WO2024041455A1 - 一种带有涂层的待强化玻璃、待强化玻璃组与激光焊接复合玻璃板 - Google Patents

一种带有涂层的待强化玻璃、待强化玻璃组与激光焊接复合玻璃板 Download PDF

Info

Publication number
WO2024041455A1
WO2024041455A1 PCT/CN2023/113725 CN2023113725W WO2024041455A1 WO 2024041455 A1 WO2024041455 A1 WO 2024041455A1 CN 2023113725 W CN2023113725 W CN 2023113725W WO 2024041455 A1 WO2024041455 A1 WO 2024041455A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
strengthened
glass plate
coating
area
Prior art date
Application number
PCT/CN2023/113725
Other languages
English (en)
French (fr)
Inventor
林霞
王文锋
丁原杰
叶舒
王敏惠
Original Assignee
福耀高性能玻璃科技(福建)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222203998.8U external-priority patent/CN218710005U/zh
Priority claimed from CN202321457444.9U external-priority patent/CN220317647U/zh
Application filed by 福耀高性能玻璃科技(福建)有限公司 filed Critical 福耀高性能玻璃科技(福建)有限公司
Publication of WO2024041455A1 publication Critical patent/WO2024041455A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the invention relates to a coated glass to be strengthened, a set of glass to be strengthened and a laser welded composite glass plate, and belongs to the technical field of glass strengthening.
  • the methods of glass tempering include physical tempering and chemical tempering.
  • Physical tempering requires heating to the softening point temperature of the glass, which is about 700°C. Therefore, the deformation of the glass after tempering is large, and the two pieces of glass cannot fit well, so it is not suitable. It is used in the field of glass laser welding technology (using a laser to weld two pieces of glass together); the advantages of chemical tempering are low temperature, no softening and deformation of physically tempered glass, and high surface flatness, so when tempering glass When laser welding, chemically tempered glass is generally preferred.
  • Chemical tempering is to temper glass by changing the composition of the glass surface.
  • Chemical tempering methods include surface dealkalization, coating of glass with a smaller thermal expansion coefficient, ion exchange, etc.
  • the most widely used method is the ion exchange method. It is to exchange glass products with alkali metal ions placed in molten salt to change the surface composition of the glass, so that monovalent cations with a larger ionic radius than the alkali ions on the glass surface are exchanged with alkali ions on the glass surface, so that the radius A treatment process in which large cations enter the surface of the glass and form a compressive stress layer on the glass surface.
  • the molten salt used for ion exchange treatment is mainly KNO 3 , and the others are mostly auxiliary additives.
  • glass composition in chemical tempering is greater than changes in process conditions (temperature time and temperature) on the strength of the glass. Not every glass can be enhanced through ion exchange methods. From the practical point of view of ion exchange, it is very important to obtain an ion exchange layer thickness that meets the strength requirements in a short period of time. Generally, glass composition with fast exchange speed and small stress relaxation is used. Among them, Na 2 O- Chemically tempered glass based on CaO-SiO 2 (soda-lime glass) and Na 2 O-Al 2 O 3 -SiO 2 (aluminosilicate glass) glass is the most widely used.
  • the commonly used chemical tempering process conditions in the industry are generally: temperature 400°C-500°C, time 5h-8h.
  • the strength of glass after chemical strengthening is generally: surface compressive stress (CS) 300MPa-1000MPa, tempering depth (Dol) 10 ⁇ m -100 ⁇ m.
  • the principle of laser welding glass is to use the laser to first destroy various forces (including chemical bonds, intermolecular forces, etc.) between the surface materials of the two pieces of glass, and then reorganize the surface materials of the two pieces of glass to generate new forces, thereby The glass is welded together.
  • the existing glass laser welding process has very strict requirements on glass properties, such as glass surface flatness, glass central tension (CT), etc. Because of these requirements, the glass surface often needs to be coated in advance. Apply (or use other processes such as spraying/magnetic sputtering) a layer (or multiple layers) of special adhesive material to protect/improve the properties of the area to be welded.
  • CT glass central tension
  • the central tensile stress of glass should not be too large, otherwise the glass will not be weldable, so it is necessary to apply a layer in advance on the area where laser welding is planned on the surface of the glass that has not been chemically tempered. (or multiple layers) of adhesive material that can play a protective/barrier role, thereby weakening/preventing the chemical tempering effect in this area and reducing the central tensile stress of the glass.
  • the object of the present invention is to provide a glass to be strengthened with a coating.
  • the coating can provide protection to the glass during the chemical strengthening process, especially in areas requiring laser welding to reduce the degree of chemical tempering, so as to This improves the performance of the glass during laser welding and reduces the risk of glass breakage.
  • the present invention provides a coated glass to be strengthened, wherein the glass to be strengthened is partially provided with a coating, and the coating is an inorganic oxide layer, an inorganic coating or a LOW- E film, wherein the inorganic coating has voids inside, that is, it is an inorganic coating with voids inside.
  • the coated glass to be strengthened according to the present invention can be used for chemical strengthening, that is, the coated glass to be strengthened can also be called a glass plate for chemical strengthening.
  • the glass plate is provided with a coating (protection). layer) can protect areas that do not need to be strengthened during the chemical strengthening process, such as welding areas; among them, when an inorganic oxide layer is used as a protective layer, after chemical strengthening, laser welding can be performed directly without erasure; when When using inorganic coating or LOW-E film as the protective layer, after chemical strengthening, the protective layer needs to be erased before laser welding.
  • the coated glass to be strengthened includes: a glass plate body;
  • the glass plate body is provided with a pseudo-chemical strengthening area and a pseudo-welding area;
  • the inorganic oxide layer, LOW-E film, or inorganic coating with internal voids serves as chemically strengthened protection
  • the layer covers the area to be welded.
  • the inorganic oxide layer, LOW-E film, or inorganic coating with gaps inside is used as a chemically strengthened protective layer to cover the to-be-strengthened glass. Welding area to avoid the area being strengthened by ion penetration during the chemical strengthening process and affecting the subsequent laser welding process.
  • the coated glass to be strengthened includes: a glass plate body and a chemically strengthened protective layer;
  • the glass plate body is provided with a pseudo-chemical strengthening area and a pseudo-welding area;
  • the chemically strengthened protective layer covers the area to be welded
  • the chemically strengthened protective layer is an inorganic oxide layer, a LOW-E film, or an inorganic coating with gaps inside.
  • the inorganic coating is a coating with a uniform thickness (that is, the entire thickness is the same), and the thickness of the inorganic coating is 0.2-0.8 mm.
  • the thickness of the inorganic coating is stepped, with the thickness of each layer being 0.2-0.8 mm, and decreasing from the edge of the glass to be strengthened to the center.
  • the inorganic coating is a coating formed of inorganic particles. These inorganic particles may be bound together by inorganic glue and form voids or pores within the inorganic coating.
  • the material of the inorganic particles may be inorganic ceramic particles, such as alumina ceramic particles, zinc oxide ceramic particles, zirconia ceramic particles, etc.
  • the LOW-E film is a LOW-E film formed of zinc oxide, tin oxide, silicon nitride or silver.
  • the LOW-E film can be evenly coated on the surface of the glass using magnetron sputtering.
  • the coating is located at the edge of the glass to be strengthened, and the width of the coating is 20-30 mm.
  • the thickness of the LOW-E film is 100-200nm, specifically such as 100nm, 110nm, 120nm, 130nm, 140nm, 150nm, 160nm, 170nm, 180nm, 190nm, 200nm.
  • the thickness of the inorganic oxide layer is 1-20 ⁇ m; more preferably, the thickness is 1-5 ⁇ m.
  • the area to be welded and the area to be chemically strengthened respectively refer to the area that needs to be welded and the area that needs to be chemically strengthened.
  • the area to be welded is at the edge of the glass plate, and the area to be chemically strengthened is located in the middle of the glass plate and is surrounded by the area to be welded.
  • the area to be welded is provided around the area to be chemically strengthened.
  • the width of the inorganic oxide layer is 5mm-30mm, more preferably 10mm-25mm, further preferably 15mm-20mm.
  • the width of the to-be-welded area is 0.2mm-10mm, more preferably 1mm-8mm, and further preferably 4mm-6mm.
  • the width of the chemically strengthened protective layer should be greater than the width of the area to be welded to ensure that the chemically strengthened protective layer can cover the area to be welded.
  • the chemically strengthened protective layer is a laser transparent layer.
  • the laser transparent layer means that it is transparent to the laser used for welding, that is, the laser can penetrate this layer with as little light absorption as possible, the laser power attenuates as little as possible and sufficient welding power can be maintained.
  • the chemically strengthened protective layer is an inorganic glassy layer.
  • the material of the inorganic glassy layer is a combination of inorganic amorphous oxides with silicon dioxide as the main raw material, including but not limited to silicon dioxide, aluminum oxide, calcium oxide, potassium oxide, sodium oxide, and zinc oxide, wherein,
  • the weight composition of silica should be greater than 80%, and it can also contain an appropriate amount of binder.
  • the thickness of the chemically strengthened protective layer is 1-20 ⁇ m; more preferably, the thickness of the chemically strengthened protective layer is 1-5 ⁇ m.
  • the glass (glass plate) to be strengthened is high alumina glass or soda-lime glass, and its thickness can be selected according to needs, for example, it can be about 2 mm.
  • the coating ie, inorganic coating, LOW-E film, inorganic oxide layer
  • the coating to be strengthened is partially provided on both sides of the tempered glass.
