으며, 그의 교시사항은 본 명세서에 참조로 삽입된다.
본 발명에 있어서, 상기 프라이머 세트는 하기 표 1의 조합으로 표시되는 프라이머쌍을 포함하는 것을 특징으로 할 수 있다.
Figure PCTKR2023012622-appb-img-000002
본 발명에서, PCR의 주형(template)이 되는 DNA는 시험 샘플로부터 제조될 수 있다. 시험 샘플은 특별히 제한되지 않으며, 예를 들어 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), (혈장(plasma) 및 혈청(serum)을 포함하는) 혈액 및 골수를 포함한다.
DNA는 프로테아제 K/페놀 추출법, 페놀/클로로포름 추출법, 알칼리 용해법, 비등법 등과 같은 공지된 방법을 사용하여 제조할 수 있다. 시판되는 DNA/RNA 추출 키트를 사용하여 미량 샘플로부터 빠르고도 간편하게 순도 높은 DNA를 제조할 수 있다.
본 발명의 프라이머 세트를 사용하는 유전자 증폭을 위한 PCR의 반응 조건은 예를 들어 하기 조건일 수 있다:
열 변성 단계 (예컨대, 92°C 내지 98°C)
어닐링 단계 (예컨대, 55°C 내지 72°C)
신장 단계 (예컨대, 65°C 내지 80°C)
상기 언급된 PCR에서, 어닐링 단계 및 신장 단계는 하나의 단계 (셔틀 방법(shuttle method))로 수행될 수 있거나, 또는 어닐링 온도를 더 높게 설정하고 각 사이클에서 온도를 점차적으로 낮추는 것을 포함하는 방법이 채택될 수 있다(터치다운 방법(touchdown method)). 대안적으로, 이들은 조합될 수 있다. 셔틀 방법이 수행될 때, 어닐링 단계 및 신장 단계의 온도는 전형적으로 65 내지 72 ℃이다.
상기 언급된 PCR에서, 어닐링 단계 및 신장 단계는 하나의 단계 (셔틀 방법(shuttle method))로 수행될 수 있거나, 또는 어닐링 온도를 더 높게 설정하고 각 사이클에서 온도를 점차적으로 낮추는 것을 포함하는 방법이 채택될 수 있다(터치다운 방법(touchdown method)). 대안적으로, 이들은 조합될 수 있다. 셔틀 방법이 수행될 때, 어닐링 단계 및 신장 단계의 온도는 전형적으로 65 내지 72 ℃이다.
NGS를 사용한 서열 분석의 방법은 NGS의 종류에 따라 다르며, 예를 들어 각 회사의 매뉴얼 (예컨대, NexteraR XT DNA Library Prep Reference Guide)에 따라 수행될 수 있다. 수득된 샘플을 서열 분석하기 위해 페어드-엔드 분석(Paired-end analysis)이 바람직하게 사용된다. 다음에, Illumina, Inc. 의 MiSeq 을 사용한 서열 분석 절차의 요약이 기재된다. 다른 장치(Life Technologies에 의해 제조된 Ion Proton, Roche Diagnostics K.K.의 GS FLX+ 등)를 사용하는 경우에도, 장치에 적합한 방법에 의해 염기 서열을 유사하게 결정할 수 있다.
1. 각 샘플의 증폭 생성물은 키트 (예컨대, Nextera XT DNA Sample Preparation Kit (Illumina, Inc.))를 사용하여 태그멘테이션(Tagmentation)한다.
2. 키트(예컨대, Nextera XT v2 Index Kit Set A, B, C, D (Illumina, Inc.))를 사용하여, 샘플마다 다른 인덱스 서열을 수득된 단편 서열의 양측에 첨가하고 PCR을 수행한다.
3. 증폭 생성물을 정제한다.
4. 각 샘플로부터의 증폭 생성물을 사용하여, 라이브러리 크기(library size)를 확인한다.
5. 샘플 사이의 농도를 조정한다.
6. 샘플의 증폭 생성물을 풀링(pooling)하고, 풀링된 증폭 생성물에 대해 정량적 PCR을 수행한다.
7. 풀링된 증폭 생성물을 MiSeq를 사용하여 서열 분석한다.
이러한 방식으로, 유전자의 변이 유무는 NGS에 의해 수득된 증폭 생성물의 염기 서열 정보를 기반으로 한 데이터베이스(이후 리드)를 사용하여 결정될 수 있다.
본 발명은 또 다른 관점에서 상기 프라이머 세트를 포함하는, FLT3 유전자 증폭용 키트(kit)에 관한 것이다.
