WO2024042865A1 - 軟x線多層膜回折格子 - Google Patents
軟x線多層膜回折格子 Download PDFInfo
- Publication number
- WO2024042865A1 WO2024042865A1 PCT/JP2023/024451 JP2023024451W WO2024042865A1 WO 2024042865 A1 WO2024042865 A1 WO 2024042865A1 JP 2023024451 W JP2023024451 W JP 2023024451W WO 2024042865 A1 WO2024042865 A1 WO 2024042865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soft
- diffraction grating
- ray
- material layer
- density material
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 181
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 230000008033 biological extinction Effects 0.000 claims abstract description 6
- 238000002834 transmittance Methods 0.000 claims abstract description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 239000000126 substance Substances 0.000 claims description 22
- 239000011651 chromium Substances 0.000 claims description 18
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 230000000737 periodic effect Effects 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 229910052580 B4C Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 150000003658 tungsten compounds Chemical class 0.000 claims description 2
- 239000010408 film Substances 0.000 description 80
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000010931 gold Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000009304 pastoral farming Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
Definitions
- the present disclosure relates to a soft X-ray multilayer diffraction grating.
- This application claims priority based on Japanese Patent Application No. 2022-134307 filed in Japan on August 25, 2022, the contents of which are incorporated herein.
- the present disclosure relates to soft X-rays that include relatively high energies of approximately 0.3 nm to 0.6 nm in wavelength or approximately 2 keV to 4 keV in the soft X-ray region with wavelengths of 0.1 nm to 10 nm.
- the present invention relates to a soft X-ray multilayer diffraction grating that is generally uniform and has high diffraction efficiency.
- the present disclosure relates to a diffraction grating structure of a reflection type soft X-ray diffraction grating formed by a large number of grating grooves, and a multilayer film structure composed of thin films made of a plurality of materials laminated on the diffraction grating.
- various methods such as laser light or electron beams.
- spectroscopically analyzing the wavelength and intensity of light such as fluorescence useful information regarding the composition of substances can be obtained.
- a reflection type diffraction grating that causes reflection and diffraction at a large number of parallel grooves formed on the surface of a substance is mainly used.
- the real part of the complex refractive index of the material used as a reflective film on the surface of the diffraction grating is slightly smaller than 1.
- n in formula (1) represents the refractive index of the substance that constitutes the reflective film.
- ⁇ 2(1-n) ⁇ 1/2 on the right side of equation (2) is called the critical angle of grazing incidence ⁇ C. Since n is close to 1, the value of ⁇ C is small, and ⁇ is an angle slightly smaller than 90°. On the other hand, if formula (2) is not satisfied, the reflectance of soft X-rays on the surface of the diffraction grating is low. Therefore, in general, an oblique incidence condition is used in which soft X-rays are made to enter the diffraction grating from the direction of the incident angle ⁇ that satisfies equation (2).
- a soft X-ray spectrometer requires a diffraction grating that achieves a diffraction efficiency of approximately 1% or more.
- the energy of light diffracted by a reflective diffraction grating is not only dispersed into zero-order light that satisfies specular reflection conditions and into many order lights by diffraction, but also absorbed into the surface material. Therefore, the intensity of the first-order light or -1st-order light used for spectroscopic analysis is very weak compared to the intensity when it is specularly reflected by a plane mirror in which no diffraction grating is formed.
- the depth of the grooves and the duty ratio which represents the length ratio of the peaks and valleys of the unevenness in the cross section of the diffraction grating, are optimized. It is designed so that soft X-rays and light from the peaks and valleys of the groove constructively interfere with each other in the direction of diffraction of a desired order.
- Patent Document 1 As an alternative method to the above-mentioned method for obtaining high diffraction efficiency in the soft X-ray region, for example, as disclosed in Patent Document 1, Patent Document 2, Non-Patent Document 1, and Non-Patent Document 2, , a multilayer film in which a low-density material layer with a small extinction coefficient and a high-density material layer with a higher reflectance than the low-density material layer are alternately and periodically laminated on the surface of the diffraction grating.
- a method using a soft X-ray multilayer diffraction grating This method uses a phenomenon in which light diffracted by each high-density material layer interferes with each other and is intensified.
- the thicknesses of the material pairs that is, the period lengths, of the low-density material layer and the high-density material layer that make up the multilayer film
- the diffraction efficiency of soft X-rays with a specific wavelength increases specifically.
- the diffraction efficiency of soft X-rays with wavelengths other than a specific wavelength is significantly reduced. Therefore, the method using the soft X-ray multilayer diffraction grating of the form described above is not suitable for measurements in which the wavelengths incident on the diffraction grating from the measurement object are spread over a certain wavelength range.
- a low-density material layer and a high-density material layer in the vicinity of the surface of a soft It is said that the periodic length of the material pair with the layer may be increased sequentially from a deep region to a shallow region from the surface. This increases the diffraction efficiency of low-energy, long-wavelength soft X-rays that are difficult to penetrate deeply into the multilayer film of the soft X-ray multilayer diffraction grating, while In a region deep from the surface of the multilayer film, the diffraction efficiency of high-energy, short-wavelength soft X-rays that can penetrate deeply into the multilayer film becomes high.
- the depth at which soft X-rays with an energy of several keV or less can penetrate into a substance is shallower than that of hard X-rays with an energy of 10 keV or more. Therefore, it was necessary to take measures to sequentially shorten the period lengths of the plurality of material pairs of the soft X-ray multilayer film diffraction grating using a multilayer film composed of a very small number of material pairs, ranging from several pairs to more than ten pairs.
- the energy of the soft X-ray to be measured is below several keV, the incident light cannot penetrate deep into the multilayer film.
- the wider the energy range of the light to be measured the more the material pair is arranged on the upper part of the multilayer film, that is, on the light incident side of the multilayer film, and has a long periodic length corresponding to low energy light.
- a pair of substances arranged at the bottom of the multilayer film and having a short periodic length corresponding to high-energy light, and a pair of substances having a periodic length corresponding to soft Material pairs are required and the total thickness of the multilayer increases.
- the high-energy soft X-rays that should reach the substance pair with a short periodic length at the bottom of the multilayer film travel back and forth through the layer of the substance pair at the top, which has a long periodic length, and are therefore affected by this layer. Therefore, it is preferable that the entire multilayer film be designed taking into account the aforementioned effects. Due to these complicated circumstances, it has been difficult to realize a soft X-ray multilayer diffraction grating that exhibits high diffraction efficiency for soft X-rays in a wide energy range.
- the present invention has been made in view of the above-mentioned circumstances, and provides a soft X-ray diffraction grating that has high average diffraction efficiency in the above-mentioned energy range.
- a soft X-ray multilayer diffraction grating includes a substrate on which diffraction grating grooves are formed, a reflective layer provided on the substrate, and a multilayer film provided on the reflective layer. Be prepared.
- the multilayer film includes a low-density material layer with a small extinction coefficient in the soft X-ray region and high transmittance of incident soft X-rays, and a high-density material layer with a high reflectance of soft X-rays than the low-density material layer.
- a plurality of material pairs with a dense material layer are stacked. The thickness of the low density material layer in the plurality of material pairs is not constant.
- the thickness of the high-density material layer in the plurality of material pairs is constant. Therefore, the periodic length, which is the sum of the thickness of the low-density material layer and the thickness of the high-density material layer in the plurality of material pairs, is not constant.
