WO2024041231A1 - 一种制冰模块及制冰设备 - Google Patents

一种制冰模块及制冰设备 Download PDF

Info

Publication number
WO2024041231A1
WO2024041231A1 PCT/CN2023/105556 CN2023105556W WO2024041231A1 WO 2024041231 A1 WO2024041231 A1 WO 2024041231A1 CN 2023105556 W CN2023105556 W CN 2023105556W WO 2024041231 A1 WO2024041231 A1 WO 2024041231A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
water
heat exchange
heat exchanger
scraper
Prior art date
Application number
PCT/CN2023/105556
Other languages
English (en)
French (fr)
Inventor
大森宏
刘勋伟
刘家尧
林晨
刘和成
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2024041231A1 publication Critical patent/WO2024041231A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • A61L2/06Hot gas
    • A61L2/07Steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/12Ice-shaving machines

Definitions

  • the present application relates to the field of ice making technology, and in particular to an ice making module and ice making equipment.
  • embodiments of the present application are expected to provide an ice making module and ice making equipment capable of quickly making ice.
  • an ice making module including:
  • a heat exchange unit the heat exchange unit includes a main heat exchanger, the main heat exchanger is arranged in the ice making space;
  • An ice scraping assembly is provided at a distance from the main heat exchanger.
  • the heat exchange unit includes an auxiliary heat exchanger
  • the ice-making module includes a water supply unit connected to the ice-making space. The water flow in the water supply unit exchanges heat with the auxiliary heat exchanger. Enter said ice space.
  • the main refrigerant outlet of the main heat exchanger is connected to the auxiliary refrigerant inlet of the auxiliary heat exchanger.
  • the ice making module includes an ice storage unit.
  • the ice storage unit includes a water storage box with a water storage tank and a filtering device covered on the water storage box.
  • the water storage box is located at the Tell the bottom of the ice mouth.
  • the ice making module includes a water supply unit and a water return unit.
  • the water supply unit includes a water tank connected to the ice making space, and the water return unit communicates with the water storage tank and the water tank.
  • the ice making module includes a sterilization module
  • the water supply unit includes a water supply pipeline
  • the return water unit includes a return water pipeline
  • the sterilization module is provided at the water supply pipeline.
  • the sterilization module is provided at the return water pipeline.
  • the return water pipeline includes a main return water pipeline, a first return water branch and a second return water branch.
  • One end of the main return water pipeline is connected to the water storage tank, and the other end passes through
  • the first return water branch is connected to the water supply pipeline and is connected to the water tank through the second return water branch; the sterilization module is provided at the main return water pipeline.
  • the sterilization module is provided at the first return water branch.
  • the sterilization module is provided at the water supply pipeline between the first return water branch and the ice making space.
  • the water return unit includes a first on-off valve provided on the main return line and a water pump provided on the second return branch line
  • the water supply unit includes a first switch valve provided on the first return line.
  • a second on-off valve on the water supply pipeline between the return water branch and the water tank.
  • the sterilization module includes a PTC heater.
  • the main heat exchanger includes a heat exchange cylinder, a refrigerant containing cavity is formed in the heat exchange cylinder, and the ice scraper assembly includes a first ice scraper and a second ice scraper.
  • the first ice scraper is located inside the heat exchange column, and the second ice scraper is located outside the heat exchange column.
  • the second ice scraper includes an annular cylinder and a second spiral piece spirally surrounding the inner wall of the annular cylinder, and the first ice scraper is located on the inner wall of the annular cylinder.
  • the ice making space is defined inside and between the second ice scraper, the heat exchange cylinder is located in the ice making space, the annular cylinder, the first ice scraper and the The heat exchange cylinders are arranged coaxially.
  • the first ice scraper includes a screw and a first screw that spirally surrounds the screw.
  • the heat exchange column gradually contracts inward from top to bottom.
  • the ice making module includes a driving unit capable of driving the ice scraping assembly to rotate relative to the heat exchange cylinder.
  • the ice scraping assembly includes a turntable connected to both the first ice scraper and the second ice scraper, and the driving unit is drivingly connected to the turntable.
  • the turntable is formed with a water passage connected to the ice making space
  • the ice making module includes a water supply unit connected to the water passage.
  • the first ice scraper includes a mounting seat disposed on one end of the screw rod close to the turntable, the mounting seat cover is disposed on the water passage, and the mounting seat is provided with a connecting The ice making space and the water passage hole of the water passage.
  • the ice making module includes a bushing and drag-reducing steel balls.
  • the bushing is disposed between the ice scraping assembly and the outer casing.
  • the drag-reducing steel balls are disposed in the bushing. Contact with the ice scraping assembly.
  • the ice-making module includes drag-reducing steel balls and an ice-forming plate disposed at the ice outlet.
  • the drag-reducing steel balls are disposed on the ice-forming plate and abut against the ice scraping assembly. catch.
  • the distance between the ice scraping assembly and the main heat exchanger is 0.2 mm to 1 mm.
  • An embodiment of the present application also provides an ice-making equipment, including a body and the above-mentioned ice-making module, and the ice-making module is disposed in the body.
  • the shell is provided with an ice-making space with an ice outlet at the bottom.
  • the main heat exchanger of the heat exchange unit is arranged in the ice-making space.
  • water is supplied to the ice-making space.
  • the water flows down the main heat exchanger under the action of gravity and generates ice on the surface of the main heat exchanger.
  • the ice generated on the surface of the main heat exchanger is scraped off by the ice scraping assembly, that is, by making ice
  • An ice outlet is set at the bottom of the space.
  • the ice scraper assembly will The ice generated on the surface of the main heat exchanger is scraped off and comes out from the ice outlet at the bottom to achieve quick ice making out of the box, thereby increasing the ice making speed of the ice making module.
  • Figure 1 is a schematic structural diagram of an ice making module according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the connection structure of the main heat exchanger, ice scraping assembly and ice forming plate shown in Figure 1;
  • FIG 3 is a schematic structural diagram of the ice scraping assembly shown in Figure 1;
  • Figure 4 is a schematic structural diagram of the main heat exchanger shown in Figure 1;
  • Figure 5 is a schematic structural diagram of a bushing and drag-reducing steel balls according to an embodiment of the present application.
  • Figure 6 is a perspective view of the main heat exchanger according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a first ice scraper according to an embodiment of the present application.
  • Figure 8 is a perspective view of a second ice scraper according to an embodiment of the present application.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, etc. is based on the orientation or positional relationship shown in Figure 1, wherein “top and bottom” are based on The up and down directions shown in the drawings, these orientation terms are only for convenience of describing the embodiments of the present application and simplifying the description, but do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, therefore It cannot be understood as a limitation on the embodiments of this application.
