WO2021075797A2 - 특정 유전자의 cpg 메틸화 변화를 이용한 간암 진단용 조성물 및 이의 용도 - Google Patents

특정 유전자의 cpg 메틸화 변화를 이용한 간암 진단용 조성물 및 이의 용도 Download PDF

Info

Publication number
WO2021075797A2
WO2021075797A2 PCT/KR2020/013801 KR2020013801W WO2021075797A2 WO 2021075797 A2 WO2021075797 A2 WO 2021075797A2 KR 2020013801 W KR2020013801 W KR 2020013801W WO 2021075797 A2 WO2021075797 A2 WO 2021075797A2
Authority
WO
WIPO (PCT)
Prior art keywords
methylation
liver cancer
gene
lipe
cancer
Prior art date
Application number
PCT/KR2020/013801
Other languages
English (en)
French (fr)
Other versions
WO2021075797A3 (ko
Inventor
조상래
문영호
한진일
Original Assignee
주식회사 젠큐릭스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 젠큐릭스 filed Critical 주식회사 젠큐릭스
Priority to JP2022522772A priority Critical patent/JP2022552400A/ja
Priority to CN202080086538.2A priority patent/CN114829631A/zh
Priority to US17/768,601 priority patent/US20240110244A1/en
Priority to EP20877421.6A priority patent/EP4047102A4/en
Publication of WO2021075797A2 publication Critical patent/WO2021075797A2/ko
Publication of WO2021075797A3 publication Critical patent/WO2021075797A3/ko
Priority to JP2023193944A priority patent/JP2024020392A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2523/00Reactions characterised by treatment of reaction samples
    • C12Q2523/10Characterised by chemical treatment
    • C12Q2523/125Bisulfite(s)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention diagnoses liver cancer by detecting the methylation level of the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2. It relates to possible compositions, kits, nucleic acid chips and methods.
  • Liver cancer is one of the highest incidence cancers in the world.
  • the liver cancer mortality rate in Korea is very high at 23 per 100,000 population, and about 10% of the total mortality rate of Koreans is related to hepatitis, cirrhosis and liver cancer.
  • Liver cancer is difficult to diagnose early because there are no early perception symptoms.
  • liver cancer is found in a state of advanced carcinoma that cannot be treated properly, so treatment is very limited and the prognosis is also very poor. Since the prognosis of liver cancer varies greatly depending on the progression of the cancer at the time of diagnosis, early detection of liver cancer patients is very important to increase the survival rate of liver cancer patients.
  • epigenetics is a field that studies the regulation of gene expression in a state where the nucleotide sequence of DNA is not changed. Epigenetics studies the regulation of gene expression through epigenetic mutations such as DNA methylation, miRNA or histone acetylation, methylation, phosphorylation and ubiquitination.
  • DNA methylation is the most studied epigenetic mutation. Epigenetic mutations can lead to mutations in gene function and changes to tumor cells. Therefore, DNA methylation is associated with the expression (or inhibition and induction) of disease-regulating genes in cells, and recently, methods for diagnosing cancer through DNA methylation measurement have been proposed. In particular, since cancer-specific methylation may occur in advance even in pre-cancer stage tissues, detection of cancer-specific methylation is highly likely to be used for diagnosis of cancer.
  • liver cancer-specific methylation markers capable of predicting the risk of liver cancer.
  • the present inventors discovered that a specific gene CpG site in liver cancer is in a hypermethylated state, and developed a composition, kit, nucleic acid chip and method capable of diagnosing liver cancer by detecting the methylation level to complete the present invention. .
  • an object of the present invention is to provide a composition for diagnosing liver cancer comprising an agent for measuring the methylation level of the CpG region of a specific gene.
  • Another object of the present invention is to provide a kit for diagnosing liver cancer comprising a PCR primer pair for amplifying a fragment containing a CpG site of a specific gene and a sequencing primer for pyrosequencing the PCR product amplified by the primer pair.
  • Another object of the present invention is to provide a nucleic acid chip for diagnosis of liver cancer in which a fragment including a CpG site of a specific gene and a probe capable of hybridizing under stringent conditions are immobilized.
  • Another object of the present invention is to provide a method for diagnosing liver cancer, comprising measuring and comparing the methylation level of the CpG region of a specific gene from different samples.
  • Another object of the present invention is to provide a use of an agent for measuring the methylation level of a gene CpG site for preparing a preparation for diagnosis of liver cancer.
  • the present invention is the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2. It provides a composition for diagnosing liver cancer comprising an agent for measuring the methylation level.
  • the present invention is the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2. It provides a liver cancer diagnostic kit comprising a primer pair for amplifying a fragment comprising a.
  • the present invention is of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2. It provides a nucleic acid chip for diagnosis of liver cancer in which a probe capable of hybridizing with a fragment containing a CpG site is immobilized.
  • the present invention is from a sample of a patient suspected of developing liver cancer to FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2. Measuring the methylation level of the CpG site of any one or more genes selected from the group consisting of; And
  • It provides a method for diagnosing liver cancer comprising; comparing the measured methylation level with the methylation level of the CpG site of the same gene in a normal control sample.
  • the present invention is any one selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2 for preparing a liver cancer diagnostic agent to achieve another object It provides the use of an agent for measuring the methylation level of the above gene CpG site.
  • the present invention comprises an agent for measuring the methylation level of the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2. It provides a composition for diagnosis of liver cancer.
  • methylation refers to attaching a methyl group to a base constituting DNA.
  • methylation in the present invention means whether methylation occurs in cytosine of a specific CpG site of a specific gene. When methylation occurs, the binding of transcription factors is prevented, thereby inhibiting the expression of a specific gene. Conversely, when unmethylation or hypomethylation occurs, the expression of a specific gene increases.
  • 5-methylcytosine In the genomic DNA of mammalian cells, in addition to A, C, G, and T, there is a fifth base called 5-methylcytosine (5-mC) with a methyl group attached to the fifth carbon of the cytosine ring. do.
  • the methylation of 5-methylcytosine occurs only in the C of the CG dinucleotide (5'-mCG-3') called CpG, and the methylation of CpG inhibits the expression of alu or transposon and genome repeats.
  • CpG is a site where most epigenetic changes occur frequently in mammalian cells.
  • the term "measurement of methylation level” refers to the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36, and VANGL2.
  • the methylation level is measured by methylation-specific PCR, such as methylation-specific polymerase chain reaction (MSP), real time methylation-specific polymerase chain reaction, and methylated DNA-specific binding protein. It can be measured through used PCR or quantitative PCR.
  • TET ten-eleven translocation protein
  • the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2, is present on the DNA of the gene.
  • the DNA of the gene is a concept including all of a series of structural units required for expression of the gene and operably linked to each other, for example, a promoter region, a protein coding region (open reading frame, ORF), and a terminator. Includes the area.
  • the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2 is the promoter region of the gene, the protein coding region ( Open reading frame, ORF) or terminator area.
  • measuring the methylation level of the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2 It may mean measuring the level of methylation of cytosine at the CpG site of the gene described in Table 1 below.
  • the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2 is the transcription start site of the gene ( It is characterized by being located between +/- 2000 bases (2kb) from the transcription start site (TSS).
  • the nucleotide sequence of the human genomic chromosome region was expressed according to The February 2009 Human reference sequence (GRCh37), but the specific sequence of the human genomic chromosome region may be slightly changed as the genomic sequence study results are updated. , According to these changes, the expression of the human genome chromosomal region of the present invention may be different. Therefore, the human genomic chromosome region expressed according to The February 2009 Human reference sequence (GRCh 37) of the present invention has been updated since the filing date of the present invention, so that the expression of the human genomic chromosome region is now Even if it is changed differently, it will be apparent that the scope of the present invention extends to the modified human genomic chromosome region. These changes can be easily recognized by anyone of ordinary skill in the art to which the present invention belongs.
  • the agent for measuring the methylation level of the CpG site is a compound or methylation-sensitive restriction enzyme that modifies cytosine base, FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3,
  • a primer specific for the methylated allele sequence of any one or more genes selected from the group consisting of SLC25A36 and VANGL2, and a primer specific for the unmethylated allele sequence may be included.
  • the compound that modifies the cytosine base is an unmethylated cytosine or a compound that modifies a methylated cytosine, and a bisulfite or a salt thereof that modifies an unmethylated cytosine, preferably sodium bisulfite, or a methylated cytosine It may be a TET protein, but is not limited thereto.
  • a method for detecting methylation of the CpG site by modifying such a cytosine base is well known in the art (WO01/26536; US2003/0148326A1).
  • the methylation-sensitive restriction enzyme is a restriction enzyme capable of specifically detecting methylation of a CpG site, and may be a restriction enzyme containing CG as a recognition site of the restriction enzyme.
  • a restriction enzyme containing CG for example, SmaI, SacII, EagI, HpaII, MspI, BssHII, BstUI, NotI, and the like, but are not limited thereto.
  • SmaI, SacII, EagI, HpaII, MspI, BssHII, BstUI, NotI, and the like but are not limited thereto.
  • methylation-sensitive restriction enzymes other than the above restriction enzymes are well known in the art.
  • the primers are primers specific to the methylated allele sequence of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2, and unmethylated. Primers specific to the allelic sequence that have been defined may be included.
  • the term "primer” refers to a short nucleic acid sequence capable of forming a base pair with a complementary template with a nucleic acid sequence having a short free 3'terminal hydroxyl group and serving as a starting point for template strand copying.
  • Primers can initiate DNA synthesis in the presence of a reagent for polymerization (ie, DNA polymerase or reverse transcriptase) and four different nucleoside triphosphates at an appropriate buffer and temperature.
  • the primers are sense and antisense nucleic acids having a sequence of 7 to 50 nucleotides, and may incorporate additional features that do not change the basic properties of the primers serving as an initiation point for DNA synthesis.
  • the primer of the present invention may be preferably designed according to the sequence of a specific CpG site to be analyzed for methylation, and more preferably, it can specifically amplify cytosine that is methylated and has not been modified by bisulfite.
  • the present invention is a primer for amplifying a fragment containing the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2 It provides a liver cancer diagnostic kit comprising a pair.
  • composition and kit may further include a polymerase agarose, a buffer solution required for electrophoresis, and the like.
  • the present invention hybridizes with fragments containing the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2. It provides a nucleic acid chip for diagnosis of liver cancer in which a possible probe is immobilized.
  • nucleic acid refers to oligonucleotides, nucleotides, polynucleotides, fragments thereof, DNA or RNA of genomic origin or synthetic origin of single-stranded or double-stranded DNA, or DNA of genomic origin or synthetic origin of the sense or antisense strand Or RNA, PNA (peptide nucleic acid), or a DNA amount or RNA-amount material of natural or synthetic origin.
  • nucleic acid is RNA, it is replaced with ribonucleotides A, G, C and U, respectively, in place of deoxynucleotides A, G, C and T.
  • methylation starts from the outside of the regulatory site of the gene and proceeds to the inside, detecting methylation at the outside of the regulatory site allows early diagnosis of genes involved in cell transformation.
  • liver cancer early diagnosis of cells that are likely to form liver cancer can be performed using the methylation gene marker.
  • a gene confirmed to be methylated in cancer cells is methylated in cells that appear to be clinically or morphologically normal, the cells that appear to be normal are undergoing cancer. Therefore, liver cancer can be diagnosed early by confirming methylation of the liver cancer-specific gene in cells that appear to be normal.
  • the present invention is the CpG site of any one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2 from samples of patients suspected of developing liver cancer. Measuring the level of methylation of; And