본 발명의 키트는 상기 언급된 본 발명의 프라이머 세트 이외에 PCR에 필요한 다른 시약을 포함할 수 있다. 상기 언급된 시약이 본 발명의 프라이머 세트와 공존하여 보존한 후 반응에 악영향을 미치지 않는 경우, 프라이머 세트와 혼합되어 키트에 포함될 수 있다. 대안적으로, 상기 언급된 시약 및 본 발명의 프라이머 세트는 혼합되지 않고 별도로 제공될 수 있다. 상기 언급된 시약의 예는 DNA 추출 시약, DNA 폴리머라아제 효소, dNTP, 반응 완충액, PCR에서 양성 대조군이 되는 표적 서열을 포함하는 DNA 분자, 설명서 등을 포함한다. 상기 언급된 DNA 폴리머라아제 효소는 시판되는 제품일 수 있다.
본 발명은 또 다른 관점에서, FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단용 제제 제조를 위한 상기 프라이머 세트의 사용에 관한 것이다.
본 발명에서, 상기 진단용 제제는 (a) 생체시료에서 핵산을 추출하여 상기 진단용 제제를 이용해 서열정보를 수득하는 단계; (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및 (d) FLT3의 ITD 변이가 검출될 경우, FLT3-ITD 변이가 있는 AML인 것으로 결정하는 단계; 를 포함하는 AML 진단 방법에 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 또 다른 관점에서, FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 치료용 제제 제조를 위한 상기 프라이머 세트의 사용에 관한 것이다.
본 발명은 또 다른 관점에서, FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 미세 잔존 질환(Minimal Residual Disease, MRD) 검출용 제제 제조를 위한 상기 프라이머 세트의 사용에 관한 것이다.
본 발명에서, 상기 MRD 검출용 제제는 (a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계; (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및 (d) FLT3의 ITD 변이가 검출될 경우, 미세 잔존 질환(Minimal Residual Disease, MRD)이 있는 것으로 결정하는 단계; 를 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 미세 잔존 질환(Minimal Residual Disease, MRD) 검출방법에 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 또한, FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 예후 예측용 제제 제조를 위한 상기 프라이머 세트의 사용을 제공한다.
본 발명에서, 상기 예후 예측용 제제는 (a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계; (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및 (d) 검출된 FLT3의 ITD 변이의 길이 및 VAF에 따라 예후를 예측하는 단계; 를 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 예후 예측방법에 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 또 다른 관점에서, FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 티로신 키나제 저해제(tyrosine kinase inhibitor)의 내성 확인용 제제 제조를 위한 상기 프라이머 세트의 사용을 제공한다.
본 발명에서, 상기 내성 확인용 제제는 (a) 생체시료에서 핵산을 추출하여 상기 프라이머 세트를 이용해 서열정보를 수득하는 단계; (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (c) 상기 정렬된 서열정보(reads)에서 FLT3의 TKD 영역 변이를 검출하는 단계; 및 (d) FLT3의 TKD 영역 변이가 검출되고, TKD 영역 변이의 종류에 따라 내성이 있는 약제를 결정하는 단계; 를 포함하는 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료제인 티로신 키나제 저해제(tyrosine kinase inhibitor)의 내성 확인방법에 사용될 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예 1. 생체시료 분석을 위한 프라이머 제작