  • first and “second” are used for descriptive purposes only and are not to be understood as indicating or implying relative importance.
  • An embodiment of the present application provides an ice-making equipment, including a body and an ice-making module provided by any embodiment of the present application.
  • the ice-making module is disposed in the body.
  • the specific type of the ice making equipment is not limited here.
  • it may be an ice making machine or a refrigerator.
  • the ice-making module is integrated in the refrigerator. That is to say, the ice-making equipment has at least a conventional refrigerator function and, in addition, also has an ice-making function.
  • the embodiment of the present application takes the ice-making equipment as a refrigerator integrated with an ice-making module as an example for description.
  • the ice making module includes a housing 90 , a heat exchange unit 10 and an ice scraping assembly 20 .
  • the shell 90 has an ice making space 20a, and the bottom of the ice making space 20a has an ice outlet 20b. That is to say, the ice making module discharges ice from the bottom.
  • the heat exchange unit 10 includes a main heat exchanger 11.
  • the main heat exchanger 11 is arranged in the ice making space 20a.
  • the main heat exchanger 11 is filled with refrigerant.
  • the refrigerant can perform heat exchange with the water on the surface of the main heat exchanger 11.
  • the water is caused to generate ice on the surface of the main heat exchanger 11 .
  • the ice-making module since the bottom of the ice-making space 20a has an ice outlet 20b, a large amount of water will not accumulate in the ice-making space 20a.
  • the ice-making module generates the water required for ice. It is by controlling the small flow of water to flow through the surface of the main heat exchanger 11, and the small flow of water to pass through The heat exchange amount required to generate ice through heat exchange is relatively small. Therefore, the small flow of water flow exchanges heat with the main heat exchanger 11 and can quickly solidify on the surface of the main heat exchanger 11 to generate ice.
  • main heat exchanger 11 is not limited here.
  • the main heat exchanger 11 is an evaporator.
  • the ice scraping assembly 20 is spaced apart from the main heat exchanger 11 and is used to scrape off the ice generated on the surface of the main heat exchanger 11 .
  • the ice making equipment or ice making module also includes a control panel and other refrigeration cycle components.
  • Other refrigeration cycle components are such as compressors, condensers, capillary tubes, etc.
  • the connecting pipes form a refrigeration system by connecting the compressor, condenser, heat exchange unit 10, etc. , so that the water on the surface of the main heat exchanger 11 can condense into ice.
  • the ice outlet of the ice-making space of the ice-making module is generally located at the top.
  • Some evaporators are located in the water in the ice-making space. The water exchanges heat with the evaporator and is evaporated in the ice-making space. Ice is generated on the surface of the evaporator, and the ice generated on the surface of the evaporator is continuously scraped off by the rotation of the ice scraper, and is continuously sent out of the evaporator, resulting in a continuous flow of crushed ice at the evaporator outlet.
  • more heat is required for water to generate ice on the surface of the evaporator, resulting in a slower ice-making speed and cannot be used immediately.
  • the shell 90 is provided with an ice making space 20a with an ice outlet 20b at the bottom, and the main heat exchanger 11 of the heat exchange unit 10 is set in the ice making space 20a.
  • the main heat exchanger 11 of the heat exchange unit 10 is set in the ice making space 20a.
  • the water flow flows along the main heat exchanger 11 to the ice outlet 20b. It can exchange heat with the main heat exchanger 11 and quickly solidify on the surface of the main heat exchanger 11.
  • the ice generated on the surface of the main heat exchanger 11 is scraped off by the ice scraping assembly 20 and comes out from the ice outlet 20b at the bottom. to achieve instant ice making, thus improving the efficiency of the ice making module. Ice making speed.
  • the heat exchange unit 10 includes an auxiliary heat exchanger 12
  • the ice making module includes a water supply unit 40 connected to the ice making space 20a, and the water flow in the water supply unit 40 exchanges heat with the auxiliary heat exchanger 12.
  • the ice making space 20a that is, by setting up the auxiliary heat exchanger 12
  • the water flow in the water supply unit 40 exchanges heat with the auxiliary heat exchanger 12, that is, the water flow is pre-cooled by the auxiliary heat exchanger 12 before entering the ice making space 20a.
  • the water flow entering the ice-making space 20a is pre-cooled through the auxiliary heat exchanger 12, and the pre-cooled water flow requires less heat exchange to generate ice, that is, it is easier to heat the water in the main heat exchanger 11.
  • the surface solidifies to generate ice, further increasing the ice making speed.
  • the specific arrangement of the auxiliary heat exchanger 12 is not limited here, as long as it can pre-cool the water flow entering the ice making space 20a.
  • the main refrigerant outlet 11c of the main heat exchanger 11 is connected with the auxiliary refrigerant inlet 12a of the auxiliary heat exchanger 12, that is to say, the auxiliary heat exchanger 12 and the main heat exchanger 11 are connected in series in the refrigerant circulation loop, and the main heat exchanger
  • the refrigerant in 11 flows out from the main refrigerant outlet 11c after exchanging heat with the water flowing through the surface of the main heat exchanger 11, enters the auxiliary heat exchanger 12 through the auxiliary refrigerant inlet 12a of the auxiliary heat exchanger 12, and then flows through the auxiliary heat exchanger 11.
  • the water flow in the heat exchanger 12 performs heat exchange to pre-cool the water flow passing through the auxiliary heat exchanger 12, and then flows out through the auxiliary refrigerant outlet 12b of the auxiliary heat exchanger 12, and then flows through the compressor, condenser, etc. and circulates into the main exchanger.
  • Heater 11 The water flow in the heat exchanger 12 performs heat exchange to pre-cool the water flow passing through the auxiliary heat exchanger 12, and then flows out through the auxiliary refrigerant outlet 12b of the auxiliary heat exchanger 12, and then flows through the compressor, condenser, etc. and circulates into the main exchanger. Heater 11.
  • the remaining cooling capacity of the refrigerant can also be used to Pre-cool the water flow entering the ice making space 20a; the other On the other hand, it can effectively prevent the water flow from solidifying at the auxiliary heat exchanger 12 to form ice.
  • the temperature of the lower temperature refrigerant increases after exchanging heat with the water flow in the main heat exchanger 11 and then enters the auxiliary heat exchanger 12
  • the structure of the heat exchange unit 10 can be made simple, and the water flow in the main heat exchanger can be realized through a refrigerant circulation loop.