  • It provides a method for diagnosing liver cancer comprising; comparing the measured methylation level with the methylation level of the CpG site of the same gene in a normal control sample.
  • the method of measuring the methylation level is PCR, methylation specific PCR, real time methylation specific PCR, PCR using a methylated DNA specific binding protein, and methylation using a methylation sensitive restriction enzyme.
  • Quantitative PCR, DNA chip, pyro-sequencing, and bisulfite sequencing may be selected from the group consisting of, but is not limited thereto.
  • the methylation-specific PCR method is a method of designing and using different types of primers depending on whether the CpG dinucleotide is methylated or not as a primer for PCR after treatment with bisulfite on sample DNA. If the primer binding site is methylated, PCR proceeds with methylated primers, and if methylation is not performed, PCR proceeds with normal primers. In other words, this is a method of comparing the results after performing PCR using two types of primers simultaneously after treatment with bisulfite on the sample DNA.
  • Real-time methylation-specific PCR is a conversion of the methylation-specific PCR method to a real-time measurement method. After treating genomic DNA with bisulfite, a PCR primer corresponding to methylation is designed, and real-time using these primers. It is to perform PCR. At this time, there are two methods of detection using the amplified nucleotide sequence and the complementary TanMan probe and the detection using Sybergreen. Therefore, real-time methylation-specific PCR can selectively quantitatively analyze only methylated DNA.
  • a standard curve is prepared using an in vitro methylated DNA sample, and for standardization, a gene without a 5'-CpG-3' sequence in the nucleotide sequence is amplified together as a negative control group to quantitatively analyze the degree of methylation.
  • the methylation-sensitive restriction enzyme uses CpG dinucleotide as a site of action, and when this site is methylated, it cannot act as an enzyme. Therefore, if the sample DNA is treated with a methylation-sensitive restriction enzyme and then amplified by PCR to include the enzyme target site, in the case of methylation, the restriction enzyme does not work and is amplified by PCR, but the non-methylated normal site is cleaved by the restriction enzyme and PCR Since it is not amplified, it is possible to determine whether a specific DNA site is methylated.
  • methylated DNA-specific binding protein In the PCR or DNA chip method using methylated DNA-specific binding protein, if a protein that specifically binds only to methylated DNA is mixed with DNA, only methylated DNA can be selectively separated because the protein is specifically bound to only methylated DNA. . After mixing the genomic DNA with a methylated DNA-specific binding protein, only methylated DNA is selectively isolated. This is a method of amplifying these isolated DNAs using PCR primers corresponding to the intron site, and then measuring methylation by agarose electrophoresis. In addition, methylation can be measured by quantitative PCR method.
  • the methylated DNA isolated with a methylated DNA-specific binding protein is labeled with a fluorescent dye and hybridized to a DNA chip in which a complementary probe is integrated to measure the methylation status.
  • the methylated DNA specific binding protein is not limited to MBD2bt.
  • bisulfite pyrosequencing of bisulfite-treated DNA is based on the following principle.
  • 5-methylcytosine (5-mC) is formed, and this modified base is converted to uracil when treated with bisulfite.
  • the DNA extracted from the sample is treated with bisulfite, if the CpG dinucleotide is methylated, it is preserved as cytosine, and the remaining unmethylated cytosine is converted to uracil.
  • the sequencing of the bisulfite-treated DNA can be preferably performed using a pyrosequencing method.
  • Tet-treated DNA is not limited only to the pyro-sequencing method, but using methods such as methylation-sensitive PCR (MSP), microarray, and next generation sequencing (NGS). Can be analyzed.
  • MSP methylation-sensitive PCR
  • NGS next generation sequencing
  • the method for diagnosing liver cancer of the present invention comprises: a) obtaining a sample from an individual, b) obtaining genomic DNA from the sample, c) treating the obtained genomic DNA with a compound that modifies an unmethylated cytosine base.
  • Step of d) FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2 can amplify any one or more CpG sites selected from the group consisting of the treated DNA. It may be performed by a method comprising the step of obtaining a PCR product by amplifying by PCR using a primer, and e) measuring the degree of methylation of the PCR product.
  • Obtaining the genomic DNA of step b) is a phenol/chloroform extraction method commonly used in the art, SDS extraction method (Tai et al., Plant Mol. Biol. Reporter, 8: 297-303, 1990), CTAB separation method (Cetyl Trimethyl Ammonium Bromide; Murray et al., Nuc. Res., 4321-4325, 1980) or a commercially available DNA extraction kit.
  • sample refers to a wide range of bodily fluids including all biological fluids obtained from individuals, body fluids, cell lines, tissue cultures, etc., depending on the type of analysis to be performed.
  • Methods for obtaining bodily fluids and tissue biopsies from mammals are generally widely known, and in the present invention, the sample is preferably a group consisting of human derivatives including tissues, cells, blood, plasma, serum, feces, and urine.
  • Abnormal methylation changes in cancer tissues show considerable similarity to changes in methylation of genomic DNA obtained from biological samples such as cells, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid, or urine.
  • biological samples such as cells, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid, or urine.
  • the present invention is the methylation level of any one or more gene CpG sites selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2 for preparing a liver cancer diagnostic preparation It provides the use of a formulation to measure
  • the CpG site hypermethylation of one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 and VANGL2 is specific in liver cancer. Therefore, it is possible to accurately and quickly diagnose liver cancer by using the composition, kit, chip or method according to the present invention, and in addition, it is possible to diagnose early.
  • tumor tissue (tumor) cell lines is a group of tumor tissue (tumor) cell lines and a group of non-tumor tissue (others) cell lines.
  • 16A and 16B show the results of qMSP methylation of FAR1, PAK1, ATL1, and LIPE genes in liver cancer tissues and normal surrounding tissues, and then presented as ⁇ Ct+10 values.
  • 17 is a comparative example, the result of confirming the methylation information of the GRASP gene.
  • Example 1 Hepatocellular carcinoma specific methylation gene selection
  • Tumor tissue used in this study refers to cancerous tissues of hepatocellular carcinoma
  • non-tumor tissue refers to tissues other than cancerous tissues including normal liver tissue.
  • DNA extracted from each tissue is transformed through bisulfite treatment. Through this, the cytosine base is modified depending on whether or not the DNA region is methylated.
  • the probe used in the microarray experiment was specifically designed for methylation and unmethylation to check whether the cytosine base at the methylation site of the gene was modified.
  • the microarray experiment measures the degree of methylation of a gene through approximately 450,000 (450k) probes representing the methylation site of each gene, and the result of each probe derived through the test is presented as a beta value. .
  • the beta value ranged from 0 to 1, and the closer to 1, the higher the degree of methylation of the genetic site was determined.
  • DMRs differentially methylated regions
  • the Limma method is known to be the least affected by outliers among several methylation statistical analysis methods that identify differences between groups. Therefore, it is a suitable method for finding cancer-specific markers because it is less affected by abnormal measurements of some samples. In this experiment, it was determined that there was a significant difference in methylation between the two groups as the adjusted p-value derived through the Limma method decreased.
  • limma analysis in each of the three datasets showed significantly lower p value when compared between tumor groups compared to non-tumor groups, and a large difference of more than 0.2 beta between groups was identified as the gene region as tumor-specific hypermethyalted regions. Were selected. Through this, 1,777 genetic sites that showed tumor-specific hypermethylation in common in all datasets among about 450,000 genetic sites were selected as biomarker candidates.
  • the degree of methylation of the gene through the microarray experiment on tumor tissue (tumor tissue, cancer tissue of hepatocellular carcinoma) and non-tumor tissue (non-tumor tissue, tissue other than cancer tissue including normal liver tissue) for the gene is also shown. Same as in 15.
  • tumor tissue tumor tissue, cancer tissue of hepatocellular carcinoma
  • non-tumor tissue non-tumor tissue, tissue other than cancer tissue including normal liver tissue
  • the result of each probe derived through the test was expressed as a beta value, and the beta value ranged from 0 to 1, and the closer to 1, the higher the methylation degree of the genetic site was determined.
  • methylation may also occur in cancers other than liver cancer. That is, liver cancer-specific methylation was not confirmed.
  • the 33 types of cancer are as follows: Acute Myeloid Leukemia, Adrenocortical cancer, Bile Duct cancer, Breast cancer, Cervical Cancer, and colon cancer. (Colon cancer), Endometrioid Cancer, Esophageal Cancer, Glioblastoma, Head and neck cancer, Kidney chromophobe, Kidney Clear cell carcinoma), Kidney Papillary cell carcinoma, Large b-cell lymphoma, Liver cancer, Lower Grade Glioma, Lung adenocarcinoma, Melanoma, Mesothelioma, Ocular melanomas, Ovarian cancer, Pancreatic cancer, Pheochromocytoma&paraganglioma, Prostate cancer, Rectal cancer (Rectal cancer), Sarcoma, Stomach cancer, Testicular cancer, Thymoma, Thyroid cancer, Uterine carcinosarcoma.
  • the site is not a pseudogene, and the site is present in the CpG island site and is between +/- 2000 bases (2kb) from the transcription start site (TSS) of the gene.
  • TSS transcription start site
  • the site was selected as a hepatocellular carcinoma-specific hypermethylated gene.
  • Table 3 a total of 13 genes were selected (see FIGS. 1 to 13).
  • FAR1 (FIG. 2)
  • LIPE (FIG. 5)
  • MTHFD2 (FIG. 10)
  • NXPE3 (FIG. 12) showed distinct specific hypermethylation for Liver cancer compared to other carcinomas.
  • the degree of gene methylation was measured through about 450,000 probes as in Example 1, and the methylation value of each probe was presented as a beta value.
  • the beta value ranges from 0 to 1, and the closer it is to 1, the higher the degree of methylation of the genetic site is determined.
  • the 14 tissues are as follows: aerodigestive tract, blood, bone, breast, digestive system, kidney, lung, nervous system ( nervous system, pancreas, skin, soft tissue, thyroid, urogenital system, other tissue.
  • DMRs differentially methylated regions
  • liver cancer liver cancer
  • the corrected correction was significantly lower in liver cancer cell lines compared to other cancer cell lines. It has an adjusted p-value, confirming that it is specific for liver cancer.
  • genes such as LDHB and PAK1 exhibit distinct methylation in liver cancer cell lines compared to other cell lines.
  • the ROC (Receiver Operating Characteristic) curve that shows the change in sensitivity and specificity according to the cut-off value can be displayed by calculating the sensitivity and specificity values for possible cut-off values of continuous diagnostic test measurements. have.
  • the accuracy of diagnosis can be measured by the area under the ROC curve (AUC).
  • AUC area under the ROC curve
  • the AUC value has a value between 0.5 and 1, and the larger the value is, the higher the diagnostic accuracy is evaluated. If the AUC value is 1, it means that the diagnosis result is completely accurate, but if it is 0.5, it is judged to be the same as the random result.
  • Example 5 Measurement of methylation based on qMSP in liver cancer tissues of selected genes
  • genomic DNA was isolated from a pair of cancer tissues and tissues surrounding cancer of 15 liver cancer patients, 5 for each stage from cancer stage 2 to stage 4, and after bisulfite treatment, FAR1, PAK1, ATL1, LIPE, respectively, to observe the degree of amplification and methylation of specific genetic sites.
  • an ACTB gene not related to methylation was used as an internal control to standardize the amplified value of the site.
  • ⁇ Ct + 10 The methylation level obtained by amplifying the DNA converted into bisulfite by PCR is expressed as ⁇ Ct + 10, which is a value corrected by the Ct (Cycle of Throshold) value of ACTB used as an internal control.
  • ⁇ Ct + 10 is defined as:
  • ⁇ Ct + 10 (Ct value of ACTB gene-Ct value of target gene) + 10
  • the selected genes can be used for diagnosis of liver cancer.
  • liver cancer As described above, CpG site hypermethylation of one or more genes selected from the group consisting of FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36, and VANGL2 appears specifically in liver cancer. Therefore, by using the composition, kit, chip or method according to the present invention, not only can liver cancer can be accurately and quickly diagnosed, but also can be diagnosed early.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 검출함으로써, 간암을 진단할 수 있는 조성물, 키트, 핵산 칩 및 방법에 관한 것으로, 간암을 정확하고 신속하게 진단할 수 있을 뿐만 아니라 조기에 진단할 수 있다.

