WO2024043231A1 - フラックス及び電子部品の製造方法 - Google Patents

フラックス及び電子部品の製造方法 Download PDF

Info

Publication number
WO2024043231A1
WO2024043231A1 PCT/JP2023/030134 JP2023030134W WO2024043231A1 WO 2024043231 A1 WO2024043231 A1 WO 2024043231A1 JP 2023030134 W JP2023030134 W JP 2023030134W WO 2024043231 A1 WO2024043231 A1 WO 2024043231A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
acid
flux
solvent
less
Prior art date
Application number
PCT/JP2023/030134
Other languages
English (en)
French (fr)
Inventor
知久 川中子
泰弘 梶川
邦昭 佐藤
文香 白川
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Publication of WO2024043231A1 publication Critical patent/WO2024043231A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to flux and a method for manufacturing electronic components.
  • This application claims priority based on Japanese Patent Application No. 2022-135236 filed in Japan on August 26, 2022, the contents of which are incorporated herein.
  • Patent Document 1 in order to transfer heat generated by die operation to a heat sink with higher efficiency, a thermal interface material containing a polymer is used between the die and a lid equipped with a heat sink. It has been proposed to sandwich and use an interface material (TIM).
  • TIM interface material
  • an indium alloy sheet a sheet with an increased indium content
  • an indium alloy sheet for example, an alloy containing 90% by mass of In and 10% by mass of Ag is used.
  • Indium has lower hardness than other metal elements, and the indium alloy sheet has high conformability and high adhesion to the surfaces of the die and lid. Therefore, the indium alloy sheet has a high heat transfer efficiency from the die to the lid with the heat sink.
  • the indium alloy sheet it is possible to increase the efficiency of heat dissipation due to die operation.
  • the indium alloy sheet containing Ag has higher thermal conductivity than the indium sheet made only of indium, it is possible to further improve the heat dissipation efficiency.
  • a lid equipped with a heat sink and a die are joined by primary reflow using an indium alloy sheet whose surface is coated with flux to obtain a semiconductor package. Since indium has a relatively low melting point of 156° C., primary reflow bonding is performed under lower temperature conditions than normal bonding.
  • the flux does not spread over the surface of the indium sheet and accumulates on the joint surface, resulting in voids on the joint surface. May occur in large quantities. These voids reduce the efficiency of heat transfer from the chip to the lid with a heat sink via the indium sheet, and reduce the efficiency of heat dissipation due to die operation.
  • a second reflow is performed to bond the solder balls to the back surface of the semiconductor package.
  • This secondary reflow is performed at a high temperature of, for example, 250° C. in order to melt the solder balls. Since the secondary reflow is at a high temperature, the activator and the like are likely to gasify and form voids.
  • an object of the present invention is to provide a flux that can suppress the generation of voids when performing continuous reflow under different temperature conditions using an indium alloy sheet.
  • the present invention includes the following aspects.
  • [1] Contains a rosin ester, an organic acid (A), and a solvent (S), and the organic acid (A) is heated to 260°C at a heating rate of 10°C/min in thermogravimetry.
  • the solvent (S) contains a dimer acid (A1) having a weight loss rate of 1% by mass or less, and the solvent (S) has a weight loss rate of 99 mass% when heated to 150°C at a heating rate of 6°C/min in thermogravimetry. % or more of a solvent (S1).
  • [6] The flux according to any one of [1] to [5], further containing an azole.
  • [7] The flux according to any one of [1] to [6], wherein the content of the dimer acid (A1) is 10% by mass or more and 60% by mass or less based on the total mass of the flux.
  • [8] The flux according to any one of [1] to [7], wherein the content of the rosin ester is 15% by mass or more and 60% by mass or less based on the total mass of the flux.
  • a method for manufacturing an electronic component including a semiconductor package including the step (i) of obtaining a semiconductor package including a bonded body in which a die and a lid are bonded together via a thermal interface material (TIM); a step (ii) of bonding solder balls to the back of the package to obtain an electronic component;
  • the TIM is a sheet made of an alloy of indium and silver; and the die, or between the TIM and the lid, the flux according to any one of [1] to [8] is interposed between the die and the lid by a reflow method.
  • a method for manufacturing an electronic component including a heating operation (1) for bonding the solder ball and the semiconductor package together, and the step (ii) includes a heating operation (2) for bonding the solder ball and the semiconductor package by a reflow method.
  • the temperature conditions for the heating operation (1) are 150 to 250°C
  • the temperature conditions for the heating operation (2) are 200 to 280°C.
  • FIG. 2 is a cross-sectional view showing a lid, a TIM, and a die in an embodiment of a method for manufacturing an electronic component.
  • FIG. 2 is a cross-sectional view showing a process of applying flux to a TIM and a die in an embodiment of a method for manufacturing an electronic component.
  • FIG. 2 is a cross-sectional view showing a bonded body obtained by fixing a lid to a substrate using TIM after applying flux in an embodiment of a method for manufacturing an electronic component.
  • FIG. 2 is a cross-sectional view showing an electronic component obtained by bonding solder balls to the back surface of a semiconductor package in an embodiment of a method for manufacturing an electronic component.
  • the flux according to this embodiment contains a rosin ester, an organic acid (A), and a solvent (S).
  • the organic acid (A) includes a dimer acid (A1) whose weight loss rate is 1% by mass or less when heated to 260°C at a temperature increase rate of 10°C/min in thermogravimetry.
  • the solvent (S) includes a solvent (S1) whose weight loss rate when heated to 150° C. at a heating rate of 6° C./min in thermogravimetry is 99% by mass or more.
  • the flux according to this embodiment is suitably used in applications where continuous reflow is performed for mounting indium alloy sheets and joining solder balls.
  • reflow is performed at a low temperature (for example, 170° C.) near the melting point of indium, and the indium alloy sheet is mounted.
  • the solder balls are bonded to the substrate by performing reflow at a high temperature (for example, 250° C.) near the melting point of the solder alloy.
  • the solvent (S1) evaporates during the primary reflow. As a result, when the indium alloy sheet is melted, voids originating from the solvent (S1) are not generated. Further, in the flux according to the present embodiment, the rosin ester and dimer acid (A1) are difficult to volatilize even at high temperatures during secondary reflow, so it is possible to suppress the generation of voids.
  • Rosin ester is an ester resin obtained by reacting a natural resin or a chemically modified natural resin (rosin derivative) with alcohol.
  • the rosin ester may have a hydroxyl group in addition to the carboxyl group.
  • the alcohol include glycerin, pentaerythritol, and the like.
  • the term “natural resin” that can be used as a raw material for rosin ester include gum rosin, wood rosin, and tall oil rosin.
  • the term “natural resin” includes a mixture of abietic acid and its isomers, which is mainly composed of abietic acid.
  • the total content of abietic acid and abietic acid isomers in the natural resin is, for example, 40% by mass or more and 80% by mass or less based on the natural resin.
  • the term “main component” refers to a component whose content in the compound is 40% by mass or more among the components constituting the compound.
  • Typical isomers of abietic acid include neoabietic acid, parastric acid, levopimaric acid, and the like.
  • the structure of abietic acid is shown below.
  • chemically modified natural resins that can be used as raw materials for rosin esters refers to hydrogenation, dehydrogenation, neutralization, alkylene oxide addition, amidation of the "natural resin”. , dimerization, multimerization, and Diels-Alder cycloaddition.
  • rosin derivatives include purified rosin, modified rosin, and the like.
  • modified rosin include hydrogenated rosin, polymerized rosin, polymerized hydrogenated rosin, disproportionated rosin, acid-modified rosin, acid-modified hydrogenated rosin, acid-modified disproportionated rosin, and acid-anhydrous rosin.
  • Modified disproportionated rosin, phenol-modified rosin and ⁇ , ⁇ -unsaturated carboxylic acid modified products (acrylic acid-modified rosin, maleic acid-modified rosin, fumaric acid-modified rosin, etc.), as well as purified products, hydrides and disproportionated products of the polymerized rosin. and purified products, hydrides and disproportionated products of the ⁇ , ⁇ -unsaturated carboxylic acid modified product, rosin alcohol, rosin amine, hydrogenated rosin alcohol, rosin soap, hydrogenated rosin soap, acid-modified rosin soap, etc. .
  • rosin esters are preferred because of their high heat resistance and low weight loss rate.
  • hydrogenated rosin is preferable.
  • Glycerin is preferred as the alcohol that is a raw material for rosin ester.
  • the rosin ester is preferably one obtained by reacting hydrogenated rosin with glycerin.
  • the weight loss rate of the rosin ester when heated to 260°C at a heating rate of 10°C/min in thermogravimetry is preferably 15% by mass or less, more preferably 10% by mass or less, and 8% by mass or less. It is more preferably at most 7.5% by mass, particularly preferably at most 7.5% by mass.
  • the lower the weight loss rate of the rosin ester the more preferable it is.
  • the lower limit of the weight reduction rate of the rosin ester is not particularly limited as long as the effects of the present invention can be achieved, and may be, for example, 0.1% by mass or 0% by mass in terms of measurement. By keeping the weight loss rate of the rosin ester below the above upper limit, it becomes easier to suppress the generation of voids when performing continuous reflow using an indium alloy sheet.
  • the acid value of the rosin ester is preferably 0.01 mgKOH/g or more and 50 mgKOH/g or less, more preferably 0.1 mgKOH/g or more and 30 mgKOH/g or less, and 0.5 mgKOH/g or more and 20 mgKOH/g or less. It is more preferable that it is, and it is especially preferable that it is 2 mgKOH/g or more and 10 mgKOH/g or less.
  • the acid value of the rosin ester is at least the lower limit of the above range, it becomes easier to increase the activity of the flux.
  • the acid value of the rosin ester is less than or equal to the upper limit within the above range, it becomes easier to improve solder meltability and wettability.
  • the acid value means the number of milligrams of potassium hydroxide required to neutralize the carboxyl groups of 1 g of the sample to be measured.
  • the acid value of rosin ester is measured, for example, according to 3.1 Neutralization titration method of JIS K 0070 "Testing methods for acid value, saponification value, ester value, iodine value, hydroxyl value, and unsaponifiable substances of chemical products" be able to.
  • the acid value measured by this method is the weighted average of the acid values of all types of rosin esters contained in the flux.
  • the softening point of the rosin ester is preferably 85°C or more and 110°C or less, more preferably 90°C or more and 105°C or less, and even more preferably 90°C or more and 100°C or less.
  • the softening point of the rosin ester is equal to or higher than the lower limit within the above range, the heat resistance of the rosin ester can be easily improved.
  • the softening point of the rosin ester is below the upper limit within the above range, it becomes easier to increase the fluidity of the flux when melting the solder.
  • the softening point of rosin ester can be measured by the ring and ball method.
  • Examples of the ring and ball method include the method described in JIS K 5902.
  • rosin ester may be used alone, or two or more types may be used in combination.
  • the content of rosin ester in the flux is preferably 10% by mass or more and 70% by mass or less, and 15% by mass or more and 60% by mass or less, based on the total mass (100% by mass) of the flux. is more preferable.
  • Organic acid (A) contained in the flux according to this embodiment contains dimer acid (A1).
  • the organic acid (A) contained in the flux according to the present embodiment may contain other organic acids in addition to the dimer acid (A1).
  • the dimer acid (A1) has a weight loss rate of 1% by mass or less, preferably 0.8% by mass or less, when heated to 260°C at a temperature increase rate of 10°C/min in thermogravimetry. It is more preferably at most .6% by mass, even more preferably at most 0.4% by mass, particularly preferably at most 0.3% by mass, and most preferably at most 0.2% by mass. .
  • the lower the weight loss rate of dimer acid (A1) the better.
  • the lower limit of the weight loss rate of dimer acid (A1) is not particularly limited as long as the effects of the present invention are achieved, and may be, for example, 0.01% by mass, or 0% by mass when measured. Good too.
  • Dimer acid (A1) has a dibasic acid obtained by dimerization of unsaturated fatty acids as a main component.
  • the dimer acid (A1) includes a hydrogenated dimer acid obtained by hydrogenating a dibasic acid obtained by dimerizing an unsaturated fatty acid.
  • the unsaturated fatty acid that is the raw material for dimer acid (A1) preferably has 18 carbon atoms.
  • the dibasic acid, which is the main component of the dimer acid (A1), preferably has 36 carbon atoms and is at least one type selected from the group consisting of dimers bonded to unsaturated fatty acids having 18 carbon atoms. is more preferable.
  • Examples of unsaturated fatty acids that are raw materials for dimer acid (A1) include oleic acid, linoleic acid, vaccenic acid, elaidic acid, linolenic acid, acrylic acid, and methacrylic acid.
  • the unsaturated fatty acid that is the raw material for dimer acid (A1) is preferably one or more selected from the group consisting of oleic acid, linoleic acid, vaccenic acid, and elaidic acid, and preferably selected from the group consisting of oleic acid and linoleic acid. It is more preferable that one or more types of One type of dimer acid (A1) may be used alone, or two or more types may be used in combination.
  • the dimer acid (A1) may have an unsaturated hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, etc.
  • the degree of unsaturation of the dimer acid (A1) may be a value as shown below.
  • the degree of unsaturation of dimer acid (A1) is expressed as ⁇ (2m+2)-n ⁇ /2, where m is the number of carbon atoms and n is the number of hydrogen atoms in the molecule of dimer acid (A1). is the value to be used.
  • the dibasic acid that is the main component of dimer acid (A1) has two carboxy groups. The degree of unsaturation of this dibasic acid is 2 or more.
  • the degree of unsaturation of the dimer acid (A1) is preferably 2 or more and 20 or less, more preferably 2 or more and 15 or less, even more preferably 2 or more and 10 or less, particularly preferably 2 or more and 8 or less.
  • the degree of unsaturation which is the weighted average of those degrees of unsaturation, is preferably 2 or more and 10 or less, and 2 or more and 8 or less. It is more preferably 2 or more and 6 or less, particularly preferably 2.5 or more and 4.5 or less, and most preferably 3 or more and 4 or less.
  • dimer acid (A1) may be used alone, or two or more types may be used in combination.
  • the content of dimer acid (A1) is preferably 5% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 60% by mass or less, based on the total mass (100% by mass) of the flux.
  • the content is preferably 15% by mass or more and 60% by mass or less.
  • the total content of the dimer acid having 36 carbon atoms is preferably 70% by mass or more and 100% by mass or less, and 80% by mass or more and 100% by mass, based on the total mass (100% by mass) of the dimer acid (A1).
  • the content is more preferably 90% by mass or more and 100% by mass or less, particularly preferably 95% by mass or more and 100% by mass or less, and 98% by mass or more and 100% by mass or less. Most preferably, it may be measured at 100% by mass.
  • each dimer acid can be analyzed using a liquid chromatography/Fourier transform mass spectrometer.
  • the ratio of the peak area derived from each dimer acid having 36 carbon atoms to the total peak area (100%) derived from all molecules contained in dimer acid (A1) is within the following range. It is preferable that it be within.
  • the peak area derived from a dimer acid with an unsaturation degree of 2 is preferably 5% or more and 50% or less, more preferably 15% or more and 40% or less, and even more preferably 20% or more and 30% or less. preferable.
  • the peak area ratio of the dimer acid with an unsaturation degree of 3 is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less, and even more preferably 30% or more and 50% or less. preferable.
  • the peak area ratio of the dimer acid with an unsaturation degree of 4 is preferably 2% or more and 30% or less, more preferably 3% or more and 20% or less, and even more preferably 5% or more and 15% or less. preferable.
  • the peak area ratio of dimer acid with an unsaturation degree of 5 is preferably 0.1% or more and 15% or less, more preferably 0.5% or more and 10% or less, and 1% or more and 5% or less. It is even more preferable that there be.
  • the peak area ratio of the dimer acid with an unsaturation degree of 6 is preferably 1% or more and 30% or less, more preferably 2% or more and 20% or less, and even more preferably 3% or more and 15% or less. preferable.
  • the peak area ratio of the dimer acid with an unsaturation degree of 7 is preferably 2% or more and 30% or less, more preferably 3% or more and 20% or less, and even more preferably 5% or more and 15% or less. preferable.
  • the peak area ratio of dimer acid with an unsaturation degree of 8 is preferably 0.1% or more and 15% or less, more preferably 0.5% or more and 10% or less, and 1% or more and 5% or less. It is even more preferable that there be.
  • the content of the 36-carbon dimer acids is based on the total mass (100% by mass) of the dimer acid (A1). It is preferably within the following range.
  • the content of the dimer acid with an unsaturation degree of 2 is preferably 5% by mass or more and 50% by mass or less, more preferably 15% by mass or more and 40% by mass or less, and 20% by mass or more and 30% by mass or less. It is even more preferable that there be.
  • the content of the dimer acid with an unsaturation degree of 3 is preferably 10% by mass or more and 70% by mass or less, more preferably 20% by mass or more and 60% by mass or less, and 30% by mass or more and 50% by mass or less.
  • the content of the dimer acid with an unsaturation degree of 4 is preferably 2% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less, and 5% by mass or more and 15% by mass or less. It is even more preferable that there be.
  • the content of dimer acid with an unsaturation degree of 5 is preferably 0.1% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, and 1% by mass or more and 5% by mass or less. It is more preferably less than % by mass.
  • the content of the dimer acid with an unsaturation degree of 6 is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less. It is even more preferable that there be.
  • the content of dimer acid with an unsaturation degree of 7 is preferably 2% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less, and 5% by mass or more and 15% by mass or less. It is even more preferable that there be.
  • the content of dimer acid with an unsaturation degree of 8 is preferably 0.1% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, and 1% by mass or more and 5% by mass or less. It is more preferably less than % by mass.
  • Examples of other organic acids include carboxylic acids and organic sulfonic acids.
  • Examples of carboxylic acids include aliphatic carboxylic acids and aromatic carboxylic acids.
  • Examples of aliphatic carboxylic acids include aliphatic monocarboxylic acids and aliphatic dicarboxylic acids.
  • Examples of aliphatic monocarboxylic acids include caproic acid, enanthic acid, caprylic acid, pelargonic acid, isoperargonic acid, capric acid, caproleic acid, lauric acid (dodecanoic acid), undecanoic acid, lindelic acid, tridecanoic acid, and myristolein.