  • the surface of 11 exchanges heat with the refrigerant and solidifies to form ice, and the water flow exchanges heat with the refrigerant at the auxiliary heat exchanger 12 for pre-cooling.
  • the refrigerant temperature at the main refrigerant inlet 11b of the main heat exchanger 11 is about -5°C
  • the refrigerant temperature at the main refrigerant outlet 11c of the main heat exchanger 11 is about -2°C
  • the auxiliary heat exchanger The refrigerant temperature at the auxiliary refrigerant inlet 12a of 12 is about 0°C.
  • the auxiliary heat exchanger 12 and the main heat exchanger 11 are connected in parallel in the refrigerant circulation loop. That is to say, part of the refrigerant in the refrigerant loop enters the main heat exchanger 11 and the other part enters the auxiliary heat exchanger 12 Inside.
  • the ice making module includes an ice storage unit 50 .
  • the ice storage unit 50 is located below the ice outlet 20 b and is used for receiving ice cubes from the ice outlet 20 b.
  • the ice storage unit 50 includes a water storage box 51 with a water storage tank 51a.
  • the water storage box 51 is located below the ice outlet 20b.
  • the water storage tank 51a of the water storage box 51 is used to receive unfrozen water flow flowing through the main heat exchanger 11. , or the water flow from the melted ice cubes on the water storage box 51 flows into the water storage tank 51a, thereby avoiding problems such as mold and mildew caused by water accumulation in the refrigerator.
  • the ice storage unit 50 includes a filtering device 52 covered on the water storage box 51.
  • the ice cubes falling from the ice outlet 20b are filtered on the filtering device 52, and the unfrozen water flowing through the main heat exchanger 11 flows through the filtering device 52.
  • the water flow from the melted ice cubes on the filtering device 52 can also flow into the water storage tank 51a.
  • the specific type and structure of the filtering device 52 are not limited here.
  • the filtering device 52 is a filter mesh with a simple structure.
  • the ice making module includes a push rod 100, and the ice cubes on the surface of the filter are pushed
  • the push rod 100 is pushed out by reciprocating movement, and enters the ice storage box or is taken out and used immediately. The whole process runs continuously, thereby realizing rapid ice making without waiting, and improving user experience.
  • the specific structure of the push rod 100 and the driving mechanism for driving the reciprocating motion of the push rod 100 are not limited here, as long as the ice cubes on the surface of the filter can be pushed out by the reciprocating motion of the push rod 100 .
  • the ice making module includes a water supply unit 40 and a water return unit 60.
  • the water supply unit 40 is used to supply water to the ice making space 20a
  • the water return unit 60 is used to recycle the water in the water storage tank 51a. .
  • the water supply unit 40 includes a water tank 41 connected to the ice making space 20a, and the water return unit 60 communicates with the water storage tank 51a and the water tank 41. That is to say, the water return unit 60 can recover the water in the water storage tank 51a into the water tank 41, making full use of water resources.
  • the specific location of the water tank 41 is not limited here.
  • the water tank 41 is located above the ice making space 20a, that is, the water flow can enter the ice making space 20a through its own weight.
  • the ice-making module includes a sterilization module 70 , and the ice-making module is sterilized and disinfected through the sterilization module 70 .
  • the specific type of the sterilization module 70 is not limited here.
  • the sterilization module 70 includes a PTC heater 71.
  • the PTC heater 71 is also called a PTC heating element and is composed of a PTC ceramic heating element and an aluminum tube.
  • This type of PTC heating element has the advantages of small thermal resistance and high heat exchange efficiency. It is an automatic constant temperature and power-saving electric heater that can generate steam through the PTC heater 71 to sterilize the entire system.
  • the water supply unit 40 includes a water supply pipeline 42, through which the water tank 41 and the ice making space 20a are connected.
  • the water return unit 60 includes a return water pipeline 61, through which the water return line 61 is connected to the storage space. water tank 51a and water tank 41.
  • the specific location of the sterilization module 70 is not limited here, as long as the ice making module can be sterilized.
  • the module 70 is arranged at the water supply pipeline 42.
  • the sterilization module 70 is arranged at the return water pipeline 61.
  • the return water pipeline 61 includes a main return water pipeline 611, a first return water branch 612 and a second return water branch 613.
  • One end of the main return water pipeline 611 is connected to the water storage tank 51a.
  • the other end is connected to the water supply pipeline 42 through the first return water branch 612 and the water tank 41 through the second return water branch 613 respectively. That is to say, the return water pipeline 61 is connected with the water supply pipeline 42 by setting the first return water branch 612, so that at least part of the return water pipeline 61 and at least part of the water supply pipeline 42 form a disinfection circuit, and the sterilization module 70 is provided in the disinfection circuit. middle.
  • the sterilization module 70 is disposed at the main return pipe 611.
  • the sterilization module 70 is disposed at the first At the return water branch 612
  • the sterilization module 70 is disposed at the water supply pipeline 42 between the first return water branch 612 and the ice making space 20a.
  • the sterilization module 70 can also be At the same time, it is provided at two or three places in the main return water pipeline 611, the first return water branch 612, and the water supply pipeline 42 between the first return water branch 612 and the ice making space 20a.
  • the water return unit 60 includes a first on-off valve 63 provided on the main return pipeline 611 .
  • the first on-off valve 63 is provided to prevent the water flow in the water tank 41 from passing through the return unit 60 Enter the water tank 51a.
  • the water return unit 60 includes a water pump 62 disposed on the second water return branch 613. Under the action of the water pump 62, the water in the water storage tank 51a is recovered into the water tank 41.
  • the water supply unit 40 includes a second on-off valve 43 provided on the water supply pipeline 42 between the first return water branch 612 and the water tank 41, that is, the second on-off valve 43 is provided to control water supply.
  • the refrigerator has an ice making mode, a sterilization mode, etc., and the control of several modes is described below.
  • the second switching valve 43 When the ice making mode is turned on: the second switching valve 43 is opened, the first switching valve 63 is closed, the PTC heater 71 is closed, the water pump 62 is closed, and the ice scraping assembly 20 and the push rod 100 are opened.
  • the water in the water tank 41 enters the ice making space 20a through the water supply pipe 42, and performs heat exchange and solidification on the surface of the main heat exchanger 11 to generate ice.
  • the ice scraping assembly 20 is turned on to solidify the surface of the main heat exchanger 11 to generate ice.
  • the ice is scraped off, and the push rod 100 makes a reciprocating motion to continuously push out the ice cubes on the surface of the filter to achieve continuous ice making.
  • the second switching valve 43 is closed, the first switching valve 63 is opened, the PTC heater 71 is closed, the water pump 62 is opened, and the ice scraping assembly 20 and the push rod 100 are closed.