Description

특정 유전자의 CPG 메틸화 변화를 이용한 간암 진단용 조성물 및 이의 용도
본 발명은 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 검출함으로써, 간암을 진단할 수 있는 조성물, 키트, 핵산 칩 및 방법에 관한 것이다.
본 출원은 2019년 10월 14일에 출원된 대한민국 특허출원 제10-2019-0127218호를 우선권으로 주장하고,상기 명세서 전체는 본 출원의 참고문헌이다.
간암은 세계적으로 발병률이 높은 암 가운데 하나이다. 한국에서 간암 사망률은 인구 10만 명당 23명으로 매우 높은 편이며, 한국인의 총 사망률의 약 10%는 간염, 간경화 및 간암과 관계되어 있다. 간암은 발생 초기 지각증상이 없어 조기 진단이 어렵다. 보통 간암은 대부분 이미 적절한 치료를 할 수 없는 진행성 암종으로 진행된 상태에서 발견되기 때문에 치료가 매우 제한적이며 예후 또한 극히 나쁘다. 간암은 진단 당시의 암의 진행상태에 따라 예후가 크게 달라지기에 간암 환자의 조기 발견은 간암 환자의 생존율을 높이는데 매우 중요하다.
한편, 후성유전학(epigenetics)은 DNA의 염기서열이 변화하지 않은 상태에서 이루어지는 유전자의 발현 조절을 연구하는 분야이다. 후성유전학은 DNA 메틸화, miRNA 또는 히스톤의 아세틸화, 메틸화, 인산화 및 유비퀴틴화 등과 같은 후성적 변이를 통한 유전자 발현 조절을 연구한다.
이중 DNA 메틸화가 가장 많이 연구가 되어있는 후성적 변이이다. 후성적 변이는 유전자 기능 변이 및 종양 세포로의 변화를 초래할 수 있다. 따라서 DNA 메틸화는 세포 내 질환 조절 유전자의 발현(또는 억제 및 유도와)과 연관되어 있으며, 최근에 DNA 메틸화 측정을 통한 암 진단 방법들이 제시되고 있다. 특히 전암 단계의 조직에서도 암 특이적 메틸화 현상이 미리 발생하기도 하기에 암 특이적 메틸화의 검출은 암의 진단에 이용될 가능성이 높다.
따라서 간암의 위험 예측이 가능한 효과적인 간암 특이적 메틸화 마커의 개발이 필요하다.
이에, 본 발명자들은 간암에 있어서 특정 유전자 CpG 부위가 과메틸화된 상태인 것을 발견하고, 상기 메틸화 수준을 검출함으로써 간암을 진단할 수 있는 조성물, 키트, 핵산 칩 및 방법을 개발하여 본 발명을 완성하였다.
따라서 본 발명의 목적은 특정 유전자의 CpG 부위의 메틸화 수준을 측정하는 제제를 포함하는 간암 진단용 조성물을 제공하는 것이다.
또한 본 발명의 다른 목적은 특정 유전자의 CpG 부위를 포함하는 단편을 증폭하기 위한 PCR 프라이머쌍과 상기 프라이머쌍에 의하여 증폭된 PCR 산물을 파이로시퀀싱하기 위한 시퀀싱 프라이머를 함유하는 간암 진단용 키트를 제공하는 것이다.
또한 본 발명의 또 다른 목적은 특정 유전자의 CpG 부위를 포함하는 단편과 엄격한 조건하에서 하이브리다이제이션할 수 있는 프로브가 고정되어 있는 간암 진단용 핵산 칩을 제공하는 것이다.
또한 본 발명의 또 다른 목적은 각기 다른 시료로부터 특정 유전자의 CpG 부위의 메틸화 수준을 측정하고 비교하는 단계를 포함하는, 간암 진단 방법을 제공하는 것이다.
또한 본 발명의 또 다른 목적은 간암 진단용 제제를 제조하기 위한 유전자 CpG 부위의 메틸화 수준을 측정하는 제제의 용도를 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명은 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 측정하는 제제를 포함하는 간암 진단용 조성물을 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위를 포함하는 단편을 증폭하기 위한 프라이머쌍을 포함하는 간암 진단용 키트를 제공한다.
또한 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위를 포함하는 단편과 하이브리다이제이션할 수 있는 프로브가 고정되어 있는 간암 진단용 핵산 칩을 제공한다.
또한 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 간암 발생이 의심되는 환자의 시료로부터 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 측정하는 단계; 및
상기 측정된 메틸화 수준을 정상 대조군 시료의 상기 동일한 유전자의 CpG 부위의 메틸화 수준과 비교하는 단계;를 포함하는, 간암 진단 방법을 제공한다.
또한 본 발명은 또 다른 목적을 달성하기 위하여 간암 진단용 제제를 제조하기 위한 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자 CpG 부위의 메틸화 수준을 측정하는 제제의 용도를 제공한다.
다른 정의가 없는 한, 본 명세서에 사용된 모든 기술적 및 과학적 용어는 당업자들에 의해 통상적으로 이해되는 동일한 의미를 가진다. 다음의 참고문헌은 본 발명의 명세서에 사용된 여러 용어들의 일반적인 정의를 갖는 기술(skill)의 하나를 제공한다: Singleton et al., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOTY(2th ed. 1994); THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY(Walkered., 1988); 및 Hale & Marham, THE HARPER COLLINS DICTIONARY OF BIOLOGY.
이하 본 발명을 상세히 설명한다.
본 발명은 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 측정하는 제제를 포함하는 간암 진단용 조성물을 제공한다.
본 발명에서 용어, "메틸화"는 DNA를 구성하는 염기에 메틸기가 부착되는 것을 말한다. 바람직하게, 본 발명에서 메틸화 여부는 특정 유전자의 특정 CpG 부위의 사이토신에서 일어나는 메틸화 여부를 의미한다. 메틸화가 일어난 경우 그로 인하여 전사인자의 결합이 방해를 받게 되어 특정 유전자의 발현이 억제되며, 반대로, 비메틸화또는 저메틸화가 일어나는 경우 특정 유전자의 발현이 증가하게 된다.
포유동물 세포의 게놈 DNA 에는 A, C, G 및 T 에 더하여, 사이토신 링의 다섯번째 탄소에 메틸 그룹이 부착된 5-메틸사이토신(5-methylcytosine, 5-mC)이라는 5번째 염기가 존재한다. 5-메틸사이토신의 메틸화는 CpG라고 불리는 CG 디뉴클레오티드(5'-mCG-3')의 C에서만 일어나고, CpG의 메틸화는 alu 또는 트랜스포존과 게놈의 반복서열이 발현되는 것을 억제한다. 또한, 상기 CpG의 5-mC가 자연적으로 탈아미노화하여 티민(T)이 되기 쉽기 때문에, CpG는 포유동물 세포에서 대부분의 후생유전학적 변화가 자주 일어나는 부위이다.
본 발명에서 용어, "메틸화 수준의 측정"은 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 측정하는 것으로서, 바이설파이트 처리에 따른 검출법 또는 바이설파이트 비의존적 검출법을 통해 측정할 수 있다. 메틸화 수준이 측정은 메틸화 특이적인 PCR, 예를 들어 메틸화 특이적 PCR (methylation-specific polymerasechain reaction, MSP), 실시간 메틸화 특이적 PCR (real time methylation-specific polymerase chain reaction), 메틸화 DNA 특이적 결합 단백질을 이용한 PCR, 또는 정량 PCR 등을 통해 측정할 수 있다. 또는, 파이로시퀀싱 및 바이설파이트 시퀀싱과 같은 자동염기분석으로 측정할 수 있으나, 이에 제한되는 것은 아니다. 또한, 바이설파이트 비의존적 검출법으로써 TET 단백질(ten-eleven translocation protein)을 이용한 검출법을 이용하여 측정할 수 있다(Nature Biotechnology, volume 37, pages 424-429 (2019) 참고). 상기 TET 단백질은 DNA에 작용하는 효소로 염기의 화학적 변화에 관여하며, 바이설파이트를 처리할 경우 메틸화된 C를 제외한 모든 C가 T 염기로 바뀌는 것과 달리 Tet단백질은 메틸화된 C만이 T로 바뀌어 보다 효율적인 검출이 가능하다.
바람직하게, FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위란, 상기 유전자의 DNA 상에 존재하는 CpG 부위를 말한다. 상기 유전자의 DNA는, 상기 유전자가 발현하는데 필요하며 서로 작동가능하게 연결되어 있는 일련의 구성 단위를 모두 포함하는 개념으로, 예를 들어, 프로모터 영역, 단백질 코딩 영역 (open reading frame, ORF)및 터미네이터 영역을 포함한다. 따라서, FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위는 해당 유전자의 프로모터 영역, 단백질 코딩 영역 (open reading frame, ORF) 또는 터미네이터 영역 등에 존재할 수 있다.
바람직하게, 본 발명에서 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 측정하는 것은, 하기 표 1에 기재된 유전자의 CpG 부위의 사이토신의 메틸화 수준을 측정하는 것을 의미할 수 있다.
Symbol Genome Build Chromosome Region
FAM110A GRCh37 20 825267-826276
FAR1 GRCh37 11 13689588-13690724
VIM GRCh37 10 17270430-17272617
LDHB GRCh37 12 21810488-21810766
LIPE GRCh37 19 42901016-42901375
INAFM1 GRCh37 19 47776370-47778740
ATL1 GRCh37 14 51026872-51027570
CELF6 GRCh37 15 72611946-72612802
MTHFD2 GRCh37 2 74425444-74426423
PAK1 GRCh37 11 77122736-77123088
NXPE3 GRCh37 3 101497830-101498648
SLC25A36 GRCh37 3 140660334-140661602
VANGL2 GRCh37 1 160370112-160370658
본 발명에 있어서, 상기 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위는 유전자의 전사 시작 부위 (transcription start site, TSS)로부터 +/- 2000 염기 (base) (2kb) 사이에 위치하는 것을 특징으로 한다.