  • Acid pentadecanoic acid, palmitic acid, isopalmitic acid, palmitoleic acid, hyragonic acid, hydronocarpic acid, margaric acid, isostearic acid, elaidic acid, petroselic acid, moroctic acid, eleostearic acid, tarylic acid, vaccenic acid, riminoleic acid, Examples include vernolic acid, sterculic acid, nonadecanoic acid, eicosanoic acid, stearic acid, 12-hydroxystearic acid, oleic acid, linoleic acid, linolenic acid, myristic acid, and the like.
  • aliphatic dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, eicosandioic acid, tartaric acid, 2,4- Diethylglutaric acid, diglycolic acid, 2-methylnonanedioic acid, 4-(methoxycarbonyl)-2,4-dimethylundecanedioic acid, and 4,6-bis(methoxycarbonyl)-2,4,6-trimethyltri Examples include decanedioic acid and 8,9-bis(methoxycarbonyl)-8,9-dimethylhexadecanedioic acid.
  • aromatic carboxylic acids examples include salicylic acid, dibutylaniline diglycolic acid, terephthalic acid, parahydroxyphenylacetic acid, phenylsuccinic acid, phthalic acid, benzoic acid, 2,3-dihydroxybenzoic acid, 2-quinolinecarboxylic acid, -Hydroxybenzoic acid, p-anisic acid, picolinic acid, dipicolinic acid, 3-hydroxypicolinic acid and the like.
  • carboxylic acid examples include tris(2-carboxyethyl) isocyanurate, 1,3-cyclohexanedicarboxylic acid, and the like.
  • hydroxycarboxylic acids examples include 2,2-bis(hydroxymethyl)propionic acid, 2,2-bis(hydroxymethyl)butanoic acid, citric acid, isocitric acid, malic acid, tartaric acid, etc. -bis(hydroxymethyl)propionic acid is preferred.
  • carboxylic acids include other dimer acids (excluding dimer acid (A1)).
  • dimer acids include dimer acid (A1)) include hydrogenated dimer acids (excluding dimer acid (A1)).
  • dimer acids have a weight loss rate of more than 1% by mass when heated to 260°C at a heating rate of 10°C/min in thermogravimetry.
  • Other raw materials for dimer acid include those mentioned above for dimer acid (A1).
  • carboxylic acids include trimer acids.
  • the main component of trimer acid is tribasic acid obtained by trimerization of unsaturated fatty acids.
  • Trimer acids include hydrogenated trimer acids. Examples of raw materials for trimer acid include those mentioned above for dimer acid (A1).
  • organic sulfonic acids include aliphatic sulfonic acids, aromatic sulfonic acids, and the like.
  • aliphatic sulfonic acids include alkanesulfonic acids and alkanolsulfonic acids.
  • organic acids may be used alone or in combination of two or more.
  • Other organic acids are preferably carboxylic acids, and preferably one or more selected from the group consisting of aliphatic monocarboxylic acids and aliphatic dicarboxylic acids.
  • the content of the other organic acids is preferably more than 0% by mass and not more than 10% by mass, and more than 0% by mass and not more than 5% by mass, based on the total mass of the flux. It is more preferable that the amount is more than 0% by mass and not more than 1.5% by mass, and particularly preferably more than 0% by mass and not more than 1% by mass.
  • the content of other organic acids is at most the upper limit within the above range, it becomes easier to suppress the generation of voids when continuous reflow is performed using the indium alloy sheet.
  • the content of dimer acid (A1) is preferably 75% by mass or more, more preferably 75% by mass or more and 100% by mass or less, and 85% by mass or more and 100% by mass or less, based on the total mass of the organic acid (A). is more preferable, and particularly preferably 90% by mass or more and 100% by mass or less.
  • the content of dimer acid (A1) is at least the lower limit within the above range, it becomes easier to suppress the generation of voids when continuous reflow is performed using an indium alloy sheet.
  • the solvent (S) contained in the flux according to this embodiment includes a solvent (S1).
  • the solvent (S) may include a solvent (S2) in addition to the solvent (S1).
  • the solvent (S1) has a weight loss rate of 99% by mass or more when heated to 150°C at a heating rate of 6°C/min in thermogravimetry.
  • the upper limit of the weight reduction rate of the solvent (S1) is not particularly limited as long as the effects of the present invention can be achieved, and may be, for example, 100% by mass.
  • Examples of the solvent (S1) include 3-methoxybutyl acetate, 2-methyl-2,4-pentanediol (hexylene glycol), 2-propanol, 1,2-butanediol, 2,3-butanediol, 2 , 3-dimethyl-2,3-butanediol, 2-methylpentane-2,4-diol, 1-ethynyl-1-cyclohexanol, 1,4-cyclohexanediol, ethylene glycol monobutyl ether (butyl glycol), etc. and at least one selected from the group consisting of 3-methoxybutyl acetate and 2-methyl-2,4-pentanediol (hexylene glycol).
  • the boiling point of the solvent (S1) is preferably 200°C or less, more preferably 150°C or more and 200°C or less, and even more preferably 170°C or more and 200°C or less.
  • boiling point refers to the temperature of a liquid at which the saturated vapor pressure of the liquid is equal to 1 atmosphere (ie, 1013 hPa).
  • the solvent (S1) may be used alone or in combination of two or more.
  • the total content of the solvent (S1) is preferably 10% by mass or more and 90% by mass or less, more preferably 15% by mass or more and 85% by mass or less, based on the total mass (100% by mass) of the flux.
  • the content is preferably 20% by mass or more and 75% by mass or less.
  • the solvent (S2) has a weight loss rate of less than 99% by mass when heated to 150°C at a heating rate of 6°C/min in thermogravimetry.
  • the lower limit of the weight reduction rate of the solvent (S2) is not particularly limited as long as the effects of the present invention can be achieved, and may be, for example, 10% by mass.
  • the boiling point of the solvent (S2) is preferably higher than 200°C and lower than 350°C, more preferably higher than 250°C and lower than 350°C, even more preferably higher than 250°C and lower than 330°C.
  • Examples of the solvent (S2) include alcohol solvents, glycol ether solvents, terpineols, and the like.
  • alcohol solvents examples include 1,3-butanediol, 1,4-butanediol, isobornylcyclohexanol, 2,4-diethyl-1,5-pentanediol, 2,2-dimethyl-1,3-propane.
  • Diol 2,5-dimethyl-2,5-hexanediol, 2,5-dimethyl-3-hexyne-2,5-diol, 1,1,1-tris(hydroxymethyl)propane, 2-ethyl-2- Hydroxymethyl-1,3-propanediol, 2,2'-oxybis(methylene)bis(2-ethyl-1,3-propanediol), 2,2-bis(hydroxymethyl)-1,3-propanediol, 1,2,6-trihydroxyhexane, 1,4-cyclohexanedimethanol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 2-hexyl-1-decanol octanediol, etc. can be mentioned.
  • Glycol ether solvents include diethylene glycol mono-2-ethylhexyl ether, ethylene glycol monophenyl ether, ethylene glycol monohexyl ether (hexyl glycol), diethylene glycol monohexyl ether (hexyl diglycol), diethylene glycol dibutyl ether, triethylene glycol monobutyl ether , methylpropylene triglycol, triethylene glycol butyl methyl ether, tetraethylene glycol, tetraethylene glycol dimethyl ether, tripropylene glycol-n-butyl ether, and the like.
  • terpineols examples include ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol, terpineol mixture (that is, a mixture whose main component is ⁇ -terpineol and contains ⁇ -terpineol or ⁇ -terpineol), and the like.
  • the solvent examples include dioctyl sebacate (DOS) and liquid paraffin.
  • the solvent (S2) may be used alone or in combination of two or more.
  • the total content of the solvent (S) is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 75% by mass or less, based on the total mass (100% by mass) of the flux. preferable.
  • the content of the solvent (S1) is preferably 70% by mass or more, more preferably 70% by mass or more and 100% by mass or less, and 80% by mass or more and 100% by mass, based on the total mass of the solvent (S). It is more preferably at least 85% by mass and at most 100% by mass, most preferably at least 90% by mass and at most 100% by mass.
  • the content of the solvent (S1) is at least the lower limit within the above range, it becomes easier to suppress the generation of voids when continuous reflow is performed using an indium alloy sheet.
  • the flux in this embodiment may contain other components as necessary.
  • other components include rosins other than rosin esters, activators other than organic acids (A), thixotropic agents, metal deactivators, surfactants, silane coupling agents, antioxidants, colorants, etc. It will be done.
  • rosins include the above-mentioned natural resins and rosin derivatives obtained by chemically modifying these natural resins (excluding rosin esters).
  • rosin derivatives obtained by chemically modifying natural resins refers to hydrogenation, dehydrogenation, neutralization, addition of alkylene oxide, etc. to the "natural resin". It includes those subjected to one or more treatments selected from the group consisting of amidation, dimerization, multimerization, and Diels-Alder cycloaddition.
  • rosin derivatives include purified rosin, modified rosin, and the like.
  • modified rosin include hydrogenated rosin, polymerized rosin, polymerized hydrogenated rosin, disproportionated rosin, acid-modified rosin, acid-modified hydrogenated rosin, acid-modified disproportionated rosin, and acid-anhydrous rosin.
  • Modified disproportionated rosin, phenol-modified rosin and ⁇ , ⁇ -unsaturated carboxylic acid modified products (acrylic acid-modified rosin, maleic acid-modified rosin, fumaric acid-modified rosin, etc.), as well as purified products, hydrides and disproportionated products of the polymerized rosin. and purified products, hydrides and disproportionated products of the ⁇ , ⁇ -unsaturated carboxylic acid modified product, rosin alcohol, rosin amine, hydrogenated rosin alcohol, rosin soap, hydrogenated rosin soap, acid-modified rosin soap, etc. .
  • the rosin amine is, for example, a mixture of dehydro abiethylamine, dihydro abiethylamine and tetrahydro abiethylamine, meaning a so-called disproportionated rosin amine.
  • the structures of dehydroabiethylamine, dihydroabiethylamine, and tetrahydroabiethylamine are shown below.
  • rosins may be used alone or in combination of two or more.
  • the content of rosin ester is preferably 70% by mass or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less, and 90% by mass or more and 100% by mass or less, based on the total mass (100% by mass) of the rosin.
  • the following is more preferable, particularly preferably 95% by mass or more and 100% by mass or less, and may be 100% by mass.
  • the content of rosin ester is below the lower limit within the above range, it becomes easier to suppress the generation of voids when continuous reflow is performed using an indium alloy sheet.
  • Other activators include, for example, amines, halogen compounds, organic phosphorus compounds, and the like.
  • amine examples include azoles, guanidines, alkanolamines, alkylamine compounds, amine polyoxyalkylene adducts, and the like.
  • azoles examples include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl- 2-Ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino -6-[2'-methylimidazolyl-
  • guanidines examples include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, 1,3-di-o-cumenylguanidine, 1,3-di- Examples include o-cumenyl-2-propionylguanidine.
  • alkanolamines examples include N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine, N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine, monoethanolamine, diethanolamine. , triethanolamine, 1-amino-2-propanol, bis(2-hydroxypropyl)amine, tris(2-hydroxypropyl)amine, and the like.
  • alkylamine compound examples include ethylamine, triethylamine, ethylenediamine, triethylenetetramine, cyclohexylamine, hexadecylamine, and stearylamine.
  • Examples of the amine polyoxyalkylene adduct include terminal diamine polyalkylene glycol, aliphatic amine polyoxyalkylene adduct, aromatic amine polyoxyalkylene adduct, and polyvalent amine polyoxyalkylene adduct.
  • Examples of the alkylene oxide added to the amine polyoxyalkylene adduct include ethylene oxide, propylene oxide, butylene oxide, and the like.
  • Terminal diamine polyalkylene glycol is a compound in which both ends of polyalkylene glycol are aminated.
  • Examples of the terminal diamine polyalkylene glycol include terminal diamine polyethylene glycol, terminal diamine polypropylene glycol, terminal diamine polyethylene glycol-polypropylene glycol copolymer, and the like.
  • Examples of the terminal diamine polyethylene glycol-polypropylene glycol copolymer include polyethylene glycol-polypropylene glycol copolymer bis(2-aminopropyl) ether and polyethylene glycol-polypropylene glycol copolymer bis(2-aminoethyl) ether. It will be done.
  • Aliphatic amine polyoxyalkylene adducts, aromatic amine polyoxyalkylene adducts, and polyvalent amine polyoxyalkylene adducts are those in which a polyoxyalkylene group is bonded to the nitrogen atom of an amine.
  • the amines include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, hexamethylenediamine, diethylenetriamine, laurylamine, stearylamine, oleylamine, tallow amine, hardened tallow amine, tallow propyldiamine, and meta-xylene.
  • Diamine Diamine, tolylene diamine, paraxylene diamine, phenylene diamine, isophorone diamine, 1,10-decane diamine, 1,12-dodecane diamine, 4,4-diaminodicyclohexylmethane, 4,4-diaminodiphenylmethane, butane-1,1 , 4,4-tetraamine, pyrimidine-2,4,5,6-tetraamine, and the like.
  • One type of amine may be used alone, or two or more types may be used in combination.
  • amine azoles are preferred, and 2-phenylimidazole is more preferred.
  • the content of the amine is preferably 0.1% by mass or more and 10% by mass or less, and 0.1% by mass or more and 5% by mass or less, based on the total mass of the flux. It is more preferable that
  • the flux contains an amine
  • the content of the amine is at least the lower limit of the range, it becomes easier to improve the wettability of the flux.
  • the content of the amine is at most the upper limit of the range, the ability to suppress generation of voids can be easily enhanced.
  • Halogen compound examples include amine hydrohalides, organic halogen compounds other than amine hydrohalides, and the like.
  • Amine hydrohalide is a compound obtained by reacting an amine with hydrogen halide. Examples of the amine here include those mentioned above in ⁇ Amine>>.
  • halogen compounds other than amine hydrohalides include salts obtained by reacting amines with tetrafluoroboric acid (HBF 4 ), and complexes obtained by reacting amines with boron trifluoride (BF 3 ). can also be used.
  • the complex include boron trifluoride piperidine.
  • halogen compounds other than amine hydrohalides include halogenated aliphatic compounds.
  • a halogenated aliphatic hydrocarbon group refers to an aliphatic hydrocarbon group in which some or all of the hydrogen atoms constituting the group are replaced with halogen atoms.
  • the halogenated aliphatic compound include halogenated aliphatic alcohols and halogenated heterocyclic compounds.
  • halogenated aliphatic alcohol examples include 1-bromo-2-propanol, 3-bromo-1-propanol, 3-bromo-1,2-propanediol, 1-bromo-2-butanol, 1,3-dibromo -2-propanol, 2,3-dibromo-1-propanol, 1,4-dibromo-2-butanol, trans-2,3-dibromo-2-butene-1,4-diol, and the like.
  • halogenated heterocyclic compound examples include a compound represented by the following general formula (h1).
  • R h11 - (R h12 ) n (h1) [In the formula, R h11 represents an n-valent heterocyclic group. R h12 represents a halogenated aliphatic hydrocarbon group. ]
  • Examples of the heterocycle of the n-valent heterocyclic group in R h11 include a ring structure in which some of the carbon atoms constituting an aliphatic hydrocarbon or aromatic hydrocarbon ring are substituted with heteroatoms.
  • Examples of the heteroatom in this heterocycle include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • This heterocycle is preferably a 3- to 10-membered ring, more preferably a 5- to 7-membered ring.
  • Examples of this heterocycle include an isocyanurate ring.
  • the halogenated aliphatic hydrocarbon group in R h12 preferably has 1 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 3 to 5 carbon atoms.
  • R h12 is preferably a brominated aliphatic hydrocarbon group or a chlorinated aliphatic hydrocarbon group, more preferably a brominated aliphatic hydrocarbon group, and even more preferably a brominated saturated aliphatic hydrocarbon group.
  • the halogenated heterocyclic compound include tris-(2,3-dibromopropyl)isocyanurate.
  • halogen compounds other than amine hydrohalides include carboxyl iodides such as 2-iodobenzoic acid, 3-iodobenzoic acid, 2-iodopropionic acid, 5-iodosalicylic acid, and 5-iodoanthranilic acid.
  • carboxyl iodides such as 2-iodobenzoic acid, 3-iodobenzoic acid, 2-iodopropionic acid, 5-iodosalicylic acid, and 5-iodoanthranilic acid.
  • Compounds Chlorinated carboxyl compounds such as 2-chlorobenzoic acid and 3-chloropropionic acid; Halogenation of brominated carboxyl compounds such as 2,3-dibromopropionic acid, 2,3-dibromosuccinic acid and 2-bromobenzoic acid Examples include carboxyl compounds.
  • halogen compounds other than amine hydrohalides include organic chloro compounds.
  • examples of the organic chloro compound include chloroalkanes, chlorinated fatty acid esters, chlorendic acid, chlorendic acid anhydride, and the like.
  • the halogen compounds may be used alone or in combination of two or more.
  • Organic phosphorus compounds examples include acidic phosphoric acid esters, acidic phosphonic acid esters, acidic phosphinic acid esters, and the like.
  • the organic phosphorus compounds may be used alone or in combination of two or more.
  • thixotropic agent examples include ester-based thixotropic agents, amide-based thixotropic agents, sorbitol-based thixotropic agents, and the like.
  • ester-based thixotropic agents examples include ester compounds, and specific examples include hydrogenated castor oil, ethyl myristate, and the like.
  • amide thixotropic agents include monoamides, bisamides, and polyamides.
  • monoamides include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxystearic acid amide, saturated fatty acid amide, oleic acid amide, erucic acid amide, unsaturated fatty acid amide, 4-methylbenzamide (p -toluamide), p-toluene methanamide, aromatic amide, hexamethylene hydroxystearamide, substituted amide, methylolstearamide, methylolamide, fatty acid ester amide, and the like.
  • Examples of bisamides include ethylene bis fatty acid (fatty acid carbon number C6-24) amide, ethylene bishydroxy fatty acid (fatty acid carbon number C6-24) amide, hexamethylene bis fatty acid (fatty acid carbon number C6-24) amide, Examples include hexamethylene bishydroxy fatty acid (fatty acid carbon number C6-24) amide, aromatic bisamide, and the like.
  • Examples of fatty acids that are raw materials for the bisamide include stearic acid (C18 carbon atoms), oleic acid (C18 carbon atoms), and lauric acid (C12 carbon atoms).
  • polyamides such as saturated fatty acid polyamide, unsaturated fatty acid polyamide, aromatic polyamide, 1,2,3-propanetricarboxylic acid tris(2-methylcyclohexylamide), cyclic amide oligomer, and acyclic amide oligomer. It will be done.
  • the cyclic amide oligomers include amide oligomers obtained by cyclic polycondensation of dicarboxylic acid and diamine, amide oligomers obtained by cyclic polycondensation of tricarboxylic acid and diamine, amide oligomers obtained by cyclic polycondensation of dicarboxylic acid and triamine, and tricarboxylic acid.
  • amide oligomers are cyclic polycondensation of dicarboxylic acid and tricarboxylic acid and diamine
  • amide oligomers are cyclic polycondensation of dicarboxylic acid and tricarboxylic acid and triamine
  • amide oligomers formed by cyclic polycondensation of tricarboxylic acids and diamines and triamines amide oligomers formed by cyclic polycondensation of dicarboxylic acids and tricarboxylic acids, and diamines and triamines, etc. .
  • the acyclic amide oligomer is an amide oligomer obtained by acyclic polycondensation of a monocarboxylic acid and a diamine and/or triamine
  • the acyclic amide oligomer is an amide oligomer obtained by acyclic polycondensation of a dicarboxylic acid and/or tricarboxylic acid and a monoamine.
  • it may be an oligomer.
  • the monocarboxylic acid or monoamine functions as terminal molecules, resulting in an acyclic amide oligomer with a reduced molecular weight.