  • the ice making is completed, and a part of the water is accumulated in the water storage tank 51a.
  • the water pump 62 pumps the accumulated water in the water storage tank 51a back to the water tank 41.
  • the sterilization mode When the sterilization mode is turned on: the second switching valve 43 is closed, the first switching valve 63 is opened, the PTC heater 71 is opened, the water pump 62 is closed, and the ice scraping assembly 20 and the push rod 100 are closed. It is heated by the PTC heater 71 to generate steam to sterilize the entire ice making module.
  • the ice scraper assembly 20 is disposed in the housing 90 .
  • the ice scraper assembly 20 includes a first ice scraper 21 and a second ice scraper 22 .
  • the first ice scraper 21 is located on the main heat exchanger 11 .
  • the second ice scraper 22 is located on the side of the main heat exchanger 11 away from the first ice scraper 21 , that is to say, the first ice scraper 21 and the second ice scraper 22 are respectively located on the main heat exchanger 11 opposite sides of.
  • the ice making module in the embodiment of the present application is provided with an ice scraping assembly 20 including a first ice scraper 21 and a second ice scraper 22.
  • the first ice scraper 21 is located on one side of the main heat exchanger 11, and the second ice scraper 22 is The ice scraper 22 is located on the side of the main heat exchanger 11 away from the first ice scraper 21 .
  • the first ice scraper 21 can be used to scrape off the ice on one side of the main heat exchanger 11, and the second ice scraper 22 can be used to move the main heat exchanger 11 away from the first ice scraper 21.
  • the frozen ice is scraped off, that is, by utilizing the heat exchange areas on opposite sides of the main heat exchanger 11 to exchange heat and generate ice, and by arranging a scraper including a first ice scraper 21 and a second ice scraper 22.
  • the ice assembly 20 scrapes ice, thereby increasing the heat exchange amount of the main heat exchanger 11 and thus increasing the ice making speed.
  • the main heat exchanger 11 includes a heat exchange column 111, and the heat exchange column 111 contains A refrigerant containing cavity 11a is formed, that is to say, a refrigerant containing cavity 11a is formed between the inner wall and the outer wall of the heat exchange cylinder 111.
  • the refrigerant containing cavity 11a of the heat exchange cylinder 111 is used to fill the refrigerant.
  • the refrigerant and the heat exchange cylinder 111 The water on the inner wall and the peripheral side of the outer wall can perform heat exchange, so that the water freezes on the inner wall and the peripheral side of the outer wall of the heat exchange column 111.
  • the structural form of the heat exchange column 111 is adopted , increasing the heat exchange area of the main heat exchanger 11.
  • the refrigerant can conduct heat exchange with the water on the inner wall and outer wall surface of the heat exchange column 111, further increasing the heat exchange area of the main heat exchanger 11. , thus, the heat exchange amount of the main heat exchanger 11 and the speed of ice generation on the surface of the main heat exchanger 11 can be increased.
  • the heat exchange cylinder 111 includes but is not limited to a circular cylinder, a square cylinder, a frustum cylinder, etc.
  • the ice making machine uses a method of winding copper tubes on the outer wall of the screw as a heat exchange unit, and the heat exchange unit in the embodiment of the present application is set as a heat exchange cylinder, which increases the heat exchange compared to the method of winding copper tubes. area, thereby increasing the ice making speed.
  • the first ice scraper 21 is located inside the heat exchange column 111
  • the second ice scraper 22 is located outside the heat exchange column 111 . That is to say, by disposing the first ice scraper 21 inside the heat exchange column 111, the ice formed on the inside of the heat exchange column 111 can be scraped off, and the second ice scraper 22 is disposed inside the heat exchange column 111. 111, the ice formed on the outside of the heat exchange column 111 can be scraped off, thereby increasing the ice making speed.
  • the main heat exchanger 11 may also be partially annular, and the first ice scraper 21 and the second ice scraper 22 are respectively located on opposite sides of the main heat exchanger 11 .
  • the main heat exchanger 11 may also be plate-shaped, and the first ice scraper 21 and the second ice scraper 22 are respectively located on opposite sides of the main heat exchanger 11 .
  • the second ice scraper 22 includes an annular column.
  • the cylinder 221 and the second spiral piece 222 spirally surrounding the inner wall of the annular cylinder 221, that is to say, the annular cylinder 221 is sleeved on the outside of the heat exchange cylinder 111.
  • the main heat exchanger can be fully utilized.
  • the heat exchange area of the heat exchange cylinder 111 is 11, thereby increasing the ice making speed.
  • the second ice scraper 22 The ice scraping efficiency on the outer wall of the heat exchange cylinder 111 further improves the ice making efficiency.
  • the first ice scraper 21 is located inside the annular cylinder 221 and defines an ice making space 20 a with the second ice scraper 22 . That is to say, the ice making space 20 a can be controlled by controlling the water flow through the ice scraper 22 .
  • the heat exchange cylinder 111 in the space 20a is so that the heat exchange cylinder 111 is fully in contact with the water.
  • the annular cylinder 221, the first ice scraper 21 and the heat exchange cylinder 111 are coaxially arranged to facilitate the first ice scraper.
  • the ice scraper 21 and the second ice scraper 22 respectively scrape ice on the outer wall and inner wall surface of the heat exchange cylinder 111 without relative interference.
  • the structural stability and compactness of the ice making module are improved.
  • the first ice scraper 21 includes a screw 211 and a first screw 212 spirally surrounding the screw 211 .
  • the first ice scraper 21 is located inside the heat exchange column 111.
  • the first screw 212 spirally surrounds the screw 211 and is used to scrape the ice formed on the inside of the heat exchange column 111, thereby improving the production efficiency. Ice speed.
  • the heat exchange cylinder 111 gradually shrinks inward from top to bottom. That is to say, the outer size of the heat exchange cylinder 111 gradually decreases as it approaches the ice outlet 20b. , that is, the distance between the outer wall and the inner wall of the heat exchange cylinder 111 and the center of rotation gradually decreases from top to bottom. In this way, when the size of the heat exchange cylinder 111 in the height direction is constant, the water flow along the heat exchange direction is increased.
  • the surface flow distance of the cylinder 111 increases the heat exchange amount between the water flow and the main heat exchanger 11, thereby increasing the probability that the water flow will generate ice on the surface of the main heat exchanger 11, that is, improving the ice making efficiency.
  • the heat exchange column 111 gradually shrinks inward from top to bottom, that is, the heat exchange column 111 is tilted, the water flow can be caused to flow downward along the surface of the heat exchange column 111, thereby preventing part of the water flow from directly flowing from the main exchanger.