  • the coatings on both sides may be the same or different.
  • the coatings on both sides may be both inorganic coatings or LOW-E films. , or it can be an inorganic coating on one side and a LOW-E film on the other side.
  • the size of the glass to be strengthened is: length 800-2000mm, width 500-1000mm.
  • the present invention also provides a glass group to be strengthened, wherein the glass group to be strengthened includes two pieces of glass to be strengthened, and at least one piece of glass to be strengthened is the above-mentioned glass to be strengthened with a coating.
  • the two pieces of glass to be strengthened included in the glass to be strengthened group may both be the above-mentioned coated glass to be strengthened.
  • the present invention can affect the degree of chemical strengthening of the corresponding area, that is, reduce the intensity of the area where the glass is to be laser welded.
  • Central tension (CT) and because the tensile stress inside the glass is determined by the material of the glass plate, Thickness (h), surface compressive stress (CS), tempered depth (Dol) and other factors are jointly determined. Therefore, when the glass material and thickness are fixed, by adjusting the glass surface compressive stress (CS) and tempered depth (Dol) The tensile stress CT inside the glass can be controlled.
  • the glass group to be strengthened when subsequently used in a laser welding process, can also be called: a chemically strengthened glass assembly for laser welding.
  • the glass group to be strengthened includes: a first glass plate and a second glass plate, wherein at least one of the first glass plate and the second glass plate is the coated glass to be strengthened provided by the present invention;
  • the inorganic oxide layer or the inorganic coating with voids inside serves as a bonding layer between the first glass plate and the second glass plate.
  • the present invention also provides a chemically strengthened glass assembly for laser welding, wherein the chemically strengthened glass assembly for laser welding includes: a first glass plate, a second glass plate and at least one bonding layer; in:
  • the first glass plate and the second glass plate are provided with corresponding areas to be welded and chemically strengthened areas;
  • the bonding layer is located between the first glass plate and the second glass plate and covers the area to be welded;
  • the bonding layer is an inorganic oxide layer or an inorganic coating with voids inside.
  • the above-mentioned chemically strengthened glass assembly for laser welding can be composed of a chemically strengthened glass plate provided by the present invention and a piece of chemically strengthened glass (in this case, it is used in a chemically strengthened glass plate)
  • the chemically strengthened protective layer serves as a bonding layer), or it can be composed of two chemically strengthened glass plates (in this case, the chemically strengthened protective layers in the chemically strengthened glass plates are bonded to each other) form a bonding layer).
  • the first glass plate and the second glass plate are provided with corresponding areas to be welded and chemically strengthened areas;
  • the bonding layer is located between the first glass plate and the second glass plate and covers the area to be welded.
  • the bonding layer is an inorganic glassy layer.
  • the thickness of the bonding layer is 1-20 ⁇ m; when an inorganic coating with internal voids is used as the bonding layer, the bonding layer The thickness of the layer is 0.2-0.8mm.
  • the width of the bonding layer is 5mm-30mm.
  • the width of the area to be welded is 0.2mm-10mm.
  • the area to be welded and the chemically strengthened area refer to the area that needs to be welded and the area that has been chemically strengthened, respectively.
  • the area to be welded is the edge of the glass plate, and the chemically strengthened area is located in the middle of the glass and surrounded by the area to be welded.
  • the bonding layer is a laser transparent layer.
  • the bonding layer is an inorganic glassy layer.
  • the material of the inorganic glassy layer is a combination of inorganic amorphous oxides with silicon dioxide as the main raw material, including but not limited to silicon dioxide, aluminum oxide, calcium oxide, potassium oxide, sodium oxide, and zinc oxide, two of which The weight composition of silicon oxide should be greater than 80%, and it can also contain an appropriate amount of binder.
  • the thickness of the bonding layer is 1-20 ⁇ m; more preferably, the thickness of the bonding layer is 1-5 ⁇ m.
  • the width of the chemically strengthened area is 5mm-30mm, more preferably 10mm-25mm, further preferably 15mm-20mm; the width of the to-be-welded area is 0.2mm-10mm, More preferably, it is 1mm-8mm, and further preferably, it is 4mm-6mm.
  • the first glass plate and the second glass plate can be soda-lime glass or high alumina glass, and their thickness can be selected according to needs, for example, it can be about 2 mm.
  • the coated glass to be strengthened provided by the present invention can be prepared in the following manner: coating an inorganic coating or plating a layer of LOW-E film on the glass area that requires zero or low strengthening strength, or Inorganic oxide layer, very small voids will be formed in the inorganic coating.
  • K ions in the steel melting furnace will reach the glass surface through these tiny gaps and exchange with Na+ on the glass surface to achieve chemical strengthening.
  • the LOW-E film can block the number of K ions reaching the glass surface, thereby controlling the degree of chemical strengthening of the glass.
  • the coating provided on the surface of the glass to be strengthened in the present invention can protect the glass surface from the "attack" of a large number of K ions in the tempering furnace, thereby obtaining a suitable degree of strengthening, thereby reducing the cracking damage of the strengthened glass during the laser welding process. probability.
  • the K ion permeability in the steel furnace can be controlled and the degree of strengthening can be controlled.
  • the inorganic coating can be completely removed through cleaning and polishing, and the LOW-E film can be removed using a laser film removal machine without affecting the surface quality of the glass.
  • the inorganic oxide layer can be directly laser welded without removal.
  • the invention also provides a laser welded composite glass plate, wherein the laser welded composite glass plate includes a first welded glass plate and a second welded glass plate;
  • At least one of the first welded glass plate and the second welded glass plate is the coated glass to be strengthened provided by the present invention
  • the first welding glass plate and the second welding glass plate are provided with corresponding laser welding areas and chemical strengthening areas;
  • the inorganic oxide layer forms a laser welding layer between the first welding glass plate and the second welding glass plate through laser welding.
  • the laser welded composite glass plate is obtained by chemically strengthening and laser welding a chemically strengthened glass assembly used for laser welding, wherein the first glass plate and the second glass plate become the first welded glass plate and the second glass plate after chemical strengthening. 2. Weld the glass plates, and the bonding layer is laser welded to form a laser welding layer.
  • the thickness of the laser welding layer is 1-20 ⁇ m.
  • the laser welding layer is formed of inorganic glass through laser welding.
  • the width of the chemical strengthening area is 5mm-30mm, more preferably 10mm-25mm, further preferably 15mm-20mm; the width of the laser welding area is 0.2mm-10mm, More preferably, it is 1mm-8mm, and further preferably, it is 4mm-6mm.
  • the width of the laser welding area is 0.2mm-10mm.
  • the chemically strengthened glass assembly for laser welding provided by the present invention can provide protection for the area to be welded during the chemical strengthening process by providing a bonding layer to prevent this part of the area from being chemically strengthened and affecting the subsequent welding effect; after completing the chemical strengthening After strengthening, the bonding layer does not need to be removed and can be directly laser welded to form a laser welding layer, thereby welding the two glass plates into a whole to obtain a laser welded composite glass plate.
  • Figure 1 is a schematic structural diagram of coated glass to be strengthened.
  • Figure 2 shows the relationship between glass transition time, glass CT value and welding.
  • Figure 3 is a schematic diagram of the glass coating in Example 2.
  • Figure 4 is a schematic diagram of the welding direction in Embodiment 2.
  • Figure 5 is a schematic diagram of step coating and laser welding performance.
  • FIG. 6 is a schematic diagram of the glass to be strengthened with a coating partially on one side surface provided in Embodiment 3.
  • FIG. 7 is a schematic diagram of the glass to be strengthened with coatings on both sides of the surface provided in Embodiment 3.
  • Embodiment 8 is a top view of the glass plate body for chemical strengthening provided in Embodiment 1.
  • Figure 9 is a front view of the glass plate for chemical strengthening provided in Example 1.
  • Figure 10 is a schematic cross-sectional view of the glass plate for chemical strengthening provided in Example 1.
  • Figure 11 is a schematic side view of the chemically strengthened glass assembly for laser welding provided in Embodiment 2.
  • Figure 12 is a schematic structural diagram of the first glass plate in the chemically strengthened glass assembly for laser welding provided in Embodiment 2.
  • Figure 13 is a schematic structural diagram of the second glass plate in the chemically strengthened glass assembly for laser welding provided in Embodiment 2.
  • Figure 14 is a schematic structural diagram of a cross-section of the laser welded composite glass plate provided in Embodiment 3.
  • Figure 15 is a schematic structural diagram of another cross-section of the laser welded composite glass plate provided in Embodiment 3.
  • 2Inorganic coating two-component coating, component A is a water-soluble liquid, and component B is a non-water-soluble powder;
  • 3Steel-forming furnace liquid composition: potassium nitrate; steel-forming principle: ion exchange method.
  • the original piece of glass (bare glass without inorganic coating) was taken out after different tempering times in the tempering furnace at 400°C, and the CS, DOL and CT measurement values of each piece of glass were measured using a stress tester. The results are as shown in the table 1 shown.