  • the acyclic amide oligomer when the acyclic amide oligomer is an amide compound obtained by acyclic polycondensation of dicarboxylic acid and/or tricarboxylic acid and diamine and/or triamine, it becomes an acyclic high molecular weight amide polymer. Furthermore, the acyclic amide oligomer also includes an amide oligomer in which a monocarboxylic acid and a monoamine are condensed in an acyclic manner.
  • sorbitol-based thixotropic agents examples include dibenzylidene-D-sorbitol, bis(4-methylbenzylidene)-D-sorbitol, (D-) sorbitol, monobenzylidene (-D-) sorbitol, and mono(4-methylbenzylidene). -(D-)sorbitol and the like.
  • the flux according to this embodiment may not contain a thixotropic agent or may contain a thixotropic agent.
  • a thixotropic agent When the flux according to the present embodiment contains a thixotropic agent, one type of thixotropic agent may be used alone, or two or more types may be used as a mixture.
  • Metal deactivator examples include hindered phenol compounds, nitrogen compounds, and the like.
  • the term "metal deactivator” as used herein refers to a compound that has the ability to prevent metal from deteriorating due to contact with a certain type of compound.
  • a hindered phenol compound refers to a phenol compound having a bulky substituent (for example, a branched or cyclic alkyl group such as a t-butyl group) at at least one of the ortho positions of the phenol.
  • a bulky substituent for example, a branched or cyclic alkyl group such as a t-butyl group
  • the hindered phenol compound is not particularly limited, and examples thereof include bis[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionic acid][ethylenebis(oxyethylene)], N,N '-hexamethylenebis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanamide], 1,6-hexanediolbis[3-(3,5-di-tert-butyl-4 -hydroxyphenyl)propionate], 2,2'-dihydroxy-3,3'-bis( ⁇ -methylcyclohexyl)-5,5'-dimethyldiphenylmethane, 2,2'-methylenebis(6-tert-butyl-p- cresol), 2,2'-methylenebis(6-tert-butyl-4-ethylphenol), triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate], 1 , 6-hex
  • Z is an optionally substituted alkylene group.
  • R 81 and R 82 are each independently an optionally substituted alkyl group, aralkyl group, aryl group, heteroaryl group, cycloalkyl group) or a heterocycloalkyl group.
  • R 83 and R 84 are each independently an optionally substituted alkyl group.
  • Examples of the nitrogen compound in the metal deactivator include hydrazide nitrogen compounds, amide nitrogen compounds, triazole nitrogen compounds, melamine nitrogen compounds, and the like.
  • the hydrazide nitrogen compound may be any nitrogen compound having a hydrazide skeleton, such as dodecanedioic acid bis[N2-(2hydroxybenzoyl)hydrazide], N,N'-bis[3-(3,5-di-tert) -butyl-4-hydroxyphenyl)propionyl]hydrazine, decanedicarboxylic acid disalicyloylhydrazide, N-salicylidene-N'-salicylhydrazide, m-nitrobenzhydrazide, 3-aminophthalhydrazide, phthalic acid dihydrazide, adipic acid hydrazide , oxalobis(2-hydroxy-5-octylbenzylidene hydrazide), N'-benzoylpyrrolidonecarboxylic acid hydrazide, N,N'-bis(3-(3,5-di-tert-butyl-4-hydroxyphen
  • the amide nitrogen compound may be any nitrogen compound having an amide skeleton, such as N,N'-bis ⁇ 2-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxyl]ethyl ⁇ Oxamide etc. are mentioned.
  • the triazole nitrogen compound may be any nitrogen compound having a triazole skeleton, such as N-(2H-1,2,4-triazol-5-yl)salicylamide, 3-amino-1,2,4-triazole, Examples include 3-(N-salicyloyl)amino-1,2,4-triazole.
  • the melamine-based nitrogen compound may be any nitrogen compound having a melamine skeleton, and includes melamine, melamine derivatives, and the like. More specifically, for example, trisaminotriazine, alkylated trisaminotriazine, alkoxyalkylated trisaminotriazine, melamine, alkylated melamine, alkoxyalkylated melamine, N2-butylmelamine, N2,N2-diethylmelamine, N, Examples include N, N', N', N'', N''-hexakis(methoxymethyl)melamine.
  • the metal deactivators may be used alone or in combination of two or more.
  • Examples of the surfactant include nonionic surfactants.
  • Examples of nonionic surfactants include polyoxyalkylene adducts.
  • Examples of the alkylene oxide from which the polyoxyalkylene adduct is derived include ethylene oxide, propylene oxide, butylene oxide, and the like.
  • Examples of polyoxyalkylene adducts include polyethylene glycol, polypropylene glycol, polyethylene glycol-polypropylene glycol copolymer, ethylene oxide-resorcinol copolymer, polyoxyalkylene acetylene glycols, polyoxyalkylene glyceryl ether, and polyoxyalkylene alkyl.
  • examples include ether, polyoxyalkylene ester, polyoxyalkylene alkylamide, and the like.
  • nonionic surfactants include polyoxyalkylene adducts of alcohols.
  • examples of the alcohol include aliphatic alcohols, aromatic alcohols, and polyhydric alcohols. The surfactants may be used alone or in combination of two or more.
  • antioxidants examples include hindered phenolic antioxidants such as 2,2'-dihydroxy-3,3'-bis( ⁇ -methylcyclohexyl)-5,5'-dimethyldiphenylmethane.
  • antioxidant refers to a compound that has the ability to suppress oxidation of a solder alloy.
  • the antioxidants may be used alone or in combination of two or more.
  • the flux according to the embodiments described above is suitably used for continuous reflow for mounting indium alloy sheets and joining solder balls.
  • the heat sink and the chip are bonded with the indium alloy sheet by performing the reflow at a low temperature (for example, 170° C.) near the melting point of indium to obtain a semiconductor package.
  • the solder balls are bonded to the back surface of the semiconductor package by performing reflow at a high temperature (for example, 250° C.) near the melting point of the solder alloy.
  • the flux according to this embodiment contains a solvent (S1) that easily evaporates even at low temperatures. In the primary reflow under low temperature conditions, the solvent (S1) evaporates. As a result, when the indium alloy sheet is melted, voids originating from the solvent (S1) are not generated. Since the secondary reflow is at a high temperature, the activator and the like are likely to gasify and form voids. In the flux according to this embodiment, the rosin ester and dimer acid (A1) are difficult to gasify even at high temperatures. Therefore, it is possible to suppress the generation of voids during the first and second reflows under different temperature conditions.
  • the flux according to the above embodiment is used to perform primary reflow, and the die and the lid are bonded together via a thermal interface material (TIM). , obtain a semiconductor package.
  • TIM thermal interface material
  • secondary reflow is performed and solder balls are fixed to the obtained semiconductor package, thereby obtaining an electronic component.
  • the manufacturing method includes the following step (i) and step (ii).
  • FIGS. 1 to 4 A preferred embodiment of a method for manufacturing an electronic component including a semiconductor package according to this aspect will be described with reference to FIGS. 1 to 4.
  • a substrate 40 on which a lid 10, a TIM 20, and a die 41 are mounted is prepared.
  • a metallized layer 42 is provided on the surface of the die 41.
  • the metallized layer 42 may be, for example, a Ni plating layer, a Ni/Au plating layer, or the like.
  • the metallized layer 42 may have a plurality of layers having different compositions.
  • the metallized layer 42 can be formed, for example, by a method such as sputtering.
  • a metallized layer 11 is provided on the surface of the lid 10 facing the TIM 20.
  • Examples of the metallized layer 11 include the same metallized layer 42 that the die 41 has.
  • the lid 10 includes a heat sink 12 on a surface opposite to the surface facing the TIM 20.
  • Examples of the heat sink material include metals such as aluminum, iron, and copper.
  • TIM20 is a sheet made of an alloy of indium and silver.
  • the TIM 20 has a plate shape.
  • the dimensions of the TIM 20 are equal to or smaller than the dimensions of the metallized layer 11 of the lid 10 and the metallized layer 42 of the die 41.
  • the content of indium in the alloy which is the raw material for the alloy sheet, is preferably 75% by mass or more and 99% by mass or less, and 85% by mass or more and 95% by mass, based on the total amount (100% by mass) of the alloy. It is more preferable that it is less than % by mass.
  • the content of silver in the alloy is preferably 1% by mass or more and 25% by mass or less, more preferably 5% by mass or more and 15% by mass or less, based on the total amount (100% by mass) of the alloy. .
  • Step (i) a semiconductor package including a bonded body in which a die and a lid are bonded together via a thermal interface material (TIM) is obtained.
  • Step (i) will be described by exemplifying a method including a flux application step, a lid mounting step, and a heating operation (1).
  • FIG. 2 is a cross-sectional view showing the TIM 20 and die 41 with flux 50 applied thereto.
  • flux 50 is interposed between at least one of the TIM 20 and the die 41 or between the TIM 20 and the lid 10.
  • flux 50 is applied to the bonding surfaces (42a, 20b) between the die 41 and the TIM 20, or the bonding surfaces (11a, 20a) between the lid 10 and the TIM 20.
  • the flux 50 is applied to the bonding surface as follows. Flux 50 is applied to the surface 42a of the metallized layer 42 of the die 41. Next, the TIM 20 is placed on the metallized layer 42 of the die 41 coated with the flux 50. Flux 50 is applied to the surface 20a of the TIM 20 stacked on the die 41, which is opposite to the surface 20b in contact with the die 41.
  • Examples of the flux 50 coating device include a spray fluxer, a foaming fluxer, and the like. Among these, spray fluxer is preferred from the viewpoint of stability of coating amount.
  • FIG. 3 is a diagram showing a laminate 60 in which the lid 10 and the substrate 40 are bonded together with the adhesive resin 43 after the flux 50 has been applied.
  • lid mounting process After applying the flux 50, adhesive resin 43 is applied on one side of the substrate 40.
  • the lid 10 and the substrate 40 on which the TIM 20 and the die 41 are stacked are bonded together by thermocompression, thereby hardening the adhesive resin 43. Thereby, the lid 10 is fixed to the substrate 40.
  • a laminate 60 in which the lid 10 and the substrate 40 are bonded together with the adhesive resin 43 is obtained.
  • Heating operation (1) the laminate 60 is heated by a reflow method.
  • the lid 10 and the die 41 are bonded via the TIM 20 to obtain a semiconductor package 60'.
  • Indium constituting the indium alloy sheet that is TIM has a melting point of 156° C., so joining is possible even at a lower temperature than normal reflow.
  • the reflow temperature is preferably 150 to 250°C, more preferably 150 to 200°C.
  • step (ii) the electronic component 100 is obtained by bonding the solder balls 70 to the back surface 60a of the semiconductor package 60' by heating operation (2).
  • Step (ii) will be explained with reference to FIG. 4.
  • the back surface 60a of the semiconductor package 60' means the surface of the semiconductor package 60' opposite to the surface to which the lid is fixed.
  • step (ii) first, solder balls 70 are placed on the back surface 60a of the semiconductor package 60'.
  • a heating operation (2) is performed on the semiconductor package 60' on which the solder balls 70 are placed.
  • the heating operation (2) melts the solder balls 70 and joins the solder balls 70 and the semiconductor package 60'.
  • the semiconductor package 60' is heated by a reflow method.
  • the reflow temperature is preferably 200°C or higher and 280°C or lower.
  • the amount of voids on the bonding surface of the sheet i.e., the surface where flux is present
  • the flux 50 is interposed between at least one of the TIM 20 and the die 41 or between the TIM 20 and the lid 10.
  • the flux 50 is applied to the bonding surface 42a of the die 41 with the TIM 20 and the bonding surface 11a of the TIM 20 with the lid 10, but the surfaces to which the flux 50 is applied are not limited thereto.
  • the flux 50 may be applied to the bonding surface 20b of the TIM 20 with the die 41, or the flux 50 may be applied to the bonding surface 11a of the lid 10 with the TIM 20. Flux 50 may also be applied.
  • Rosin ester As the rosin ester, one obtained by reacting hydrogenated rosin with glycerin was used.
  • Dimer acid (A1) and other organic acids were used as the organic acids.
  • the hydrogenated dimer acid contained a dimer acid having 36 carbon atoms and a trimer acid having 54 carbon atoms.
  • the dimer acid having 36 carbon atoms contained multiple types of dimer acids having different degrees of unsaturation.
  • the degree of unsaturation of the dimer acid is a value expressed by ⁇ (2m+2) ⁇ n ⁇ /2, where m is the number of carbon atoms and n is the number of hydrogen atoms in the molecule of the dimer acid.
  • Dimer acids having 36 carbon atoms include dimer acids with a degree of unsaturation of 2, dimer acids with a degree of unsaturation of 3, dimer acids with a degree of unsaturation of 4, dimer acids with a degree of unsaturation of 5, dimer acids with a degree of unsaturation of 6, It contained a dimer acid with a degree of unsaturation of 7 and a dimer acid with a degree of unsaturation of 8.
  • Solvent (S1) and solvent (S2) were used as the solvent (S).
  • Solvent (S1) 3-methoxybutyl acetate (boiling point 172°C), hexylene glycol (boiling point 197°C)
  • Solvent (S2) diethylene glycol monohexyl ether (boiling point 260°C)
  • the boiling point means the temperature of the liquid when the saturated vapor pressure of the liquid becomes equal to 1 atmosphere (ie, 1013 hPa).
  • Weight reduction rate (%) 100 x ⁇ W 0 - W 1 ⁇ /W 0
  • the weight loss rate of rosin ester, acrylic acid-modified hydrogenated rosin, hydrogenated rosin, dimer acid (A1), and other organic acids is determined at a predetermined temperature and a predetermined heating rate of 260°C and 10°C/min, respectively. ,It was measured. The numbers in parentheses indicate weight loss rates.
  • Rosin Rosin ester (7.1% by mass), acrylic acid-modified hydrogenated rosin (11.9% by mass), hydrogenated rosin (25.6% by mass)
  • Organic acids hydrogenated dimer acid (0.1% by mass), adipic acid (99.5% by mass), palmitic acid (97.0% by mass), sebacic acid (52.9% by mass), 12-hydroxystearic acid (11.9% by mass)
  • the weight loss rates of the solvent (S1) and the solvent (S2) were measured at a predetermined temperature and a predetermined heating rate of 150° C. and 6° C./min, respectively.
  • Solvent (S1) 3-methoxybutyl acetate (99.0% by mass), hexylene glycol (99.0% by mass)
  • Solvent (S2) diethylene glycol monohexyl ether (21.0% by mass)
  • the hydrogenated dimer acid used contained multiple molecules. Based on the created ion chromatogram, the ratio of the peak area derived from each molecule to the total peak area (100%) derived from all detected molecules was calculated.
  • the hydrogenated dimer acid contained multiple types of 36-carbon dimer acids and 54-carbon trimer acids.
  • the total area of the peaks derived from multiple types of dimer acids having 36 carbon atoms was 99% or more of the total area (100%) derived from all molecules.
  • the ratio of the area of each dimer acid having 36 carbon atoms to the total area (100%) derived from all molecules was as follows.
  • Rosin ester (softening point 95°C), acrylic acid modified hydrogenated rosin (softening point 130°C), hydrogenated rosin (softening point 72°C)
  • the acid value of the rosin ester was measured according to 3.1 Neutralization titration method of JIS K0070 "Testing methods for acid value, saponification value, ester value, iodine value, hydroxyl value, and unsaponifiables of chemical products". 3 g of rosin ester was dissolved in ethanol/diethyl ether (mixing ratio 1:1). Titration was performed with a 0.1 mol/L KOH ethanol solution using phenolphthalein as an indicator. The end point was the point at which the solution turned slightly red. The acid value of the rosin ester was 6 mgKOH/g.
  • a lid having an Au/Ni plated portion (size 8 mm ⁇ 8 mm) on its surface and a substrate having an Au/Ni plated portion (size 8 mm ⁇ 8 mm) on its surface were prepared.
  • As a solder sheet an indium alloy sheet (size: 7 mm x 7 mm x 400 ⁇ m) made of an alloy of 90% by mass of In and 10% by mass of Ag was prepared. 2 mg of the flux of each example was spray applied to the front and back surfaces of the indium alloy sheet, respectively.
  • a 300 ⁇ m thick copper plate was placed as a spacer around the periphery of the Au/Ni plated portion of the substrate.
  • the indium alloy sheet coated with flux was sandwiched between the lid and the Au/Ni plated portion of the substrate and fixed with a clip.
  • the lid and substrate sandwiching the indium alloy sheet were subjected to primary reflow to obtain a bonded body.
  • the primary reflow was performed in the air at a temperature increase rate of 10°C/min until the temperature reached 170°C.
  • the bonded body subjected to the first reflow was subjected to a second reflow. In the secondary reflow, the temperature was raised from room temperature to 250°C for 450 seconds at a heating rate of 0.5°C/second.
  • the void area was measured by irradiating X-rays from the vertical direction of the substrate to the bonded body that had undergone secondary reflow and analyzing the transmitted X-rays.
  • XD7600NT manufactured by Nordson
  • XD7600NT manufactured by Nordson
  • the ratio of the total area of voids to the total area of the indium alloy sheet was calculated and defined as the void area ratio (%).
  • Judgment criteria A: The void area ratio is less than 10%.
  • an indium alloy sheet (size: 2 mm x 2 mm x 100 ⁇ m) made of an alloy of 90 mass % In and 10 mass % Ag was prepared.
  • 0.5 mg of the flux of each example was spray applied to the front and back surfaces of the indium alloy sheet, respectively.
  • An indium alloy sheet coated with flux was placed on the Au/Ni electrode.
  • the electrode on which the indium alloy sheet was placed was subjected to reflow under the following conditions. In the reflow, the temperature was raised to 180°C at a heating rate of 6°C/min and held at 180°C for 3 minutes. Next, after removing the flux, the wetted and spread area was measured.
  • Judgment criteria A: The wetted and spread area is 2.5 mm 2 or more.
  • Judgment criteria A: The flux could be applied to the metal plate using a spray device.
  • ⁇ Evaluation 2> ⁇ Evaluation of void generation suppression ability ⁇
  • an SAC alloy sheet (size: 7 mm x 7 mm x 400 ⁇ m) consisting of an alloy of 3% by mass of Ag, 0.5% by mass of Cu, and the balance Sn was prepared.
  • the conditions for the first reflow and the second reflow were as follows. The primary reflow was performed in the air at a temperature increase rate of 10°C/min from room temperature (25°C) until it reached 250°C. In the secondary reflow, the temperature was raised from room temperature (25°C) to 250°C for 450 seconds at a heating rate of 0.5°C/second.
  • the fluxes of Examples 1 and 2 containing rosin ester, dimer acid (A1), and solvent (S1) were evaluated as A in terms of void generation suppressing ability.
  • the flux of Comparative Example 1, which did not contain the solvent (S1), was evaluated as C in terms of void generation suppressing ability.
  • the fluxes of Comparative Examples 2 and 3, which did not contain dimer acid (A1), were evaluated as C in terms of void generation suppressing ability.
  • Example 1 The flux of Example 1, in which the content of the solvent (S1) was 100% by mass based on the total mass of the solvent (S), was evaluated as A in terms of void generation suppressing ability.
  • Example 1 containing dimer acid (A1) was evaluated as A in terms of applicability.
  • the flux of Comparative Example 4 which does not contain rosin ester, had a void suppression ability of A when an SAC alloy sheet was used, and a void suppression ability of C when an indium alloy sheet was used. That is, when an indium alloy sheet is used, voids are more likely to occur than when an SAC alloy sheet is used.
  • the flux of Example 1 containing rosin ester was able to sufficiently suppress voids even when an indium alloy sheet was used.
  • the flux of the present invention contains rosin ester, dimer acid (A1), and solvent (S1), so that even when a solder sheet with a high indium content is used, voids are eliminated in the resulting joined body. It is possible to suppress the occurrence.
  • the flux of the present invention is suitably used in the manufacturing process of electronic components that use indium alloy sheets and have improved heat dissipation efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