본 발명에서 인간 게놈 염색체 부위의 염기서열은 The February 2009 Human reference sequence (GRCh37)에 따라 표현하였지만, 상기 인간 게놈 염색체 부위의 구체적 서열은 게놈 서열 연구 결과가 업데이트됨에 따라서 그 표현이 다소 변경될 수 있으며, 이러한 변경에 따라 본 발명의 상기 인간 게놈 염색체부위의 표현이 상이해질 수 있다. 따라서, 본 발명의 The February 2009 Human reference sequence (GRCh 37)에 따라 표현된 인간 게놈 염색체 부위는 본 발명의 출원일 이후 인간 표준 염기서열(human reference sequence)이 업데이트되어 상기 인간 게놈 염색체 부위의 표현이 지금과 다르게 변경된다고 하여도, 본 발명의 범위가 상기 변경된 인간 게놈 염색체 부위에 미치게 됨은 자명하다고 할 것이다. 이러한 변경 내용은 본 발명이 속하는 기술분야의 통상의 지식을 가진 자라면 누구라도 용이하게 알 수 있는 사항이다.
본 발명에서, 상기 CpG 부위의 메틸화 수준을 측정하는 제제는 사이토신 염기를 변형시키는 화합물 또는 메틸화 민감성 제한효소, FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 메틸화된 대립형질 서열에 특이적인 프라이머, 및 비메틸화된 대립형질 서열에 특이적인 프라이머를 포함할 수 있다.
상기 사이토신 염기를 변형시키는 화합물은 비메틸화 사이토신 또는 메틸화 사이토신을 변형시키는 화합물이며, 비메틸화 사이토신을 변형시키는 바이설파이트(bisulfite) 또는 이의 염, 바람직하게는 소듐 바이설파이트이거나 메틸화 사이토신을 변형시키는 TET 단백질 일 수 있으나 이에 제한되지 않는다. 이러한 사이토신 염기를 변형시켜 CpG 부위의 메틸화 여부를 검출하는 방법은 당 업계에 널리 공지되어 있다(WO01/26536; US2003/0148326A1).
또한, 상기 메틸화 민감성 제한효소는 CpG 부위의 메틸화를 특이적으로 검출할 수 있는 제한효소로서 제한효소의 인식부위로 CG를 함유하는 제한효소일 수 있다. 예를 들면, SmaI, SacII, EagI, HpaII, MspI, BssHII, BstUI, NotI 등이 있으며 이에 제한되지 않는다. 상기 제한효소 인식부위의 C에서의 메틸화 또는 비메틸화에 따라 제한효소에 의한 절단 여부가 달라지고 이를 PCR 또는 서던블롯(Southern Blot) 분석을 통해 검출할 수 있게 된다. 상기 제한효소 이외의 다른 메틸화 민감성 제한효소는 당 업계에 잘 알려져 있다.
상기 프라이머는 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 메틸화된 대립형질 서열에 특이적인 프라이머 및 비메틸화된 대립형질 서열에 특이적인 프라이머를 포함할 수 있다.
본 발명에서, 용어 "프라이머"는 짧은 자유 3’ 말단 수산화기를 가지는 핵산 서열로 상보적인 템플레이트(template)와 염기쌍을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 중합효소 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다. 또한, 프라이머는, 7개 내지 50개의 뉴클레오타이드 서열을 가진 센스 및 안티센스 핵산으로서, DNA 합성의 개시점으로 작용하는 프라이머의 기본 성질을 변화시키지 않는 추가의 특징을 혼입할 수 있다.
본 발명의 프라이머는 메틸화 여부를 분석하는 대상이 되는 특정 CpG 부위의 서열에 따라 바람직하게 디자인될 수 있으며, 보다 바람직하게는, 메틸화되어 바이설파이트에 의해 변형되지 않았던 사이토신을 특이적으로 증폭할 수 있는 프라이머쌍, 메틸화되지 않아 바이설파이트에 의해 변형된 사이토신을 특이적으로 증폭할 수 있는 프라이머쌍, 메틸화되어 Tet 계열의 단백질에 의해 변형된 사이토신을 특이적으로 증폭할 수 있는 프라이머쌍 및 메틸화되지 않아 Tet 계열의 단백질에 의해 변형되지 않았던 사이토신을 특이적으로 증폭할 수 있는 프라이머쌍으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
따라서 본 발명은 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위를 포함하는 단편을 증폭하기 위한 프라이머쌍을 포함하는 간암 진단용 키트를 제공한다.
상기 조성물 및 키트에는 상기 제제 이외에도, 중합효소 아가로스, 전기영동에 필요한 완충용액 등이 추가로 포함될 수 있다.
또한 본 발명은 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위를 포함하는 단편과 하이브리다이제이션할 수 있는 프로브가 고정되어 있는 간암 진단용 핵산 칩을 제공한다.
본 발명에서 용어 "핵산" 이란 올리고뉴클레오티드, 뉴클레오티드, 폴리뉴클레오티드를 의미하거나 이들의 단편, 단일가닥 또는 이중가닥의 게놈 기원 또는 합성 기원의 DNA 또는 RNA, 센스 또는 안티센스 가닥의 게놈 기원 또는 합성 기원의 DNA 또는 RNA, PNA(peptide nucleic acid) 또는 자연 기원 또는 합성 기원의 DNA 양 또는 RNA 양 물질을 말한다. 핵산이 RNA이면, 데옥시뉴클레오티드 A, G, C 및 T를 대신하여, 각각 리보뉴클레오티드 A, G, C 및 U로 대체된다는 것은 당해 분야 통상의 지식을 가진 자에 있어서 자명하다.
메틸화는 유전자의 조절 부위의 외곽에서부터 시작되어 내부로 진행되기 때문에, 조절 부위의 외곽에서 메틸화를 검출하는 것으로 세포 형질전환에 관여하는 유전자를 조기 진단할 수 있다.
따라서 상기 메틸화 유전자 마커를 이용하여 간암을 형성할 가능성이 있는 세포의 조기 진단이 가능하다. 암세포에서 메틸화된다고 확인된 유전자가 임상적으로 또는 형태학적으로 정상으로 보이는 세포에서 메틸화되면, 상기 정상으로 보이는 세포는 암화가 진행되고 있는 것이다. 그러므로, 정상으로 보이는 세포에서의 간암 특이적 유전자가 메틸화를 확인함으로, 간암을 조기 진단할 수 있다.
또한 본 발명은 간암 발생이 의심되는 환자의 시료로부터 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 측정하는 단계; 및
상기 측정된 메틸화 수준을 정상 대조군 시료의 상기 동일한 유전자의 CpG 부위의 메틸화 수준과 비교하는 단계;를 포함하는, 간암 진단 방법을 제공한다.
상기 메틸화 수준을 측정하는 방법은 PCR, 메틸화 특이 PCR(methylation specific PCR), 실시간 메틸화 특이 PCR(real time methylation specific PCR), 메틸화 DNA 특이적 결합 단백질을 이용한 PCR, 메틸화 민감성 제한 효소를 사용한 메틸화 여부 측정, 정량 PCR, DNA 칩, 파이로시퀀싱 및 바이설파이트 시퀀싱으로 구성된 군에서 선택될 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 메틸화 특이 PCR(methylation-specific PCR)의 방법은 시료 DNA에 중아황산염을 처리한 후에 PCR을 수행할 프라이머를 CpG 디뉴클레오타이드의 메틸화 여부에 따라 다른 종류의 프라이머를 디자인하여 사용하는 방법이다. 프라이머 결합 부위가 메틸화되었으면 메틸화된 프라이머에 의해 PCR이 진행되고, 메틸화가 되지 않았으면 정상 프라이머에 의해 PCR이 진행된다. 즉, 시료 DNA에 중아황산염을 처리한 후 두 가지 종류의 프라이머를 동시에 사용하여 PCR을 행한 후, 결과를 비교하는 방법이다.
실시간 메틸화 특이 PCR은 메틸화 특이 PCR 방법을 실시간 측정방법으로 전환한 것으로, 지 노믹 DNA에 중아황산염(bisulfite)를 처리한 후, 메틸화된 경우에 해당하는 PCR 프라이머를 디자인하고, 이들 프라이머를 이용하여 실시간 PCR을 수행하는 것이다. 이때, 증폭된 염기서열과 상보적인 TanMan 프로브를 이용하여 검출하는 방법과 Sybergreen을 이용하여 검출하는 두 가지 방법이 있다. 따라서, 실시간 메틸화 특이 PCR은 메틸화된 DNA만을 선택적으로 정량 분석할 수 있다. 이때, in vitro methylated DNA 샘플을 이용하여 표준곡선을 작성하고, 표준화를 위하여 염기서열 내에 5'-CpG-3' 서열이 없는 유전자를 음성대조군으로 함께 증폭하여 메틸화 정도를 정량 분석하는 방법이다.
메틸화 민감성 제한 효소를 사용하여 메틸화 여부를 측정하는 방법에서 메틸화 민감성 제한 효소는 CpG 디뉴클레오타이드를 작용부위로 하며, 이 부위가 메틸화된 경우에는 효소로서 작용하지 못한다. 따라서, 시료 DNA를 메틸화 민감성 제한효소로 처리한 후 효소 타깃 부위를 포함하도록 PCR로 증폭하면, 메틸화된 경우에는 제한효소가 작용되지 않아 PCR 증폭되지만 메틸화되지 않은 정상 부위는 제한 효소에 의해 절단되어 PCR 증폭되지 않으므로 특정 DNA 부위의 메틸화 여부를 측정할 수 있다.
메틸화 DNA 특이적 결합 단백질을 이용한 PCR 또는 DNA 칩 방법은 메틸화 DNA에만 특이적으로 결합하는 단백질을 DNA와 섞어주게 되면, 메틸화 DNA에만 특이적으로 단백질이 결합하기 때문에 메틸화 DNA만을 선택적으로 분리할 수 있다. 지노믹 DNA를 메틸화 DNA 특이적 결합 단백질과 섞어준 후, 메틸화된 DNA만을 선택적으로 분리한다. 이들 분리된 DNA를 인트론 부위에 해당하는 PCR 프라이머를 이용하여 증폭한 후, 아가로즈 전기영동으로 메틸화 여부를 측정하는 방법이다. 또한, 정량 PCR 방법으로도 메틸화 여부를 측정할 수 있으며, 메틸화 DNA 특이적 결합 단백질로 분리한 메틸화 DNA는 형광 염료로 표지하여 상보적인 프로브가 집적된 DNA칩에 하이브리디제이션시킴으로써 메틸화 여부를 측정할 수 있다. 여기서 메틸화 DNA 특이적 결합 단백질은 MBD2bt에 제한되지 않는다.
또한, 중아황산염 처리된 DNA의 파이로시퀀싱(bisulfite pyrosequencing)은 다음과 같은 원리에 기초한다. CpG 디뉴클레오타이드 부위에서 메틸화가 발생되면 5-메틸시토신(5-mC)이 형성되는데, 이 변형된 염기는 중아황산염 처리시 우라실(uracil)로 변화된다. 시료로부터 추출된 DNA에 중아황산염을 처리할 때 CpG 디뉴클레오타이드가 메틸화 되었다면 시토신(cytosine)으로 보존되며, 나머지 메틸화 되지 않은 시토신은 우라실로 변화한다. 중아황산염 처리된 DNA의 서열분석은 바람직하게는 파이로시퀀싱(pyrosequencing) 방법을 사용하여 행할 수 있다. 파이로시퀀싱에 대한 상세한 설명은 선행문헌에 공지되어 있다[Ronaghi et al, Science 1998 Jul 17, 281(5375), 363-365; Ronaghi et al,Analytical Biochemistry 1996 Nov 1, 242(1), 84-9; Ronaghi et al. Analytical Biochemistry 2000 Nov 15, 286 (2): 282-288; Nyr, P. Methods Mol Biology 2007, 373, 114].
한편, Tet 단백질을 이용한 바이설파이트 비의존적 검출법으로 Tet단백질을 사용해 메틸화된 C만이 T로 변환시켜 메틸화 부위의 염기를 검출할 수도 있다(LIU, Yibin, et al., Nature Biotechnology volume 37, pages 424-429 (2019) 참고).