- the diffraction is performed with respect to the lattice constant of the diffraction grating, the incident angle and the diffraction angle of the soft X-rays with respect to soft X-rays at approximately high energy ends of the energy region of the soft X-rays.
- the grating diffraction condition and the extended Bragg condition are satisfied.
- the grating of the diffraction grating is A diffraction condition of the diffraction grating and an extended Bragg condition regarding a constant, an incident angle and a diffraction angle of the soft X-rays are satisfied.
- the high-density material layer of the material pair closest to the soft X-ray incident side among the plurality of material pairs is cobalt, chromium, or nickel. It is composed of a simple substance or a compound of cobalt, chromium, or nickel.
- the high-density material layer of the material pair located below the material pair closest to the incident side of the soft X-rays among the plurality of material pairs may be composed of tungsten alone or a tungsten compound. good.
- the low-density material layer is a simple substance of boron carbide, silicon, or silicon oxide, or boron carbide, silicon, It may be composed of any compound of silicon oxide.
- the numbers assigned to the plurality of material pairs from the substrate side toward the soft X-ray incident side and the height of each of the material pairs are provided.
- a value of a coefficient of a nonlinear term in a relational expression with a value obtained by dividing the thickness of a dense material layer by the periodic length of each pair of materials may have a linear relationship that is 1/100 or less of a linear term.
- the numbers assigned to the plurality of material pairs from the substrate side toward the soft X-ray incident side and the period of each of the material pairs is 1/100 or less of the linear term. May be in a relationship.
- the diffraction grating may be formed of rectangular wave laminar type diffraction grating grooves.
- the diffraction grating may be formed of sawtooth wave-shaped blazed diffraction grating grooves.
- the uppermost layer of the diffraction grating surface reflects and diffracts low-energy soft X-rays, while transmitting and penetrating high-energy soft X-rays.
- a high average diffraction efficiency is achieved in a wide energy range of soft X-rays.
- relatively low-energy soft X-rays are efficiently reflected and diffracted by the uppermost high-density material layer, and relatively high-energy soft X-rays are efficiently taken into the lower multilayer film.
- the diffraction efficiency of a diffraction grating used in the soft X-ray region can be improved not only under the condition of a constant incident angle but also under the condition of a constant deviation angle.
- FIG. 1 is a cross-sectional view of a conventional soft X-ray laminar diffraction grating.
- FIG. 1 is a cross-sectional view of a soft X-ray multilayer diffraction grating according to an embodiment of the present invention.
- 3 is a graph showing the relationship between the number of material pairs of the soft X-ray multilayer diffraction grating shown in FIG. 2 and the film thicknesses of a low-density material layer and a high-density material layer.
- 3 is a graph showing the relationship between the material pair number of the soft X-ray multilayer film diffraction grating shown in FIG.
- FIG. 3 is a graph showing the relationship between the material pair number and the corresponding energy of the soft X-ray multilayer diffraction grating shown in FIG. 2.
- FIG. 3 is a graph showing the energy dependence of +1st-order soft X-ray diffraction efficiency when the soft X-ray multilayer film diffraction grating shown in FIG. 2 is applied to a constant incidence spectrometer.
- 3 is a graph showing the energy dependence of the +1st-order soft X-ray diffraction efficiency when the soft X-ray multilayer film diffraction grating shown in FIG. 2 is applied to a constant polarization spectrometer.
- FIG. 1 is a cross-sectional view of a conventional soft X-ray laminar diffraction grating 201.
- an orthogonal coordinate system is constructed with an arbitrary point on the outermost surface of the soft X-ray laminar diffraction grating 201 as the origin O.
- the outermost surface is the uppermost surface in FIG. Below, the outermost surface of the diffraction grating may be referred to as a diffraction grating surface.
- the x-axis is an axis normal to the center of the diffraction grating surface.
- the y-axis is the axis tangential to the grating plane.
- the z-axis is an axis perpendicular to the paper plane of FIG. 1 within the diffraction grating plane.
- "above” represents a position relatively far away from the substrate 1, which will be described later, on the x-axis.
- “Bottom” represents a position relatively close to the substrate 1 on the x-axis.
- incident light which is a soft X-ray
- the angle formed by the optical axis ix of the incident light with respect to the x-axis is defined as an incident angle ⁇ .
- the relationship of equation (3) holds between the incident angle ⁇ and the oblique incident angle ⁇ formed by the optical axis ix of the incident light with respect to the diffraction grating surface.
- the angle formed by the optical axis oxm( ⁇ ) of the diffracted light of soft X-rays having wavelength ⁇ and diffraction order m G with respect to the x-axis is defined as a diffraction angle ⁇ .
- the sign of each of the incident angle ⁇ and the diffraction angle ⁇ is positive in the counterclockwise direction from the x-axis.
- the grooves of the soft X-ray laminar diffraction grating 201 are formed in a rectangular wave shape, which is referred to as a laminar type in this specification.
- the soft X-ray laminar diffraction grating 201 includes a substrate 1 made of SiO 2 or the like, and a reflective layer 2 made of metal such as gold (Au).
- a plurality of grating grooves constituting a plurality of diffraction gratings are formed on the surface 1a of the substrate 1.
- Let a be the width of the peaks on the y-axis of the diffraction grating.
- Let h be the groove depth of the diffraction grating.
- the grating constant ⁇ which is the period of the diffraction grating, corresponds to the period length of the grating grooves.
- the plurality of lattice grooves are formed parallel to each other in the z-axis direction.
- Equation (4) which is called a diffraction grating equation or a diffraction grating equation, is satisfied.
- the lattice constant ⁇ 312.50 [nm]
- 1/ ⁇ A laminar diffraction grating with 3200 [lines/mm]
- groove depth h 2.05 [nm]
- Examples include substrates that have been
- the reflective layer 2 is provided on the grating grooves formed in the substrate 1.
- FIG. 2 is a cross-sectional view of a soft X-ray multilayer diffraction grating 101 according to an embodiment of the present invention.
- the soft X-ray multilayer diffraction grating 101 includes a substrate 1, a reflective layer 2, and a multilayer film 20.
- the multilayer film 20 is arranged on the reflective layer 2.
- the low-density material layers 3, 5, 7, and 9 Since the low-density material layers 3, 5, 7, and 9 have high transmittance of incident light, the low-density material layers 3, 5, 7, and 9 function as spacers. The reflectance of soft X-rays incident on the high-density material layers 4, 6, 8, and 10 is high.
- a plurality of low-density material layers including the low-density material layers 3, 5, 7, and 9 may be collectively referred to as a low-density material layer 31.
- a plurality of high-density material layers including the high-density material layers 4, 6, 8, and 10 may be collectively referred to as a high-density material layer 32. Further, the combination of the high-density material layer 32 and the low-density material layer 31 constituting the multilayer film 20 is referred to as a material pair 35.
- the film thickness d i of the material pair 35 is called the periodic length of the material pair, and is expressed by equation (5).
- the extended Bragg condition is a condition that extends the Bragg condition for reflection phenomena to diffraction phenomena.
- FIG. 35 only the material pair 35 of the low-density material layer 7 and the high-density material layer 8, and the material pair 35 of the low-density material layer 9 and the high-density material layer 10 are shown as examples. Between the material pair 35 of the low-density material layer 5 and the high-density material layer 6 and the material pair 35 of the low-density material layer 7 and the high-density material layer 8, one or more material pairs 35 (not shown) are provided. is provided.