  • the gap between the heater 11 and the ice scraping assembly 20 falls out of the ice making space 20a.
  • the first scraping ice since the heat exchange column 111 gradually shrinks inward from top to bottom, the first scraping ice
  • the ice scraper 21 and the second ice scraper 22 are also tilted adaptively, so that the inclination angles of the first ice scraper 21 and the second ice scraper 22 are adapted to the heat exchange cylinder 111, so that ice scraping can be carried out smoothly and efficiently. .
  • the inclination angle of the heat exchange column 111 is not limited here.
  • the inward contraction angle of the heat exchange column 111 from top to bottom is 3° to 20°.
  • the water flow within this angle range The heat exchange efficiency and freezing efficiency are high, and the structure of the ice making module can be compact.
  • the heat exchange cylinder 111 gradually shrinks inward from bottom to top, that is to say, the outer dimensions of the heat exchange cylinder 111 gradually increase as it approaches the ice outlet 20b, that is, the heat exchange cylinder 111
  • the distance between the outer wall and the inner wall and the center of rotation gradually decreases from bottom to top.
  • the heat exchange column 111 gradually shrinks inward from bottom to top, that is, the heat exchange column 111 is tilted, the water flow can be caused to flow downward along the surface of the heat exchange column 111, thereby preventing part of the water flow from directly flowing from the main exchanger.
  • the gap between the heater 11 and the ice scraping assembly 20 falls out of the ice making space 20a.
  • the heat exchange cylinder 111 is cylindrical, that is, the distance between the outer wall and the inner wall of the heat exchange cylinder 111 and the center of rotation remains unchanged.
  • the ice scraping assembly 20 has different effects on the main heat exchanger.
  • the method of scraping the ice formed on the surface of the heater 11 is also different. This application is not limited here, as long as relative displacement can occur between the ice scraping assembly 20 and the main heat exchanger 11 to scrape the ice. For example, scraping The ice assembly 20 and the main heat exchanger 11 can undergo relative translation, relative rotation, etc.
  • the ice making module includes a driving unit 30 , and the driving unit 30 can drive the ice scraping assembly 20 to rotate relative to the heat exchange cylinder 111 . That is to say, the heat exchange cylinder 111 is fixed, and the driving unit 30 is drivingly connected to the first ice scraper 21 and the second ice scraper 22.
  • the driving unit 30 drives the annular cylinder 221 to rotate around the heat exchange cylinder 111, So that the inner wall of the annular cylinder 221 The second screw 222 on the heat exchange column continuously scrapes off the heat generated on the outer wall of the heat exchange column 111.
  • the driving unit 30 rotates by driving the screw 211, so that the first screw 212 spirally surrounding the screw 211 does not
  • the ice generated on the inner wall of the heat exchange cylinder 111 is scraped off continuously. Since the annular cylinder 221, the screw 211 and the heat exchange cylinder 111 are coaxially arranged, the ice scraping assembly 20 will not interfere with the heat exchange cylinder 111 during rotation. , In addition, the structure is stable and the ice making speed is fast.
  • the driving unit 30 can drive the heat exchange cylinder 111 to rotate relative to the ice scraping assembly 20 . That is to say, the first ice scraper 21 and the second ice scraper 22 are fixed, and the driving unit 30 is drivingly connected to the heat exchange column 111.
  • the driving unit 30 drives the heat exchange column 111 to rotate, so that the heat exchange column
  • the ice generated on the outer wall of the cylinder 111 is continuously scraped off by the second screw 222 on the inner wall of the annular cylinder 221, so that the ice generated on the inner wall of the hot column is continuously scraped off by the first screw 212 on the screw 211.
  • the driving unit 30 can drive the ice scraping assembly 20 to move axially relative to the heat exchange cylinder 111 . That is to say, the heat exchange cylinder 111 is fixed, the driving unit 30 is drivingly connected to the first ice scraper 21 and the second ice scraper 22, and the driving unit 30 moves in the axial direction by driving the annular cylinder 221 to make the annular
  • the second screw 222 on the inner wall of the cylinder 221 constantly scrapes off the heat generated on the outer wall of the heat exchange cylinder 111.
  • the drive unit 30 moves in the axial direction by driving the screw 211 to surround the screw 211 in a spiral shape.
  • the first screw 212 continuously scrapes off the ice generated on the inner wall of the heat exchange cylinder 111.
  • the ice scraping assembly 20 will not rotate during the rotation. It interferes with the heat exchange column 111.
  • the structure is stable and the ice making speed is fast.
  • the driving unit 30 can drive the heat exchange cylinder 111 to move axially relative to the ice scraping assembly 20 . That is to say, the first ice scraper 21 and the second ice scraper 22 are fixed, and the driving unit 30 is drivingly connected to the heat exchange cylinder 111.
  • the driving unit 30 moves in the axial direction by driving the heat exchange cylinder 111, so that The ice generated on the outer wall of the heat exchange column 111 is continuously scraped off by the second screw 222 on the inner wall of the annular column 221, so that the ice generated on the inner wall of the heat exchange column is scraped off by the third screw 211.
  • a conch piece 212 kept scraping off.
  • the specific manner in which the driving unit 30 drives the ice scraper assembly 20 to rotate relative to the heat exchange cylinder 111 is not limited here.
  • the first ice scraper 21 and the second ice scraper 22 can be driven separately, or the first ice scraper 21 and the second ice scraper 22 can be driven separately.
  • the first ice scraper 21 and the second ice scraper 22 are driven simultaneously.
  • the ice scraper assembly 20 includes a turntable 23 connected to both the first ice scraper 21 and the second ice scraper 22.
  • the driving unit 30 is drivingly connected to the turntable 23. That is to say, the driving unit 30 drives the turntable 23 to rotate, thereby driving the first ice scraper 21 and the second ice scraper 22 to rotate, thereby improving the stability between the driving unit 30 and the ice scraping assembly 20. Structural stability.
  • the specific structure of the turntable 23 is not limited here.
  • the turntable 23 can be integrally formed with the second ice scraper 22, that is, it can be a part of the annular cylinder 221, and then connected with the first ice scraper 21 to drive.
  • the unit 30 drives the turntable 23 to rotate, thereby driving the first ice scraper 21 and the second ice scraper 22 to rotate; the turntable 23 can also be integrally formed with the first ice scraper 21 and then connected to the second ice scraper 22.
  • the driving unit 30 drives the turntable 23 to rotate, thereby driving the first ice scraper 21 and the second ice scraper 22 to rotate.