CpG 디뉴클레오타이드 부위에서 메틸화가 발생되어 시토신이 5-메틸시토신(5-mC)이 형성된 경우 Tet (ten-eleven translocation) 단백질을 처리할 때 Cpg 디뉴클레오타이드가 메틸화 되었다면 우라실로 변화하며, 메틸화 되지 않은 시토신은 보존된다. Tet 처리된 DNA의 서열분석은 파이로시퀀싱 방법에 대해서만 제한된 것은 아니며 메틸화 민감 PCR (methylation-sensitive PCR, MSP), 마이크로어레이(microarray), 차세대 시퀀싱(next generation sequencing, NGS) 등의 방법을 사용하여 분석할 수 있다.
바람직하게는, 본 발명의 간암 진단 방법은 a) 개체로부터 시료를 수득하는 단계, b) 시료에서 게놈 DNA를 수득하는 단계, c) 수득된 게놈 DNA를 메틸화되지 않은 시토신 염기를 변형시키는 화합물을 처리하는 단계, d) 상기 처리된 DNA를 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 CpG 부위를 증폭할 수 있는 프라이머를 이용하여 PCR에 의해 증폭시킴으로써 PCR 생산물을 얻는 단계 및 e) 상기 PCR 생산물의 메틸화 정도를 측정하는 단계를 포함하는 것을 특징으로 하는 방법에 의해 수행될 수 있다.
상기 b)단계의 게놈 DNA의 수득은 당업계에서 통상적으로 사용되는 페놀/클로로포름 추출법, SDS 추출법(Tai et al., Plant Mol. Biol. Reporter, 8: 297-303, 1990), CTAB 분리법(Cetyl Trimethyl Ammonium Bromide; Murray et al., Nuc. Res., 4321-4325, 1980) 또는 상업적으로 판매되는 DNA 추출 키트를 이용하여 수행할 수 있다.
본 발명에서 용어 “시료”는 수행되는 분석의 종류에 따라, 개개인, 체액, 세포주, 조직 배양 등에서 얻어지는 모든 생물학적 체액, 포함하는 폭넓은 범위의 체액을 의미하는 것이다. 포유동물로부터 체액 및 조직 생검을 획득하는 방법은 통상적으로 널리 알려져 있으며, 본 발명에 있어서 상기 시료는 바람직하게는 조직, 세포, 혈액, 혈장, 혈청, 대변 및 소변을 포함하는 인체 유래물로 구성된 군에서 선택될 수 있다. 암 조직의 비정상적인 메틸레이션의 변화는 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 또는 뇨와 같은 생물학적 시료에서 얻은 게놈 DNA의 메틸레이션 변화와 상당한 유사성을 보이므로, 본 발명의 마커를 이용할 경우 간암 발생 예측에 대하여, 혈액이나 체액 등을 통한 손쉬운 진단이 가능하다는 장점이 있다.
또한 본 발명은 간암 진단용 제제를 제조하기 위한 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자 CpG 부위의 메틸화 수준을 측정하는 제제의 용도를 제공한다.
상기에서 살펴본 바와 같이, FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위 과메틸화는 간암에서 특이적으로 나타나므로, 본 발명에 따른 조성물, 키트, 칩 또는 방법을 이용하여 간암을 정확하고 신속하게 진단할 수 있으며, 더불어 조기에 진단할 수 있다.
도 1은 총 33 종의 암 유형에서 FAM110A 유전자의 메틸화 정보를 확인한 결과이다.
도 2는 총 33 종의 암 유형에서 FAR1 유전자의 메틸화 정보를 확인한 결과이다.
도 3은 총 33 종의 암 유형에서 VIM 유전자의 메틸화 정보를 확인한 결과이다.
도 4는 총 33 종의 암 유형에서 LDHB 유전자의 메틸화 정보를 확인한 결과이다.
도 5는 총 33 종의 암 유형에서 LIPE 유전자의 메틸화 정보를 확인한 결과이다.
도 6은 총 33 종의 암 유형에서 INAFM1 유전자의 메틸화 정보를 확인한 결과이다.
도 7은 총 33 종의 암 유형에서 ATL1 유전자의 메틸화 정보를 확인한 결과이다.
도 8은 총 33 종의 암 유형에서 CELF6 유전자의 메틸화 정보를 확인한 결과이다.
도 9는 총 33 종의 암 유형에서 MTHFD2 유전자의 메틸화 정보를 확인한 결과이다.
도 10은 총 33 종의 암 유형에서 PAK1 유전자의 메틸화 정보를 확인한 결과이다.
도 11은 총 33 종의 암 유형에서 NXPE3 유전자의 메틸화 정보를 확인한 결과이다.
도 12는 총 33 종의 암 유형에서 SLC25A36 유전자의 메틸화 정보를 확인한 결과이다.
도 13은 총 33 종의 암 유형에서 VANGL2 유전자의 메틸화 정보를 확인한 결과이다.
도 14는 본 발명에 따라 선별된 총 14종 유전자의 간세포암 진단 정확도를 확인한 결과이다.
도 15는 종양 조직(tumor) 세포주 그룹 과 비 종양 조직 (others) 세포주 그룹 간 메틸화의 차이를 확인한 결과이다.
도 16a 및 16b는 간암조직 및 정상주변 조직에서 FAR1, PAK1, ATL1, LIPE 유전자의 메틸화 정도를 qMSP한 후, ΔCt+10 값으로 제시한 결과이다.
도 17은 비교예로서, GRASP 유전자의 메틸화 정보를 확인한 결과이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1 : 간세포암 특이적 메틸화 유전자 선별
간세포암에서 특이적으로 발견되는 메틸화 유전자를 선별하고자, 3개의 대규모 메틸레이션 마이크로어레이 칩(methylation microarray chip) 데이터를 이용해 대장직장암 환자의 암 수술로부터 얻은 암 조직과 정상 조직의 대규모 메틸화 비교 연구를 수행하였다(표 2 참고). 해당 연구에서 사용된 종양 조직(tumor tissue)은 간세포암의 암 조직을 의미하며, 비종양 조직(non-tumor tissue)은 정상 간조직을 포함한 암 조직 이외의 조직을 의미한다.
dataset#1 dataset#2 dataset#3 총합
종양(tumor) 66개 37개 377개 480개
비종양
(non-tumor)
66개 37개 50개 153개
간세포암 특이적 메틸화 유전자 선별하기 위해서 각 조직에서 DNA를 추출하였으며, Infinium Human Methylation 450 Beadchip microarray를 이용해 유전자 부위의 메틸화 정도를 확인하였다.
각 조직으로부터 추출된 DNA는 바이설파이트 처리를 통해 변환한다. 이를 통해 DNA 부위의 메틸화 여부에 따라 사이토신 염기의 변형이 이루어진다. 해당 microarray 실험에 사용되는 probe는 유전자의 메틸화 부위의 사이토신 염기의 변형 여부를 확인하기 위해 메틸화 (methylation), 비메틸화(unmethylation) 특이적으로 디자인 되었다.
해당 microarray 실험은 각각 유전자의 메틸화 부위를 나타내는 약 45만개(450k)의 프로브(probe)들을 통해 유전자의 메틸화 정도를 측정하며 시험을 통해 도출된 각 프로브의 결과는 베타값(beta value)으로 제시된다. 베타값은 0에서 1까지의 값을 가지며 1에 가까울수록 해당 유전 부위의 methylation 정도가 높다고 판단하였다.
종양 그룹과 비종양 그룹간 차별적인 메틸화 부위 (differentially methylated regions, DMRs)를 확인하고자 경험적 베이즈 t-test (empirical Bayes t-test)인 Limma (Linear Models for Microarray Data) 방법을 사용하여 그룹 간 통계적으로 유의한 메틸화 차이를 보이는 유전자 부위를 확인하였다.
Limma 방법은 그룹 간 차이를 확인하는 여러 메칠화 통계 분석 방법 중 가장 이상치 (outlier)에 적은 영향을 받는 것으로 알려져 있다. 따라서 일부 샘플의 비정상적 측정값으로부터 영향을 적게 받아 암 특이적 마커를 찾는데 적합한 방법이다. 본 실험에서는 Limma 방법을 통해 도출된 보정된 p값 (adjusted p-value)값이 적을수록 두 그룹 간 유의한 메틸화 차이가 있다고 판단하였다.
특히 종양 특이적 메틸화 부위 탐색을 하기 위해서 종양과 비종양 그룹 간 유의한 베타값의 차이가 있는 유전자 부위 중 비종양보다 종양 조직에서 더 높은 메틸화를 부위를 암 특이적 바이오마커 후보로 선정하였다.
그 결과 3개의 dataset 각각에서 limma 분석 결과 비종양 그룹에 비해 종양 그룹 간 비교 시 유의하게 낮은 p값을 가지며 그룹 간 베타값 0.2 이상의 큰 차이를 유전자 부위를 종양 특이적 과메틸화 부위(hypermethyalted regions)로 선별하였다. 이를 통해 약 45만개의 유전 부위 중 dataset 모두 공통으로 종양 특이적 과메틸화를 보이는 1,777개의 유전 부위를 바이오마커 후보로 선별하였다.
실시예 2 : 간세포암 특이적 과메틸화 유전자 선별
상기 실시예 1에서 확인한 바이오마커 1,777개의 유전 부위에 있어서, 간세포암 이외의 종양에서 각 해당 부위의 메틸화 정도를 확인하고 비교하여 바이오마커 중 간암 특이적인 유전 부위를 찾았다. 암 유전자 공공 데이터 베이스인 TCGA (The Cancer Genome Atlas)의 DNA methyaltion 450k array 실험 결과를 분석한 결과 33종의 암 유형 (cancer type)에 해당하는 유전 부위 메틸화 정보를 확인할 수 있었다. 이 중 간세포암(hepatocellular cancer, liver cancer로 명칭) 및 나머지 32종의 암에 대비 간암에서 유의하게 높은 베타값을 보이는 유전 부위를 확인한 결과 1,777개의 유전 부위 중 42개의 유전 부위가 간암 특이적 메틸화가 발생함을 확인할 수 있었다.
상기 유전자에 대한 종양 조직(tumor tissue, 간세포암의 암 조직) 및 비종양 조직(non-tumor tissue, 정상 간조직을 포함한 암 조직 이외의 조직)에 대한 상기 microarray 실험을 통한 유전자의 메틸화 정도는 도 15에서와 같다. 메틸화 정도는 시험을 통해 도출된 각 프로브의 결과를 베타값(beta value)으로 나타냈으며, 베타값은 0에서 1까지의 값을 가지며 1에 가까울수록 해당 유전 부위의 methylation 정도가 높다고 판단하였다.
한편, 간암의 종양 조직과 비종양 조직 비교 시 메틸화 차이가 관찰되는 유전 부위의 경우 간암 이외의 다른 암에 대해서도 메틸화가 발생될 수 있다. 즉, 간암 특이적 메틸화가 확인되는 것은 아니었다.
예를 들어, GRASP (general receptor for phosphoinositides 1 associated scaffold protein) 유전자의 경우 상기 실시예 1에서 확인한 1,777개의 유전 부위 중 가장 큰 종양 조직과 비종양 조직 간 메틸화 차이가 확인된 부위 중 하나였으나, 도 16에서 보듯이 간암에서 높은 메틸화가 나타남과 동시에 전립선암 (prostate cancer), 직장암 (rectal cancer), 위암 (Stomach cancer) 등을 비롯한 다양한 암 종에서도 높은 메틸화가 발생함을 확인하였다.