- a plurality of material pairs 35 are stacked along the x-axis.
- the high-density material layer 32 does not change in thickness and is constant, and is stacked on the low-density material layer 31 whose thickness changes.
- the film thickness d i of the material pair 35 in a region close to the surface 101a of the soft X-ray multilayer film diffraction grating 101 on the x-axis is increased compared to the film thickness d i of the material pair 35 in a region far from the surface 101a. .
- the thickness d Li of the low-density material layer 31 in a region close to the surface 101 a of the soft X-ray multilayer film diffraction grating 101 is greater than the film thickness d Li of the low-density material layer 31 in a region far from the surface 101 a.
- a low-density substance with a small extinction coefficient carbon (C), boron carbide (B 4 C), silicon (Si), silicon oxide (SiO 2 ) alone, or C, B 4 C, Si, Any compound of SiO 2 may be mentioned.
- a high-density material with high reflectance in the soft X-ray region a material with a density of about 5 g/cm 3 or more is preferable.
- Table 1 shows examples of the values of the supplementary part 1-n i of the real part n i and the value of the imaginary part ⁇ i of the complex refractive index of the above-mentioned high-density materials and low-density materials.
- the real part n i is sometimes simply called the refractive index.
- the compensation part 1-n i shown in Table 1 corresponds to the compensation refractive index.
- the imaginary part ⁇ i shown in Table 1 corresponds to the extinction coefficient.
- the complex refraction at the surface of the multilayer film 20 (the surface on the soft X-ray incident side of the soft X-ray multilayer film diffraction grating 101)
- the rate changes are large. Therefore, selection of the material for the high-density material of the uppermost high-density material layer 40 is important.
- the value of the corrected refractive index of W is relatively large compared to the corrected refractive index of other Co, Cr, and Ni. Therefore, the high-density material constituting the high-density material layer 40 is preferably Co, Cr, or Ni rather than W.
- the high-density material layer 32 of the material pair 35 below the uppermost material pair 35 is made of W
- the high-density material layer 40 is made of Co, Cr, or Ni alone, or Co, Cr, By being composed of any compound of Ni, high average diffraction efficiency can be obtained in a wide energy range of 2 keV to 4 keV.
- the uppermost high-density material layer 32 of the multilayer film 20 is composed of two types of materials: a low-density material layer 31 and a high-density material layer 32. It is called a material layer 40.
- the uppermost layer is the layer on the side where soft X-rays are incident in the multilayer film 20, and means the layer farthest from the substrate 1 in the x-axis.
- the low-density material layer 31 is made of, for example, boron carbide (B 4 C).
- the high-density material layer 32 below the high-density material layer 40 is formed of, for example, tungsten (W) or a compound of W.
- the high-density material layer 40 is made of, for example, any one of tungsten (W), cobalt (Co), chromium (Cr), and nickel (Ni), or any compound of W, Co, Cr, and Ni. It is formed.
- FIG. 3 is a graph showing the relationship between the thickness of the low density material layer 31 and the thickness of the high density material layer 32 of the soft X-ray multilayer film diffraction grating 101 shown in FIG.
- the horizontal axis in FIG. 3 represents the number i assigned to the substance pair 35 from the substrate 1 side toward the soft X-ray incident side.
- the vertical axis in FIG. 3 represents the respective thicknesses of the low-density material layer 31 and the high-density material layer 32 corresponding to number i.
- the film thickness dHi of the high-density material layer 32 is constant regardless of the number i, and is equal to the thickness of the diffraction grating and the groove depth h, and is 2.05 [nm].
- the film thickness d Li of the low density material layer 31 increases with the number i.
- FIG. 4 shows the value of the variable ⁇ i calculated from equation (7) using the film thicknesses d Li and d Hi described above.
- the horizontal axis in FIG. 4 represents the number i of the substance pair 35.
- the vertical axis in FIG. 4 represents the value of the variable ⁇ i calculated from equation (7) using the film thicknesses d Li and d Hi .
- the broken line in FIG. 4 represents a cubic asymptotic curve of the value of the variable ⁇ i .
- a cubic asymptotic curve of the value of the variable ⁇ i is expressed by equation (8).
- the quadratic and cubic coefficients of the asymptotic curve of the variable ⁇ i are very small compared to the linear coefficient, specifically less than 1/100 of the linear coefficient. It is. As can be seen from this, in a region where the value of number i is small, as number i increases, the value of variable ⁇ i decreases approximately linearly. An area where the value of number i is small is, for example, an area where i ⁇ 6. In the region of i>10, the influence of the higher-order term in equation (8) becomes stronger, and as the number i increases, the amount of decrease in the variable ⁇ i increases somewhat.
- the value of the film thickness d Li determined by assuming that the value of the film thickness d Hi is a fixed value and the value of the variable ⁇ i decreases linearly can be used as the initial value. This suggests that.
- FIG. 5 is a graph showing the relationship between the number i and the energy of soft X-rays.
- the horizontal axis in FIG. 5 represents the number i assigned to the substance pair 35 from the substrate 1 side toward the soft X-ray incident side.
- the vertical axis in FIG. 5 represents the energy of the +1st-order soft X-ray diffracted by the substance pair 35 with the number i, which is calculated corresponding to the number i.
- each film thickness d i becomes roughly linear with the film thickness corresponding to the design target energy range of 2 keV to 4 keV and wavelength 0.3 nm to 0.6 nm. You can see that it is progressing.
- the film thickness d i increases. Within the energy range of 2 keV to 4 keV and wavelength 0.3 nm to 0.6 nm, which is the energy range of the design target, the energy of the +1st-order soft X-ray diffracted by the material pair 35 with number i is approximately The trend is linear.
- the energy range from 2 keV to 4 keV is included.
- the initial value of the film thickness d i of each material pair 35 is the upper limit of the energy range in which measurement is desired for the material pairs 35 at both ends of the x-axis of the plurality of material pairs 35. It has been suggested that a value that is the energy of the lower limit value may be used.
- the horizontal axis in FIG. 6 represents the energy of soft X-rays incident on the soft X-ray multilayer diffraction grating 101. In this calculation, the energy of the incident light was varied in the range of 1.8 to 4.2 [keV].
- the X-ray diffraction efficiency reaches approximately 5% on average.
- the +1st-order soft X-ray diffraction efficiency of the soft X-ray multilayer diffraction grating 101 is approximately one order of magnitude higher than the +1st-order soft X-ray diffraction efficiency of the conventional soft X-ray laminar diffraction grating 201.
- FIG. 7 is a graph showing calculation results of the energy dependence of diffraction efficiency when the soft X-ray multilayer diffraction grating 101 of this embodiment is applied to a constant polarization spectrometer.
- the horizontal axis in FIG. 7 represents the energy of soft X-rays incident on the soft X-ray multilayer diffraction grating 101.
- the declination angle 2K formed by the incident angle ⁇ and the diffraction angle ⁇ is constant, regardless of the energy of the light extracted from the spectrometer, and the incident angle is adjusted so that the relationship in equation (9) is maintained.
- ⁇ and diffraction angle ⁇ change.
- FIG. 7 it is shown that high diffraction efficiency can be obtained in approximately the same energy range as the energy range shown in FIG.