  • an inorganic coating with a thickness of about 0.8mm on the surface of the original glass (as shown in Figure 1, the surface of the glass plate 2 is provided with an inorganic coating 1), and cure it (the curing conditions are room temperature for 2 hours, in a blast drying oven (maintain at 40°C for 2 hours, 60°C for 2 hours, and 110°C for 2 hours) to obtain the glass to be strengthened with a coating on the surface.
  • the curing conditions are room temperature for 2 hours, in a blast drying oven (maintain at 40°C for 2 hours, 60°C for 2 hours, and 110°C for 2 hours) to obtain the glass to be strengthened with a coating on the surface.
  • the glass to be strengthened is put into the tempering furnace and taken out after different tempering times. After natural cooling, it is placed in a water bath at 60°C for 24 hours. The coating on the glass surface becomes a loose structure. Use a scraper to scrape off the coating. Afterwards, a micron level residual glue layer will be left on the glass surface. This residual glue layer can be removed using a flat sander (use wool felt instead of the sandpaper of the sander, and use 8000# polishing powder to cooperate with the polishing operation).
  • the polishing conditions are as follows: About 1000 revolutions for the piece of glass.
  • Example 2 Experiments on the thickness of inorganic coating, degree of steelization and welding conditions
  • the upper and lower pieces of glass to be welded area 1 is opposite to area 1
  • area 2 is opposite to area 2, and so on, and is divided into two parts for welding, of which the upper and lower parts of the left half are
  • the piece of glass is welded longitudinally, and the welding line gradually moves from area 4 where CT is basically 0 to the area where CT value increases.
  • the purpose is to verify whether the welded glass will break across areas (that is, across different CT values); the right half of The upper and lower pieces of glass are welded horizontally, so that the welding only occurs in the same area (that is, the place where the CT value is basically the same).
  • the welding sequence is area 1 welding first, then area 2 welding, and so on. The purpose is to observe the respective areas with different CT values. Welding differences.
  • the schematic diagram of the welding direction is shown in Figure 4.
  • the longitudinal cross-CT value welding in this experiment is because the welding direction is area 4-area 3-area 2-area 1, that is, welding starts from area 4 where the CT is basically 0, so that after welding the two pieces of glass Closely adhere to each other, so when it comes to area 1, even if the CT value in this area is relatively large, because the two pieces of glass are in close contact, the glass can be welded better, and the welding efficiency is improved; while welding with the same CT value in the horizontal direction will highlight the The difference between four areas with different CT values.
  • the inorganic coating provided with the strengthened glass surface of the present invention can protect the glass surface from a large amount of K+ in the steel-melting furnace. "Attack" to obtain the appropriate degree of strengthening, thereby reducing the probability of cracking damage to the strengthened glass during the laser welding process;
  • the K+ permeability in the steel furnace can be controlled and the degree of strengthening can be controlled;
  • the inorganic coating can be completely removed by cleaning and polishing without affecting the surface quality of the glass.
  • This embodiment provides a coated glass to be strengthened, wherein the size of the glass plate is 900 ⁇ 600 ⁇ 1.1mm, and the edge of one side surface of the glass to be strengthened is provided with a LOW- E film (material is silver), as shown in Figure 6, in which the edge of the glass plate is the edge coating area 3, and the middle is the uncoated area 4.
  • a LOW- E film material is silver
  • This embodiment also provides a kind of glass to be strengthened with coatings on both sides of the surface, wherein the size of the glass plate is 900 ⁇ 600 ⁇ 1.1mm, and the edges of the both sides of the surface of the glass to be strengthened are respectively provided with widths of 23mm,
  • the LOW-E film material is silver
  • Figure 7 is a cross-sectional view of the middle area of the glass plate.
  • the edge of the glass plate 2 is the edge coating area 3 and the middle is the uncoated area 4. .
  • the glass to be strengthened with a LOW-E film on the edge of the above-mentioned side surface is preheated at 380°C for 2 hours, and then chemically strengthened at 420°C for 2 hours (refer to Example 1), and then cooled with the furnace to obtain Single-sided edge coating + strengthened composite glass.
  • the glass to be strengthened with LOW-E films on the edges of the above-mentioned two side surfaces is preheated at 380°C for 2 hours, and then chemically strengthened at 420°C for 2 hours (refer to Example 1), and then cooled in the furnace to obtain Double-sided coated + chemically strengthened composite glass.
  • - means that the relevant parameters cannot be detected or the relevant parameter values are basically 0; areas 1, 2, and 3 refer to different locations of sampling.
  • This embodiment provides a coated glass to be strengthened, the dimensions of which are shown in Table 5 and Table 6.
  • the edge of the glass to be strengthened is provided with a LOW-E film (made of silver) with a width of 23 mm and a thickness of 180 nm. ;
  • the glass to be strengthened is 4mm thick soda-lime glass.
  • This embodiment also provides a kind of glass to be strengthened with coatings on both sides of the surface, the dimensions of which are shown in Table 5 and Table 6.
  • the edges of the surfaces of both sides of the glass to be strengthened are respectively provided with a width of 23 mm and a thickness of 180 nm.
  • LOW-E film material is silver
  • the glass to be strengthened is 4mm thick soda-lime glass.
  • the glass to be strengthened with the LOW-E film on the edge of the above-mentioned side surface was preheated at 380°C for 2 hours, and then chemically strengthened at 420°C for 16 hours (refer to Example 1), and then cooled in the furnace to obtain Single-sided edge coating + strengthened composite glass.
  • the glass to be strengthened with LOW-E films on the edges of the above two sides is preheated at 380°C for 2 hours, and then chemically strengthened at 420°C for 16 hours (refer to Example 1), and then cooled in the furnace to obtain Double-sided coated + chemically strengthened composite glass.
  • the plain glass was chemically strengthened at 420° C. for 16 hours (refer to Example 1), and then cooled in the furnace to obtain the strengthened plain glass for comparison.
  • the test method for the maximum gap ⁇ d is: tightly fit the spherical rod and one side of the glass, then measure the gap between the spherical rod and the glass, and use the maximum value of the gap as the maximum gap ⁇ d;
  • side lengths 1, 2, 3, and 4 refer to the four sides of the glass.
  • the numbers in brackets represent the length of the tested sides.
  • short side 1 (800) refers to the length of 800mm. Tests performed on the short side.
  • This embodiment provides a glass plate for chemical strengthening, wherein the glass plate for chemical strengthening includes: a glass plate body 101 and a chemical strengthening protective layer 103;
  • the glass plate body 101 is provided with a pseudo-welding region 104 and a pseudo-chemically strengthened region 105, as shown in Figure 8, where the width of the pseudo-chemically strengthened region is 5mm-30mm;
  • the width of the intended welding area is 0.2mm-10mm;
  • the chemically strengthened protective layer 103 covers the area to be welded 104, that is, its width is greater than the width of the area to be welded 104, as shown in Figures 9 and 10;
  • the chemically strengthened protective layer is formed by mixing an inorganic glassy material and an appropriate amount of binder, and then coating, and its thickness is 1-5 ⁇ m.
  • This embodiment provides a chemically strengthened glass assembly for laser welding, the structure of which is shown in Figure 11.
  • the chemically strengthened glass assembly for laser welding includes a first glass plate 201, a second glass plate 202, and a bonding layer 203, wherein:
  • the surface of the first glass plate 201 is provided with a first to-be-welded area 204 and a first chemically strengthened area 205, as shown in Figure 12;
  • the surface of the second glass plate 202 is provided with a second intended welding area 206 and a second chemically strengthened area 207, as shown in Figure 13;
  • the positions of the first to-be-welded region 204 and the second to-be-welded region 206 correspond to each other, and the positions of the first chemically strengthened region 205 and the second chemically strengthened region 207 correspond to each other;
  • the bonding layer 203 is provided between the first glass plate 201 and the second glass plate 202.
  • the specific position corresponds to the first intended welding area 204 and the second intended welding area 206, and is located at the edge of the glass plate, as shown in Figures 14 and 15 shown.
  • the bonding layer 203 is formed by mixing an inorganic glassy material and an appropriate amount of adhesive and then coating, and has a thickness of 1-5 ⁇ m.
  • the chemically strengthened glass assembly for laser welding is composed of two chemically strengthened glass plates provided in Example 5 after being chemically strengthened.
  • the chemically strengthened protective layers 103 of the two glass plates form the bonding layer 203 .
  • This embodiment provides a laser welded composite glass plate, wherein the laser welded composite glass plate is obtained by laser welding from the chemically strengthened glass assembly for laser welding provided in Embodiment 5.
  • the laser welded composite glass plate includes a first welded glass plate 301, a second welded glass plate 302 and a laser welded layer 303. As shown in Figures 14 and 15, the cross-sectional directions of the two are perpendicular to each other;
  • the first welded glass plate 301 and the second welded glass plate 302 respectively correspond to the first glass plate 201 and the second glass plate 202 in Embodiment 2, and are also provided with corresponding laser welding areas and chemical strengthening areas;
  • the laser welding layer 303 is located between the first welding glass plate 301 and the second welding glass plate 302, and covers the laser welding area, specifically formed by laser welding of the bonding layer 203 in Embodiment 2;
  • the laser welding layer 303 is made from the bonding layer 203 by laser welding, and has a thickness of about 5 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种带有涂层的待强化玻璃,局部设有涂层,所述涂层为无机氧化物层、LOW-E膜,或者内部具有空隙的无机涂层。该待强化玻璃表面设置的涂层可以保护玻璃表面不受化钢炉中大量K离子的"攻击",从而获得合适的强化程度,从而降低强化后的玻璃在激光焊接过程中发生破裂损伤的几率。