インジウム合金シートを用いて温度条件の異なる連続したリフローを行った際のボイドの発生を抑制できる、フラックスを提供する。ロジンエステルと、有機酸(A)と、溶剤(S)とを含有するフラックスを採用する。有機酸(A)は、熱重量測定において昇温速度10℃/minで260℃まで加熱した際の重量減少率が1質量%以下であるダイマー酸(A1)を含む。溶剤(S)は、熱重量測定において昇温速度6℃/minで150℃まで加熱した際の重量減少率が99質量%以上である溶剤(S1)を含む。

Description

フラックス及び電子部品の製造方法
 本発明は、フラックス及び電子部品の製造方法に関する。本願は、2022年8月26日に日本に出願された特願2022-135236号に基づき優先権を主張し、その内容をここに援用する。
 近年、電子機器には、大容量化、高速化が要求されている。このような電子機器に搭載される高集積化されたダイは、動作時に大量の熱を発生する。このため、ダイにヒートシンクを備えたリッド等を装着することにより、発生した熱を効率的に排出する必要がある。
 これに対し、例えば特許文献1には、ダイの動作による熱を、より高い効率でヒートシンクに伝達するために、ダイとヒートシンクを備えたリッドとの間に、ポリマーを含有する熱界面材料(Thermal Interface Material:TIM)を挟み込んで用いることが提案されている。
特表2010-539706号公報
 ところで、TIMとして、インジウムの含有量が高められたシート(以下、これをインジウム合金シートという)が提案されている。インジウム合金シートの原料となる合金としては、例えば、Inが90質量%、Agが10質量%である合金が用いられる。
 インジウムは、他の金属元素に比べて硬度が低く、インジウム合金シートは、ダイ及びリッドの表面に対して、高い追従性を有し、密着性が高い。そのため、インジウム合金シートは、ダイからヒートシンクを備えたリッドへの熱伝達効率が高い。その結果、インジウム合金シートを用いることにより、ダイの動作による熱の排出効率を高めることが可能である。また、Agを含有するインジウム合金シートは、インジウムのみからなるインジウムシートよりも、熱伝導率が高いため、熱排出効率をより高めることが可能である。
 インジウム合金シートの実装では、表面にフラックスを塗布したインジウム合金シートを用いて、ヒートシンクを備えたリッドと、ダイとを、1次リフローにより接合し、半導体パッケージを得る。インジウムは融点が156℃と比較的低いため、1次リフローによる接合は、通常の接合よりも低温条件で行われる。
 従来のはんだ付け用のフラックスを用いて、例えば170℃の条件で1次リフローを行った場合、フラックスは、インジウムシートの表面に濡れ広がらず、接合面に溜まり、その結果、接合面にボイドが大量に発生する場合がある。このボイドにより、インジウムシートを介したチップからヒートシンクを備えたリッドへの熱伝達効率は低下し、ダイの動作による熱の排出効率は低下してしまう。
 次いで、1次リフローの後に、2次リフローを行うことにより、半導体パッケージの裏面にはんだボールを接合する。この2次リフローは、はんだボールを溶融させるために、例えば250℃の高温条件で行われる。2次リフローは高温であるため、活性剤等がガス化してボイドを形成しやすい。
 従来のはんだ付け用のフラックス及びインジウム合金シートを用いて、前記のように、1次リフロー及び2次リフローの2回のリフローを行った場合、インジウム合金シートの接合面にボイドが大量に発生しやすいという問題がある。このボイドにより、インジウム合金シートを介したダイからヒートシンクを備えたリッドへの熱伝達効率は低下し、ダイの動作による熱の排出効率は低下してしまう。
 そこで、本発明は、インジウム合金シートを用いて温度条件の異なる連続したリフローを行った際のボイドの発生を抑制できる、フラックスを提供することを目的とする。
 本発明は、以下の態様を含む。
[1]ロジンエステルと、有機酸(A)と、溶剤(S)とを含有し、前記有機酸(A)は、熱重量測定において昇温速度10℃/minで260℃まで加熱した際の重量減少率が1質量%以下であるダイマー酸(A1)を含み、前記溶剤(S)は、熱重量測定において昇温速度6℃/minで150℃まで加熱した際の重量減少率が99質量%以上である溶剤(S1)を含む、フラックス。
 本発明において、「重量減少率」とは、例えば、次のように測定されるものである。示差熱-熱重量同時測定装置(株式会社リガク製、TG-DTA8122)を用いて、測定対象試料10mgをアルミパンに入れ、室温約25℃から加熱を開始して所定の温度に達するまで、所定の昇温速度で昇温する。そして、加熱前の対象試料の質量W(100質量%)と、所定の温度に達した直後の質量Wとから、重量減少率を以下の計算式から算出する。
 重量減少率(%)=100×{W-W}/W
[2]前記ダイマー酸(A1)の含有量が、前記有機酸(A)の総質量に対して、75質量%以上である、[1]に記載のフラックス。
[3]前記溶剤(S1)の含有量が、前記溶剤(S)の総質量に対して、80質量%以上である、[1]又は[2]に記載のフラックス。
[4]前記ダイマー酸(A1)は、炭素数18の不飽和脂肪酸が結合した二量体からなる群より選択される少なくとも一種である、[1]~[3]のいずれかに記載のフラックス。
[5]前記溶剤(S1)の沸点が、200℃以下である、[1]~[4]のいずれかに記載のフラックス。
[6]さらに、アゾール類を含有する、[1]~[5]のいずれかに記載のフラックス。
[7]前記ダイマー酸(A1)の含有量が、フラックスの総質量に対して、10質量%以上60質量%以下である、[1]~[6]のいずれかに記載のフラックス。
[8]前記ロジンエステルの含有量が、フラックスの総質量に対して、15質量%以上60質量%以下である、[1]~[7]のいずれかに記載のフラックス。
[9]半導体パッケージを含む電子部品の製造方法であって、ダイとリッドとが熱界面材料(TIM)を介して貼り合わされた接合体を備えた半導体パッケージを得る工程(i)と、前記半導体パッケージの背面に、はんだボールを接合して電子部品を得る工程(ii)と、を有し、前記TIMが、インジウムと銀との合金製のシートであり、前記工程(i)は、前記TIMと前記ダイとの間、又は、前記TIMと前記リッドとの間の少なくとも一方に、[1]~[8]のいずれか一項に記載のフラックスを介在させて、リフロー方式により前記ダイと前記リッドとを貼り合わせる加熱操作(1)を含み、前記工程(ii)は、リフロー方式により前記はんだボールと前記半導体パッケージとを接合する加熱操作(2)を含む、電子部品の製造方法。
[10]前記加熱操作(1)の温度条件が150~250℃であり、前記加熱操作(2)の温度条件が200~280℃である、[9]に記載の電子部品の製造方法。
 本発明によれば、インジウム合金シートを用いて温度条件の異なる連続したリフローを行った際のボイドの発生を抑制できる、フラックスを提供することができる。
電子部品の製造方法の一実施形態について、リッド、TIM及びダイを示す断面図である。 電子部品の製造方法の一実施形態について、TIM及びダイにフラックスを塗布する工程を示す断面図である。 電子部品の製造方法の一実施形態について、フラックスの塗布後、TIMを用いて、基板に対してリッドを固定して得られる接合体を示す断面図である。 電子部品の製造方法の一実施形態について、半導体パッケージの裏面にはんだボールを接合して得られる電子部品を示す断面図である。
(フラックス)
 本実施形態に係るフラックスは、ロジンエステルと、有機酸(A)と、溶剤(S)とを含有する。
 有機酸(A)は、熱重量測定において昇温速度10℃/minで260℃まで加熱した際の重量減少率が1質量%以下であるダイマー酸(A1)を含む。
 溶剤(S)は、熱重量測定において昇温速度6℃/minで150℃まで加熱した際の重量減少率が99質量%以上である溶剤(S1)を含む。
 本実施形態に係るフラックスは、インジウム合金シートの実装及びはんだボールの接合のための、連続したリフローが行われる用途に好適に用いられる。
 1次リフローでは、インジウムの融点付近の低温(例えば170℃)の条件でリフローを行い、インジウム合金シートを実装する。次いで、2次リフローでは、はんだ合金の融点付近の高温(例えば250℃)の条件でリフローを行うことにより、基板にはんだボールを接合する。
 本実施形態に係るフラックスによれば、1次リフローにおいて、溶剤(S1)は揮発する。その結果、インジウム合金シートが溶融する際に、溶剤(S1)に由来するボイドは発生しない。
 また、本実施形態に係るフラックスは、ロジンエステル及びダイマー酸(A1)が2次リフローの高温でも揮発しにくいため、ボイドの発生を抑制することが可能である。
<ロジンエステル>
 ロジンエステルは、天然樹脂又は天然樹脂を化学修飾したもの(ロジン誘導体)と、アルコールとを反応させて得られる、エステル樹脂である。ロジンエステルは、カルボキシル基の他に、水酸基を有していてもよい。
 前記アルコールとしては、例えば、グリセリン、ペンタエリトリトール等が挙げられる。
 ロジンエステルの原料となり得る前記「天然樹脂」としては、例えば、ガムロジン、ウッドロジン及びトール油ロジン等が挙げられる。
 本明細書において「天然樹脂」とは、アビエチン酸を主成分とする、アビエチン酸とこの異性体との混合物を含む。天然樹脂中のアビエチン酸及びアビエチン酸の異性体の総含有量は、一例として、天然樹脂に対して、40質量%以上80質量%以下である。本明細書において「主成分」とは、化合物を構成する成分のうち、その化合物中の含有量が40質量%以上の成分をいう。
 アビエチン酸の異性体の代表的なものとしては、ネオアビエチン酸、パラストリン酸、レボピマル酸等が挙げられる。アビエチン酸の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000001
 本発明において、ロジンエステルの原料となり得る「天然樹脂を化学修飾したもの(ロジン誘導体)」とは、前記「天然樹脂」に対して水素化、脱水素化、中和、アルキレンオキシド付加、アミド化、二量化、多量化、及びDiels-Alder環化付加からなる群より選択される1つ以上の処理を施したものを包含する。
 ロジン誘導体としては、例えば、精製ロジン、変性ロジン等が挙げられる。
 変性ロジンとしては、例えば、水添ロジン、重合ロジン、重合水添ロジン、不均化ロジン、酸変性ロジン、酸変性水添ロジン、無水酸変性水添ロジン、酸変性不均化ロジン、無水酸変性不均化ロジン、フェノール変性ロジン及びα,β不飽和カルボン酸変性物(アクリル酸変性ロジン、マレイン酸変性ロジン、フマル酸変性ロジン等)、並びに該重合ロジンの精製物、水素化物及び不均化物、並びに該α,β不飽和カルボン酸変性物の精製物、水素化物及び不均化物、ロジンアルコール、ロジンアミン、水添ロジンアルコール、ロジン石鹸、水添ロジン石鹸、酸変性ロジン石鹸等が挙げられる。
 ロジンの中でも、ロジンエステルは、耐熱性が高く、重量減少率が低くこのましい。
 ロジンエステルの原料であるロジンとしては、水添ロジンが好ましい。ロジンエステルの原料であるアルコールとしては、グリセリンが好ましい。ロジンエステルは、水添ロジンとグリセリンとを反応させたものであることが好ましい。
 ロジンエステルは、熱重量測定において昇温速度10℃/minで260℃まで加熱した際の重量減少率が、15質量%以下であることが好ましく、10質量%以下であることがより好ましく、8質量%以下であることが更に好ましく、7.5質量%以下であることが特に好ましい。ロジンエステルの重量減少率は、低い値ほど好ましい。ロジンエステルの重量減少率の下限値は、本発明の効果が奏される限り特に限定されず、例えば、0.1質量%であってもよいし、測定上0質量%であってもよい。
 ロジンエステルの重量減少率が、上記上限値以下であることにより、インジウム合金シートを用いて連続したリフローを行った際のボイドの発生を抑制しやすくなる
 ロジンエステルの酸価は、0.01mgKOH/g以上50mgKOH/g以下であることが好ましく、0.1mgKOH/g以上30mgKOH/g以下であることがより好ましく、0.5mgKOH/g以上20mgKOH/g以下であることが更に好ましく、2mgKOH/g以上10mgKOH/g以下であることが特に好ましい。
 ロジンエステルの酸価が、上記範囲内の下限値以上であることにより、フラックスの活性を高めやすくなる。ロジンエステルの酸価が、上記範囲内の上限値以下であることにより、はんだ溶融性及び濡れ性を高めやすくなる。
 酸価とは、測定対象の試料1gが有するカルボキシ基を中和するために必要な、水酸化カリウムのミリグラム数を意味する。ロジンエステルの酸価は、例えば、JIS K 0070「化学製品の酸価、けん化価、エステル価、よう素価、水酸基価及び不けん化物の試験方法」の3.1 中和滴定方法に従って測定することができる。
 この方法により測定される酸価は、フラックスに含まれる全ての種類のロジンエステルの酸価を加重平均したものである。
 ロジンエステルの軟化点は、85℃以上110℃以下であることが好ましく、90℃以上105℃以下であることがより好ましく、90℃以上100℃以下であることが更に好ましい。
 ロジンエステルの軟化点が上記範囲内の下限値以上であることにより、ロジンエステルの耐熱性を高めやすくなる。ロジンエステルの軟化点が上記範囲内の上限値以下であることにより、はんだ溶融時にフラックスの流動性を高めやすくなる。
 ロジンエステルの軟化点は、環球法により測定することができる。環球法としては、例えば、JIS K 5902に記載の方法が挙げられる。
 ロジンエステルは、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 前記フラックス中の、ロジンエステルの含有量は、フラックスの総質量(100質量%)に対して、10質量%以上70質量%以下であることが好ましく、15質量%以上60質量%以下であることがより好ましい。
<有機酸(A)>
 本実施形態に係るフラックスに含まれる有機酸(A)は、ダイマー酸(A1)を含有する。本実施形態に係るフラックスに含まれる有機酸(A)は、ダイマー酸(A1)以外に、その他有機酸を含有してもよい。
 ≪ダイマー酸(A1)≫
 ダイマー酸(A1)は、熱重量測定において昇温速度10℃/minで260℃まで加熱した際の重量減少率が1質量%以下であり、0.8質量%以下であることが好ましく、0.6質量%以下であることがより好ましく、0.4質量%以下であることが更に好ましく、0.3質量%以下であることが特に好ましく、0.2質量%以下であることが最も好ましい。
 ダイマー酸(A1)ルの重量減少率は、低い値ほど好ましい。ダイマー酸(A1)の重量減少率の下限値は、本発明の効果が奏される限り特に限定されず、例えば、0.01質量%であってもよいし、測定上0質量%であってもよい。
 ダイマー酸(A1)は、不飽和脂肪酸の二量化により得られる二塩基酸を主成分とする。ダイマー酸(A1)は、不飽和脂肪酸の二量化により得られる二塩基酸に水素添加した水添ダイマー酸を包含する。
 ダイマー酸(A1)の原料である不飽和脂肪酸は、炭素数が18であることが好ましい。ダイマー酸(A1)の主成分である二塩基酸は、炭素数が36であることが好ましく、炭素数18の不飽和脂肪酸が結合した二量体からなる群より選択される少なくとも一種であることがより好ましい。
 ダイマー酸(A1)の原料である不飽和脂肪酸としては、例えば、オレイン酸、リノール酸、バクセン酸、エライジン酸、リノレン酸、アクリル酸、メタクリル酸が挙げられる。
 ダイマー酸(A1)の原料である不飽和脂肪酸は、オレイン酸、リノール酸、バクセン酸及びエライジン酸からなる群より選択される一種以上であることが好ましく、オレイン酸及びリノール酸からなる群より選択される一種以上であることがより好ましい。
 ダイマー酸(A1)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 ダイマー酸(A1)は、不飽和炭化水素基、脂環式炭化水素基、芳香族炭化水素基等を有してもよい。ダイマー酸(A1)の不飽和度は、以下に示すような値であってもよい。ここで、ダイマー酸(A1)の不飽和度は、ダイマー酸(A1)の分子内の炭素原子数をm、水素原子数をnとした場合に、{(2m+2)-n}/2で表される値である。ダイマー酸(A1)の主成分である二塩基酸は、カルボキシ基を2個有する。この二塩基酸の不飽和度は2以上である。
 ダイマー酸(A1)の不飽和度は、2以上20以下が好ましく、2以上15以下がより好ましく、2以上10以下が更に好ましく、2以上8以下が特に好ましい。
 ダイマー酸(A1)が不飽和度の異なる2種以上のダイマー酸を含有する場合、それらの不飽和度を加重平均した不飽和度は、2以上10以下であることが好ましく、2以上8以下であることがより好ましく、2以上6以下であることが更に好ましく、2.5以上4.5以下であることが特に好ましく、3以上4以下が最も好ましい。
 ダイマー酸(A1)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 ダイマー酸(A1)の含有量は、フラックスの総質量(100質量%)に対して、5質量%以上70質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、15質量%以上60質量%以下であることが更に好ましい。
 ダイマー酸(A1)の含有量が前記範囲内であることにより、インジウム合金シートを用いて連続したリフローを行った際のボイドの発生を抑制できる。加えて、ダイマー酸(A1)の含有量が前記範囲内の下限値以上であると、インジウム合金シートに対する濡れ性を高めやすくなる。
 炭素数36のダイマー酸の総含有量は、ダイマー酸(A1)の総質量(100質量%)に対して、70質量%以上100質量%以下であることが好ましく、80質量%以上100質量%以下であることがより好ましく、90質量%以上100質量%以下であることが更に好ましく、95質量%以上100質量%以下であることが特に好ましく、98質量%以上100質量%以下であることが最も好ましく、測定上100質量%であってもよい。
 ダイマー酸(A1)が、複数種のダイマー酸を含む場合、液体クロマトグラフィー・フーリエ変換質量分析計を用いて、各ダイマー酸を分析することができる。作成されたイオンクロマトグラムにおいて、ダイマー酸(A1)に含まれる全ての分子に由来するピーク総面積(100%)に対する、炭素数36の各ダイマー酸に由来するピーク面積の割合は、以下の範囲内であることが好ましい。
 不飽和度2のダイマー酸に由来するピーク面積は、5%以上50%以下であることが好ましく、15%以上40%以下であることがより好ましく、20%以上30%以下であることが更に好ましい。
 不飽和度3のダイマー酸のピーク面積の割合は、10%以上70%以下であることが好ましく、20%以上60%以下であることがより好ましく、30%以上50%以下であることが更に好ましい。
 不飽和度4のダイマー酸のピーク面積の割合は、2%以上30%以下であることが好ましく、3%以上20%以下であることがより好ましく、5%以上15%以下であることが更に好ましい。