상기 33 종의 암은 다음과 같다: 급성 골수성 백혈병(Acute Myeloid Leukemia), 부신피질 암(Adrenocortical cancer), 담도암(Bile Duct cancer), 유방암(Breast cancer), 자궁경부암(Cervical Cancer), 대장암(Colon cancer), 자궁내막암(Endometrioid Cancer), 식도암(Esophageal Cancer), 교모세포종(Glioblastoma), 두경부암(Head and neck cancer), 신장혐색소암종(Kidney chromophobe), 신세포암(Kidney Clear cell carcinoma), 신장 유두모양 세포 암종(Kidney Papillary cell carcinoma), 거대 B세포 림포종(Large b-cell lymphoma), 간암(Liver cancer), 저등급교종(Lower Grade Glioma), 폐선암(Lung adenocarcinoma), 흑색종(Melanoma), 중피종(Mesothelioma), 안구 흑색종(Ocular melanomas), 난소암(Ovarian cancer), 췌장암(Pancreatic cancer), 갈색세포종양&부신결절종(Pheochromocytoma&paraganglioma), 전립선암(Prostate cancer), 직장암(Rectal cancer), 육종(Sarcoma), 위암(Stomach cancer), 고환암(Testicular cancer), 흉선종(Thymoma), 갑상선암(Thyroid cancer), 자궁육종(Uterine carcinosarcoma).
이러한 유전 부위 중 위유전자(pseudogene)가 아니며 해당 부위가 CpG 섬 (CpG island) 부위에 존재하고 유전자의 전사 시작 부위(transcription start site, TSS)로부터 +/- 2000 염기 (base) (2kb) 사이에 선별된 유전 부위에 있으며 상염색체(autosome)에 존재하는 경우에 간세포암 특이적 과메틸화 유전자로 선별하였다. 그 결과 하기 표 3과 같이, 총 13개의 유전자가 선별되었다(도 1 내지 도 13 참고).
Symbol Name Location
(Chromosome)
CpG Island
FAM110A family with sequence similarity 110 member A 20 Island
FAR1 fatty acyl-CoA reductase 1 11 Island
VIM Vimentin / VIM antisense RNA 1 10 Island
LDHB lactate dehydrogenase B 12 Island
LIPE Lipase E, hormone sensitive type / LIPE antisense RNA 1 19 Island
INAFM1 InaF motif containing 1 19 Island
ATL1 atlastin GTPase 1 14 Island
CELF6 CUGBP Elav-like family member 6 15 Island
MTHFD2 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase 2 Island
PAK1 p21 (RAC1) activated kinase 1 11 Island
NXPE3 neurexophilin and PC-esterase domain family member 3 3 Island
SLC25A36 solute carrier family 25 member 36 3 Island
VANGL2 VANGL planar cell polarity protein 2 1 Island
특히, FAR1(도 2), LIPE(도 5), MTHFD2(도 10), NXPE3(도 12)의 경우, 타 암종 대비 간암(Liver cancer)에 대하여 뚜렷한 특이적 과메틸화를 나타내었다.
실시예 3 : 세포주에서 선별 유전자의 간암 특이성 확인
선별된 13개의 유전자가 타 암과 구별되는 간암 특이적인 메틸화를 나타내는지 확인하기 위해 공공 데이터베이스를 활용해 크게 14개의 조직서 유래된 1,022개의 암세포주 (cancer cell lines)에서의 메틸화 패턴을 분석하였다. 해당 데이터는 각 세포주에서 추출한 DNA를 표준화된 제조사의 메틸화 분석 시험 과정을 따라 Infinium Human Methylation 450 Beadchip microarray 실험을 수행되었다.
수행된 실험의 결과값은 상기 실시예 1에서와 같이 약 45만개의 프로브들을 통해 유전자 메틸화 정도를 측정하며 각 프로브의 메틸화 값은 베타값으로 제시된다. 베타값은 0에서 1까지의 값을 가지며 1에 가까울수록 해당 유전 부위의 메틸화 정도가 높다고 판단한다.
상기 14개의 조직은 다음과 같다: 호흡소화관 (aerodigestive tract), 혈액 (blood), 뼈 (bone), 유방 (breast), 소화기 계통 (digestive system), 신장 (kidney), 폐 (lung), 신경계 (nervous system), 췌장 (pancreas), 피부 (skin), 연조직 (soft tissue), 갑상선 (thyroid), 비뇨생식기계통 (urogenital system), 기타 조직 (other tissue).
선별된 14개의 유전자의 간암 특이적 메틸화를 확인하기 위해 1,022개의 세포주에서 유래된 메첼화 데이터는 크게 간암 세포주 그룹(n=19)과 비 간암 세포주 그룹(n=1,003)으로 분류하였다
분류된 두 그룹 간 차별적인 메틸화 부위 (differentially methylated regions, DMRs)를 확인하고자 경험적 베이즈 t-test (empirical Bayes t-test)인 Limma (Linear Models for Microarray Data) 방법을 사용하여 그룹 간 통계적으로 유의한 메틸화 차이를 보이는 유전자 부위를 확인하였다.
선별된 유전자의 간암 세포주 그룹과 비 간암 세포주 그룹 간 메틸화의 차이
Symbol Difference (average △β) adjusted p-value
FAM110A 0.39 3.13e-06
FAR1 0.59 1.94e-149
VIM 0.18 2.60e-06
LDHB 0.45 5.11e-27
LIPE 0.45 2.69e-46
INAFM1 0.10 1.71e-01
ATL1 0.44 1.26e-07
CELF6 0.51 1.87e-14
MTHFD2 0.43 1.34e-121
PAK1 0.55 3.49e-23
NXPE3 0.30 3.87e-25
SLC25A36 0.10 1.91e-15
VANGL2 0.12 3.57e-01
특히 앞서 실제 환자 검체에서 타 암종 대비 간암(Liver cancer)에 대하여 뚜렷한 특이적 과메틸화를 나타낸 FAR1, LIPE, MTHFD2, NXPE3의 경우 세포주를 사용한 분석에서도 다른 암 세포주에 비해 간암 세포주에서도 확연하게 낮은 보정된 p값 (adjusted p-value)을 가져 간암 특이적이라는 것이 확인된다. 이 외에도 LDHB, PAK1과 같은 유전자가 타 세포주 대비 간암 세포주에서 뚜렷한 메틸화를 나타낸다는 것이 확인되었다.
실시예 4 : 간암 진단 마커 후보의 진단 성능평가
선별된 유전자의 간세포암에서 진단 마커로서의 유용성을 확인하기 위해 메틸화 정도에 따른 간세포암 진단의 정확도를 평가하였다.
진단의 정확도를 평가하기 위해서는 민감도 (sensitivity)와 특이도 (specificity)를 사용한다. 연속된 진단 검사 측정치의 가능한 절단값(cut-off value)에 대한 민감도와 특이도의 값의 계산을 통해 절단값에 따른 민감도와 특이도의 변화를 제시하는 ROC (Receiver Operating Characteristic) curve를 나타낼 수 있다. 진단의 정확도는 ROC curve 아래의 면적 (area under the ROC curve, AUC)에 의해 측정될 수 있다. AUC값은 0.5에서 1 사이의 값을 가지고 그 값이 클수록 진단 정확도가 높다고 평가한다. 만약 AUC값이 1이라면 진단 결과가 완벽히 정확한 검사임을 의미하지만 0.5일 경우 무작위 결과와 동일하다고 판단한다.
선별된 유전자를 이용한 비종양 조직과 종양 조직 간의 메틸화 정도에 따른 암 분류 정확도를 수집된 메틸레이션 데이터셋을 이용해 분석한 결과 도 14와 같이, 모든 선별된 유전자는 0.860 이상의 AUC (Area Under Curve) 값을 가져 높은 진단 정확도를 보여 선별된 유전자가 간세포암 진단에 유용한 것을 확인하였다.
실시예 5 : 선별된 유전자의 간암조직 qMSP 기반 메틸화 측정
선별된 13개 유전자 중 비종양 조직과 종양 조직간의 메틸화 정도의 차이가 크며, 종양 조직의 평균적인 메틸화 수치가 높은 FAR1, PAK1, ATL1, LIPE 4개 유전자에 대해서 암 조직을 이용한 추가적인 검증시험을 수행하였다. 선별된 4개 유전자의 간암 특이적 메틸화를 암조직에서 확인하기 위하여 메틸화 특이 PCR (quantitative methylation specific PCR, qMSP) 기법을 이용하여 암조직과 비암조직 간 메틸화 차이를 측정하였다. 이를 위하여 암 2기부터 4기까지 각 병기 별 5명씩 총 15명의 간암 환자 암조직과 암 주변 조직 쌍으로부터 게놈 DNA를 분리하였으며, 바이설파이트 처리한 후 일반화된 qMSP 실험 방법에 따라 FAR1, PAK1, ATL1, LIPE 각각을 특이적 유전 부위의 증폭 및 메틸화 정도를 관찰하고자 하였다.
또한 바이설파이트로 변환된 유전 부위에 특이적으로 결합하여 증폭하며, 해당 부위의 증폭된 값을 표준화하기 위하여 메틸화와 관련없는 ACTB 유전자를 internal control로 사용하였다.
상기 바이설파이트로 변환된 DNA를 PCR로 증폭시킨 메틸화 수준은 internal control로 사용한 ACTB의 Ct (Cycle of throshold)값으로 보정한 값인 ΔCt + 10으로 나타낸다. ΔCt + 10은 다음과 같이 정의된다:
ΔCt + 10 = (ACTB 유전자의 Ct값 - 검출 대상 유전자의 Ct값) + 10
도 16a 및 16b에서 보는 바와 같이, FAR1, ATL1, PAK1, LIPE 각 유전자의 메틸화는 암 주변 정상조직과 비교하여 대장암 조직에서 병기와 관계없이 상대적으로 높은 ΔCt + 10 값을 보여 간암에서 FAR1, ATL1, PAK1, LIPE 4개의 유전자가 과메틸화(hypermethylation)된 것을 확인할 수 있었다. 이는 선별된 FAR1, ATL1, PAK1, LIPE 유전자의 메틸화가 간암의 진단, 특히 조기진단의 바이오마커로 효과적임을 실제로 보여주는 결과이다.
이와 같은 결과로, 선별된 유전자가 간암의 진단에도 활용될 수 있음을 알 수 있었다.
이상 살펴본 바와 같이 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위 과메틸화는 간암에서 특이적으로 나타나므로, 본 발명에 따른 조성물, 키트, 칩 또는 방법을 이용하여 간암을 정확하고 신속하게 진단할 수 있을 뿐만 아니라 조기에 진단할 수 있다.