- the low-density material layer 31 is made of any one of C, B 4 C, Si, and SiO 2 or C, B 4 C, Si, and SiO 2 . It is composed of any compound, for example, B 4 C.
- the diffraction grating (grating groove, diffraction grating groove) of the substrate 1 is a rectangular-wave laminar type diffraction grating. Therefore, the parameters of the diffraction grating and the grating grooves can be easily controlled, and the soft X-ray multilayer diffraction grating 101 can be easily manufactured by a method suitable for the accuracy required for the soft X-ray multilayer diffraction grating 101.
- the diffraction grating formed on the substrate of the soft X-ray multilayer film diffraction grating is a laminar diffraction grating with a rectangular wave shape.
- the diffraction grating (grating groove, diffraction grating groove) of the substrate may be a blazed diffraction grating having a sawtooth wave shape. This may improve the diffraction efficiency of +1st-order soft X-rays compared to the case where the diffraction grating is formed of a laminar type with rectangular waves.
- Substrate 1a Surface of substrate 2... Reflective layer 20... Multilayer film 3, 5, 7, 9, 31... Low density material layer 4, 6, 8, 10, 32... High density material layer 35... Low density material layer and the material pair 40 of the high-density material layer...the high-density material layer 101 of the material pair on the most surface side...the soft X-ray multilayer film diffraction grating 101a...the surface 201 of the soft X-ray multilayer film diffraction grating...the conventional laminar type diffraction grating
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本発明に係る軟X線多層膜回折格子は、回折格子溝が形成された基板と、基板上に設けられた反射層と、反射層上に設けられた多層膜と、を備える。多層膜には、軟X線領域での消衰係数が小さく、入射する軟X線の透過率の高い低密度物質層と軟X線の反射率の高い高密度物質層との複数の物質対が積層されている。複数の物質対における低密度物質層の厚みは、一定でなく、高密度物質層の厚みは、一定である。複数の物質対の周期長は、一定でない。基板側の物質対では、軟X線のエネルギー領域の高エネルギー端の軟X線において、且つ、軟X線の入射側の物質対では、軟X線のエネルギー領域の低エネルギー端の軟X線において、回折格子の格子定数、軟X線の入射角及び回折角に関する、回折格子の回折条件、及び、拡張ブラッグ条件が満たされている。
Description
本開示は、軟X線多層膜回折格子に関する。本願は、2022年8月25日に、日本国に出願された特願2022-134307号に基づき優先権を主張し、その内容をここに援用する。本開示は、波長が0.1nm~10nmである軟X線領域のうち、波長として概ね0.3nm~0.6nm、或いはエネルギーとして概ね2keV~4keVの比較的高エネルギーを含む軟X線に対して、概ね均一で高い回折効率を得る軟X線多層膜回折格子に関する。本開示は、多数の格子溝によって形成された反射型の軟X線回折格子の回折格子の構造と、回折格子上に積層された複数の物質からなる薄膜から構成される多層膜の構造に関する。
軟X線が物質の表面に照射された後の反射光、薄膜で吸収を受けた透過光、レーザー光や電子ビーム等の種々な方法で物質の表面が励起されることによって生じる軟X線の蛍光等の各々の波長や光の強さを分光学的に解析することによって、物質の成り立ちに関する有用な情報が得られる。軟X線を分光するためには、物質の表面に形成された多数の平行溝での反射と回折を生じさせる反射型の回折格子が主に用いられる。
波長が0.1nm~10nmである軟X線領域では、回折格子の表面に反射膜として用いられる物質の複素屈折率の実部のnは1よりも僅かに小さくなる。回折格子の表面に垂直な法線を基準とする軟X線の入射角αが式(1)を満たす場合には、全反射条件が満たされることから、反射率が高くなる。
αがπ/2=90°に近い斜入射領域では、式(1)は、式(2)に近似される。式(1)におけるnは、反射膜を構成する物質の屈折率を表す。
式(2)における右辺の{2(1-n)}1/2は、斜入射臨界角θCと呼ばれている。nは1に近い値であるため、θCの値は小さく、αは90°から僅かに小さい角度である。一方、式(2)が満たされない場合には、回折格子の表面における軟X線の反射率は低い。そのため、一般には、式(2)が満たされる入射角αの方向から軟X線を回折格子に入射させるという斜入射条件が用いられる。
軟X線分光分析装置では、概ね1%以上の回折効率を達成する回折格子が必要とされる。反射型の回折格子によって回折される光のエネルギーは、正反射条件を満たす零次光や回折によって多くの次数光に分散されるだけではなく、表面物質内に吸収される。そのため、分光分析に用いられる1次光、又は、-1次光の強度は、回折格子が形成されていない平面鏡によって鏡面反射される場合の強度に比べて非常に弱い。回折格子の形状が矩形波状であるラミナー型回折格子においては、溝の深さ、及び、回折格子の断面の凹凸の山部と谷部との長さの比を表すデューティ比を最適化し、格子溝の山部と谷部からの軟X線や光が所望の次数の回折方向で強め合う正の干渉を起こすように設計される。
軟X線領域で高い回折効率を得るための上述の方法とは別の方法として、例えば、特許文献1、特許文献2、非特許文献1、及び、非特許文献2に開示されているように、回折格子の表面に、消衰係数が小さい低密度物質層と、その低密度物質層よりも密度が高く、反射率が高い高密度物質層が交互に且つ周期的に積層された多層膜を備える軟X線多層膜回折格子を用いる方法がある。この方法では、各高密度物質層で回折された光が互いに干渉し、光が強められるという現象が用いられている。ところが、多層膜を構成する低密度物質層と高密度物質層との物質対の厚み、すなわち、周期長、を全て同じにすると、特定の波長を有する軟X線の回折効率は特異的に増加するが、特定の波長以外の波長の軟X線の回折効率は著しく低下する。そのため、前述の形態の軟X線多層膜回折格子を用いる方法は、測定対象から回折格子に入射する波長が一定の波長範囲に亘って拡がっている測定には適していない。
上述の欠点を補うために、原理的には、硬X線領域の反射鏡において実施されている多層膜に倣い、軟X線多層膜回折格子の表面の近傍における低密度物質層と高密度物質層との物質対の周期長を、表面から深い領域から浅い領域に向けて周期長を、順次長くすればよい、とされている。このことによって、軟X線多層膜回折格子の多層膜の内部に深く侵入することが困難である低エネルギー、すなわち、波長の長い軟X線の回折効率が高まる一方、軟X線多層膜回折格子の表面から深い領域では、多層膜の内部に深く侵入することができる高エネルギーの波長の短い軟X線の回折効率が高くなる。しかしながら、エネルギーが数keV以下である軟X線が物質内に侵入し得る深さは、エネルギーが10keV以上の硬X線よりも浅い。そのため、軟X線多層膜回折格子の複数の物質対の周期長を順次短くするという対策を、数対から十数対程度のごく少数の物質対からなる多層膜で実現する必要があった。
Eiji Ishiguro et al.,"Multilayer coated laminar gratings in the soft X-ray region," Review of Scientific Instruments,Vol.66,pp.2112-2115(1995).
小池雅人他;「多層膜回折格子の放射光への応用 -keV領域回折格子分光器ビームラインにおける新展開-」,X線分析の進歩,Vol.46,pp.159-166(2015).