 不飽和度5のダイマー酸のピーク面積の割合は、0.1%以上15%以下であることが好ましく、0.5%以上10%以下であることがより好ましく、1%以上5%以下であることが更に好ましい。
 不飽和度6のダイマー酸のピーク面積の割合は、1%以上30%以下であることが好ましく、2%以上20%以下であることがより好ましく、3%以上15%以下であることが更に好ましい。
 不飽和度7のダイマー酸のピーク面積の割合は、2%以上30%以下であることが好ましく、3%以上20%以下であることがより好ましく、5%以上15%以下であることが更に好ましい。
 不飽和度8のダイマー酸のピーク面積の割合は、0.1%以上15%以下であることが好ましく、0.5%以上10%以下であることがより好ましく、1%以上5%以下であることが更に好ましい。
 あるいは、ダイマー酸(A1)が、複数種の炭素数36のダイマー酸を含む場合、炭素数36のダイマー酸の含有量は、ダイマー酸(A1)の総質量(100質量%)に対して、以下の範囲内であることが好ましい。
 不飽和度2のダイマー酸の含有量は、5質量%以上50質量%以下であることが好ましく、15質量%以上40質量%以下であることがより好ましく、20質量%以上30質量%以下であることが更に好ましい。
 不飽和度3のダイマー酸の含有量は、10質量%以上70質量%以下であることが好ましく、20質量%以上60質量%以下であることがより好ましく、30質量%以上50質量%以下であることが更に好ましい。
 不飽和度4のダイマー酸の含有量は、2質量%以上30質量%以下であることが好ましく、3質量%以上20質量%以下であることがより好ましく、5質量%以上15質量%以下であることが更に好ましい。
 不飽和度5のダイマー酸の含有量は、0.1質量%以上15質量%以下であることが好ましく、0.5質量%以上10質量%以下であることがより好ましく、1質量%以上5質量%以下であることが更に好ましい。
 不飽和度6のダイマー酸の含有量は、1質量%以上30質量%以下であることが好ましく、2質量%以上20質量%以下であることがより好ましく、3質量%以上15質量%以下であることが更に好ましい。
 不飽和度7のダイマー酸の含有量は、2質量%以上30質量%以下であることが好ましく、3質量%以上20質量%以下であることがより好ましく、5質量%以上15質量%以下であることが更に好ましい。
 不飽和度8のダイマー酸の含有量は、0.1質量%以上15質量%以下であることが好ましく、0.5質量%以上10質量%以下であることがより好ましく、1質量%以上5質量%以下であることが更に好ましい。
 ≪その他有機酸≫
 その他有機酸としては、例えば、カルボン酸、有機スルホン酸等が挙げられる。カルボン酸としては、例えば、脂肪族カルボン酸、芳香族カルボン酸等が挙げられる。脂肪族カルボン酸としては、脂肪族モノカルボン酸、脂肪族ジカルボン酸等が挙げられる。
 脂肪族モノカルボン酸としては、例えば、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、イソペラルゴン酸、カプリン酸、カプロレイン酸、ラウリン酸(ドデカン酸)、ウンデカン酸、リンデル酸、トリデカン酸、ミリストレイン酸、ペンタデカン酸、パルミチン酸、イソパルミチン酸、パルミトレイン酸、ヒラゴン酸、ヒドノカーピン酸、マーガリン酸、イソステアリン酸、エライジン酸、ペトロセリン酸、モロクチン酸、エレオステアリン酸、タリリン酸、バクセン酸、リミノレイン酸、ベルノリン酸、ステルクリン酸、ノナデカン酸、エイコサン酸、ステアリン酸、12-ヒドロキシステアリン酸、オレイン酸、リノール酸、リノレン酸、ミリスチン酸等が挙げられる。
 脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、エイコサン二酸、酒石酸、2,4-ジエチルグルタル酸、ジグリコール酸、2-メチルノナン二酸と、4-(メトキシカルボニル)-2,4-ジメチルウンデカン二酸と、4,6-ビス(メトキシカルボニル)-2,4,6-トリメチルトリデカン二酸と、8,9-ビス(メトキシカルボニル)-8,9-ジメチルヘキサデカン二酸等が挙げられる。
 芳香族カルボン酸としては、例えば、サリチル酸、ジブチルアニリンジグリコール酸、テレフタル酸、パラヒドロキシフェニル酢酸、フェニルコハク酸、フタル酸、安息香酸、2,3-ジヒドロキシ安息香酸、2-キノリンカルボン酸、3-ヒドロキシ安息香酸、p-アニス酸、ピコリン酸、ジピコリン酸、3-ヒドロキシピコリン酸等が挙げられる。
 また、カルボン酸としては、イソシアヌル酸トリス(2-カルボキシエチル)、1,3-シクロヘキサンジカルボン酸等が挙げられる。
 また、その他有機酸としては、ヒドロキシカルボン酸が挙げられる。ヒドロキシカルボン酸としては、例えば、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(ヒドロキシメチル)ブタン酸、クエン酸、イソクエン酸、リンゴ酸、酒石酸等が挙げられ、2,2-ビス(ヒドロキシメチル)プロピオン酸が好ましい。
 また、カルボン酸としては、その他ダイマー酸(ただし、ダイマー酸(A1)を除く)が挙げられる。その他ダイマー酸(ただし、ダイマー酸(A1)を除く)は、水添ダイマー酸(ただし、ダイマー酸(A1)を除く)を包含する。その他ダイマー酸は、熱重量測定において昇温速度10℃/minで260℃まで加熱した際の重量減少率が1質量%超である。その他ダイマー酸の原料としては、ダイマー酸(A1)において上述したものが挙げられる。
 また、カルボン酸としては、トリマー酸が挙げられる。トリマー酸は、不飽和脂肪酸の三量化により得られる三塩基酸を主成分とする。トリマー酸は、水添トリマー酸を包含する。トリマー酸の原料としては、ダイマー酸(A1)において上述したものが挙げられる。
 有機スルホン酸としては、例えば、脂肪族スルホン酸、芳香族スルホン酸等が挙げられる。脂肪族スルホン酸としては、例えば、アルカンスルホン酸、アルカノールスルホン酸等が挙げられる。
 その他有機酸は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 その他有機酸としては、カルボン酸が好ましく、脂肪族モノカルボン酸及び脂肪族ジカルボン酸からなる群より選択される一種以上が好ましい。
 前記フラックスがその他有機酸を含有する場合、その他有機酸の含有量は、フラックスの総質量に対して、0質量%超10質量%以下であることが好ましく、0質量%超5質量%以下であることがより好ましく、0質量%超1.5質量%以下であることが更に好ましく、0質量%超1質量%以下であることが特に好ましい。
 その他有機酸の含有量が上記範囲内の上限値以下であることにより、インジウム合金シートを用いて連続したリフローを行った際のボイドの発生を抑制しやすくなる。
 ダイマー酸(A1)の含有量は、前記有機酸(A)の総質量に対して、75質量%以上が好ましく、75質量%以上100質量%以下がより好ましく、85質量%以上100質量%以下が更に好ましく、90質量%以上100質量%以下が特に好ましい。
 ダイマー酸(A1)の含有量が上記範囲内の下限値以上であることにより、インジウム合金シートを用いて連続したリフローを行った際のボイドの発生を抑制しやすくなる。
<溶剤(S)>
 本実施形態に係るフラックスに含まれる溶剤(S)は、溶剤(S1)を含む。溶剤(S)は、溶剤(S1)以外に、溶剤(S2)を含んでもよい。
 ≪溶剤(S1)≫
 溶剤(S1)は、熱重量測定において昇温速度6℃/minで150℃まで加熱した際の重量減少率が99質量%以上である。
 溶剤(S1)の重量減少率の上限値は、本発明の効果が奏される限り特に限定されず、例えば、100質量%であってもよい。
 溶剤(S1)としては、例えば、3-メトキシブチルアセテート、2-メチル-2,4-ペンタンジオール(へキシレングリコール)、2-プロパノール、1,2-ブタンジオール、2,3-ブタンジオール、2,3-ジメチル-2,3-ブタンジオール、2-メチルペンタン-2,4-ジオール、1-エチニル-1-シクロヘキサノール、1,4-シクロヘキサンジオール、エチレングリコールモノブチルエーテル(ブチルグリコール)等が挙げられ、3-メトキシブチルアセテート及び2-メチル-2,4-ペンタンジオール(へキシレングリコール)からなる群より選択される一種以上が好ましい。
 溶剤(S1)の沸点は、200℃以下であることが好ましく、150℃以上200℃以下がより好ましく、170℃以上200℃以下が更に好ましい。
 本明細書において、沸点とは、対象の液体の飽和蒸気圧が1気圧(すなわち、1013hPa)と等しくなるときの、その液体の温度を意味する。
 溶剤(S1)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 溶剤(S1)の総含有量は、フラックスの総質量(100質量%)に対して、10質量%以上90質量%以下であることが好ましく、15質量%以上85質量%以下であることがより好ましく、20質量%以上75質量%以下であることが更に好ましい。
 ≪溶剤(S2)≫
 溶剤(S2)は、熱重量測定において昇温速度6℃/minで150℃まで加熱した際の重量減少率が99質量%未満である。
 溶剤(S2)の重量減少率の下限値は、本発明の効果が奏される限り特に限定されず、例えば、10質量%であってもよい。
 溶剤(S2)の沸点は、200℃超350℃以下が好ましく、250℃以上350℃以下がより好ましく、250℃以上330℃以下が更に好ましい。
 溶剤(S2)としては、例えば、アルコール系溶剤、グリコールエーテル系溶剤、テルピネオール類等が挙げられる。
 アルコール系溶剤としては、1,3-ブタンジオール、1,4-ブタンジオール、イソボルニルシクロヘキサノール、2,4-ジエチル-1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、2,5-ジメチル-3-ヘキシン-2,5-ジオール、1,1,1-トリス(ヒドロキシメチル)プロパン、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール、2,2′-オキシビス(メチレン)ビス(2-エチル-1,3-プロパンジオール)、2,2-ビス(ヒドロキシメチル)-1,3-プロパンジオール、1,2,6-トリヒドロキシヘキサン、1,4-シクロヘキサンジメタノール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、2-ヘキシル-1-デカノールオクタンジオール等が挙げられる。
 グリコールエーテル系溶剤としては、ジエチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノヘキシルエーテル(ヘキシルグリコール)、ジエチレングリコールモノヘキシルエーテル(ヘキシルジグリコール)、ジエチレングリコールジブチルエーテル、トリエチレングリコールモノブチルエーテル、メチルプロピレントリグルコール、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコール、テトラエチレングリコールジメチルエーテル、トリプロピレングリコール-n-ブチルエーテル等が挙げられる。
 テルピネオール類としては、α-テルピネオール、β-テルピネオール、γ-テルピネオール、テルピネオール混合物(すなわち、その主成分がα-テルピネオールであり、β-テルピネオール又はγ-テルピネオールを含有する混合物)等が挙げられる。
 また、溶剤としては、例えば、セバシン酸ジオクチル(DOS)、流動パラフィン等が挙げられる。
 溶剤(S2)は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 溶剤(S)の総含有量は、フラックスの総質量(100質量%)に対して、10質量%以上90質量%以下であることが好ましく、20質量%以上75質量%以下であることがより好ましい。
 溶剤(S1)の含有量は、前記溶剤(S)の総質量に対して、70質量%以上が好ましく、70質量%以上100質量%以下であることがより好ましく、80質量%以上100質量%以下であることが更に好ましく、85質量%以上100質量%以下であることが特に好ましく、90質量%以上100質量%以下であることが最も好ましい。
 溶剤(S1)の含有量が上記範囲内の下限値以上であることにより、インジウム合金シートを用いて連続したリフローを行った際のボイドの発生を抑制しやすくなる。
<その他成分>
 本実施形態におけるフラックスは、ロジンエステル、有機酸(A)及び溶剤(S)以外に、必要に応じて、その他成分を含んでもよい。その他成分としては、ロジンエステル以外のその他ロジン、有機酸(A)以外のその他活性剤、チキソ剤、金属不活性化剤、界面活性剤、シランカップリング剤、酸化防止剤、着色剤等が挙げられる。
 ≪その他ロジン≫
 その他ロジンとしては、上述の天然樹脂、及び、この天然樹脂を化学修飾して得られるロジン誘導体(ただし、ロジンエステルを除く)が挙げられる。
 本明細書において「天然樹脂を化学修飾して得られるロジン誘導体(ただし、ロジンエステルを除く)」とは、前記「天然樹脂」に対して水素化、脱水素化、中和、アルキレンオキシド付加、アミド化、二量化及び多量化、並びにDiels-Alder環化付加からなる群より選択される1つ以上の処理を施したものを包含する。
 ロジン誘導体としては、例えば、精製ロジン、変性ロジン等が挙げられる。
 変性ロジンとしては、例えば、水添ロジン、重合ロジン、重合水添ロジン、不均化ロジン、酸変性ロジン、酸変性水添ロジン、無水酸変性水添ロジン、酸変性不均化ロジン、無水酸変性不均化ロジン、フェノール変性ロジン及びα,β不飽和カルボン酸変性物(アクリル酸変性ロジン、マレイン酸変性ロジン、フマル酸変性ロジン等)、並びに該重合ロジンの精製物、水素化物及び不均化物、並びに該α,β不飽和カルボン酸変性物の精製物、水素化物及び不均化物、ロジンアルコール、ロジンアミン、水添ロジンアルコール、ロジン石鹸、水添ロジン石鹸、酸変性ロジン石鹸等が挙げられる。
 ロジンアミンとしては、例えば、デヒドロアビエチルアミン、ジヒドロアビエチルアミン及びテトラヒドロアビエチルアミンの混合物であり、いわゆる不均化ロジンアミンを意味する。デヒドロアビエチルアミン、ジヒドロアビエチルアミン及びテトラヒドロアビエチルアミンの各構造を以下に示す。
Figure JPOXMLDOC01-appb-C000002
 その他ロジンは、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 ロジンエステルの含有量は、ロジンの総質量(100質量%)に対して、70質量%以上100質量%以下が好ましく、80質量%以上100質量%以下がより好ましく、90質量%以上100質量%以下が更に好ましく、95質量%以上100質量%以下が特に好ましく、100質量%であってもよい。
 ロジンエステルの含有量が上記範囲内の下限値以下であることにより、インジウム合金シートを用いて連続したリフローを行った際のボイドの発生を抑制しやすくなる。
 ≪その他活性剤≫
 その他活性剤としては、例えば、アミン、ハロゲン化合物、有機リン化合物等が挙げられる。
 [アミン]
 アミンとしては、例えば、アゾール類、グアニジン類、アルカノールアミン、アルキルアミン化合物、アミンポリオキシアルキレン付加体等が挙げられる。
 アゾール類としては、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン、2,4-ジアミノ-6-ビニル-s-トリアジン、2,4-ジアミノ-6-ビニル-s-トリアジンイソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-s-トリアジン、エポキシ-イミダゾールアダクト、2-メチルベンゾイミダゾール、2-オクチルベンゾイミダゾール、2-ペンチルベンゾイミダゾール、2-(1-エチルペンチル)ベンゾイミダゾール、2-ノニルベンゾイミダゾール、2-(4-チアゾリル)ベンゾイミダゾール、ベンゾイミダゾール、1,2,4-トリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール]、6-(2-ベンゾトリアゾリル)-4-tert-オクチル-6’-tert-ブチル-4’-メチル-2,2’-メチレンビスフェノール、1,2,3-ベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール、カルボキシベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]メチルベンゾトリアゾール、2,2’-[[(メチル-1H-ベンゾトリアゾール-1-イル)メチル]イミノ]ビスエタノール、1-(1’,2’-ジカルボキシエチル)ベンゾトリアゾール、1-(2,3-ジカルボキシプロピル)ベンゾトリアゾール、1-[(2-エチルヘキシルアミノ)メチル]ベンゾトリアゾール、2,6-ビス[(1H-ベンゾトリアゾール-1-イル)メチル]-4-メチルフェノール、5-メチルベンゾトリアゾール、5-フェニルテトラゾール等が挙げられる。
 グアニジン類としては、例えば、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジン等が挙げられる。
 アルカノールアミンとしては、例えば、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、1-アミノ-2-プロパノール、ビス(2-ヒドロキシプロピル)アミン、トリス(2-ヒドロキシプロピル)アミン等が挙げられる。
 アルキルアミン化合物としては、例えば、エチルアミン、トリエチルアミン、エチレンジアミン、トリエチレンテトラミン、シクロヘキシルアミン、ヘキサデシルアミン、ステアリルアミン等が挙げられる。
 アミンポリオキシアルキレン付加体としては、例えば、末端ジアミンポリアルキレングリコール、脂肪族アミンポリオキシアルキレン付加体、芳香族アミンポリオキシアルキレン付加体、多価アミンポリオキシアルキレン付加体等が挙げられる。
 アミンポリオキシアルキレン付加体に付加されているアルキレンオキシドとしては、例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が挙げられる。
 末端ジアミンポリアルキレングリコールは、ポリアルキレングリコールの両末端がアミノ化された化合物である。
 末端ジアミンポリアルキレングリコールとしては、例えば、末端ジアミンポリエチレングリコール、末端ジアミンポリプロピレングリコール、末端ジアミンポリエチレングリコール-ポリプロピレングリコール共重合体等が挙げられる。
 末端ジアミンポリエチレングリコール-ポリプロピレングリコール共重合体としては、例えば、ポリエチレングリコール-ポリプロピレングリコール共重合物ビス(2-アミノプロピル)エーテル、ポリエチレングリコール-ポリプロピレングリコール共重合物ビス(2-アミノエチル)エーテルが挙げられる。