Claims (10)

  1. FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 측정하는 제제를 포함하는 간암 진단용 조성물.
  2. 제 1항에 있어서,
    상기 CpG 부위는 유전자의 전사 시작 부위로부터 +/- 2000 염기(base) (2kb) 사이에 위치하는 것을 특징으로 하는 조성물.
  3. 제1항에 있어서,
    상기 유전자의 CpG 부위의 메틸화 수준을 측정하는 제제는
    비메틸화 사이토신 또는 메틸화 사이토신 염기를 변형시키는 화합물;
    FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자 CpG 부위의 메틸화된 서열에 특이적인 프라이머; 및
    비메틸화된 서열에 특이적인 프라이머로 이루어진 군에서 선택되는 것을 특징으로 하는 조성물.
  4. 제 3항에 있어서,
    상기 비메틸화 사이토신 염기를 변형시키는 화합물은 바이설파이트(bisulfite), 이의 염이며, 상기 메틸화 사이토신 염기를 변형시키는 화합물은 Tet 단백질인 것을 특징으로 하는 조성물.
  5. FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위를 포함하는 단편을 증폭하기 위한 프라이머쌍을 포함하는 간암 진단용 키트.
  6. FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위를 포함하는 단편과 하이브리다이제이션할 수 있는 프로브가 고정되어 있는 간암 진단용 핵산 칩.
  7. 간암 발생이 의심되는 환자의 시료로부터 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자의 CpG 부위의 메틸화 수준을 측정하는 단계; 및
    상기 측정된 메틸화 수준을 정상 대조군 시료의 상기 동일한 유전자의 CpG 부위의 메틸화 수준과 비교하는 단계;를 포함하는, 간암 진단 방법.
  8. 제7항에 있어서,
    상기 메틸화 수준을 측정하는 방법은 바이설파이트 비의존적 (bisulfite-free) 검출법, 메틸화 특이적 중합효소반응 (methylation-specific polymerase chain reaction), 실시간 메틸화 특이적 중합효소반응 (real time methylation-specific polymerase chain reaction), 메틸화 DNA 특이적 결합 단백질을 이용한 PCR, 정량 PCR, 파이로시퀀싱 및 바이설파이트 시퀀싱으로 구성된 군에서 선택되는 것인 방법.
  9. 제7항에 있어서,
    상기 시료는 조직, 세포, 혈액, 혈장, 혈청, 대변 및 소변으로 구성된 군에서 선택되는 것을 특징으로 하는 방법.
  10. 간암 진단용 제제를 제조하기 위한 FAM110A, FAR1, VIM, LDHB, LIPE, INAFM1, ATL1, CELF6, MTHFD2, PAK1, NXPE3, SLC25A36 및 VANGL2로 이루어진 군에서 선택된 어느 하나 이상의 유전자 CpG 부위의 메틸화 수준을 측정하는 제제의 용도.
PCT/KR2020/013801 2019-10-14 2020-10-08 특정 유전자의 cpg 메틸화 변화를 이용한 간암 진단용 조성물 및 이의 용도 WO2021075797A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022522772A JP2022552400A (ja) 2019-10-14 2020-10-08 特定の遺伝子のcpgメチル化変化を利用した肝癌診断用組成物およびその使用
CN202080086538.2A CN114829631A (zh) 2019-10-14 2020-10-08 通过使用特定基因中的cpg甲基化变化来诊断肝癌的组合物及其用途
US17/768,601 US20240110244A1 (en) 2019-10-14 2020-10-08 Composition for diagnosing liver cancer by using cpg methylation changes in specific genes, and use thereof
EP20877421.6A EP4047102A4 (en) 2019-10-14 2020-10-08 COMPOSITION FOR DIAGNOSIS OF LIVER CANCER USING CPG METHYLATION CHANGES IN SPECIFIC GENES AND USE THEREOF
JP2023193944A JP2024020392A (ja) 2019-10-14 2023-11-14 特定の遺伝子のcpgメチル化変化を利用した肝癌診断用組成物およびその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190127218 2019-10-14
KR10-2019-0127218 2019-10-14