FTL3 유전자의 ITD 길이 및 변이를 효과적으로 분석하기 위하여, 상기 표 1과 같은 구성의 서열번호 1 내지 18의 프라이머를 설계한 다음, 추후 작업 속도를 향상 시키기 위하여 일루미나 Nextera 어댑터 서열을 각 프라이머의 5’ 말단에 부착시킨 하기 표 3에서 표시되는 프라이머를 제작하였다.
Figure PCTKR2023012622-appb-img-000003
Figure PCTKR2023012622-appb-img-000004
아울러, 도 1 내지 도 3에 기재된 바와 같이 각각의 프라이머 쌍은 증폭하는 영역이 ITD 영역과 TKD 영역에 걸쳐 서로 상이하므로, 이를 효율적으로 증폭할 수 있는 프라이머 세트를 아래 표 4와 같이 구성하였다.
Figure PCTKR2023012622-appb-img-000005
실시예 2. 제작된 프라이머를 이용한 FLT3 유전자의 ITD 및 TKD 영역의 앰플리콘 증폭 및 라이브러리 제작
2-1. 제1 프라이머 세트를 이용한 앰플리콘 증폭 및 라이브러리 제작
세포주(MV-4-11, ATCC, CRL-9591), 표준물질(HD829 및 HD734 Horizon Discovery 및 Myeloid Mutation DNA Mix, SeraCare, 0710-0408) 및 AML 환자로부터 수득한 임상검체로부터 분리한 genomic DNA에서 도 4의 (A)와 같은 방법으로 앰플리콘을 제작하였다.
즉, 표 5의 반응물을 표 6의 반응조건으로 1차 증폭 반응을 수행한 다음, 표 7의 반응물을 표 8의 조건으로 indexing-PCR을 수행하여 최종 앰플리콘을 생성하여 라이브러리를 제작하였다. 이 때 1차 증폭반응에 사용한 시약은 KOD -Multi & Epi-™ (TOYOBO, KME-101)이며, 2차 증폭반응에 사용한 시약은 NEBNext® Ultra™ II Q5® Master Mix (New England BioLabs, M0544)와 IDT® for Illumina® DNA/RNA UD Indexes (Illumina, 20026121)이다.
Figure PCTKR2023012622-appb-img-000006
Figure PCTKR2023012622-appb-img-000007
Figure PCTKR2023012622-appb-img-000008
Figure PCTKR2023012622-appb-img-000009
2-2. 제2 프라이머 세트 및 제3 프라이머 세트를 이용한 앰플리콘 증폭 및 라이브러리 제작
동일한 샘플을 이용하여 도 4의 B에 기재된 바와 같이, 제2 프라이머 세트 및 제3 프라이머 세트를 사용하여 1차 증폭 반응을 수행할 때 표 5의 반응물을 표 6의 반응조건으로 각각 독립적으로 타겟 영역을 증폭한 다음, 표 9의 각 반응물을 표 8의 조건으로 indexing-PCR을 수행하여 최종 앰플리콘을 생성하여 라이브러리를 제작하였다
Figure PCTKR2023012622-appb-img-000010
실시예 3. 제작된 프라이머를 이용한 FLT3 유전자의 ITD 변이 및 TKD 변이 검출 정확도 확인
실시예 2의 방법으로 제작한 라이브러리를 MiSeq 또는 MiSeqDx 장비를 이용하여 시퀀싱을 수행해 리드를 생산한 다음, 각각의 샘플에서의 해당 영역의 변이 검출 정확도를 확인하였다.
Figure PCTKR2023012622-appb-img-000011
Figure PCTKR2023012622-appb-img-000012
그 결과 표 10에 기재된 바와 같이 제1 프라이머 세트를 이용하거나, 제2/제3 프라이머 세트를 이용할 경우, 기존의 방법과 동등하게 FLT3 유전자의 ITD 변이를 검출할 수 있는 것을 확인하였다.
또한 표 11에 기재된 바와 같이 본 발명의 제1 프라이머 세트를 이용하거나, 제2/제3 프라이머 세트를 이용할 경우, 기존의 방법과 동등하게 FLT3 유전자의 TKD 변이를 검출할 수 있는 것을 확인하였다.
실시예 4. 제작된 프라이머를 이용한 FLT3 유전자의 ITD 변이 및 TKD 변이 검출 방법과 절편 분석법 비교
기존의 FLT3-ITD 변이 검출에서 가장 널리 쓰이며, 민감도가 가장 낮은 방법은 절편분석법(Fragment Analysis)이다. 절편분석법은 3% 정도의 민감도를 가지고 있다고 알려져 있다. 직접 수행한 절편분석법(FLT3 Mutation Assay, Invivoscribe, 14120031)으로 ITD 및 TKD 변이가 검출되지 않은 표준물질 및 임상검체를 실시예 2의 방법으로 라이브러리를 제작하고, MiSeq 또는 MiSeqDx 장비를 이용하여 시퀀싱을 수행해 리드를 생산한 다음, 각각의 샘플에서의 해당 영역의 변이를 검출하여 절편분석법 결과와 비교하였다