Description

一种带有涂层的待强化玻璃、待强化玻璃组与激光焊接复合玻璃板
交叉引用信息
本申请要求于2022年8月22日提交中国专利局、申请号为202222203998.8、发明名称为“一种带有涂层的待强化玻璃及待强化玻璃组”的中国专利申请以及2023年6月8日提交中国专利局、申请号为202321457444.9、发明名称为“用于化学强化的玻璃板、用于激光焊接的化学强化玻璃组合体及激光焊接复合玻璃板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种带有涂层的待强化玻璃、待强化玻璃组与激光焊接复合玻璃板,属于玻璃强化技术领域。
背景技术
玻璃钢化的方法有物理钢化和化学钢化,其中:物理钢化需加热至玻璃的软化点温度,约700℃左右,因此钢化后玻璃变形量较大,两片玻璃无法较好贴合,所以不适合用于玻璃激光焊接技术领域(使用激光将两片紧贴的玻璃焊接在一起);而化学钢化的优点是温度低,没有物理钢化玻璃的软化变形,表面平整度较高,因此在进行钢化玻璃的激光焊接时,一般都会优先选择使用化学钢化的玻璃。
化学钢化是通过改变玻璃表面组成的方法对玻璃进行钢化,化学钢化的方法有表面脱碱、涂覆热膨胀系数较小的玻璃、离子交换等方法,其中使用最广泛的是离子交换法,该方法是将玻璃制品与放在熔盐中碱金属离子发生交换,改变玻璃的表面组分,使得比玻璃表层的碱离子还大一些离子半径的一价阳离子与玻璃表层的碱离子进行交换,使半径大的阳离子进入玻璃表层,在玻璃表面形成压应力层的一种处理工艺。用于离子交换处理的熔盐主要为KNO3,其他多为辅助添加剂。
玻璃组成在化学钢化中的影响比工艺条件(钢化的时间和温度)的变化对玻璃的强度影响更大,并非每一种玻璃都能通过离子交换方法得到增强。从离子交换的实用观点来看,能够在较短的时间内获得满足强度要求的离子交换层厚度是非常重要的,一般使用交换速度快、应力松弛小的玻璃组成,其中,以Na2O-CaO-SiO2(钠钙玻璃)及Na2O-Al2O3-SiO2(铝硅玻璃)玻璃为基体的化学钢化玻璃使用最为广泛。
目前业界常用的化学钢化的工艺条件一般为:温度400℃-500℃,时间5h-8h,化学强化后的玻璃强度一般为:表面压应力(CS)300MPa-1000MPa、化钢深度(Dol)10μm-100μm。
激光焊接玻璃的原理是通过激光先破坏两片玻璃表面物质间的各类作用力(包括化学键、分子间作用力等),然后两片玻璃的表面物质再进行重组生成新的作用力,从而将玻璃焊接在一起。
而且,现有玻璃激光焊接工艺对于玻璃性质有着非常严苛的要求,如玻璃表面平整度、玻璃中心张应力(Central tension,CT)等,因为以上这些要求,往往都需要在玻璃表面事先涂覆上(或采用喷涂/磁溅控射等其他工艺)一层(或者多层)特殊黏着材料,用于保护/改善需要焊接区域的性质。
而采用激光焊接两片化学钢化的玻璃时,除了激光与玻璃材料间的相互作用外,玻璃表面因为化学钢化所产生的表面压应力及内部张应力会与激光互相干涉,会使得玻璃内部的应力失去平衡,甚至导致玻璃破裂。
而且,以玻璃中心张应力为例:经过化学钢化的玻璃中心张应力不宜过大,否则玻璃将无法焊接,因此需要事先在未进行化学钢化的玻璃表面上计划进行激光焊接的区域涂覆一层(或者多层)能够起到保护/阻隔作用的黏着材料,从而减弱/阻止该区域的化学钢化效果,降低玻璃中心张应力。
发明内容
为解决上述技术问题,本发明的目的在于提供一种带有涂层的待强化玻璃,该涂层可以在化学强化过程中对玻璃提供保护,尤其是需要激光焊接的区域降低化学钢化程度,以此来改善玻璃在激光焊接过程中的表现,减少玻璃破裂的风险。
为达到上述目的,本发明提供了一种带有涂层的待强化玻璃,其中,所述待强化玻璃的局部设有涂层,所述涂层为无机氧化物层、无机涂层或者LOW-E膜,其中,所述无机涂层内部具有空隙,即为内部具有空隙的无机涂层。
根据本发明的带有涂层的待强化玻璃可以用于进行化学强化,即该带有涂层的待强化玻璃也可以称为用于化学强化的玻璃板,该玻璃板通过设置涂层(保护层)能够在化学强化过程中保护不需要强化的区域,例如焊接区域;其中,当采用无机氧化层作为保护层时,在化学强化之后,可以在不擦除的情况下直接进行激光焊接;当采用无机涂层或者LOW-E膜作为保护层时,在化学强化之后,需要先擦除保护层,然后再进行激光焊接。
根据本发明的具体实施方案,优选地,所述带有涂层的待强化玻璃(用于化学强化的玻璃板)包括:玻璃板本体;
其中,所述玻璃板本体设有拟化学强化区域和拟焊接区域;
所述无机氧化物层、LOW-E膜,或者内部具有空隙的无机涂层作为化学强化保护 层覆盖所述拟焊接区域。
在上述该带有涂层的待强化玻璃(用于化学强化的玻璃板)中,无机氧化物层、LOW-E膜,或者内部具有空隙的无机涂层是作为化学强化保护层覆盖所述拟焊接区域,以避免该区域在化学强化过程中被强化离子渗透而影响后续的激光焊接过程。
根据本发明的具体实施方案,优选地,所述带有涂层的待强化玻璃(用于化学强化的玻璃板)包括:玻璃板本体、化学强化保护层;
其中,所述玻璃板本体设有拟化学强化区域和拟焊接区域;
所述化学强化保护层覆盖所述拟焊接区域;
所述化学强化保护层为无机氧化物层、LOW-E膜,或者内部具有空隙的无机涂层。
根据本发明的具体实施方案,优选地,所述无机涂层为厚度均一的涂层(即整体为同一厚度),并且,所述无机涂层的厚度为0.2-0.8mm。
根据本发明的具体实施方案,优选地,所述无机涂层的厚度为阶梯式,每一层的厚度分别为0.2-0.8mm,并且,由所述待强化玻璃的边缘向中央递减。
根据本发明的具体实施方案,优选地,所述无机涂层为无机颗粒形成的涂层。这些无机颗粒可以由无机胶粘结在一起,并且,在无机涂层内部形成空隙或孔隙。所述无机颗粒的材质可以为无机陶瓷颗粒,例如氧化铝陶瓷颗粒、氧化锌陶瓷颗粒、氧化锆陶瓷颗粒等。
根据本发明的具体实施方案,优选地,所述LOW-E膜为氧化锌、氧化锡、氮化硅或银形成的LOW-E膜。LOW-E膜可以采用磁控溅射的方式均匀地镀设于玻璃的表面上。
根据本发明的具体实施方案,优选地,所述涂层位于所述待强化玻璃的边缘,所述涂层的宽度为20-30mm。
根据本发明的具体实施方案,优选地,所述LOW-E膜的厚度为100-200nm,具体例如100nm、110nm、120nm、130nm、140nm、150nm、160nm、170nm、180nm、190nm、200nm。
根据本发明的具体实施方案,优选地,所述无机氧化物层的厚度为1-20μm;更优选为1-5μm。
根据本发明的具体实施方案,优选地,所述拟焊接区域、拟化学强化区域分别是指需要进行焊接的区域、需要进行化学强化的区域。一般情况下,拟焊接区域为玻璃板的边缘位置,拟化学强化区域位于玻璃板的中间位置,并被拟焊接区域围绕。
根据本发明的具体实施方案,优选地,所述拟焊接区域设于所述拟化学强化区域的周围。
根据本发明的具体实施方案,优选地,所述无机氧化物层的宽度为5mm-30mm,更优选为10mm-25mm,进一步优选为15mm-20mm。
根据本发明的具体实施方案,优选地,所述拟焊接区域的宽度为0.2mm-10mm,更优选为1mm-8mm,进一步优选为4mm-6mm。其中,化学强化保护层的宽度应大于拟焊接区域的宽度,以确保化学强化保护层能够覆盖拟焊接区域。
根据本发明的具体实施方案,优选地,当采用无机氧化物层作为化学强化保护层时,所述化学强化保护层为激光透明层。该激光透明层是指对焊接用的激光透明,也就是激光可以在尽量小的光吸收情况下穿透该层,激光功率尽量少衰减并可以保持足够的焊接功率。
根据本发明的具体实施方案,优选地,所述化学强化保护层(无机氧化物层)为无机玻璃质层。该无机玻璃质层的材质为以二氧化硅为主要原料的无机非晶态氧化物的组合,包括但不限于二氧化硅、氧化铝、氧化钙、氧化钾、氧化钠、氧化锌,其中,二氧化硅的重量组成应大于80%,还可以含有适量的粘合剂。
根据本发明的具体实施方案,优选地,当采用无机氧化物层作为化学强化保护层时,所述化学强化保护层的厚度为1-20μm;更优选地,所述化学强化保护层的厚度为1-5μm。
根据本发明的具体实施方案,优选地,所述待强化玻璃(玻璃板)为高铝玻璃或钠钙玻璃等,其厚度可以根据需要进行选择,例如可以为2mm左右。
根据本发明的具体实施方案,优选地,所述待强化玻璃的一侧表面的局部设有所述涂层(即无机涂层、LOW-E膜、无机氧化物层),或者,所述待强化玻璃的两侧表面的局部均设有所述涂层(即无机涂层、LOW-E膜、无机氧化物层)。其中,当待强化玻璃的两侧表面的局部均设有所述涂层时,两侧的涂层可以相同也可以不同,例如这两侧的涂层可以同为无机涂层或LOW-E膜,也可以一侧为无机涂层、另一侧为LOW-E膜。
根据本发明的具体实施方案,优选地,所述待强化玻璃的尺寸为:长度800-2000mm、宽度500-1000mm。
本发明还提供了一种待强化玻璃组,其中,该待强化玻璃组包括两片待强化玻璃,并且,至少一片待强化玻璃为上述带有涂层的待强化玻璃。
根据本发明的具体实施方案,优选地,该待强化玻璃组所包括的两片待强化玻璃均可以是上述带有涂层的待强化玻璃。
本发明通过在玻璃表面设置无机氧化物层、无机涂层或LOW-E膜,优选为后续进行激光焊接的区域,由此能够影响相应区域的化学强化程度,即降低玻璃要被激光焊接区域的中心张应力(Central tension,CT),又因为玻璃内部的张应力是由玻璃板的材质、 厚度(h)、表面压应力(CS)、化钢深度(Dol)等因素共同决定,因此,当玻璃材质与厚度固定时,通过调整玻璃表面压应力(CS)与化钢深度(Dol)就可以控制玻璃内部的张应力CT。
玻璃表面压应力、化钢深度与内部张应力三者间的数学关系可用下列公式表达:
由公式中可知,当CS与Dol均变小时,可以降低CT的数值,有利于降低激光能量与玻璃表面、内部应力的干涉现象。