Publications (2)

Publication Number Publication Date
WO2021075797A2 true WO2021075797A2 (ko) 2021-04-22
WO2021075797A3 WO2021075797A3 (ko) 2021-06-10

Family

ID=75537890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013801 WO2021075797A2 (ko) 2019-10-14 2020-10-08 특정 유전자의 cpg 메틸화 변화를 이용한 간암 진단용 조성물 및 이의 용도

Country Status (6)

Country Link
US (1) US20240110244A1 (ko)
EP (1) EP4047102A4 (ko)
JP (2) JP2022552400A (ko)
KR (1) KR102472253B1 (ko)
CN (1) CN114829631A (ko)
WO (1) WO2021075797A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114369663A (zh) * 2022-01-18 2022-04-19 博尔诚(北京)科技有限公司 用于肝癌筛查的标志物、探针组合物及其应用
CN114941029A (zh) * 2022-03-28 2022-08-26 武汉艾米森生命科技有限公司 肝癌的生物标志物、核酸产品和试剂盒
CN115572765A (zh) * 2022-03-30 2023-01-06 江苏鹍远生物技术有限公司 一组肿瘤检测标志物及其用途
WO2023098788A1 (zh) * 2021-12-02 2023-06-08 广州滴纳生物科技有限公司 用于筛查肝癌的引物和探针、试剂盒及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240118676A (ko) * 2023-01-26 2024-08-05 연세대학교 산학협력단 간암 발병의 위험성 예측용 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026536A2 (en) 1999-10-13 2001-04-19 The Johns Hopkins University School Of Medicine Methods of diagnosing and treating hepatic cell proliferative disorders
US20030148326A1 (en) 2000-04-06 2003-08-07 Alexander Olek Diagnosis of diseases associated with dna transcription
KR20190127218A (ko) 2018-05-04 2019-11-13 엘지이노텍 주식회사 반도체 소자 패키지 및 이를 포함하는 광조사장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200112C (zh) * 2002-04-15 2005-05-04 上海市肿瘤研究所 肝癌相关基因启动子CpG岛的甲基化状态及其应用
US8343738B2 (en) * 2005-09-14 2013-01-01 Human Genetic Signatures Pty. Ltd. Assay for screening for potential cervical cancer
US20110217706A1 (en) * 2008-08-08 2011-09-08 Rebecca Maloney Gene methylation in cancer diagnosis
WO2012174256A2 (en) * 2011-06-17 2012-12-20 The Regents Of The University Of Michigan Dna methylation profiles in cancer
JP6056092B2 (ja) * 2012-02-29 2017-01-11 シスメックス株式会社 肝細胞癌由来の癌細胞の存否の判定方法、判定用マーカーおよびキット
JP6369857B2 (ja) * 2013-05-29 2018-08-08 シスメックス株式会社 肝細胞癌に関する情報の取得方法、ならびに肝細胞癌に関する情報を取得するためのマーカーおよびキット
EP3034624A1 (en) * 2014-12-18 2016-06-22 Hospital Clínic de Barcelona Method for the prognosis of hepatocellular carcinoma
CN106480019B (zh) * 2015-09-01 2019-05-17 杨小丽 人nudt2和pcdh8基因甲基化位点的检测和应用
CN106544406B (zh) * 2015-09-21 2019-09-13 杨小丽 定量检测slc2a14和ston2基因特异性位点甲基化水平的引物及应用
KR20170071724A (ko) * 2015-12-16 2017-06-26 연세대학교 산학협력단 간암 발생 특이적 유전자 발현에 관여하는 유전자 구조 내 cpg 섬의 dna 메틸화 변이를 이용한 간암의 예측 또는 진단 방법
WO2018045322A1 (en) * 2016-09-02 2018-03-08 Mayo Foundation For Medical Education And Research Detecting hepatocellular carcinoma

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026536A2 (en) 1999-10-13 2001-04-19 The Johns Hopkins University School Of Medicine Methods of diagnosing and treating hepatic cell proliferative disorders
US20030148326A1 (en) 2000-04-06 2003-08-07 Alexander Olek Diagnosis of diseases associated with dna transcription
KR20190127218A (ko) 2018-05-04 2019-11-13 엘지이노텍 주식회사 반도체 소자 패키지 및 이를 포함하는 광조사장치

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LIU, YIBIN ET AL., NATURE BIOTECHNOLOGY, vol. 37, 2019
RONAGHI ET AL., ANALYTICAL BIOCHEMISTRY, vol. 242, no. 1, 1 November 1996 (1996-11-01), pages 84 - 9
RONAGHI ET AL., ANALYTICAL BIOCHEMISTRY, vol. 286, no. 2, 15 November 2000 (2000-11-15), pages 282 - 288
RONAGHI ET AL., SCIENCE, vol. 281, no. 5375, 17 July 1998 (1998-07-17), pages 363 - 365
See also references of EP4047102A4
TAI ET AL., PLANT MOL. BIOL. REPORTER, vol. 8, 1990, pages 297 - 303

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098788A1 (zh) * 2021-12-02 2023-06-08 广州滴纳生物科技有限公司 用于筛查肝癌的引物和探针、试剂盒及其应用
CN114369663A (zh) * 2022-01-18 2022-04-19 博尔诚(北京)科技有限公司 用于肝癌筛查的标志物、探针组合物及其应用
CN114941029A (zh) * 2022-03-28 2022-08-26 武汉艾米森生命科技有限公司 肝癌的生物标志物、核酸产品和试剂盒
CN114941029B (zh) * 2022-03-28 2023-08-29 武汉艾米森生命科技有限公司 肝癌的生物标志物、核酸产品和试剂盒
CN115572765A (zh) * 2022-03-30 2023-01-06 江苏鹍远生物技术有限公司 一组肿瘤检测标志物及其用途
CN115572765B (zh) * 2022-03-30 2024-05-31 江苏鹍远生物技术有限公司 一组肿瘤检测标志物及其用途

Also Published As

Publication number Publication date
KR20210044159A (ko) 2021-04-22
JP2024020392A (ja) 2024-02-14
WO2021075797A3 (ko) 2021-06-10
CN114829631A (zh) 2022-07-29
EP4047102A4 (en) 2024-04-17
JP2022552400A (ja) 2022-12-15
EP4047102A2 (en) 2022-08-24
US20240110244A1 (en) 2024-04-04
KR102472253B1 (ko) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2021075797A2 (ko) 특정 유전자의 cpg 메틸화 변화를 이용한 간암 진단용 조성물 및 이의 용도
WO2011055916A2 (ko) 장암 진단을 위한 장암 특이적 메틸화 마커 유전자의 메틸화 검출방법
WO2014073785A1 (ko) 위용종 및 위암 특이적 메틸화 마커 유전자를 이용한 위용종 및 위암의 검출방법
WO2009113771A1 (ko) 폐암특이적 메틸화 마커 유전자를 이용한 폐암 검출방법
US10221458B2 (en) Method for screening cancer
WO2021154009A1 (ko) 특정 유전자의 CpG 메틸화 변화를 이용한 방광암 진단용 조성물 및 이의 용도
WO2012070861A2 (ko) 위암 진단을 위한 위암 특이적 메틸화 바이오마커
WO2012023648A1 (ko) Hoxa11 유전자의 메틸화 수준을 측정하는 제제를 포함하는 비소세포폐암 진단용 조성물 및 이를 이용한 비소세포폐암 진단방법
WO2012081928A2 (ko) 장암 진단을 위한 장암 특이적 메틸화 마커 gpm6a 유전자의 메틸화 검출방법
WO2022075788A1 (ko) LINC01798 유전자의 CpG 메틸화 변화를 이용한 대장암, 직장암 또는 대장 선종 진단용 조성물 및 이의 용도
WO2024080731A1 (ko) 췌장암 진단을 위한 메틸화 마커 유전자 및 이의 용도
WO2020096394A1 (ko) 리덕션 프로브를 이용한 유전자의 메틸화 검출 방법, 검출 키트 및 pcr 장치
WO2014168346A1 (ko) 방광암 특이적 후성유전적 마커 유전자를 이용한 방광암의 검출방법
WO2019045533A1 (ko) Line-1 조절 영역에서 cpg 부위의 메틸화 수준을 이용한 유방암 진단용 조성물, 키트, 및 이를 이용한 방법
WO2011132989A2 (ko) 자궁경부암 진단용 메틸화 마커
KR20210044441A (ko) 특정 유전자의 CpG 메틸화 변화를 이용한 대장암, 직장암 또는 대장 선종 진단용 조성물 및 이의 용도
WO2018194280A1 (ko) SDC2(Syndecan 2) 유전자의 메틸화 검출방법
KR100617649B1 (ko) 대장암 특이적 발현감소 유전자의 메틸화된 프로모터를 함유하는 암 진단용 조성물 및 그 용도
WO2023132626A1 (ko) 특정 유전자의 cpg 메틸화 변화를 이용한 전립선암 진단용 조성물 및 이의 용도
WO2021206467A1 (ko) GLRB 유전자의 CpG 메틸화 변화를 이용한 대장암, 직장암 또는 대장 선종 진단용 조성물 및 이의 용도
WO2024144237A1 (ko) 폐암 특이적 메틸화 마커 유전자를 이용한 폐암 검출 방법
WO2024144235A1 (ko) 폐암 특이적 메틸화 마커 유전자를 이용한 폐암 검출 방법
WO2011049322A2 (ko) 유방암 진단을 위한 유방암 특이적 메틸화 마커 유전자의 메틸화 검출방법
WO2020096247A1 (ko) 유방암 조직 내 세포 유래 돌연변이를 검출하기 위한 프로브 제조 및 검출 방법
Brena et al. Bio-COBRA: absolute quantification of DNA methylation in electrofluidics chips

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877421

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2022522772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020877421

Country of ref document: EP

Effective date: 20220516