 脂肪族アミンポリオキシアルキレン付加体、芳香族アミンポリオキシアルキレン付加体、及び多価アミンポリオキシアルキレン付加体は、アミンの窒素原子にポリオキシアルキレン基が結合したものである。前記アミンとしては、例えば、エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ラウリルアミン、ステアリルアミン、オレイルアミン、牛脂アミン、硬化牛脂アミン、牛脂プロピルジアミン、メタキシレンジアミン、トリレンジアミン、パラキシレンジアミン、フェニレンジアミン、イソホロンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン、4,4-ジアミノジシクロヘキシルメタン、4,4-ジアミノジフェニルメタン、ブタン-1,1,4,4-テトラアミン、ピリミジン-2,4,5,6-テトラアミン等が挙げられる。
 アミンは、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 アミンとしては、アゾール類が好ましく、2-フェニルイミダゾールがより好ましい。
 前記フラックスがアミンを含有する場合、前記アミンの含有量は、フラックスの総質量に対して、0.1質量%以上10質量%以下であることが好ましく、0.1質量%以上5質量%以下であることがより好ましい。
 前記フラックスがアミンを含有することにより、フラックスの濡れ性をより高めやすくなる。前記アミンの含有量が前記範囲の下限値以上であることにより、フラックスの濡れ性をより高めやすくなる。前記アミンの含有量が前記範囲の上限値以下であることにより、ボイド発生の抑制能を高めやすくなる。
 [ハロゲン化合物]
 ハロゲン化合物としては、例えば、アミンハロゲン化水素酸塩、アミンハロゲン化水素酸塩以外の有機ハロゲン化合物等が挙げられる。
 アミンハロゲン化水素酸塩は、アミンとハロゲン化水素とを反応させた化合物である。
ここでのアミンとしては、≪アミン≫において上述したものが挙げられる。
 また、アミンハロゲン化水素酸塩以外のハロゲン化合物としては、例えば、アミンとテトラフルオロホウ酸(HBF)とを反応させた塩、アミンと三フッ化ホウ素(BF)とを反応させた錯体も用いることができる。前記錯体としては、例えば、三フッ化ホウ素ピぺリジン等が挙げられる。
 アミンハロゲン化水素酸塩以外のハロゲン化合物としては、例えば、ハロゲン化脂肪族化合物が挙げられる。ハロゲン化脂肪族炭化水素基は、脂肪族炭化水素基を構成する水素原子の一部または全部がハロゲン原子で置換されたものをいう。
 ハロゲン化脂肪族化合物としては、ハロゲン化脂肪族アルコール、ハロゲン化複素環式化合物が挙げられる。
 ハロゲン化脂肪族アルコールとしては、例えば、1-ブロモ-2-プロパノール、3-ブロモ-1-プロパノール、3-ブロモ-1,2-プロパンジオール、1-ブロモ-2-ブタノール、1,3-ジブロモ-2-プロパノール、2,3-ジブロモ-1-プロパノール、1,4-ジブロモ-2-ブタノール、trans-2,3-ジブロモ-2-ブテン-1,4-ジオール等が挙げられる。
 ハロゲン化複素環式化合物としては、例えば、下記一般式(h1)で表される化合物が挙げられる。
 Rh11-(Rh12  (h1)
[式中、Rh11は、n価の複素環式基を表す。Rh12は、ハロゲン化脂肪族炭化水素基を表す。]
 Rh11における、n価の複素環式基の複素環としては、脂肪族炭化水素又は芳香族炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された環構造が挙げられる。この複素環におけるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。この複素環は、3~10員環であることが好ましく、5~7員環であることがより好ましい。この複素環としては、例えば、イソシアヌレート環などが挙げられる。
 Rh12における、ハロゲン化脂肪族炭化水素基は、炭素数1~10が好ましく、炭素数2~6がより好ましく、炭素数3~5がさらに好ましい。また、Rh12は、臭素化脂肪族炭化水素基、塩素化脂肪族炭化水素基が好ましく、臭素化脂肪族炭化水素基がより好ましく、臭素化飽和脂肪族炭化水素基がさらに好ましい。
 ハロゲン化複素環式化合物としては、例えば、トリス-(2,3-ジブロモプロピル)イソシアヌレート等が挙げられる。
 また、アミンハロゲン化水素酸塩以外のハロゲン化合物としては、例えば、2-ヨード安息香酸、3-ヨード安息香酸、2-ヨードプロピオン酸、5-ヨードサリチル酸、5-ヨードアントラニル酸等のヨウ化カルボキシル化合物;2-クロロ安息香酸、3-クロロプロピオン酸等の塩化カルボキシル化合物;2,3-ジブロモプロピオン酸、2,3-ジブロモコハク酸、2-ブロモ安息香酸等の臭素化カルボキシル化合物等のハロゲン化カルボキシル化合物が挙げられる。
 また、アミンハロゲン化水素酸塩以外のハロゲン化合物としては、例えば、有機クロロ化合物が挙げられる。有機クロロ化合物としては、例えば、クロロアルカン、塩素化脂肪酸エステル、クロレンド酸、クロレンド酸無水物等が挙げられる。
 ハロゲン化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ≪有機リン化合物≫
 有機リン化合物としては、例えば、酸性リン酸エステル、酸性ホスホン酸エステル、酸性ホスフィン酸エステル等が挙げられる。
 有機リン化合物は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 ≪チキソ剤≫
 チキソ剤としては、例えば、エステル系チキソ剤、アミド系チキソ剤、ソルビトール系チキソ剤等が挙げられる。
 エステル系チキソ剤としては、例えばエステル化合物が挙げられ、具体的には硬化ひまし油、ミリスチン酸エチル等が挙げられる。
 アミド系チキソ剤としては、例えば、モノアミド、ビスアミド、ポリアミドが挙げられる。
 モノアミドとしては、例えば、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミド、飽和脂肪酸アミド、オレイン酸アミド、エルカ酸アミド、不飽和脂肪酸アミド、4-メチルベンズアミド(p-トルアミド)、p-トルエンメタンアミド、芳香族アミド、ヘキサメチレンヒドロキシステアリン酸アミド、置換アミド、メチロールステアリン酸アミド、メチロールアミド、脂肪酸エステルアミド等が挙げられる。
 ビスアミドとしては、例えば、エチレンビス脂肪酸(脂肪酸の炭素数C6~24)アミド、エチレンビスヒドロキシ脂肪酸(脂肪酸の炭素数C6~24)アミド、ヘキサメチレンビス脂肪酸(脂肪酸の炭素数C6~24)アミド、ヘキサメチレンビスヒドロキシ脂肪酸(脂肪酸の炭素数C6~24)アミド、芳香族ビスアミド等が挙げられる。前記ビスアミドの原料である脂肪酸としては、例えば、ステアリン酸(炭素数C18)、オレイン酸(炭素数C18)、ラウリン酸(炭素数C12)等が挙げられる。
 ポリアミドとしては、例えば、飽和脂肪酸ポリアミド、不飽和脂肪酸ポリアミド、芳香族ポリアミド、1,2,3-プロパントリカルボン酸トリス(2-メチルシクロヘキシルアミド)、環状アミドオリゴマー、非環状アミドオリゴマー等のポリアミドが挙げられる。
 前記環状アミドオリゴマーは、ジカルボン酸とジアミンとが環状に重縮合したアミドオリゴマー、トリカルボン酸とジアミンとが環状に重縮合したアミドオリゴマー、ジカルボン酸とトリアミンとが環状に重縮合したアミドオリゴマー、トリカルボン酸とトリアミンとが環状に重縮合したアミドオリゴマー、ジカルボン酸及びトリカルボン酸とジアミンとが環状に重縮合したアミドオリゴマー、ジカルボン酸及びトリカルボン酸とトリアミンとが環状に重縮合したアミドオリゴマー、ジカルボン酸とジアミン及びトリアミンとが環状に重縮合したアミドオリゴマー、トリカルボン酸とジアミン及びトリアミンとが環状に重縮合したアミドオリゴマー、ジカルボン酸及びトリカルボン酸とジアミン及びトリアミンとが環状に重縮合したアミドオリゴマー等が挙げられる。
 また、前記非環状アミドオリゴマーは、モノカルボン酸とジアミン及び/又はトリアミンとが非環状に重縮合したアミドオリゴマーである場合、ジカルボン酸及び/又はトリカルボン酸とモノアミンとが非環状に重縮合したアミドオリゴマーである場合等が挙げられる。モノカルボン酸又はモノアミンを含むアミドオリゴマーであると、モノカルボン酸、モノアミンがターミナル分子(terminal molecules)として機能し、分子量を小さくした非環状アミドオリゴマーとなる。また、非環状アミドオリゴマーは、ジカルボン酸及び/又はトリカルボン酸と、ジアミン及び/又はトリアミンとが非環状に重縮合したアミド化合物である場合、非環状高分子系アミドポリマーとなる。更に、非環状アミドオリゴマーは、モノカルボン酸とモノアミンとが非環状に縮合したアミドオリゴマーも含まれる。
 ソルビトール系チキソ剤としては、例えば、ジベンジリデン-D-ソルビトール、ビス(4-メチルベンジリデン)-D-ソルビトール、(D-)ソルビトール、モノベンジリデン(-D-)ソルビトール、モノ(4-メチルベンジリデン)-(D-)ソルビトール等が挙げられる。
 本実施形態にかかるフラックスは、チキソ剤を含有しなくてもよいし、チキソ剤を含有してもよい。本実施形態にかかるフラックスがチキソ剤を含有する場合、チキソ剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ≪金属不活性化剤≫
 金属不活性化剤としては、例えば、ヒンダードフェノール系化合物、窒素化合物等が挙げられる。
 ここでいう「金属不活性化剤」とは、ある種の化合物との接触により金属が劣化することを防止する性能を有する化合物をいう。
 ヒンダードフェノール系化合物とは、フェノールのオルト位の少なくとも一方に嵩高い置換基(例えばt-ブチル基等の分岐状又は環状アルキル基)を有するフェノール系化合物をいう。
 ヒンダードフェノール系化合物としては、特に限定されず、例えば、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)]、N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパンアミド]、1,6-ヘキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、2,2’-ジヒドロキシ-3,3’-ビス(α-メチルシクロヘキシル)-5,5’-ジメチルジフェニルメタン、2,2’-メチレンビス(6-tert-ブチル-p-クレゾール)、2,2’-メチレンビス(6-tert-ブチル-4-エチルフェノール)、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N’-ビス[2-[2-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)エチルカルボニルオキシ]エチル]オキサミド、下記化学式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中、Zは、置換されてもよいアルキレン基である。R81及びR82は、それぞれ独立して、置換されてもよい、アルキル基、アラルキル基、アリール基、ヘテロアリール基、シクロアルキル基又はヘテロシクロアルキル基である。R83及びR84は、それぞれ独立して、置換されてもよいアルキル基である。)
 金属不活性化剤における窒素化合物としては、例えば、ヒドラジド系窒素化合物、アミド系窒素化合物、トリアゾール系窒素化合物、メラミン系窒素化合物等が挙げられる。
 ヒドラジド系窒素化合物としては、ヒドラジド骨格を有する窒素化合物であればよく、ドデカン二酸ビス[N2-(2ヒドロキシベンゾイル)ヒドラジド]、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、デカンジカルボン酸ジサリチロイルヒドラジド、N-サリチリデン-N’-サリチルヒドラジド、m-ニトロベンズヒドラジド、3-アミノフタルヒドラジド、フタル酸ジヒドラジド、アジピン酸ヒドラジド、オキザロビス(2-ヒドロキシ-5-オクチルベンジリデンヒドラジド)、N’-ベンゾイルピロリドンカルボン酸ヒドラジド、N,N’-ビス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル)ヒドラジン等が挙げられる。
 アミド系窒素化合物としては、アミド骨格を有する窒素化合物であればよく、N,N’-ビス{2-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシル]エチル}オキサミド等が挙げられる。
 トリアゾール系窒素化合物としては、トリアゾール骨格を有する窒素化合物であればよく、N-(2H-1,2,4-トリアゾール-5-イル)サリチルアミド、3-アミノ-1,2,4-トリアゾール、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール等が挙げられる。
 メラミン系窒素化合物としては、メラミン骨格を有する窒素化合物であればよく、メラミン、メラミン誘導体等が挙げられる。より具体的には、例えば、トリスアミノトリアジン、アルキル化トリスアミノトリアジン、アルコキシアルキル化トリスアミノトリアジン、メラミン、アルキル化メラミン、アルコキシアルキル化メラミン、N2-ブチルメラミン、N2,N2-ジエチルメラミン、N,N,N’,N’,N’’,N’’-ヘキサキス(メトキシメチル)メラミン等が挙げられる。
 金属不活性化剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ≪界面活性剤≫
 界面活性剤としては、例えば、ノニオン界面活性剤等が挙げられる。
 ノニオン界面活性剤としては、例えば、ポリオキシアルキレン付加体が挙げられる。
 ポリオキシアルキレン付加体が由来するアルキレンオキシドとしては、例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が挙げられる。
 ポリオキシアルキレン付加体としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、エチレンオキサイド-レゾルシン共重合物、ポリオキシアルキレンアセチレングリコール類、ポリオキシアルキレングリセリルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンエステル、ポリオキシアルキレンアルキルアミド等が挙げられる。
 あるいは、ノニオン界面活性剤としては、アルコールのポリオキシアルキレン付加体が挙げられる。前記アルコールとしては、例えば、脂肪族アルコール、芳香族アルコール、多価アルコールが挙げられる。
 界面活性剤は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 ≪酸化防止剤≫
 酸化防止剤としては、例えば、2,2’-ジヒドロキシ-3,3’-ビス(α-メチルシクロヘキシル)-5,5’-ジメチルジフェニルメタン等のヒンダードフェノール系酸化防止剤等が挙げられる。ここでいう「酸化防止剤」とは、はんだ合金の酸化を抑制する性能を有する化合物をいう。
 酸化防止剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 以上説明した実施形態に係るフラックスは、インジウム合金シートの実装及びはんだボールの接合のための、連続したリフローに好適に用いられる。
 1次リフローでは、インジウムの融点付近の低温(例えば170℃)の条件でリフローを行うことにより、ヒートシンクと、チップとを、インジウム合金シートで接合して、半導体パッケージを得る。次いで、2次リフローでは、はんだ合金の融点付近の高温(例えば250℃)の条件でリフローを行うことにより、半導体パッケージの裏面にはんだボールを接合する。
 従来のフラックスは、1次リフローにおいて、インジウムシートの表面に濡れ広がらず、接合面に溜まり、その結果、インジウム合金シート接合面にボイドが大量に発生しやすい。本実施形態に係るフラックスは、低温でも揮発しやすい溶剤(S1)を含有する。低温条件での1次リフローにおいて、溶剤(S1)は揮発する。その結果、インジウム合金シートが溶融する際に、溶剤(S1)に由来するボイドは発生しない。
 2次リフローは高温であるため、活性剤等がガス化してボイドを形成しやすい。本実施形態に係るフラックスは、ロジンエステル及びダイマー酸(A1)が高温でもガス化しにくい。このため、温度条件の異なる1時及び2次リフローにおいてボイドの発生を抑制することが可能である。
(接合体の製造方法)
 本態様に係る半導体パッケージを含む電子部品の製造方法では、上記実施形態に係るフラックスを用いて、1次リフローを行い、ダイとリッドとを、熱界面材料(TIM)を介して貼り合わせることにより、半導体パッケージを得る。次いで、2次リフローを行い、得られた半導体パッケージに、はんだボールを固定することにより、電子部品を得る方法である。
 本態様に係る製造方法は、下記工程(i)及び工程(ii)を含む。
 工程(i):
 ダイとリッドとがTIMを介して貼り合わされた接合体を備えた半導体パッケージを得る工程
 工程(ii):
 前記半導体パッケージの背面に、はんだボールを接合して電子部品を得る工程
 本態様に係る半導体パッケージを含む電子部品の製造方法の好適な一実施形態について、図1~4を用いて説明する。本実施形態に係る接合体の製造方法では、図1に例示するように、リッド10、TIM20、及び、ダイ41が搭載された基板40を準備する。
 ダイ41の表面には、メタライズ層42が設けられている。メタライズ層42は、例えば、Niめっき層、Ni/Auめっき層等であってもよい。メタライズ層42は、異なる組成の層を複数有していてもよい。メタライズ層42は、例えば、スパッタリング等の方法により形成することができる。
 リッド10は、TIM20と対向する面に、メタライズ層11が設けられている。メタライズ層11としては、ダイ41が有するメタライズ層42と同様のものが挙げられる。リッド10は、TIM20と対向する面とは反対側の面に、ヒートシンク12を備えている。ヒートシンクの材料としては、例えば、アルミニウム、鉄、銅等の金属が挙げられる。
 TIM20は、インジウムと銀との合金製のシートである。TIM20の形状は板状である。TIM20の寸法は、リッド10のメタライズ層11、及び、ダイ41のメタライズ層42の寸法と同等であるか、あるいは、これらよりも、小さい。
 前記合金製のシートの原料である前記合金における、インジウムの含有量は、合金の総量(100質量%)に対して、75質量%以上99質量%以下であることが好ましく、85質量%以上95質量%以下であることがより好ましい。
 前記合金における、銀の含有量は、合金の総量(100質量%)に対して、1質量%以上25質量%以下であることが好ましく、5質量%以上15質量%以下であることがより好ましい。
<工程(i)>
 工程(i)では、ダイとリッドとが熱界面材料(TIM)を介して貼り合わされた接合体を備えた半導体パッケージを得る。
 工程(i)について、フラックス塗布工程、リッド装着工程、加熱操作(1)を有する方法を例示して説明する。
 ≪フラックス塗布工程≫