根据本发明的具体实施方案,优选地,当后续用于激光焊接工艺时,该待强化玻璃组也可以称为:用于激光焊接的化学强化玻璃组合体。优选地,该待强化玻璃组包括:第一玻璃板、第二玻璃板,其中,第一玻璃板和第二玻璃板中的至少一个为本发明所提供的带有涂层的待强化玻璃;所述无机氧化物层或者内部具有空隙的无机涂层作为所述第一玻璃板和第二玻璃板的结合层。即本发明还提供了一种用于激光焊接的化学强化玻璃组合体,其中,该用于激光焊接的化学强化玻璃组合体包括:第一玻璃板、第二玻璃板和至少一层结合层;其中:
所述第一玻璃板和所述第二玻璃板设有对应的拟焊接区域和化学强化区域;
所述结合层位于所述第一玻璃板和第二玻璃板之间,并且覆盖所述拟焊接区域;
所述结合层为无机氧化物层或者内部具有空隙的无机涂层。
上述用于激光焊接的化学强化玻璃组合体可以是由本发明提供的用于化学强化的玻璃板与一片经过化学强化的玻璃复合而成的(在这种情况下,用于化学强化的玻璃板中的化学强化保护层作为结合层),也可以是由两片用于化学强化的玻璃板复合而成的(这种情况下,用于化学强化的玻璃板中的化学强化保护层相互结合在一起形成结合层)。
根据本发明的具体实施方案,优选地,所述第一玻璃板和所述第二玻璃板设有对应的拟焊接区域和化学强化区域;
所述结合层位于所述第一玻璃板和第二玻璃板之间,并且覆盖所述拟焊接区域。
根据本发明的具体实施方案,优选地,所述结合层为无机玻璃质层。
根据本发明的具体实施方案,优选地,当采用无机氧化物层作为结合层时,所述结合层的厚度为1-20μm;当采用内部具有空隙的无机涂层作为结合层时,所述结合层的厚度为0.2-0.8mm。
根据本发明的具体实施方案,优选地,所述结合层的宽度为5mm-30mm。
根据本发明的具体实施方案,优选地,所述拟焊接区域的宽度为0.2mm-10mm。
根据本发明的具体实施方案,优选地,拟焊接区域、化学强化区域分别是指需要进行焊接的区域和经过了化学强化的区域。一般情况下,拟焊接区域为玻璃板的边缘位置,化学强化区域位于玻璃的中间位置,并被拟焊接区域围绕。
根据本发明的具体实施方案,优选地,所述结合层为激光透明层。
根据本发明的具体实施方案,优选地,所述结合层为无机玻璃质层。该无机玻璃质层的材质为以二氧化硅为主要原料的无机非晶态氧化物的组合,包括但不限于二氧化硅、氧化铝、氧化钙、氧化钾、氧化钠、氧化锌,其中二氧化硅的重量组成应大于80%,还可以含有适量的粘合剂。
根据本发明的具体实施方案,优选地,所述结合层的厚度为1-20μm;更优选地,所述结合层的厚度为1-5μm。
根据本发明的具体实施方案,优选地,所述化学强化区域的宽度为5mm-30mm,更优选为10mm-25mm,进一步优选为15mm-20mm;所述拟焊接区域的宽度为0.2mm-10mm,更优选为1mm-8mm,进一步优选为4mm-6mm。
根据本发明的具体实施方案,优选地,第一玻璃板和第二玻璃板可以为钠钙玻璃或者高铝玻璃等,其厚度可以根据需要进行选择,例如可以为2mm左右。
本发明提供的带有涂层的待强化玻璃可以是通过以下方式制备的:在需要零化强或者低化强的玻璃区域涂覆上一种无机涂层或镀上一层LOW-E膜或者无机氧化物层,该无机涂层之中会形成非常微小的空隙。在进行化学强化时,化钢炉中的K离子会通过这些微小的空隙到达玻璃表面,与玻璃表面的Na+进行交换,实现化学强化。通过对上述微小空隙的控制,能够实现对K离子进入玻璃表面数量的控制,从而实现对玻璃化学强化程度的控制。而LOW-E膜则可以阻挡到达玻璃表面的K离子数量,从而实现对玻璃化学强化程度的控制。
本发明的待强化玻璃表面设置的涂层可以保护玻璃表面不受化钢炉中大量K离子的“攻击”,从而获得合适的强化程度,从而降低强化后的玻璃在激光焊接过程中发生破裂损伤的几率。
通过控制无机涂层中的空隙或者LOW-E膜、无机氧化物层的厚度,可以控制化钢炉中K离子渗透率,控制强化程度。在完成强化之后,无机涂层可以通过清洗、抛光完全去除,LOW-E膜可以从采用激光除膜机去除,不影响玻璃的表面质量。无机氧化物层可以不进行去除,而直接进行激光焊接。
本发明还提供了一种激光焊接复合玻璃板,其中,该激光焊接复合玻璃板包括第一焊接玻璃板、第二焊接玻璃板;
所述第一焊接玻璃板和第二焊接玻璃板中的至少一个为本发明所提供的带有涂层的待强化玻璃;
所述第一焊接玻璃板和所述第二焊接玻璃板设有对应的激光焊接区域和化学强化区域;
所述无机氧化物层通过激光焊接形成所述第一焊接玻璃板和第二焊接玻璃板之间的激光焊接层。
该激光焊接复合玻璃板是由用于激光焊接的化学强化玻璃组合体经过化学强化、激光焊接得到的,其中,第一玻璃板、第二玻璃板经过化学强化之后成为第一焊接玻璃板、第二焊接玻璃板,结合层经过激光焊接之后形成激光焊接层。
根据本发明的具体实施方案,优选地,当采用无机氧化物层作为激光焊接层时,所述激光焊接层的厚度为1-20μm。
根据本发明的具体实施方案,优选地,所述激光焊接层由无机玻璃质通过激光焊接形成。
根据本发明的具体实施方案,优选地,所述化学强化区域的宽度为5mm-30mm,更优选为10mm-25mm,进一步优选为15mm-20mm;所述激光焊接区域的宽度为0.2mm-10mm,更优选为1mm-8mm,进一步优选为4mm-6mm。
根据本发明的具体实施方案,优选地,所述激光焊接区域的宽度为0.2mm-10mm。
本发明所提供的用于激光焊接的化学强化玻璃组合体通过设置结合层,可以在化学强化过程中对拟焊接区域提供保护,避免这部分区域被化学强化而影响后续的焊接效果;在完成化学强化之后,该结合层不需要进行清除,可以直接进行激光焊接,形成激光焊接层,从而将两块玻璃板焊接成为一个整体,得到激光焊接复合玻璃板。
附图说明
图1为带有涂层的待强化玻璃的结构示意图。
图2为玻璃化强时间与玻璃CT值及焊接的关系图。
图3为实施例2中的玻璃涂层示意图。
图4为实施例2中的焊接方向示意图。
图5为阶梯式涂层以及激光焊接表现示意图。
图6为实施例3提供的一侧表面的局部带有涂层的待强化玻璃的示意图。
图7为实施例3提供的两侧表面的局部带有涂层的待强化玻璃的示意图。
图8为实施例1提供的用于化学强化的玻璃板本体的俯视图。
图9为实施例1提供的用于化学强化的玻璃板的主视图。
图10为实施例1提供的用于化学强化的玻璃板的截面示意图。
图11为实施例2提供的用于激光焊接的化学强化玻璃组合体的侧面示意图。
图12为实施例2提供的用于激光焊接的化学强化玻璃组合体中的第一玻璃板的结构示意图。
图13为实施例2提供的用于激光焊接的化学强化玻璃组合体中的第二玻璃板的结构示意图。
图14为实施例3提供的激光焊接复合玻璃板的一个截面的结构示意图。
图15为实施例3提供的激光焊接复合玻璃板的另一个截面的结构示意图。
附图标号说明:
无机涂层1、玻璃板2、边缘镀膜区3、中间为未镀膜区4;
玻璃板本体101、化学强化保护层103、拟焊接区域104、拟化学强化区域105
第一玻璃板201、第二玻璃板202、结合层203、第一拟焊接区域204、第一化学强
化区域205、第二拟焊接区域206、第二化学强化区域207;
第一焊接玻璃板301、第二焊接玻璃板302、激光焊接层303。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例所采用的材料/设备型号及参数如下所示:
①原片玻璃:高铝玻璃,尺寸50mm×50mm×2mm;
②无机涂层:双组分涂层,A组分为水溶性液体,B组分为非水溶性粉体;
③化钢炉:液体成分:硝酸钾;化钢原理:离子交换法。
对比例1原片玻璃(未涂无机涂层的裸玻璃)化钢+焊接实验
将原片玻璃(未涂无机涂层的裸玻璃)在化钢炉400℃中经过不同的化钢时间后取出,使用应力测试仪测量每一片玻璃的CS、DOL与CT测量值,结果如表1所示。
表1所记载的实验结果显示随着化钢时间的增加,玻璃的CT值也相应增加,本实验所有的玻璃经化钢后CT值均在8以上,无法进行焊接。
实施例1带有无机涂层的玻璃化钢+焊接实验
在原片玻璃表面涂上厚度约0.8mm的无机涂层(如图1所示,玻璃板2的表面设有无机涂层1),并进行固化(固化条件为室温2小时,在鼓风干燥箱中40℃保持2小时,60℃保持2小时,110℃保持2小时),得到表面带有涂层的待强化玻璃。
表1原片玻璃化钢时间t VS化钢程度及焊接结果(化钢炉温度:400℃)
将涂层固化后的待强化玻璃放进化钢炉中,经过不同的化钢时间后取出,自然冷却后在60℃下水浴24小时,玻璃表面涂层变为松散结构,使用刮刀刮掉涂层后,玻璃表面会留下微米级别的残胶层,该残胶层使用平板砂光机去除(用羊毛毡替代砂光机的砂纸,使用8000#的抛光粉配合抛光作业),抛光条件为每片玻璃约1000转。玻璃抛光完成后,使用应力测试仪测量每一片玻璃的CS、DOL与CT值,再将同一化钢时间下的2片玻璃采用玻璃激光焊接机进行焊接。实验数据记录表如下表2所示。
由表2记载的实验结果可知,随着化钢时间的增加,CS、DOL、CT都在增加,当化钢时间增加至4小时,CT值增大至2.8以上,此时出现了玻璃无法焊接的情况。
综合对比例1和实施例1的数据可知,当玻璃表面的CT值≤1.7MPa时,玻璃可以顺利的进行激光焊接,当玻璃表面的CT值>2.8MPa时,玻璃就无法进行激光焊接,因本次实验没有出现CT值为1.7-2.8MPa的结果,故该区间的激光焊接结果为未知,如图2所示。
表2带有涂层的玻璃化钢时间t VS化钢程度及焊接结果(化钢炉温度:400℃)
实施例2无机涂层厚度与化钢程度及焊接情况的实验
将原片玻璃均匀分为4区:区域1不进行涂层操作,使用无机涂层在区域2、区域3、区域4先涂上0.8mm的涂层;待涂层表干后,在区域3、区域4再涂上0.8mm的涂层;再次等待涂层表干后,在区域4再涂上0.8mm的涂层。从而实现阶梯式涂层:区域1的涂层厚度为0,区域2的涂层厚度为0.8mm,区域3的涂层厚度为1.6mm,区域4的涂层厚度为2.4mm,如图3所示。
待上述涂层涂覆操作完成后,对涂层进行固化,固化条件与实验(2)保持一致。将涂层固化后的玻璃放进化钢炉中进行2小时的化钢后取出,采用与实验(1)一致的方法对玻璃进行水浴和抛光去除涂层,然后使用玻璃表面应力仪进行CS、DOL与CT值的测量,并进行焊接实验。实验结果见表3。
表3无机涂层厚度与化钢强度记录表