測定対象とする軟X線のエネルギーが数keV以下である場合には、入射光は多層膜の内部に深く侵入できない。一方で、測定対象の光のエネルギー領域が広い程、多層膜の上部、すなわち、多層膜における光の入射側の部分、に配置されて低エネルギー光に対応する長い周期長を有する物質対と、多層膜の下部に配置されて高エネルギー光に対応する短い周期長を有する物質対との間で、低エネルギーと高エネルギーとの中間のエネルギーを持つ軟X線に対応する周期長を持つ多層の物質対が必要になり、多層膜の全厚が増大する。ところが、多層膜の下部の周期長の短い物質対に到達すべき高エネルギーの軟X線は、周期長の長い上部の物質対の層を往復するため、この層による影響を受ける。したがって、全体の多層膜は前述の影響を考慮して設計されることが好ましい。このように複雑な事情から、広いエネルギー領域の軟X線に対して高い回折効率を発現する軟X線多層膜回折格子の実現が困難であった。
以上の理由から、0.3nm~0.6nmの波長領域、及び、2keV~4keVの広いエネルギー領域において平均的に高い回折効率を持つ軟X線回折格子を得ることは困難であった。本発明は、上述の事情に鑑みてなされたものであり、前述のエネルギー領域において平均的に高い回折効率を有する軟X線回折格子を提供する。
本発明の一実施形態の軟X線多層膜回折格子は、回折格子溝が形成された基板と、前記基板上に設けられた反射層と、前記反射層上に設けられた多層膜と、を備える。前記多層膜には、軟X線領域での消衰係数が小さく、入射する軟X線の透過率の高い低密度物質層と前記軟X線の反射率が前記低密度物質層よりも高い高密度物質層との複数の物質対が積層されている。前記複数の物質対における前記低密度物質層の厚みは、一定でない。一方、前記複数の物質対における前記高密度物質層の厚みは、一定である。したがって、前記複数の物質対における前記低密度物質層の厚みと前記高密度物質層の厚みとの和である周期長は、一定でない。前記基板側の前記物質対では、前記軟X線のエネルギー領域の概ね高エネルギー端の軟X線に対して、前記回折格子の格子定数、前記軟X線の入射角及び回折角に関する、前記回折格子の回折条件、及び、拡張ブラッグ条件が満たされている。一方、前記基板側と反対側の前記軟X線の入射する回折格子表面の前記物質対では、前記軟X線のエネルギー領域の概ね低エネルギー端の軟X線に対して、前記回折格子の格子定数、前記軟X線の入射角及び回折角に関する、前記回折格子の回折条件、及び、拡張ブラッグ条件が満たされている。
本発明の一実施形態の軟X線多層膜回折格子では、前記複数の物質対のうちで最も前記軟X線の入射側の前記物質対の前記高密度物質層はコバルト、クロム、ニッケルの何れかの単体、又は、コバルト、クロム、ニッケルの何れかの化合物で構成されている。前記複数の物質対のうちで最も前記軟X線の入射側の前記物質対よりも下層の前記物質対の前記高密度物質層は、タングステンの単体、又は、タングステンの化合物で構成されていてもよい。
本発明の一実施形態の軟X線多層膜回折格子では、前記複数の物質対のうちで前記低密度物質層は炭化ホウ素、ケイ素、酸化ケイ素の何れかの単体、又は、炭化ホウ素、ケイ素、酸化ケイ素の何れかの化合物で構成されていてもよい。
本発明の一実施形態の軟X線多層膜回折格子では、前記複数の物質対に対して前記基板側から前記軟X線の入射側に向かって付した番号と各々の前記物質対の前記高密度物質層の厚みを各々の前記物質対の前記周期長で除した値との関係式の非線形項の係数の値が線形項に比べて100分の1以下の線形関係にあってもよい。
本発明の一実施形態の軟X線多層膜回折格子では、前記複数の物質対に対して前記基板側から前記軟X線の入射側に向かって付した番号と各々の前記物質対の前記周期長と前記軟X線の入射角及び回折角から拡張ブラッグ条件で導出される前記軟X線のエネルギーとの関係式の非線形項の係数の値が線形項に比べて100分の1以下の線形関係にあってもよい。
本発明の一実施形態の軟X線多層膜回折格子では、前記回折格子が矩形波状のラミナー型の回折格子溝で形成されていてもよい。
本発明の一実施形態の軟X線多層膜回折格子では、前記回折格子が鋸歯形波状のブレーズド型の回折格子溝で形成されていてもよい。
本発明によれば、2keV~4keVの広いエネルギー領域において平均的に高い回折効率を有する軟X線多層膜回折格子を提供することができる。
本発明の軟X線多層膜回折格子によれば、回折格子表面の最上層で低エネルギーの軟X線を反射及び回折させる一方で、高エネルギーの軟X線を透過、侵入させ、透過した高エネルギーの軟X線を多層膜の下層の一組又は複数組の物質対からなる膜で反射及び回折させることによって、軟X線の広いエネルギー領域において平均的に高い回折効率が達成される。
本発明では、最上層の高密度物質層で比較的低エネルギーの軟X線を効率よく反射及び回折させるとともに、比較的高エネルギーの軟X線を下層の多層膜に効率良く取り込むことによって、低エネルギーから高エネルギーの軟X線を順次効率良く反射及び回折させる。本発明によれば、定入射角の条件だけでなく、定偏角の条件においても軟X線領域で用いられる回折格子の回折効率を改善することができる。
以下、本発明に係る実施形態の軟X線多層膜回折格子について、図面を参照して説明する。以下の説明及び各図面では、互いに同一又は類似の機能を有する構成に互いに同一の符号を付す。
本発明の一実施形態である軟X線多層膜回折格子についての説明を容易にするため、先ず、以下の説明で用いる記号等の意味について、図1を参照して詳細に説明する。図1は、従来の軟X線ラミナー型回折格子201の断面図である。図1に示すように、軟X線ラミナー型回折格子201の最表面上の任意の1点を原点Oとして直交座標系を構成する。最表面は、図1において最も上側の面である。以下では、回折格子の最表面を、回折格子面と称する場合がある。x軸は、回折格子面の中心での法線となる軸である。y軸は、回折格子面の接線方向の軸である。z軸は、回折格子面内で、図1の紙面に垂直な軸である。以下の説明において、「上」は、x軸において後述する基板1に対して相対的に遠い位置を表す。「下」は、x軸において基板1に対して相対的に近い位置を表す。
以下では、軟X線である入射光がx軸及びy軸を含むxy面内から原点Oに入射するものと想定する。x軸に対して入射光の光軸ixがなす角度を入射角αとする。入射角αと、回折格子面に対して入射光の光軸ixがなす斜入射角θとの間に、式(3)の関係が成り立つ。
x軸に対して、波長λ、且つ、回折次数mGである軟X線の回折光の光軸oxm(λ)がなす角度を、回折角βとする。入射角α及び回折角βのそれぞれの符号は、x軸から反時計廻りに正とする。軟X線ラミナー型回折格子201の溝は、本明細書においてはラミナー型と称される矩形波状で形成されている。
軟X線ラミナー型回折格子201は、SiO2等からなる基板1と、金(Au)等の金属からなる反射層2と、を備える。基板1の表面1aに、複数の回折格子を構成する複数の格子溝が形成されている。回折格子のy軸での山部の幅を、aとする。回折格子の溝深さを、hとする。回折格子の周期である格子定数σは、格子溝の周期長に対応する。複数の格子溝は、z軸方向に、互いに平行に形成されている。入射角α、回折角β、波長λ、格子定数σ、回折次数mGに関して、回折格子式、又は回折格子方程式と称される式(4)が満たされている。
従来の軟X線ラミナー型回折格子201及び後述する本発明の一実施形態の軟X線多層膜回折格子101の基板1として、例えば、格子定数σ=312.50[nm]、1/σ=3200[本/mm]、回折格子の溝深さh=2.05[nm]、デューティ比(a/σ)=0.46(a=143.75[nm])のラミナー型回折格子が形成された基板が挙げられる。反射層2は、基板1に形成された格子溝上に設けられている。反射層2は、例えばAuがd0=30.0[nm]の厚みで基板1の表面1aに堆積されることによって、形成されている。