 フラックス50としては、上記実施形態にかかるフラックス50が好適に用いられる。フラックス塗布工程について、図2を参照して説明する。図2は、フラックス50が塗布された、TIM20及びダイ41を示す断面図である。フラックス塗布工程においては、TIM20とダイ41との間、又は、TIM20とリッド10との間の少なくとも一方に、フラックス50を介在させる。
 フラックス塗布工程では、ダイ41とTIM20との貼合面(42a、20b)、又は、リッド10とTIM20との貼合面(11a、20a)に、フラックス50を塗布する。
 フラックス50は、次のように貼合面に塗布される。ダイ41のメタライズ層42の表面42aに対して、フラックス50を塗布する。次いで、フラックス50を塗布したダイ41のメタライズ層42の上に、TIM20を載置する。ダイ41に積層されたTIM20の、ダイ41と接触している面20bとは反対側の面20aに対して、フラックス50を塗布する。
 フラックス50の塗布装置としては、スプレーフラクサー、および発泡式フラクサー等が挙げられる。これらの中でも、塗布量の安定性の観点から、スプレーフラクサーが好ましい。
 ≪リッド装着工程≫
 リッド装着工程では、フラックス50を貼合面に塗布した後、TIM20及びダイ41が積層されている基板40に対して、リッド10を固定する。リッド装着工程について、図3を参照して説明する。図3は、フラックス50の塗布後、リッド10と基板40とが、接着用樹脂43により接着された積層体60を示す図である。
 リッド装着工程では、フラックス50の塗布後、基板40の一方面上に、接着用樹脂43を塗布する。次いで、リッド10と、TIM20及びダイ41が積層されている基板40とを、熱圧着することにより、接着用樹脂43を硬化させる。これにより、リッド10が基板40に対して固定される。リッド装着工程により、リッド10と基板40とが、接着用樹脂43により接着された積層体60が得られる。
 ≪加熱操作(1)≫
 加熱操作(1)では、積層体60に対して、リフロー方式により加熱を行う。加熱操作(1)により、TIM20を介して、リッド10及びダイ41が接合されて、半導体パッケージ60’を得る。
 TIMであるインジウム合金シートを構成するインジウムは、融点が156℃であるため、通常のリフローよりも低い温度であっても、接合が可能である。リフロー温度は、150~250℃であることが好ましく、150~200℃であることがより好ましい。
<工程(ii)>
 工程(ii)では、加熱操作(2)により、半導体パッケージ60’の背面60aに、はんだボール70を接合して、電子部品100を得る。工程(ii)について、図4を参照して説明する。前記半導体パッケージ60’の背面60aとは、半導体パッケージ60’における、リッドが固定されている面とは反対側の面を意味する。
 工程(ii)では、まず、半導体パッケージ60’の背面60aに、はんだボール70を載置する。次いで、はんだボール70が載置された半導体パッケージ60’に対して、加熱操作(2)を行う。加熱操作(2)により、はんだボール70が溶融して、はんだボール70と半導体パッケージ60’とが接合される。
 加熱操作(2)は、半導体パッケージ60’に対して、リフロー方式により加熱を行う。リフロー温度は、200℃以上280℃以下であることが好ましい。
 以上説明した実施形態に係る半導体パッケージを含む電子部品の製造方法によれば、高温で行われる加熱操作(2)においても、シートの接合面(すなわち、フラックスが介在している面)におけるボイド量を低減することが可能である。その結果、チップから発生した熱を高効率で放熱することが可能である。
(その他実施形態)
 上述したように、本態様に係る接合体の製造方法は、TIM20とダイ41との間、又は、TIM20とリッド10との間の少なくとも一方に、フラックス50を介在させる。
 上記の実施形態においては、ダイ41におけるTIM20との貼合面42a、TIM20におけるリッド10との貼合面11aにフラックス50を塗布するが、フラックス50を塗布する面はこれに限定されない。
 例えば、TIM20とダイ41との間にフラックス50を介在させるために、TIM20におけるダイ41との貼合面20bにフラックス50を塗布してもよいし、リッド10におけるTIM20との貼合面11aにフラックス50を塗布してもよい。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
<フラックスの調製>
 (実施例1~25、比較例1~4)
 表1~4に示す組成で実施例及び比較例の各フラックスを調合した。使用した原料の成分を以下に示した。表1~4における組成率は、フラックスの全質量を100質量%とした場合の質量%であり、空欄は0質量%を意味する。
 ロジンとして、ロジンエステル、アクリル酸変性水添ロジン、水添ロジンを用いた。
 ロジンエステル:
 ロジンエステルとしては、水添ロジンと、グリセリンと、を反応させたものを用いた。
 有機酸として、ダイマー酸(A1)及びその他有機酸を用いた。
 ダイマー酸(A1):水添ダイマー酸
 水添ダイマー酸として、オレイン酸とリノール酸との反応物に、部分的に水素添加されたものを用いた。水添ダイマー酸は、炭素数36であるダイマー酸、及び、炭素数が54であるトリマー酸を含有するものであった。
 炭素数36であるダイマー酸は、不飽和度が異なる複数種のダイマー酸を含むものであった。ここで、ダイマー酸の不飽和度は、ダイマー酸の分子内の炭素原子数をm、水素原子数をnとした場合に、{(2m+2)-n}/2で表される値である。
 炭素数36であるダイマー酸は、不飽和度2のダイマー酸、不飽和度3のダイマー酸、不飽和度4のダイマー酸、不飽和度5のダイマー酸、不飽和度6であるダイマー酸、不飽和度7であるダイマー酸、不飽和度8であるダイマー酸を含むものであった。
 その他有機酸:アジピン酸、パルミチン酸、セバシン酸、12-ヒドロキシステアリン酸
 アミン:2-フェニルイミダゾール
 溶剤(S)として、溶剤(S1)及び溶剤(S2)を用いた。
 溶剤(S1):3-メトキシブチルアセテート(沸点172℃)、ヘキシレングリコール(沸点197℃)
 溶剤(S2):ジエチレングリコールモノヘキシルエーテル(沸点260℃)
 ここで、沸点は、対象の液体の飽和蒸気圧が1気圧(すなわち、1013hPa)と等しくなるときの、その液体の温度を意味する。
 [重量減少率の測定]
 ロジンエステル、アクリル酸変性水添ロジン、水添ロジン、ダイマー酸(A1)、その他有機酸、溶剤(S1)及び溶剤(S2)の重量減少率は、次のように測定した。
 示差熱-熱重量同時測定装置(株式会社リガク製、TG-DTA8122)を用いて、測定対象試料10mgをアルミパンに入れ、室温約25℃から加熱を開始して所定の温度に達するまで、所定の昇温速度で昇温した。そして、加熱前の対象試料の質量W(100質量%)と、所定の温度に達した直後の質量Wとから、重量減少率を以下の計算式から算出した。
 重量減少率(%)=100×{W-W}/W
 ロジンエステル、アクリル酸変性水添ロジン、水添ロジン、ダイマー酸(A1)及びその他有機酸の重量減少率は、所定の温度及び所定の昇温速度を、それぞれ、260℃及び10℃/minとして、測定した。かっこ内の数値は重量減少率を示す。
 ロジン:ロジンエステル(7.1質量%)、アクリル酸変性水添ロジン(11.9質量%)、水添ロジン(25.6質量%)
 有機酸:水添ダイマー酸(0.1質量%)、アジピン酸(99.5質量%)、パルミチン酸(97.0質量%)、セバシン酸(52.9質量%)、12-ヒドロキシステアリン酸(11.9質量%)
 溶剤(S1)及び溶剤(S2)の重量減少率は、所定の温度及び所定の昇温速度を、それぞれ、150℃及び6℃/minとして測定した。
 溶剤(S1):3-メトキシブチルアセテート(99.0質量%)、ヘキシレングリコール(99.0質量%)
 溶剤(S2):ジエチレングリコールモノヘキシルエーテル(21.0質量%)
 [水添ダイマー酸の分析]
 2-プロパノールに溶解させた水添ダイマー酸5000ppmを用意した。液体クロマトグラフィー・フーリエ変換質量分析計を用いて、この溶液を分析した。
 液体クロマトグラフィー装置として、UltiMate 3000(Thermo Fisher社製)を用いた。移動相として、5mMギ酸アンモニウム水溶液及びメタノールの混合液を用いて、グラジエント分析を行った。カラムとして、Aquity UPLC BEH C18(1.7μm,2.1×100mm)を用いた。カラム温度は50℃に設定し、流速は0.35mL/minに設定し、注入量は1μLとした。
 フーリエ変換質量分析計として、orbitrap ID-X(Thermo Fisher社製)を用いた。分析条件は、エレクトロスプレーイオン法のネガティブモードとした。m/zの測定範囲は、200~2000とした。
 用いた水添ダイマー酸は、複数の分子を含むことが確認された。作成したイオンクロマトグラムに基づき、検出された全ての分子に由来するピーク総面積(100%)に対する、各分子に由来するピーク面積の割合を算出した。
 水添ダイマー酸は、複数種の炭素数36のダイマー酸、及び、炭素数54のトリマー酸を含有するものであった。複数種の炭素数36のダイマー酸に由来するピーク総面積は、全ての分子に由来する総面積(100%)に対して、99%以上であった。
 全ての分子に由来する総面積(100%)に対する、炭素数36である各ダイマー酸の面積の割合は以下の通りであった。
 不飽和度2のダイマー酸(26.7%)、不飽和度3のダイマー酸(40.6%)、不飽和度4のダイマー酸(10.6%)、不飽和度5のダイマー酸(2.6%)、不飽和度6であるダイマー酸(7.5%)、不飽和度7であるダイマー酸(10.1%)、不飽和度8であるダイマー酸(1.9%)であった。
 水添ダイマー酸の総量(100質量%)に対する、異なる不飽和度の各ダイマー酸の含有量は、おおよそ、上述の面積の割合と一致すると推測される。
 [軟化点の測定]
 ロジンの軟化点は、JIS K 5902の記載の環球法により測定した。軟化点が80℃以下のロジンは、水浴で測定した。また、軟化点が80℃を超えるロジンは、グリセリン浴で測定した。各ロジンについて、測定は2回行った。下記の軟化点は、2回の測定値の平均値である。
 ロジンエステル(軟化点95℃)、アクリル酸変性水添ロジン(軟化点130℃)、水添ロジン(軟化点72℃)
 [酸価の測定]
 ロジンエステルの酸価は、JISK0070「化学製品の酸価,けん化価,エステル価,よう素価,水酸基価及び不けん化物の試験方法」の3.1 中和滴定法に従って測定した。
 ロジンエステル3gをエタノール/ジエチルエーテル(混合比1:1)に溶解した。指示薬としてフェノールフタレインを用いて、0.1mol/L KOH エタノール溶液により滴定した。溶液が微紅色になった点を終点とした。
 ロジンエステルの酸価は、6mgKOH/gであった。
 下記の<評価1>に記載した評価方法にしたがって、≪ボイド発生抑制能の評価≫、≪濡れ性の評価≫を行った。これらの評価結果を表1~4に示した。
 <評価1>
 ≪ボイド発生抑制能の評価≫
 接合体の製造方法:
 表面にAu/Niめっき部(サイズ8mm×8mm)が設けられたリッド、及び、表面にAu/Niめっき部(サイズ8mm×8mm)が設けられた基板を用意した。
 はんだシートとして、Inが90質量%と、Agが10質量%との合金からなるインジウム合金シート(サイズ:7mm×7mm×400μm)を準備した。インジウム合金シートの表面及び裏面に、それぞれ、各例のフラックス2mgをスプレー塗布した。
 基板のAu/Niめっき部の周縁に、厚さ300μmの銅板を、スペーサーとして載置した。次いで、フラックスを塗布したインジウム合金シートを、リッド及び基板のAu/Niめっき部の間に挟み込んだ状態で、クリップで固定した。
 次いで、インジウム合金シートを挟んだリッド及び基板に対して、1次リフローを行い、接合体を得た。1次リフローは、大気中、昇温速度10℃/分で昇温し、170℃に達するまで行った。
 次いで、1次リフローを行った接合体に対して、2次リフローを行った。2次リフローは、昇温速度0.5℃/秒で、450秒間、室温から250℃まで昇温させた。
 検証方法:
 2次リフローを行った接合体に対し、基板の鉛直方向からX線を照射して、透過X線を解析することにより、ボイド面積を測定した。測定には、XD7600NT(ノードソン社製)を用いた。ボイド面積の測定では、X線が少なくとも1個のボイドを通過した場合には、ボイドが存在したものとして測定した。ボイドは、直径0.1μm以上のものを検出した。次いで、インジウム合金シートの総面積に対するボイドの総面積の割合を算出し、ボイド面積率(%)とした。
 判定基準:
 A:ボイド面積率が、10%未満である。
 B:ボイド面積率が、10%以上15%未満である。
 C:ボイド面積率が、15%以上である。
 評価結果が、A又はBであったフラックスは合格であり、Cであったフラックスは不合格であるとした。
 ≪濡れ性の評価≫
 検証方法:
 はんだシートとして、Inが90質量%と、Agが10質量%との合金からなるインジウム合金シート(サイズ:2mm×2mm×100μm)を準備した。
 インジウム合金シートの表面及び裏面に、それぞれ、各例のフラックス0.5mgをスプレー塗布した。フラックスを塗布したインジウム合金シートを、Au/Ni電極上に載置した。
 次いで、インジウム合金シートが載置された電極を、次の条件でリフローを行った。リフローは、昇温速度6℃/分で、180℃まで昇温し、180℃で3分間、保持した。
 次いで、フラックスを除去した後、濡れ広がった面積を計測した。
 判定基準:
 A:濡れ広がった面積が、2.5mm以上である。
 B:濡れ広がった面積が、2.0mm以上2.5mm未満である。
 評価結果が、A又はBであったフラックスは合格であるとした。
 ≪塗布性の評価≫
 検証方法:
 スプレー装置(TG-SS2(フルコーンタイプ)、スプレーイングシステム社製)を用いて、エアー圧を0.3MPaに設定し、各例のフラックスを金属板に対して塗布できるか否かを検証した。
 判定基準:
 A:スプレー装置を用いて、フラックスを金属板に塗布することができた。
 B:スプレー装置を用いて、フラックスを金属板に塗布することができなかった。
 評価結果が、Aであったフラックスは合格であり、Bであったフラックスは不合格であるとした。
 下記の<評価2>に記載した評価方法にしたがって、≪ボイド発生抑制能の評価≫、≪濡れ性の評価≫を行った。これらの評価結果を表4に示した。
 <評価2>
 ≪ボイド発生抑制能の評価≫
 はんだシートとして、Agが3質量%と、Cuが0.5質量%と、残部がSnとの合金からなるSAC合金シート(サイズ:7mm×7mm×400μm)を準備した。
 SAC合金シート、実施例1、比較例4のフラックスを用いて、<評価1>の≪ボイド発生抑制能の評価≫と同様の方法で検証した。
 1次リフロー及び2次リフローの条件は次の通りであった。1次リフローは、大気中、昇温速度10℃/分で昇温し、室温(25℃)から250℃に達するまで行った。2次リフローは、昇温速度0.5℃/秒で、450秒間、室温(25℃)から250℃まで昇温させた。
 ≪濡れ性の評価≫
 はんだシートとして、Agが3質量%と、Cuが0.5質量%と、残部がSnとの合金からなるSAC合金シート(サイズ:2mm×2mm×100μm)を準備した。
 SAC合金シート、実施例1、比較例4のフラックスを用いて、<評価1>の≪濡れ性の評価≫と同様の方法で検証した。
 リフローは、昇温速度6℃/分で、室温(25℃)から250℃まで昇温し、250℃で3分間、保持した。
Figure JPOXMLDOC01-appb-T000004
 ロジンエステルとダイマー酸(A1)と溶剤(S1)とを含有する、実施例1~2のフラックスは、ボイド発生抑制能の評価が、Aであった。
 溶剤(S1)を含有しない、比較例1のフラックスは、ボイド発生抑制能の評価が、Cであった。
 ダイマー酸(A1)を含有しない、比較例2~3のフラックスは、ボイド発生抑制能の評価が、Cであった。
 ロジンエステルを含有しない、比較例4のフラックスは、ボイド発生抑制能の評価が、Cであった。
 前記溶剤(S1)の含有量が、前記溶剤(S)の総質量に対して、100質量%である、実施例1のフラックスは、ボイド発生抑制能の評価が、Aであった。
 前記溶剤(S1)の含有量が、前記溶剤(S)の総質量に対して、83質量%である、実施例3のフラックスは、ボイド発生抑制能の評価が、Bであった。
 ダイマー酸(A1)を含有する、実施例1のフラックスは、塗布性の評価がAであった。
 ダイマー酸(A1)を含有しない、比較例1のフラックスは、塗布性の評価がBであった。
 その他有機酸の含有量が、フラックスの総質量に対して15質量%である比較例2~3のフラックスは、塗布性の評価がBであった。
Figure JPOXMLDOC01-appb-T000005
 ダイマー酸(A1)の含有量が、有機酸(A)の総質量に対して、90質量%以上である、実施例4、7~11のフラックスは、ボイド発生抑制能の評価がAであった。
 ダイマー酸(A1)の含有量が、有機酸(A)の総質量に対して、90質量%未満である、実施例5~6、12~13のフラックスは、ボイド発生抑制能の評価がBであった。
Figure JPOXMLDOC01-appb-T000006
 ダイマー酸(A1)の含有量が、フラックスの総質量に対して15質量%以上である、実施例15~20、22~23、25のフラックスは、濡れ性の評価がAであった。
 ダイマー酸(A1)の含有量が、フラックスの総質量に対して10質量%である、実施例14、21、24のフラックスは、濡れ性の評価がBであった。
Figure JPOXMLDOC01-appb-T000007
 <評価2>において、SAC合金シート及び実施例1のフラックスを用いた場合、ボイド発生抑制能及び濡れ性の評価は、Aであった。また、SAC合金シート及び比較例4のフラックスを用いた場合、ボイド発生抑制能及び濡れ性の評価は、Aであった。
 ロジンエステルを含有しない比較例4のフラックスは、SAC合金シートを用いた場合、ボイド抑制能はAであり、インジウム合金シートを用いた場合、ボイド抑制能はCであった。すなわち、インジウム合金シートを用いた場合は、SAC合金シートを用いた場合よりも、ボイドを発生しやすい。
 ロジンエステルを含有する実施例1のフラックスは、インジウム合金シートを用いた場合であっても、十分にボイドを抑制することができた。
 本発明のフラックスは、ロジンエステル、ダイマー酸(A1)及び溶剤(S1)を含有することにより、インジウムの含有量が高いはんだシートを用いた場合であっても、得られる接合体において、ボイドの発生を抑制することが可能である。
 本発明のフラックスは、インジウム合金シートを用いた、熱排出効率が高められた電子部品の製造工程に好適に用いられる。
 10 リッド、11 メタライズ層、11a 貼合面、12 ヒートシンク、20 熱界面材料(TIM)、20a,20b 貼合面、40 基板、41 ダイ、42 メタライズ層、42a 貼合面、43 接着用樹脂、50 フラックス、60 半導体パッケージ、60a 裏面、70 はんだボール、100 電子部品