由表3记载的实验结果可知,当涂层厚度由0.8m增加至1.6mm时,该无机涂层阻止化学钢化的能力增加,当涂层进一步增加至2.4mm时,该无机涂层基本可以完全阻止化学钢化,实现“零”化钢。
该组实验的玻璃在进行焊接时,要被焊接的上下2片玻璃区域1与区域1相对,区域2与区域2相对,依次类推,并分为两部分进行焊接,其中左半部分的上下2片玻璃采用纵向焊接,焊线从CT基本为0的区域4逐渐向CT值增大的区域运动,目的是为了验证跨区域(即跨不同CT值)焊接玻璃会不会破裂;右半部分的上下2片玻璃采用横向焊接,使得焊接只发生在同区域(即CT值基本相同的地方),焊接顺序为区域1先焊接,然后区域2焊接,依次类推,目的是为了观察不同CT值区域各自焊接的差异性。焊接方向示意图如图4。
观察经阶梯式涂层的玻璃焊接情况,如图5所示,可以明显看到,在玻璃的左半部分(纵向跨CT值焊接),不同CT值的4个区域焊接条纹均表现得比较均匀,尤其是在区域1和区域2的交界处,即便两个区域的CT值差异有10倍之多,玻璃也没有出现因跨CT值焊接而破裂的现象;在玻璃的右半部分(横向相同CT值焊接)的无涂层区域1,玻璃经过激光焊接表面焊缝不均匀,并出现了裂纹,随着涂层厚度的增加,玻璃表面CT值逐渐降低,裂纹的数量也逐渐减少,焊接区域变得越来越均匀。
目前推测,本次实验中的纵向跨CT值焊接,因焊接的走向是区域4-区域3-区域2-区域1,即从CT基本为0的区域4开始焊接,使得两片玻璃经过焊接后紧密贴紧,因此到了区域1的时候,即便该区域CT值比较大,因为两片玻璃的紧密贴紧也使得玻璃能够比较好的焊接起来,焊接效率提升;而横向相同CT值焊接,会凸显4个不同CT值区域的差异性,同时因为焊接顺序是区域1-区域2-区域3-区域4,是从CT值较大的区域1先进行焊接,区域1焊接时产生的玻璃裂纹的生长影响到了区域2&区域3的焊接,使得区域2的焊接区出现较多裂纹,区域3的焊接区也有少量裂纹。
根据对比例1、实施例1、实施例2的内容可以看出:
本发明的带强化玻璃表面设置的无机涂层可以保护玻璃表面不受化钢炉中大量K+ 的“攻击”,从而获得合适的强化程度,从而降低强化后的玻璃在激光焊接过程中发生破裂损伤的几率;
通过控制无机涂层中的空隙的因素可以控制化钢炉中K+渗透率,控制强化程度;
在完成强化之后,无机涂层可以通过清洗、抛光完全去除,不影响玻璃的表面质量。
实施例3
本实施例提供了一种带有涂层的待强化玻璃,其中,玻璃板的尺寸为900×600×1.1mm,该待强化玻璃的一侧表面的边缘设有宽度23mm、厚度180nm的LOW-E膜(材质为银),如图6所示,其中,玻璃板的边缘为边缘镀膜区3,中间为未镀膜区4。
本实施例还提供了一种两侧表面带有涂层的待强化玻璃,其中,玻璃板的尺寸为900×600×1.1mm,该待强化玻璃的两侧表面的边缘分别设有宽度23mm、厚度180nm的LOW-E膜(材质为银),如图7所示,该图7为玻璃板中间区域的截面图,其中,玻璃板2的边缘为边缘镀膜区3,中间为未镀膜区4。
将上述一侧表面的边缘设有LOW-E膜的待强化玻璃在380℃预热2小时,然后再于420℃进行2小时的化学强化(参考实施例1进行),然后随炉冷却,得到单面边缘镀膜+化强的复合玻璃。
将上述两侧表面的边缘设有LOW-E膜的待强化玻璃在380℃预热2小时,然后再于420℃进行2小时的化学强化(参考实施例1进行),然后随炉冷却,得到双面镀膜+化强的复合玻璃。
测试镀膜区域和未镀膜区域的相关参数,具体如表4所示:
表4
其中,-代表无法检测得到相关参数或相关参数值基本为0;区域1、2、3是指取样的不同位置。
实施例4
本实施例提供了一种带有涂层的待强化玻璃,其尺寸如表5和表6所示,该待强化玻璃的边缘设有宽度23mm、厚度180nm的LOW-E膜(材质为银);该待强化玻璃为4mm厚的钠钙玻璃。
本实施例还提供了一种两侧表面带有涂层的待强化玻璃,其尺寸如表5和表6所示,该待强化玻璃的两侧表面的边缘分别设有宽度23mm、厚度180nm的LOW-E膜(材质为银);该待强化玻璃为4mm厚的钠钙玻璃。
将上述一侧表面的边缘设有LOW-E膜的待强化玻璃在380℃预热2小时,然后再于420℃进行16小时的化学强化(参考实施例1进行),然后随炉冷却,得到单面边缘镀膜+化强的复合玻璃。
将上述两侧表面的边缘设有LOW-E膜的待强化玻璃在380℃预热2小时,然后再于420℃进行16小时的化学强化(参考实施例1进行),然后随炉冷却,得到双面镀膜+化强的复合玻璃。
同时,对素片玻璃进行420℃进行16小时的化学强化(参考实施例1进行),然后随炉冷却,得到经过化强的素片玻璃,以进行对比。
测试镀膜区域和未镀膜区域的相关参数,其中,玻璃的平直度结果如表5和表6所示,玻璃的应力情况如表7所示:
表5
表6
备注:
最大间隙Δd和平直度λ说明如下:
最大间隙Δd的测试方法是:将球面杆与玻璃的一边紧密贴合,然后计量球面杆与玻璃之间的间隙,以间隙的最大值作为最大间隙Δd;
平直度λ=Δd/L×100%,其中,L为所测试的玻璃的相应边的长度。
在表5、6中,边长1、2、3、4是指玻璃的4条边,括号中的数字代表测试的边的长度,例如:短边1(800)是指针对长度为800mm的短边进行的测试。
由表5和表6可以看出:对于厚度均为4mm的同一尺寸的钠钙玻璃,边缘镀膜后进行化钢与素片玻璃直接化钢,最终得到的玻璃的平直度变化不大。对于单面镀膜的玻璃与双面镀膜的玻璃,在化强后,玻璃的平直度数值没有出现明显差异。
表7