  • the turntable 23 is connected with the first ice scraper 21 and the second ice scraper 22 .
  • the first ice scraper 21 and the second ice scraper 22 are connected to the rotating disk 23 .
  • the specific method of supplying water to the ice-making space 20a is not limited here.
  • water can be directly supplied to the ice-making space 20a.
  • the turntable 23 is formed with the ice-making space.
  • the ice making module includes a water supply unit 40 connected to the water passage 23a. That is to say, by providing a water passage 23a connected to the ice making space 20a on the turntable 23, the water supply unit 40 passes through the water passage 23a.
  • the water channel 23a supplies water to the ice making space 20a, which improves the structural compactness and reliability of the ice making module. In addition, it can also prevent the water supply unit 40 from affecting the rotation of the ice scraping assembly 20.
  • the first ice scraper 21 includes a mounting seat (not shown) disposed on one end of the screw 211 close to the turntable 23, and the mounting seat cover is disposed on the water passage 23a, that is to say, the first ice scraper 21 is connected to the turntable 23 through the mounting base, so that the turntable 23 drives the first ice scraper 21 to rotate together.
  • the mounting base is provided with a first water hole connecting the ice-making space 20a and the water passage 23a. That is to say, the water from the water supply unit 40 flowing into the water passage 23a enters the ice-making space 20a through the first water hole.
  • the arrangement not only allows the first ice scraper 21 to be installed on the turntable 23, but also enables the water in the water passage 23a to enter the ice making space 20a through the first water hole.
  • the water in the water passage 23a can also enter the ice making space 20a, and the water passage 23a gradually approaches the first ice scraper 21. It is in an outwardly expanded shape, and is arranged in this way. On the one hand, it facilitates the flow of water, and on the other hand, it enables the first water hole of the mounting base to avoid the screw rod 211 while being connected to the water channel 23a.
  • the ice making module includes an ice forming plate 80 with an ice forming hole 80a.
  • the ice forming plate 80 is covered at the ice outlet 20b of the ice making space 20a.
  • the driving unit 30 drives the ice scraping assembly. When 20 rotates, the ice generated by condensation in the ice making space 20a is pushed to be formed and extruded through the ice forming plate 80.
  • the main heat exchanger 11 includes a refrigerant inlet pipe 112 and a refrigerant outlet pipe 113.
  • the refrigerant enters the main heat exchanger 11 through the refrigerant outlet pipe 113 and flows out through the refrigerant outlet pipe 113.
  • the main heat exchanger 11 realizes the circulation flow of refrigerant.
  • the outlet of the refrigerant inlet pipe 112 is located at the bottom of the refrigerant containing cavity 11a, and the inlet of the refrigerant outlet pipe 113 is located at the top of the refrigerant containing cavity 11a.
  • the interior of the main heat exchanger 11 can be filled with refrigerant, and in addition, it can also be made to meet the thermal requirements.
  • the distance between the first ice scraper 21 and the main heat exchanger 11 needs to be controlled.
  • the distance between the first ice scraper 21 and the main heat exchanger 11 is 0.2 mm to 1 mm. This prevents ice from being too thick on the surface of the main heat exchanger 11 and preventing it from being scraped off. Interference occurs between the ice scraper 21 and the main heat exchanger 11 .
  • the distance between the second ice scraper 22 and the main heat exchanger 11 is 0.2 mm to 1 mm. This prevents ice from being too thick on the surface of the main heat exchanger 11 and preventing it from being scraped off the surface. It is also possible to prevent interference between the second ice scraper 22 and the main heat exchanger 11 .
  • the distance between the first ice scraper 21 and the second ice scraper 22 and the main heat exchanger 11 may be the same or different, and may be determined according to actual conditions.
  • the ice-making module includes a bushing 110 and drag-reducing steel balls 120.
  • the bushing 110 is disposed between the ice scraping assembly 20 and the shell 90.
  • the drag-reducing steel balls 120 are disposed on the bushing 110.
  • the friction between the ice scraping assembly 20 and the bushing 110 is eliminated. Contact sliding friction is converted into rolling friction, thereby reducing the torque required for rotation.
  • the ice making module includes drag reducing steel balls 120 and an ice forming plate disposed at the ice outlet 20b.
  • the drag reducing steel balls 120 are disposed on the ice forming plate and are connected with the ice scraping assembly 20. Contact, that is, by disposing the drag-reducing steel balls 120 between the ice scraping assembly 20 and the ice forming plate, the contact sliding friction existing between the ice scraping assembly 20 and the ice forming plate is converted into rolling friction, thereby reducing the rotational force. Torque required.
  • references to the terms "in one embodiment,” “in other embodiments,” “in further embodiments,” or “exemplary” or the like are meant to be described in connection with the embodiment or example.
  • Specific features, structures, materials, or characteristics are included in at least one embodiment or example of the embodiments of the present application.