Figure PCTKR2023012622-appb-img-000013
Figure PCTKR2023012622-appb-img-000014
그 결과, 표 12, 표 13에 기재된 바와 같이 표준물질 및 임상검체에서 확인하였을 때, 절편분석법의 낮은 민감도에 의해 검출되지 않았던 ITD 변이가 NGS 결과에서 양성으로 검출되는 것을 확인하였다.
특히, 표 12의 1번 HD829 표준물질은 300bp ITD를 5% 정도로 가지고 있는데, 이론상 절편분석법으로는 약 270bp 정도의 ITD까지 검출 가능하고 민감도는 3% 정도이므로 미검출 결과는 ITD 검출 가능 길이를 초과했기 때문인 것으로 분석하였다.
또한 표 13에 기재된 바와 같이 표준물질, 임상검체에서 확인하였을 때, 절편분석법의 낮은 민감도에 의해 검출되지 않았던 TKD 변이가 NGS 결과에서 양성으로 검출되는 것을 확인하였다.
특히, 표 13의 2번의 임상검체는 아미노산 676번에 TKD 변이를 가지고 있는데, 현존하는 절편분석법으로는 835, 836번의 TKD 변이만 검출 가능하므로 미검출 결과는 TKD 검출 위치를 벗어났기 때문인 것으로 분석하였다.
실시예 5. 제작된 프라이머를 이용한 FLT3 유전자의 ITD 변이 및 TKD 변이 검출 방법과 기존의 제품 및 방법과의 비교
실시예 2의 방법으로 제작한 라이브러리를 MiSeq 또는 MiSeqDx를 이용하여 시퀀싱을 수행해 리드를 생산한 다음, 각각의 샘플에서의 해당 영역의 변이를 검출한 다음, 기존의 제품 및 기술과 비교하였다.
Figure PCTKR2023012622-appb-img-000015
그 결과, 표 14에 기재된 바와 같이 본 발명의 방법은 기존의 NGS의 방법보다 검출 가능한 ITD 길이가 2배 이상 길 뿐만 아니라, 모든 TKD 변이를 검출할 수 있으며, sanger sequencing에 비하여 많은 샘플을 빠른 시간에 처리할 수 있는 것을 확인하였다.
실시예 6. 제작된 프라이머를 이용한 FLT3 유전자의 ITD 변이 및 TKD 변이 검출 방법의 직선성(Linearity) 확인
실시예 2의 방법으로 제작한 라이브러리를 MiSeq 또는 MiSeqDx를 이용하여 시퀀싱을 수행해 리드를 생산한 다음, 97bp의 ITD 변이가 포함된 임상검체 #3을 계대희석하여 각 샘플에서의 해당 영역의 변이를 검출한 다음, 직선성(Linearity)을 분석하였다.
실시예 2의 방법으로 임상검체 #3의 라이브러리를 제작하여 MiSeq 또는 MiSeqDx를 이용하여 리드를 생산한 다음, 생물정보학적 분석 파이프라인을 통해 ITD 변이를 탐지하고 변이율(Allelic Fraction)을 확인하였다.
ITD 변이 탐지 시 pindel 프로그램을 사용했는데, 이 프로그램은 NGS 데이터를 이용하여 FLT3-ITD 변이를 탐지할 때 널리 쓰이는 프로그램 중 하나로 ITD 변이의 길이, 서열 정보, 발생 위치, 변이율을 모두 알 수 있다는 점이 특징이다.
그 결과, 도 5에 기재된 바와 같이 예측치와 실측치가 정비례하는 결과를 확인하였으며, R2=0.99의 높은 직선성을 보였다. 또한 하한 측정구간 0.001% 에서 변이가 검출되어 최소검출한계(expected VAF 기준)에서의 변이 검출도 확인하였다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 구체적인 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 유전자 증폭용 조성물은 FLT3-ITD 변이가 있는 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단; FLT3-ITD 변이가 있는 AML 환자의 표적항암치료제 처방의 결정; AML 환자에서의 미세잔존질환(Minimal Residual Disease, MRD) 검출; AML 환자의 예후 예측; 및 AML 티로신 키나제 저해제(tyrosine kinase inhibitor)의 약제 내성 여부 확인을 동시에 진행할 수 있어, 샘플로부터 분석 결과를 도출하는 시간을 단축시키고, 효율적인 검사를 가능하게 하며, 이는 급성 골수성 백혈병 환자의 치료에 있어 올바르고 빠른 진단 및 치료 방법을 선택할 수 있도록 하여 조기 치료와 재발을 방지할 수 있어 유용하다.
전자파일 첨부하였음.