备注:表7中的序号同表6。
由表7可以看出:对于厚度4mm的钠钙玻璃,在边缘镀膜并进行化强,其CT值均小于0.1,前期实验已验证CT小于1.7的化强玻璃可激光焊接,因此,本实施例提供的带有LOW-E膜的待强化玻璃可以直接进行焊接。
实施例5
本实施例提供了一种用于化学强化的玻璃板,其中,该用于化学强化的玻璃板包括:玻璃板本体101、化学强化保护层103;
其中,玻璃板本体101设有拟焊接区域104和拟化学强化区域105,如图8所示,其中,拟化学强化区域的宽度为5mm-30mm;
所述拟焊接区域的宽度为0.2mm-10mm;
化学强化保护层103覆盖拟焊接区域104,即其宽度大于拟焊接区域104的宽度,如图9和图10所示;
化学强化保护层为由无机玻璃质材料和适量粘结剂混合之后,通过涂布等方式形成,其厚度为1-5μm。
实施例6
本实施例提供了一种用于激光焊接的化学强化玻璃组合体,其结构如图11所示。
该用于激光焊接的化学强化玻璃组合体包括第一玻璃板201、第二玻璃板202、结合层203,其中:
第一玻璃板201的表面设有第一拟焊接区域204和第一化学强化区域205,如图12所示;
第二玻璃板202的表面设有第二拟焊接区域206和第二化学强化区域207,如图13所示;
其中,第一拟焊接区域204和第二拟焊接区域206的位置相互对应,第一化学强化区域205和第二化学强化区域207的位置相互对应;
结合层203设置于第一玻璃板201和第二玻璃板202之间,具体位置对应于第一拟焊接区域204和第二拟焊接区域206,位于玻璃板的边缘位置,如图14和图15所示。 该结合层203由无机玻璃质材料和适量粘结剂混合之后,通过涂布等方式形成,其厚度为1-5μm。
该用于激光焊接的化学强化玻璃组合体是由两片实施例5提供的用于化学强化的玻璃板在经过化学强化之后复合形成的,两片玻璃板的化学强化保护层103组成结合层203。
实施例7
本实施例提供了一种激光焊接复合玻璃板,其中,该激光焊接复合玻璃板是由实施例5提供的用于激光焊接的化学强化玻璃组合体通过激光焊接获得的。
该激光焊接复合玻璃板包括第一焊接玻璃板301、第二焊接玻璃板302和激光焊接层303,如图14和图15所示,二者的截面方向相互垂直;
第一焊接玻璃板301和第二焊接玻璃板302分别对应实施例2中的第一玻璃板201、第二玻璃板202,其上还设有对应的激光焊接区域和化学强化区域;
激光焊接层303位于第一焊接玻璃板301和第二焊接玻璃板302之间,并且覆盖激光焊接区域,具体是由实施例2中的结合层203通过激光焊接形成的;
激光焊接层303由结合层203通过激光焊接制成,厚度约为5μm。

Claims (24)