図2は、本発明の一実施形態の軟X線多層膜回折格子101の断面図である。図2に示すように、軟X線多層膜回折格子101は、基板1と、反射層2と、多層膜20と、を備える。多層膜20は、反射層2上に配置されている。多層膜20は、膜厚dLi(i=1,・・・,N)の低密度物質層3,5,7,9と、膜厚dHi(i=1,・・・,N)の高密度物質層4,6,8,10から構成されている。低密度物質層3,5,7,9における入射光の透過率は高いため、低密度物質層3,5,7,9は、スペーサーとして機能する。高密度物質層4,6,8,10に入射する軟X線の反射率は、高い。以下、低密度物質層3,5,7,9を含む複数の低密度物質層をまとめて、低密度物質層31と記載する場合がある。高密度物質層4,6,8,10を含む複数の高密度物質層をまとめて、高密度物質層32と記載する場合がある。また、多層膜20を構成する高密度物質層32と低密度物質層31との組を、物質対35とする。
物質対35の膜厚diは、物質対の周期長と呼ばれ、式(5)で表される。
物質対35の膜厚diと、その物質対35での干渉次数mM及び波長λと、に関して、拡張ブラッグ条件と称される式(6)の関係が満たされている。拡張ブラッグ条件は、反射現象におけるブラック条件を回折現象に拡張した条件である。
図2には、多層膜20の複数の物質対35のうちで、低密度物質層3と高密度物質層4との物質対35、低密度物質層5と高密度物質層6との物質対35、低密度物質層7と高密度物質層8との物質対35、及び、低密度物質層9と高密度物質層10との物質対35のみが例として示されている。低密度物質層5と高密度物質層6との物質対35と、低密度物質層7と高密度物質層8との物質対35との間には、1つ以上の図示略の物質対35が設けられている。
多層膜20では、複数の物質対35がx軸に沿って積層されている。各々の物質対35において、高密度物質層32の膜厚は変化せず、一定で、膜厚が変化する低密度物質層31上に積層されている。x軸において軟X線多層膜回折格子101の表面101aに近い領域における物質対35の膜厚diは、表面101aから遠い領域での物質対35の膜厚diに比べて増加している。これは、軟X線多層膜回折格子101の表面101aに近い領域における低密度物質層31の膜厚dLiは、表面101aから遠い領域での低密度物質層31の膜厚dLiに比べて増加することによる。このことによって、測定対象の軟X線で多層膜20の内部の深くに侵入できない低エネルギーの波長の長い軟X線の回折強度と、多層膜20の内部の深くに侵入可能な高エネルギーの波長の短い軟X線の回折強度と、が同時に強められる。具体的には、式(4)に波長λと入射角αとを代入すると、回折角βが求まる。測定対象の範囲内の波長λ、入射角α、回折角β、物質対35の膜厚diの間には、式(6)を介した関係が成り立つ。
2keV~4keVのエネルギー領域の軟X線で反射率の高い高密度物質として、タングステン(W)、コバルト(Co)、クロム(Cr)、ニッケル(Ni)の単体、又は、W,Co,Cr,Niの何れかの化合物が挙げられる。消衰係数が小さい低密度物質として、炭素(C)、炭化ホウ素(B4C)、ケイ素(Si)、酸化ケイ素(SiO2)の何れかの単体、又は、C,B4C,Si,SiO2の何れかの化合物が挙げられる。軟X線域で反射率の高い高密度物質として、密度が約5g/cm3以上である物質が好ましい。
表1に、上述の高密度物質及び低密度物質の複素屈折率の実部niの補実部1-niの値と虚部κiの値の例を示す。実部niは、単に、屈折率と呼ばれる場合がある。表1に示されている補実部1-niは、補実屈折率に相当する。表1に示されている虚部κiは、消衰係数に相当する。i=1,2,3の各々は、軟X線光のエネルギーが2000.00eV,2828.43eV,4000.00eVの各々である場合を示す。
多層膜20の内部における各物質の境界での複素屈折率の変化に比べて、多層膜20の表面(軟X線多層膜回折格子101における軟X線が入射する側の表面)での複素屈折率の変化が大きい。そのため、最上層の高密度物質層40の高密度物質の材料の選択は、重要である。軟X線多層膜回折格子101において、{2(1-ni)}1/2で決まる斜入射臨界角θCiの値が大きくなり、入射角αに対する斜入射角θ(=90°-α)の斜入射臨界角θCiの比が小さくなる程、全反射現象が強められ、表面から多層膜20の内部に光が侵入し難くなる。高密度物質のうちのWの補実屈折率の値は、他のCo,Cr,Niの補実屈折率に比べて相対的に大きい。そのため、高密度物質層40を構成する高密度物質は、WよりもCo,Cr,Niの何れかであることが好ましい。したがって、最上層の物質対35よりも下方の物質対35の高密度物質層32がWによって構成され、高密度物質層40がCo,Cr,Niの何れかの単体、又は、Co,Cr,Niの何れかの化合物によって構成されることによって、2keV~4keVの広いエネルギー領域において平均的に高い回折効率が得られる。
本実施形態の軟X線多層膜回折格子101では、低密度物質層31と高密度物質層32との2種類の物質で構成される多層膜20の最上層の高密度物質層32を高密度物質層40と称する。最上層は、多層膜20において軟X線が入射する側の層であり、x軸において基板1から最も遠い層を意味する。低密度物質層31は、例えば、炭化ホウ素(B4C)によって形成されている。高密度物質層40よりも下層の高密度物質層32は、例えばタングステン(W)、又は、Wの化合物によって形成されている。高密度物質層40は、例えばタングステン(W)、コバルト(Co)、クロム(Cr)、ニッケル(Ni)のうちの何れか、又は、W,Co,Cr,Niのうちの何れかの化合物によって形成されている。
軟X線多層膜回折格子101の低密度物質層31及び高密度物質層32のそれぞれの厚みは、回折次数mG=1、干渉次数mM=1の場合、例えば、表2のように設計されている。
図3は、図2に示す軟X線多層膜回折格子101の低密度物質層31の厚みと高密度物質層32の厚みとの関係を示すグラフである。図3の横軸は、物質対35に対して基板1側から軟X線の入射側に向かって付した番号iを表す。図3の縦軸は、番号iに対応する低密度物質層31及び高密度物質層32の各厚みを表す。図3に示すように、高密度物質層32の膜厚dHiは、番号iに依らず一定であり、回折格子の厚み及び溝深さhと等しく、2.05[nm]である。低密度物質層31の膜厚dLiは、番号iとともに増加する。
図4は、上述の膜厚dLi,dHiを用いて式(7)から算出される変数Γiの値を表す。図4の横軸は、物質対35の番号iを表す。図4の縦軸は、膜厚dLi,dHiを用いて、式(7)から算出される変数Γiの値を表す。
図4の破線は変数Γiの値の3次の漸近曲線を表す。変数Γiの値の3次の漸近曲線は、式(8)で表される。
図4に示すように、変数Γiの漸近曲線の2次と3次の係数は、1次の係数に比べて非常に小さく、具体的には1次の係数に比べて100分の1以下である。このことからわかるように、番号iの値が小さい領域では、番号iが増加するにしたがって、変数Γiの値が概ね線形に減少する。番号iの値が小さい領域は、例えば、i<6の領域である。i>10の領域では、式(8)の高次の項の影響が強まり、番号iが増加するにしたがって、変数Γiの減少幅がやや増大する。このことによって、多層膜20の設計において、膜厚dHiの値を固定値として、変数Γiの値が線形に減少すると想定して決定した膜厚dLiの値を初期値として用いればよいことが示唆される。
図5は、番号iと軟X線のエネルギーとの関係を示すグラフである。図5の横軸は、物質対35に対して基板1側から軟X線の入射側に向かって付した番号iを表す。図5の縦軸は、番号iに対応して算出された、番号iの物質対35で回折される+1次の軟X線のエネルギーを表す。軟X線のエネルギーを算出するために、入射角α=88.65°、格子定数σ=312.50[nm]、回折次数mG=+1を式(4)に代入し、さらに入射角α=88.65°、膜厚di、干渉次数mM=+1を式(6)に代入し、式(4)と式(6)を連立方程式として回折角βiと波長λiを算出し、算出した波長λiを軟X線のエネルギーに換算した。