Claims (10)

  1. 아래의 프라이머 세트를 포함하는 FLT3 유전자 증폭용 조성물:
    (i) 서열번호 1의 정방향 프라이머 및 서열번호 2의 역방향 프라이머로 구성되는 제1 프라이머 쌍;
    (ii) 서열번호 3의 정방향 프라이머 및 서열번호 4의 역방향 프라이머로 구성되는 제2 프라이머 쌍;
    (iii) 서열번호 13의 정방향 프라이머 및 서열번호 14의 역방향 프라이머로 구성되는 제7 프라이머 쌍;
    (iv) 서열번호 15의 정방향 프라이머 및 서열번호 16의 역방향 프라이머로 구성되는 제8 프라이머 쌍; 및
    (v) 서열번호 17의 정방향 프라이머 및 서열번호 18의 역방향 프라이머로 구성되는 제9 프라이머 쌍.
  2. 아래의 프라이머 세트를 포함하는 FLT3 유전자 증폭용 조성물:
    (i) 서열번호 5의 정방향 프라이머 및 서열번호 6의 역방향 프라이머로 구성되는 제3 프라이머 쌍;
    (ii) 서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성되는 제5 프라이머 쌍;
    (iii) 서열번호 13의 정방향 프라이머 및 서열번호 14의 역방향 프라이머로 구성되는 제7 프라이머 쌍;
    (iv) 서열번호 17의 정방향 프라이머 및 서열번호 18의 역방향 프라이머로 구성되는 제9 프라이머 쌍;
    (v) 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성되는 제4 프라이머 쌍;
    (vi) 서열번호 11의 정방향 프라이머; 서열번호 12의 역방향 프라이머로 구성되는 제6 프라이머 쌍; 및
    (vii) 서열번호 15의 정방향 프라이머 및 서열번호 16의 역방향 프라이머로 구성되는 제8 프라이머 쌍.
  3. 제1항 또는 제2항의 프라이머 세트를 포함하는, FTL3 유전자 증폭용 키트(kit).
  4. (a) 생체시료에서 핵산을 추출하여 제1항 또는 제2항의 프라이머 세트를 이용해 서열정보를 수득하는 단계;
    (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
    (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD(Internal Tandem Duplication) 변이를 검출하는 단계; 및
    (d) FLT3의 ITD 변이가 검출될 경우, 급성 골수성 백혈병(Acute Myeloid Leukemia, AML)인 것으로 결정하는 단계;
    를 포함하는 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 진단방법.
  5. (a) 생체시료에서 핵산을 추출하여 제1항 또는 제2항의 프라이머 세트를 이용해 서열정보를 수득하는 단계;
    (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
    (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및
    (d) FLT3의 ITD 변이가 검출될 경우, 표적항암제 처방을 결정하는 단계;
    를 포함하는 FLT3-ITD 변이를 가진 환자의 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료방법.
  6. (a) 생체시료에서 핵산을 추출하여 제1항 또는 제2항의 프라이머 세트를 이용해 서열정보를 수득하는 단계;
    (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
    (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및
    (d) FLT3의 ITD 변이가 검출될 경우, 미세 잔존 질환(Minimal Residual Disease, MRD)이 있는 것으로 결정하는 단계;
    를 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(acute myeloid leukemia, AML) 환자의 미세 잔존 질환(MRD) 검출방법.
  7. (a) 생체시료에서 핵산을 추출하여 제1항 또는 제2항의 프라이머 세트를 이용해 서열정보를 수득하는 단계;
    (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
    (c) 상기 정렬된 서열정보(reads)에서 FLT3의 ITD 변이를 검출하는 단계; 및
    (d) 검출된 FLT3의 ITD 변이의 길이 및 대립유전자빈도 값(variant allele frequency, VAF)에 따라 예후를 예측하는 단계;
    를 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 환자의 예후 예측방법.
  8. (a) 생체시료에서 핵산을 추출하여 제1항 또는 제2항의 프라이머 세트를 이용해 서열정보를 수득하는 단계;
    (b) 서열정보(reads)를 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계;
    (c) 상기 정렬된 서열정보(reads)에서 FLT3의 TKD(Tyrosine Kinase Domain) 영역 변이를 검출하는 단계; 및
    (d) FLT3의 TKD 영역 변이가 검출되고, TKD 영역 변이의 종류에 따라 내성이 있는 약제를 결정하는 단계;
    를 포함하는 FLT3-ITD 변이를 가진 급성 골수성 백혈병(Acute Myeloid Leukemia, AML) 치료제인 티로신 키나제 저해제(tyrosine kinase inhibitor)의 내성 여부 확인방법.
  9. 제8항에 있어서, 상기 티로신 키나제 저해제는 FLT3 저해제인 것을 특징으로 하는 내성 여부 확인방법.
  10. 제9항에 있어서, 상기 FTL3 저해제는 수니티닙(Sunitinib), 레스타우티닙(Lestaurtinib), 소라페닙(Sorafenib), 퀴자티닙(Quizartinib), 미도스타우린(Midostaurin), 파크리티닙(Pacritinib), 길테리티닙(Gilteritinib), 크레놀라닙(Crenolanib) 및 탄듀티닙(Tandutinib)으로 구성된 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 내성 여부 확인방법.
PCT/KR2023/012622 2022-08-25 2023-08-25 Flt3 유전자 증폭용 조성물 및 이의 용도 WO2024043743A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220106988A KR102559124B1 (ko) 2022-08-25 2022-08-25 Flt3 유전자 증폭용 조성물 및 이의 용도
KR10-2022-0106988 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024043743A1 true WO2024043743A1 (ko) 2024-02-29