  • the schematic expressions of the above terms are not necessarily directed to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art may combine different embodiments or examples and features of different embodiments or examples described in this application unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本申请实施例提供一种制冰模块及制冰设备,其中,制冰模块包括外壳、热交换单元以及刮冰组件,外壳内具有制冰空间,制冰空间的底部具有出冰口;热交换单元包括主换热器,主换热器设置在制冰空间内;刮冰组件与主换热器间隔设置。本申请实施例的制冰模块能够快速制冰。

Description

一种制冰模块及制冰设备
本申请基于申请号为202211012527.7、申请日为2022年08月23日的中国专利申请提出,并要求该中国专利申请的优先权,上述专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及制冰技术领域,尤其涉及一种制冰模块及制冰设备。
背景技术
相关技术中常用的制冰方法包括四种,分别为手指式制冰、冰盒脱模式制冰、冰盒式制冰和螺杆式制冰,其中,手指式制冰的问题在于制得的冰(子弹冰)的透明度较差,内部包含较多空气气泡,这种冰倒入碳酸饮料时,容易产生大量气泡,且容易浮在饮料表面,影响饮用体验;冰盒脱模式制冰的问题在于制得的冰块相互黏连,需要额外的人工拆冰过程,工作连续性和便捷性不如手指式;制冰盒在冰箱当中的制冰,则制冰速度过慢,制冰前后所有操作均需要人工完成,工作连续性、便捷性较差;而螺杆式制冰方式的工作连续性和便捷性较好,但是存在制冰速度较慢的问题。
发明内容
有鉴于此,本申请实施例期望提供一种能够快速制冰的制冰模块及制冰设备。
为达到上述目的,本申请实施例提供了一种制冰模块,包括:
外壳,所述外壳内具有制冰空间,所述制冰空间的底部具有出冰口;
热交换单元,所述热交换单元包括主换热器,所述主换热器设置在所述制冰空间内;
刮冰组件,所述刮冰组件与所述主换热器间隔设置。
一种实施方式中,所述热交换单元包括辅助换热器,所述制冰模块包括与所述制冰空间连通的供水单元,所述供水单元的水流与所述辅助换热器换热后进入所述制冰空间。
一种实施方式中,所述主换热器的主冷媒出口与所述辅助换热器的辅助冷媒入口连通。
一种实施方式中,所述制冰模块包括储冰单元,所述储冰单元包括具有蓄水槽的蓄水盒以及盖设在所述蓄水盒上的过滤装置,所述蓄水盒位于所述出冰口的下方。
一种实施方式中,所述制冰模块包括供水单元以及回水单元,所述供水单元包括与所述制冰空间连通的水箱,所述回水单元连通所述蓄水槽以及所述水箱。
一种实施方式中,所述制冰模块包括杀菌模块,所述供水单元包括供水管路,所述回水单元包括回水管路;所述杀菌模块设置在供水管路处。
一种实施方式中,所述杀菌模块设置在回水管路处。
一种实施方式中,所述回水管路包括主回水管路,第一回水支路以及第二回水支路,所述主回水管路的一端与所述蓄水槽连通,另一端分别通过所述第一回水支路与所述供水管路连通以及通过所述第二回水支路与所述水箱连通;所述杀菌模块设置在所述主回水管路处。
一种实施方式中,所述杀菌模块设置在所述第一回水支路处。
一种实施方式中,所述杀菌模块设置在所述第一回水支路与所述制冰空间之间的所述供水管路处。
一种实施方式中,所述回水单元包括设置在所述主回水管路上的第一开关阀以及设置在所述第二回水支路上的水泵,所述供水单元包括设置在所述第一回水支路与所述水箱之间的所述供水管路上的第二开关阀。
一种实施方式中,所述杀菌模块包括PTC加热器。
一种实施方式中,所述主换热器包括换热柱筒,所述换热柱筒内形成冷媒容纳腔,所述刮冰组件包括第一刮冰器和第二刮冰器,所述第一刮冰器位于所述换热柱筒的内侧,所述第二刮冰器位于所述换热柱筒的外侧。
一种实施方式中,所述第二刮冰器包括环形柱筒以及呈螺旋状环绕在所述环形柱筒内壁上的第二螺片,所述第一刮冰器位于所述环形柱筒的内侧并与所述第二刮冰器之间限定出所述制冰空间,所述换热柱筒位于所述制冰空间内,所述环形柱筒、所述第一刮冰器以及所述换热柱筒同轴设置。
一种实施方式中,所述第一刮冰器包括螺杆以及呈螺旋状环绕在所述螺杆上的第一螺片。
一种实施方式中,所述换热柱筒自上而下逐渐向内收缩。
一种实施方式中,所述制冰模块包括驱动单元,所述驱动单元能够驱动所述刮冰组件相对所述换热柱筒转动。
一种实施方式中,所述刮冰组件包括与所述第一刮冰器以及所述第二刮冰器均连接的转盘,所述驱动单元与所述转盘驱动连接。
一种实施方式中,所述转盘形成有与所述制冰空间连通的过水通道,所述制冰模块包括与所述过水通道连通的供水单元。
一种实施方式中,所述第一刮冰器包括设置在所述螺杆靠近所述转盘一端的安装座,所述安装座盖设在所述过水通道上,所述安装座上设置有连通所述制冰空间和所述过水通道的过水孔。
一种实施方式中,所述制冰模块包括衬套以及减阻钢珠,所述衬套设置在所述刮冰组件与所述外壳之间,所述减阻钢珠设置在所述衬套内且与所述刮冰组件抵接。
一种实施方式中,所述制冰模块包括减阻钢珠以及设置在所述出冰口处的冰成形板,所述减阻钢珠设置在所述冰成形板上且与所述刮冰组件抵 接。
一种实施方式中,所述刮冰组件与所述主换热器的距离为0.2mm~1mm。
本申请实施例还提供了一种制冰设备,包括机体以及上述所述的制冰模块,所述制冰模块设置在所述机体内。
本申请实施例的制冰模块,外壳通过设置底部具有出冰口的制冰空间,热交换单元的主换热器设置在制冰空间内,在制冰的时候,通过向制冰空间内供水,水流在重力作用下顺着主换热器往下流动并在主换热器的表面生成冰,通过刮冰组件将主换热器表面生成的冰刮下,也就是说,通过在制冰空间的底部设置出冰口,需要制冰的时候,通过向制冰空间供水,水流顺着主换热器往出冰口流动时能够在主换热器的表面快速凝固,通过刮冰组件将主换热器表面生成的冰刮下并从底部的出冰口出来,以实现即取即用的快速制冰,由此,提高了制冰模块的制冰速度。
附图说明
图1为本申请一实施例的制冰模块的结构示意图;
图2为图1所示的主换热器、刮冰组件以及冰成型板的连接结构示意图;
图3为图1所示的刮冰组件的结构示意图;
图4为图1所示的主换热器的结构示意图;
图5为本申请一实施例的衬套与减阻钢珠的结构示意图;
图6为本申请一实施例的主换热器的透视图;
图7为本申请一实施例的第一刮冰器的结构示意图;
图8为本申请一实施例的第二刮冰器的透视图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。