図5に示すように、各々の膜厚diは、膜対番号が上がると、設計対象のエネルギー領域である2keV~4keV、波長0.3nm~0.6nmに対応する膜厚に概ね線形に推移していることがわかる。図3から図5に示すように、番号iが増加すると、膜厚diは増加する。設計対象のエネルギー領域である2keV~4keV、波長0.3nm~0.6nmの範囲内では、番号iの物質対35で回折される+1次の軟X線のエネルギーは、番号iに対して概ね線形に推移している。番号i=2~10の膜厚diは、2keV~4keVのエネルギー領域に概ね対応している。言い換えれば、軟X線多層膜回折格子101において番号i=1~N(N=11)の膜厚diが対応し、且つ番号iに応じて線形に減少するエネルギー領域内に、設計対象の2keV~4keVのエネルギー領域が含まれている。本計算結果では、多層膜20の設計において、各物質対35の膜厚diの初期値として、複数の物質対35のx軸の両端の物質対35で測定を所望するエネルギー領域の上限値及び下限値のエネルギーとなる値を用いればよいことが示唆されている。
図6は、図2に示す軟X線多層膜回折格子101に対して、入射角α=88.65°で軟X線を入射させた場合の+1次の軟X線の回折効率のエネルギー依存性の計算結果を示すグラフである。図6の横軸は、軟X線多層膜回折格子101に入射する軟X線のエネルギーを表す。本計算では、入射光のエネルギーを1.8~4,2[keV]の範囲で変化させた。図6の縦軸は、横軸のエネルギーを有する軟X線が入射角α=88.65°で軟X線多層膜回折格子101に入射した場合の+1次の軟X線の回折効率を表す。本計算では、高密度物質層40の材料として、W,Co,Cr,Niのそれぞれの単体が用いられた場合について計算した。凡例中のMLは、低密度物質層31が炭化ホウ素(B4C)、高密度物質層32がタングステン(W)の膜対が、表1に示す膜厚で積層された多層膜を示す。高密度物質層40の材料として、W,Co,Cr,Niのそれぞれが用いられた場合の4通りの計算結果は、図6の凡例に、「Au/ML/W」,「Au/ML/Co」,「Au/ML/Cr」,「Au/ML/Ni」と記載されている。本計算では、参考のために、軟X線多層膜回折格子101と同じ形状及びパラメータを有する基板1に形成された回折格子上に膜厚30nmのAuの反射層2が設けられた軟X線ラミナー型回折格子201に対して軟X線多層膜回折格子101と同様の条件で軟X線が入射したときの+1次の軟X線の回折効率も計算した。このように軟X線ラミナー型回折格子201について計算した結果は、図6の凡例に、「Au」と記載されている。
図6に示すように、軟X線多層膜回折格子101の最上層にCo,Cr,Niが用いられた場合には、2keV~4keVのエネルギー領域の軟X線が入射すると、+1次の軟X線の回折効率が平均的に約5%に達することがわかる。軟X線多層膜回折格子101の+1次の軟X線の回折効率は、従来の軟X線ラミナー型回折格子201の+1次の軟X線の回折効率よりも約1桁高い。
図7は、本実施形態の軟X線多層膜回折格子101を定偏角分光器に適用した場合の回折効率のエネルギー依存性の計算結果を示すグラフである。図7の横軸は、軟X線多層膜回折格子101に入射する軟X線のエネルギーを表す。定偏角分光器では、分光器から取り出される光のエネルギーに依らず、入射角αと回折角βがなす偏角2Kを一定とし、式(9)の関係が維持されるように、入射角α及び回折角βが変化する。
図7の縦軸は、図2及び図3に示す本実施形態の軟X線多層膜回折格子101の最上層の高密度物質層40としてCoが用いられ、且つ軟X線多層膜回折格子101がK=87.70°,87.76°,87.80°の定偏角条件で定偏角分光器に使用された場合の+1次光の回折効率の計算結果を表す。図7に示すように、図6で示したエネルギー領域と概ね同じエネルギー領域において、高い回折効率が得られることを示している。
本実施形態の軟X線多層膜回折格子101では、低密度物質層31は、C,B4C,Si,SiO2の何れかの単体、又は、C,B4C,Si,SiO2の何れかの化合物によって構成され、例えばB4Cによって構成されている。このことによって、上述の原理に基づいて全反射現象が適度に抑えられ、軟X線多層膜回折格子101の表面101aから多層膜20の内部に光が侵入し易くなる。
本実施形態の軟X線多層膜回折格子101では、基板1の回折格子(格子溝、回折格子溝)が矩形波状のラミナー型回折格子である。そのため、回折格子及び格子溝のパラメータを制御し易く、軟X線多層膜回折格子101に求められる精度に応じて適した方法によって軟X線多層膜回折格子101を容易に製造することができる。
以上、本発明に係る好ましい実施形態について詳述した。本発明は、上述の実施形態に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更可能である。
なお、上述の実施形態では、軟X線多層膜回折格子の基板に形成される回折格子が矩形波状のラミナー型回折格子である場合を例示して説明したが、回折格子が鋸歯形波状のブレーズ型回折格子である場合についてもラミナー型回折格子である場合と同様の考え方が原理的に成立する。すなわち、本実施形態の軟X線多層膜回折格子では、基板の回折格子(格子溝、回折格子溝)が鋸歯形波状のブレーズ型回折格子であってもよい。このことによって、回折格子が矩形波状のラミナー型で形成されている場合に比べて、+1次の軟X線の回折効率が向上する場合がある。
1…基板
1a…基板の表面
2…反射層
20…多層膜
3,5,7,9,31…低密度物質層
4,6,8,10,32…高密度物質層
35…低密度物質層と高密度物質層の物質対
40…最も表面側の物質対の高密度物質層
101…軟X線多層膜回折格子
101a…軟X線多層膜回折格子の表面
201…従来のラミナー型回折格子
1a…基板の表面
2…反射層
20…多層膜
3,5,7,9,31…低密度物質層
4,6,8,10,32…高密度物質層
35…低密度物質層と高密度物質層の物質対
40…最も表面側の物質対の高密度物質層
101…軟X線多層膜回折格子
101a…軟X線多層膜回折格子の表面
201…従来のラミナー型回折格子
Claims (7)
- 回折格子が形成された基板と、
前記基板上に設けられた反射層と、
前記反射層上に設けられた多層膜と、
を備え、
前記多層膜には、軟X線領域での消衰係数が小さく、入射する軟X線の透過率の高い低密度物質層と前記軟X線の反射率が前記低密度物質層よりも高い高密度物質層との複数の物質対が積層され、
前記複数の物質対における前記低密度物質層の厚みは一定でなく、
前記複数の物質対における前記高密度物質層の厚みは一定であり、
前記複数の物質対における前記低密度物質層の厚みと前記高密度物質層の厚みとの和である周期長は一定でなく、
前記基板側の前記物質対では、前記軟X線のエネルギー領域の高エネルギー端の軟X線において、前記回折格子の格子定数、前記軟X線の入射角及び回折角に関する、前記回折格子の回折条件、及び、拡張ブラッグ条件が満たされ、
前記基板側とは反対側である前記軟X線の入射側の前記物質対では、前記軟X線のエネルギー領域の低エネルギー端の軟X線において、前記回折格子の格子定数、前記軟X線の入射角及び回折角に関する、前記回折格子の回折条件、及び、拡張ブラッグ条件が満たされている、
軟X線多層膜回折格子。 - 前記複数の物質対のうちの最も前記軟X線の入射側の前記物質対の前記高密度物質層はコバルト、クロム、ニッケルの何れかの単体、又は、コバルト、クロム、ニッケルの何れかの化合物で構成され、
前記複数の物質対のうち最も前記軟X線の入射側の前記物質対よりも下層の前記物質対の前記高密度物質層がタングステンの単体、又は、タングステンの化合物で構成されている、