Family

ID=87427531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012622 WO2024043743A1 (ko) 2022-08-25 2023-08-25 Flt3 유전자 증폭용 조성물 및 이의 용도

Country Status (2)

Country Link
KR (1) KR102559124B1 (ko)
WO (1) WO2024043743A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102559124B1 (ko) * 2022-08-25 2023-07-26 주식회사 엔젠바이오 Flt3 유전자 증폭용 조성물 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011470A1 (fr) * 1998-08-20 2000-03-02 Chugai Seiyaku Kabushiki Kaisha Procede de criblage de composes d'interet potentiel destines a un medicament contre les tumeurs
US20180127831A1 (en) * 2015-05-21 2018-05-10 Université de Montréal Prognostic markers of acute myeloid leukemia survival
KR102041001B1 (ko) * 2014-11-12 2019-11-06 가톨릭대학교 산학협력단 Flt3 유전자 변이 정량분석방법 및 분석 키트
KR102559124B1 (ko) * 2022-08-25 2023-07-26 주식회사 엔젠바이오 Flt3 유전자 증폭용 조성물 및 이의 용도

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011470A1 (fr) * 1998-08-20 2000-03-02 Chugai Seiyaku Kabushiki Kaisha Procede de criblage de composes d'interet potentiel destines a un medicament contre les tumeurs
KR102041001B1 (ko) * 2014-11-12 2019-11-06 가톨릭대학교 산학협력단 Flt3 유전자 변이 정량분석방법 및 분석 키트
US20180127831A1 (en) * 2015-05-21 2018-05-10 Université de Montréal Prognostic markers of acute myeloid leukemia survival
KR102559124B1 (ko) * 2022-08-25 2023-07-26 주식회사 엔젠바이오 Flt3 유전자 증폭용 조성물 및 이의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVER NAVAL; SCHLENK RICHARD F.; RUSSELL NIGEL H.; LEVIS MARK J.: "Targeting FLT3mutations in AML: review of current knowledge and evidence", BLOOD CANCER JOURNAL, NATURE PUBLISHING GROUP UK, LONDON, vol. 33, no. 2, 16 January 2019 (2019-01-16), London, pages 299 - 312, XP036868845, ISSN: 0887-6924, DOI: 10.1038/s41375-018-0357-9 *
NASEEM SHANO, BINOTA JOGESHWAR, VARMA NEELAM, VIRK HARPREET, VARMA SUBHASH, MALHOTRA PANKAJ, : "NPM1 and FLT3-ITD/TKD Gene Mutations in Acute Myeloid Leukemia", INTERNATIONAL JOURNAL OF HEMATOLOGY-ONCOLOGY AND STEM CELL RESEARCH, vol. 15, no. 1, 1 January 2021 (2021-01-01), pages 15 - 26, XP093142333 *