  1. 一种带有涂层的待强化玻璃,其中,所述待强化玻璃的局部设有涂层,所述涂层为无机氧化物层、LOW-E膜,或者内部具有空隙的无机涂层。
  2. 根据权利要求1所述的带有涂层的待强化玻璃,其中,所述待强化玻璃包括:玻璃板本体;
    其中,所述玻璃板本体设有拟化学强化区域和拟焊接区域;
    所述无机氧化物层、LOW-E膜,或者内部具有空隙的无机涂层作为化学强化保护层覆盖所述拟焊接区域。
  3. 根据权利要求1所述的带有涂层的待强化玻璃,其中,所述内部具有空隙的无机涂层为厚度均一的涂层,并且,所述内部具有空隙的无机涂层的厚度为0.2-0.8mm。
  4. 根据权利要求1所述的带有涂层的待强化玻璃,其中,所述内部具有空隙的无机涂层的厚度为阶梯式,每一层的厚度分别为0.2-0.8mm,并且,由所述待强化玻璃的边缘向中央递减。
  5. 根据权利要求1所述的带有涂层的待强化玻璃,其中,所述内部具有空隙的无机涂层为无机颗粒经过无机胶粘合形成的涂层。
  6. 根据权利要求1所述的带有涂层的待强化玻璃,其中,所述LOW-E膜为氧化锌、氧化锡、氮化硅或银形成的LOW-E膜。
  7. 根据权利要求1所述的带有涂层的待强化玻璃,其中,所述涂层位于所述待强化玻璃的边缘,所述涂层的宽度为20-30mm。
  8. 根据权利要求1所述的带有涂层的待强化玻璃,其中,所述LOW-E膜的厚度为100-200nm。
  9. 根据权利要求2所述的带有涂层的待强化玻璃,其中,所述拟焊接区域设于所述拟化学强化区域的周围。
  10. 根据权利要求2所述的带有涂层的待强化玻璃,其中,所述无机氧化物层为无机玻璃质层。
  11. 根据权利要求2所述的带有涂层的待强化玻璃,其中,所述化学强化保护层的宽度为5mm-30mm;
    所述拟焊接区域的宽度为0.2mm-10mm。
  12. 根据权利要求1或2所述的带有涂层的待强化玻璃,其中,所述无机氧化物层的厚度为1-20μm。
  13. 根据权利要求1所述的带有涂层的待强化玻璃,其中,所述待强化玻璃为高铝 玻璃或钠钙玻璃。
  14. 根据权利要求1所述的带有涂层的待强化玻璃,其中,所述待强化玻璃的一侧表面的局部设有所述涂层,或者,所述待强化玻璃的两侧表面的局部均设有所述涂层。
  15. 一种待强化玻璃组,其中,该待强化玻璃组包括两片待强化玻璃,并且,至少一片待强化玻璃为权利要求1所述的带有涂层的待强化玻璃。
  16. 根据权利要求15所述的待强化玻璃组,其中,该待强化玻璃组包括:第一玻璃板、第二玻璃板,其中,第一玻璃板和第二玻璃板中的至少一个为权利要求1所述的带有涂层的待强化玻璃;
    所述无机氧化物层作为所述第一玻璃板和第二玻璃板的结合层。
  17. 根据权利要求16所述的待强化玻璃组,其中,所述第一玻璃板和所述第二玻璃板设有对应的拟焊接区域和化学强化区域;
    所述结合层位于所述第一玻璃板和第二玻璃板之间,并且覆盖所述拟焊接区域。
  18. 根据权利要求17所述的待强化玻璃组,其中,所述结合层为无机玻璃质层。
  19. 根据权利要求16所述的待强化玻璃组,其中,所述结合层的厚度为1-20μm。
  20. 根据权利要求17所述的待强化玻璃组,其中,所述结合层的宽度为5mm-30mm;
    所述拟焊接区域的宽度为0.2mm-10mm。
  21. 一种激光焊接复合玻璃板,其中,该激光焊接复合玻璃板包括第一焊接玻璃板、第二焊接玻璃板;
    所述第一焊接玻璃板和第二焊接玻璃板中的至少一个为权利要求1所述的带有涂层的待强化玻璃;
    所述第一焊接玻璃板和所述第二焊接玻璃板设有对应的激光焊接区域和化学强化区域;
    所述无机氧化物层通过激光焊接形成所述第一焊接玻璃板和第二焊接玻璃板之间的激光焊接层。
  22. 根据权利要求21所述的激光焊接复合玻璃板,其中,所述激光焊接层的厚度为1-20μm。
  23. 根据权利要求22所述的激光焊接复合玻璃板,其中,所述激光焊接层由无机玻璃质通过激光焊接形成。
  24. 根据权利要求21所述的激光焊接复合玻璃板,其中,所述化学强化区域的宽度为5mm-30mm;
    所述激光焊接区域的宽度为0.2mm-10mm。
PCT/CN2023/113725 2022-08-22 2023-08-18 一种带有涂层的待强化玻璃、待强化玻璃组与激光焊接复合玻璃板 WO2024041455A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222203998.8 2022-08-22
CN202222203998.8U CN218710005U (zh) 2022-08-22 2022-08-22 一种带有涂层的待强化玻璃及待强化玻璃组
CN202321457444.9 2023-06-08
CN202321457444.9U CN220317647U (zh) 2023-06-08 2023-06-08 用于化学强化的玻璃板、用于激光焊接的化学强化玻璃组合体及激光焊接复合玻璃板

Publications (1)

Publication Number Publication Date
WO2024041455A1 true WO2024041455A1 (zh) 2024-02-29

Family

ID=90012460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113725 WO2024041455A1 (zh) 2022-08-22 2023-08-18 一种带有涂层的待强化玻璃、待强化玻璃组与激光焊接复合玻璃板

Country Status (1)

Country Link
WO (1) WO2024041455A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159505A (ja) * 2012-02-02 2013-08-19 Asahi Glass Co Ltd 化学強化ガラスの製造方法及び化学強化ガラス
JP2015098426A (ja) * 2013-11-20 2015-05-28 藤原工業株式会社 印刷層付き化学強化ガラス及びその用途
CN107406292A (zh) * 2014-10-31 2017-11-28 康宁股份有限公司 激光焊接的玻璃封装和制造方法
CN108463443A (zh) * 2016-04-12 2018-08-28 日本电气硝子株式会社 强化玻璃的制造方法及强化玻璃制造装置
CN109153599A (zh) * 2016-05-19 2019-01-04 苹果公司 非对称化学强化
CN109748518A (zh) * 2017-11-02 2019-05-14 深圳市东丽华科技有限公司 一种强化玻璃及其制造方法
CN218710005U (zh) * 2022-08-22 2023-03-24 福耀高性能玻璃科技(福建)有限公司 一种带有涂层的待强化玻璃及待强化玻璃组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159505A (ja) * 2012-02-02 2013-08-19 Asahi Glass Co Ltd 化学強化ガラスの製造方法及び化学強化ガラス
JP2015098426A (ja) * 2013-11-20 2015-05-28 藤原工業株式会社 印刷層付き化学強化ガラス及びその用途
CN107406292A (zh) * 2014-10-31 2017-11-28 康宁股份有限公司 激光焊接的玻璃封装和制造方法
CN108463443A (zh) * 2016-04-12 2018-08-28 日本电气硝子株式会社 强化玻璃的制造方法及强化玻璃制造装置
CN109153599A (zh) * 2016-05-19 2019-01-04 苹果公司 非对称化学强化
CN109748518A (zh) * 2017-11-02 2019-05-14 深圳市东丽华科技有限公司 一种强化玻璃及其制造方法
CN218710005U (zh) * 2022-08-22 2023-03-24 福耀高性能玻璃科技(福建)有限公司 一种带有涂层的待强化玻璃及待强化玻璃组

Similar Documents

Publication Publication Date Title
JP6654224B2 (ja) 非対称化学強化
US5654057A (en) Sheet glass flattening method, method of manufacturing glass substrate for an information recording disk using flattened glass, method of manufacturing a magnetic recording disk using glass substrate, and magnetic recording medium
KR101930100B1 (ko) 압축하의 표면 및 중앙 영역을 갖는 유리
TWI635061B (zh) 強化玻璃及使用熱處理製造其之方法
TWI603925B (zh) 薄玻璃卷及其製造方法
US4849002A (en) Ion-exchangeable germanate method for strengthened germanate glass articles
US3524737A (en) Method for thermochemical strengthening of glass articles
US9302938B2 (en) Strengthened glass and methods for making using differential density
US20080213626A1 (en) Method of manufacture of glass substrate for information recording medium, method of manufacture of magnetic recording disk, and magnetic recording disk
WO2024041455A1 (zh) 一种带有涂层的待强化玻璃、待强化玻璃组与激光焊接复合玻璃板
CN218710005U (zh) 一种带有涂层的待强化玻璃及待强化玻璃组
JPH0151458B2 (zh)
JP6915402B2 (ja) 成形ガラスの製造方法
TW201311593A (zh) 強化玻璃面板之製造方法
JP3267846B2 (ja) 板ガラスの平坦化方法、および該方法を用いた磁気記録媒体の製造方法
JPH0158135B2 (zh)
JP2002220259A5 (ja) 磁気記録媒体用ガラス基板、磁気記録媒体用ガラス基板の製造方法および記録媒体の製造方法
JPH10194789A (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
KR102201846B1 (ko) 강화 유리 제조용 조성물 및 강화 유리 제조 방법
JP4225375B2 (ja) ガラス基板の製造方法
CN115893871B (zh) 一种玻璃强化剂及玻璃强化方法
JP4099291B2 (ja) 磁気ディスク用ガラス基板の製造方法
KR102255349B1 (ko) 방향성 전기강판 절연피막의 제거방법
JPH01500512A (ja) ガラス構造
JP2001023154A (ja) 磁気記録媒体用ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856545

Country of ref document: EP

Kind code of ref document: A1