請求項1に記載の軟X線多層膜回折格子。 - 前記複数の物質対のうち低密度物質層は、炭素、炭化ホウ素、ケイ素、酸化ケイ素の何れかの単体、又は、炭化ホウ素、ケイ素、酸化ケイ素の何れかの化合物で構成されている、
請求項2に記載の軟X線多層膜回折格子。 - 前記複数の物質対に対して前記基板側から前記軟X線の入射側に向かって付した番号と各々の前記物質対の前記高密度物質層の厚みを各々の前記物質対の前記周期長で除した値との関係式の非線形項の係数の値が線形項に比べて100分の1以下の線形関係にある、
請求項1から3の何れか一項に記載の軟X線多層膜回折格子。 - 前記複数の物質対に対して前記基板側から前記軟X線の入射側に向かって付した番号と各々の前記物質対の前記周期長と前記軟X線の入射角及び回折角から拡張ブラッグ条件で導出される前記軟X線のエネルギーとの関係式の非線形項の係数の値が線形項に比べて100分の1以下の線形関係にある、
請求項1から3の何れか一項に記載の軟X線多層膜回折格子。 - 前記回折格子が矩形波状のラミナー型回折格子である、
請求項1から3の何れか一項に記載の軟X線多層膜回折格子。 - 前記回折格子が鋸歯形波状のブレーズ型回折格子である、
請求項1から3の何れか一項に記載の軟X線多層膜回折格子。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022134307 | 2022-08-25 | ||
JP2022-134307 | 2022-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024042865A1 true WO2024042865A1 (ja) | 2024-02-29 |
Family
ID=90012884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/024451 WO2024042865A1 (ja) | 2022-08-25 | 2023-06-30 | 軟x線多層膜回折格子 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024042865A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011075850A (ja) * | 2009-09-30 | 2011-04-14 | Japan Atomic Energy Agency | 多層膜ラミナー型回折格子及び分光器 |
JP2021089218A (ja) * | 2019-12-05 | 2021-06-10 | 雅人 小池 | 多層膜回折格子 |
JP2022077089A (ja) * | 2020-11-11 | 2022-05-23 | 雅人 小池 | 非周期多層膜回折格子 |
-
2023
- 2023-06-30 WO PCT/JP2023/024451 patent/WO2024042865A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011075850A (ja) * | 2009-09-30 | 2011-04-14 | Japan Atomic Energy Agency | 多層膜ラミナー型回折格子及び分光器 |
JP2021089218A (ja) * | 2019-12-05 | 2021-06-10 | 雅人 小池 | 多層膜回折格子 |
JP2022077089A (ja) * | 2020-11-11 | 2022-05-23 | 雅人 小池 | 非周期多層膜回折格子 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4915463A (en) | Multilayer diffraction grating | |
Voronov et al. | A 10,000 groove/mm multilayer coated grating for EUV spectroscopy | |
US6809864B2 (en) | Multi-layer structure with variable bandpass for monochromatization and spectroscopy | |
JPS61270647A (ja) | X線を単色化するためのサブアセンブリ、システム及び方法 | |
Cruddace et al. | Measurements of the normal-incidence X-ray reflectance of a molybdenum-silicon multilayer deposited on a 2000 l/mm grating | |
Macrander et al. | Synchrotron X-ray optics | |
WO2024042865A1 (ja) | 軟x線多層膜回折格子 | |
JP2007515689A (ja) | 交互の多層スタックを持つ2次元回折格子ネットワーク、その製法そしてそれらのネットワークを備える分光器 | |
IJpes et al. | Increasing soft x-ray reflectance of short-period W/Si multilayers using B4C diffusion barriers | |
Lider | Multilayer X-ray interference structures | |
Chkhalo et al. | Grazing incidence mirrors with enhanced reflectance in the soft X-ray region | |
Fechtchenko et al. | Optical properties of sliced multilayer gratings | |
JP2011106842A (ja) | 回折格子分光器 | |
Sae-Lao et al. | Performance of normal-incidence molybdenum-yttrium multilayer-coated diffraction grating at a wavelength of 9 nm | |
JP2022077089A (ja) | 非周期多層膜回折格子 | |
EP2009470B1 (en) | Multi-layer film type diffraction grating | |
Jiang et al. | Determination of layer-thickness variation in periodic multilayer by x-ray reflectivity | |
Voronov et al. | Development of an ultrahigh-resolution diffraction grating for soft x-rays | |
JP2021089218A (ja) | 多層膜回折格子 | |
JP2023114836A (ja) | 軟x線多層膜回折格子 | |
JP2011075850A (ja) | 多層膜ラミナー型回折格子及び分光器 | |
JP7259379B2 (ja) | 多層膜回折格子 | |
Martynov et al. | Deep multilayer gratings with adjustable bandpass for spectroscopy and monochromatization | |
JP2006133280A (ja) | 多層膜不等間隔溝ラミナー型回折格子及び同分光装置 | |
JP2530029B2 (ja) | 多層膜分光器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23856982 Country of ref document: EP Kind code of ref document: A1 |