Claims (10)

  1.  ロジンエステルと、有機酸(A)と、溶剤(S)とを含有し、
     前記有機酸(A)は、熱重量測定において昇温速度10℃/minで260℃まで加熱した際の重量減少率が1質量%以下であるダイマー酸(A1)を含み、
     前記溶剤(S)は、熱重量測定において昇温速度6℃/minで150℃まで加熱した際の重量減少率が99質量%以上である溶剤(S1)を含む、フラックス。
  2.  前記ダイマー酸(A1)の含有量が、前記有機酸(A)の総質量に対して、75質量%以上である、請求項1に記載のフラックス。
  3.  前記溶剤(S1)の含有量が、前記溶剤(S)の総質量に対して、80質量%以上である、請求項1又は2に記載のフラックス。
  4.  前記ダイマー酸(A1)は、炭素数18の不飽和脂肪酸が結合した二量体からなる群より選択される少なくとも一種である、請求項1~3のいずれか一項に記載のフラックス。
  5.  前記溶剤(S1)の沸点が、200℃以下である、請求項1~4のいずれか一項に記載のフラックス。
  6.  さらに、アゾール類を含有する、請求項1~5のいずれか一項に記載のフラックス。
  7.  前記ダイマー酸(A1)の含有量が、フラックスの総質量に対して、10質量%以上60質量%以下である、請求項1~6のいずれか一項に記載のフラックス。
  8.  前記ロジンエステルの含有量が、フラックスの総質量に対して、15質量%以上60質量%以下である、請求項1~7のいずれか一項に記載のフラックス。
  9.  半導体パッケージを含む電子部品の製造方法であって、
     ダイとリッドとが熱界面材料(TIM)を介して貼り合わされた接合体を備えた半導体パッケージを得る工程(i)と、
     前記半導体パッケージの背面に、はんだボールを接合して電子部品を得る工程(ii)と、を有し、
     前記TIMが、インジウムと銀との合金製のシートであり、
     前記工程(i)は、前記TIMと前記ダイとの間、又は、前記TIMと前記リッドとの間の少なくとも一方に、請求項1~8のいずれか一項に記載のフラックスを介在させて、リフロー方式により前記ダイと前記リッドとを貼り合わせる加熱操作(1)を含み、
     前記工程(ii)は、リフロー方式により前記はんだボールと前記半導体パッケージとを接合する加熱操作(2)を含む、電子部品の製造方法。
  10.  前記加熱操作(1)の温度条件が150~250℃であり、
     前記加熱操作(2)の温度条件が200~280℃である、請求項9に記載の電子部品の製造方法。
PCT/JP2023/030134 2022-08-26 2023-08-22 フラックス及び電子部品の製造方法 WO2024043231A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-135236 2022-08-26
JP2022135236A JP7252504B1 (ja) 2022-08-26 2022-08-26 フラックス及び電子部品の製造方法

Publications (1)

Publication Number Publication Date
WO2024043231A1 true WO2024043231A1 (ja) 2024-02-29

Family

ID=85780239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030134 WO2024043231A1 (ja) 2022-08-26 2023-08-22 フラックス及び電子部品の製造方法

Country Status (2)

Country Link
JP (1) JP7252504B1 (ja)
WO (1) WO2024043231A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101695794A (zh) * 2009-10-23 2010-04-21 东莞市特尔佳电子有限公司 一种无卤锡铋铜焊锡膏及其制备方法
JP2015085353A (ja) * 2013-10-30 2015-05-07 株式会社タムラ製作所 ソルダペースト用フラックスおよびソルダペースト
CN105855749A (zh) * 2016-04-27 2016-08-17 深圳市晨日科技股份有限公司 一种水洗芯片固晶锡膏及其制备方法
JP6501003B1 (ja) * 2018-01-17 2019-04-17 千住金属工業株式会社 はんだ付け用樹脂組成物、やに入りはんだ、フラックスコートはんだ及び液状フラックス
JP6540789B1 (ja) * 2017-12-29 2019-07-10 千住金属工業株式会社 樹脂組成物及びはんだ付け用フラックス
JP2020040105A (ja) * 2018-09-13 2020-03-19 株式会社タムラ製作所 はんだ組成物および電子基板の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049631A (zh) 2010-12-14 2011-05-11 东莞市特尔佳电子有限公司 一种点涂式高温焊锡膏及制备方法
JP5594337B2 (ja) * 2012-08-20 2014-09-24 株式会社三洋物産 遊技機
JP6540788B1 (ja) 2017-12-29 2019-07-10 千住金属工業株式会社 フラックス及びソルダペースト
JP6638841B1 (ja) 2019-03-29 2020-01-29 千住金属工業株式会社 フラックス及びソルダペースト
JP6646242B1 (ja) 2019-05-27 2020-02-14 千住金属工業株式会社 はんだペースト及びはんだペースト用フラックス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101695794A (zh) * 2009-10-23 2010-04-21 东莞市特尔佳电子有限公司 一种无卤锡铋铜焊锡膏及其制备方法
JP2015085353A (ja) * 2013-10-30 2015-05-07 株式会社タムラ製作所 ソルダペースト用フラックスおよびソルダペースト
CN105855749A (zh) * 2016-04-27 2016-08-17 深圳市晨日科技股份有限公司 一种水洗芯片固晶锡膏及其制备方法
JP6540789B1 (ja) * 2017-12-29 2019-07-10 千住金属工業株式会社 樹脂組成物及びはんだ付け用フラックス
JP6501003B1 (ja) * 2018-01-17 2019-04-17 千住金属工業株式会社 はんだ付け用樹脂組成物、やに入りはんだ、フラックスコートはんだ及び液状フラックス
JP2020040105A (ja) * 2018-09-13 2020-03-19 株式会社タムラ製作所 はんだ組成物および電子基板の製造方法

Also Published As

Publication number Publication date
JP7252504B1 (ja) 2023-04-05
JP2024031587A (ja) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2023171471A1 (ja) フラックス及びソルダペースト
WO2023063160A1 (ja) フラックス及びソルダペースト
WO2024043231A1 (ja) フラックス及び電子部品の製造方法
WO2023084949A1 (ja) 水溶性フラックス及びソルダペースト
WO2024043223A1 (ja) フラックス及び接合体の製造方法
CN116419816B (zh) 助焊剂及焊膏
TWI698485B (zh) 助焊劑組合物、焊膏、焊接部及焊接方法
CN117377552B (zh) 助焊剂及焊膏
JP7236022B1 (ja) フラックス、ソルダペースト及び接合体の製造方法
WO2022255234A1 (ja) フラックス及びソルダペースト
TW202336162A (zh) 助焊劑及接合體的製造方法
CN116529021B (zh) 助焊剂及焊膏
KR102541488B1 (ko) 플럭스 및 솔더 페이스트
JP2023117164A (ja) フラックス及びソルダペースト
WO2022270499A1 (ja) フラックス及びソルダペースト
JP2024034098A (ja) フラックス及び接合体の製造方法
TW202330768A (zh) 助焊劑及接合體的製造方法
CN115279544A (zh) 助焊剂及焊膏
TW202417163A (zh) 助焊劑、焊料膏及接合體的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857340

Country of ref document: EP

Kind code of ref document: A1