Also Published As

Publication number Publication date
KR102559124B1 (ko) 2023-07-26

Similar Documents

Publication Publication Date Title
WO2015156519A1 (ko) 유전자 다형성을 이용한 소라페닙 치료에 대한 반응성 예측방법
WO2016167408A1 (ko) 차세대 염기서열 분석기법을 이용한 장기 이식 거부 반응 예측 방법
WO2018169145A1 (ko) 진행성 위암 환자의 수술 후 예후 또는 항암제 적합성 예측 시스템
AU2010343276B2 (en) Methods for determining fraction of fetal nucleic acid in maternal samples
WO2018199589A1 (ko) 위암의 생물학적 특성에 기반한 군 구분 및 예후 예측 시스템
WO2014073785A1 (ko) 위용종 및 위암 특이적 메틸화 마커 유전자를 이용한 위용종 및 위암의 검출방법
US20030054386A1 (en) Method for detecting diseases caused by chromosomal imbalances
WO2024043743A1 (ko) Flt3 유전자 증폭용 조성물 및 이의 용도
WO2012081898A2 (ko) 위암의 예후 예측용 마커 및 이를 이용하는 위암의 예후 예측 방법
WO2012070861A2 (ko) 위암 진단을 위한 위암 특이적 메틸화 바이오마커
WO2018066910A1 (ko) 메틸화 dna 다중 검출방법
WO2021075797A2 (ko) 특정 유전자의 cpg 메틸화 변화를 이용한 간암 진단용 조성물 및 이의 용도
WO2013147330A1 (ko) 국소 진행형 위암에 대한 예후 예측 시스템
WO2012081928A2 (ko) 장암 진단을 위한 장암 특이적 메틸화 마커 gpm6a 유전자의 메틸화 검출방법
WO2021154009A1 (ko) 특정 유전자의 CpG 메틸화 변화를 이용한 방광암 진단용 조성물 및 이의 용도
WO2022097844A1 (ko) 유전자 복제수 변이 정보를 이용하여 췌장암 환자의 생존 예후를 예측하는 방법
WO2023210997A1 (ko) 위암 발병의 위험도를 예측하기 위한 조성물 및 이를 이용한 방법
WO2018129293A1 (en) Method for conducting early detection of colon cancer and/or of colon cancer precursor cells and for monitoring colon cancer recurrence
WO2018194280A1 (ko) SDC2(Syndecan 2) 유전자의 메틸화 검출방법
WO2013105801A1 (ko) 만성 골수성 백혈병 융합 유전자형 타이핑용 프로브, 프라이머 및 이의 이용방법
WO2022108407A1 (ko) 핵산 길이 비를 이용한 암 진단 및 예후예측 방법
WO2019132581A1 (ko) 유방암 및 난소암 등 암 진단용 조성물 및 이의 용도
WO2022050721A1 (ko) Hla 유전자 증폭용 조성물 및 이의 용도
WO2017146432A1 (ko) 프로히비틴 유전자 타깃 백혈병 진단용 키트 및 이를 이용한 진단 방법
WO2021107713A1 (ko) Lats1 유전자 변이 마커 기반의 근위축성 측삭경화증의 진단방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857775

Country of ref document: EP

Kind code of ref document: A1