在本申请实施例的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图1所示的方位或位置关系,其中,“顶底”为基于附图所示的上下方向,这些方位术语仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本申请实施例提供了一种制冰设备,包括机体以及本申请任一实施例提供的制冰模块,制冰模块设置在机体内。
需要说明的是,制冰设备的具体类型在此不做限制,例如可以是制冰机,还可以是冰箱等。具体地,当制冰设备为冰箱时,制冰模块集成在冰箱内,也就是说,制冰设备至少具有常规的冰箱功能,此外,还具有制冰的功能。本申请实施例以制冰设备为集成有制冰模块的冰箱为例进行说明。
本申请实施例提供了一种制冰模块,请参阅图1至图8,该制冰模块包括外壳90、热交换单元10和刮冰组件20。
外壳90内具有制冰空间20a,制冰空间20a的底部具有出冰口20b,也就是说,制冰模块从底部出冰。
热交换单元10包括主换热器11,主换热器11设置在制冰空间20a内,主换热器11内填充有冷媒,冷媒可以与主换热器11表面的水进行热交换,以使水在主换热器11的表面生成冰。
可以理解的是,请参阅图1和图2,由于制冰空间20a的底部具有出冰口20b,因而,制冰空间20a内不会积蓄大量的水,该制冰模块生成冰所需的水是通过控制小流量的水流经主换热器11的表面,而小流量的水流通过 换热生成冰所需的换热量较小,由此,小流量的水流与主换热器11进行换热,能够在主换热器11的表面快速凝固并生成冰。
需要说明的是,主换热器11的具体类型在此不做限制,示例性地,主换热器11为蒸发器。
刮冰组件20与主换热器11间隔设置,用于将主换热器11表面生成的冰刮下。
制冰设备或者制冰模块还包括控制板以及其他制冷循环部件,其他制冷循环部件例如为压缩机、冷凝器、毛细管等,连接管道通过连通压缩机、冷凝器、热交换单元10等形成制冷系统,以使主换热器11表面的水能够冷凝成冰。
相关技术中,制冰模块的制冰空间的出冰口一般位于顶部,制冰空间内具有一定量的水,部分蒸发器位于在制冰空间的水里,水与蒸发器进行换热并在蒸发器的表面生成冰,通过刮冰器旋转将蒸发器表面生成的冰不断刮下,并将其不断送出蒸发器,从而使得蒸发器出口产生源源不断的碎冰。但是,由于制冰空间内水较多,水在蒸发器的表面生成冰所需的换热量较多,导致制冰速度较慢,不能即取即用。
而本申请实施例的制冰模块,外壳90通过设置底部具有出冰口20b的制冰空间20a,热交换单元10的主换热器11设置在制冰空间20a内,在制冰的时候,通过向制冰空间20a内供水,水流在重力作用下顺着主换热器11往下流动并在主换热器11的表面生成冰,通过刮冰组件20将主换热器11表面生成的冰刮下,也就是说,通过在制冰空间20a的底部设置出冰口20b,需要制冰的时候,通过向制冰空间20a供水,水流顺着主换热器11往出冰口20b流动时能够与主换热器11进行换热并在主换热器11的表面快速凝固,通过刮冰组件20将主换热器11表面生成的冰刮下并从底部的出冰口20b出来,以实现即取即用的快速制冰,由此,提高了制冰模块的 制冰速度。
一实施例中,请参阅图1,热交换单元10包括辅助换热器12,制冰模块包括与制冰空间20a连通的供水单元40,供水单元40的水流与辅助换热器12换热后进入制冰空间20a,也就是说,通过设置辅助换热器12,以使供水单元40的水流与辅助换热器12换热,即通过辅助换热器12对水流进行预冷后再进入制冰空间20a,经辅助换热器12预冷后的水流顺着主换热器11往出冰口20b流动时能够与主换热器11进行换热并在主换热器11的表面快速凝固。
可以理解的是,通过辅助换热器12对进入制冰空间20a的水流进行预冷,经过预冷后的水流生成冰所需的换热量更少,即更容易在主换热器11的表面凝固生成冰,进而,进一步地提高了制冰速度。
需要说明的是,辅助换热器12的具体设置方式在此不做限制,只要能够实现对进入制冰空间20a的水流进行预冷即可,示例性地,一实施例中,请参阅图1,主换热器11的主冷媒出口11c与辅助换热器12的辅助冷媒入口12a连通,也就是说,辅助换热器12与主换热器11串联在冷媒循环回路中,主换热器11内的冷媒经过与流经主换热器11表面的水流换热后从主冷媒出口11c流出,经辅助换热器12的辅助冷媒入口12a进入辅助换热器12内,然后与流经辅助换热器12的水流进行换热以对流经辅助换热器12的水流进行预冷,然后经辅助换热器12的辅助冷媒出口12b流出,接着流经压缩机、冷凝器等循环流入主换热器11。
可以理解的是,通过设置主换热器11的主冷媒出口11c与辅助换热器12的辅助冷媒入口12a连通,一方面可以节省能源,对冷媒的冷量进行充分的利用,即先利用冷媒的冷量与制冰空间20a内的水流进行换热,以使水流在主换热器11的表面凝固生成冰,冷媒在流经辅助换热器12时,还能够利用冷媒剩余的冷量以对进入制冰空间20a内的水流进行预冷;另一 方面,能够有效避免水流在辅助换热器12处凝固生成冰,可以理解的是,较低温度的冷媒在主换热器11内与水流换热后温度升高,再进入辅助换热器12时,不会因为温度过低而导致水流在辅助换热器12处凝固生成冰;又一方面,可以使得热交换单元10的结构简单,通过一条冷媒循环回路即可实现水流在主换热器11的表面与冷媒换热凝固生成冰,以及水流在辅助换热器12处与冷媒换热进行预冷。
一具体实施例中,主换热器11的主冷媒入口11b处的冷媒温度约为-5℃,主换热器11的主冷媒出口11c处的冷媒温度约为-2℃,辅助换热器12的辅助冷媒入口12a处的冷媒温度约为0℃。
另一些实施例中,辅助换热器12与主换热器11并联在冷媒循环回路中,也就是说,冷媒回路中的冷媒一部分进入主换热器11内,另一部分进入辅助换热器12内。
一实施例中,请参阅图1,制冰模块包括储冰单元50,储冰单元50位于出冰口20b的下方,用于接收来自出冰口20b的冰块。
储冰单元50包括具有蓄水槽51a的蓄水盒51,蓄水盒51位于出冰口20b的下方,蓄水盒51的蓄水槽51a用于接收流经主换热器11未结冰的水流,或者蓄水盒51上的冰块熔化的水流流入蓄水槽51a,进而能够避免冰箱内积水造成发霉等问题。
储冰单元50包括盖设在蓄水盒51上的过滤装置52,来自出冰口20b的冰块掉落之过滤装置52上,流经主换热器11未结冰的水流经过滤装置52进入蓄水槽51a,过滤装置52上的冰块熔化的水流也可以流入蓄水槽51a。
需要说明的是,过滤装置52的具体类型和结构在此不做限制,示例性地,过滤装置52为过滤网,结构简单。
一实施例中,请参阅图1,制冰模块包括推杆100,滤网表面的冰块被 推杆100往复式运动而推出,进入储冰盒或者即取即用,整个过程连续运行,从而实现即取即用无需等待快速制冰,提升用户体验。需要说明的是,推杆100的具体结构以及驱动推杆100往复式运动的驱动机构在此不做限制,只要能够实现滤网表面的冰块被推杆100往复式运动而推出即可。
一实施例中,请参阅图1,制冰模块包括供水单元40以及回水单元60,供水单元40用于向制冰空间20a供水,回水单元60用于将蓄水槽51a内的水回收利用。
具体地,供水单元40包括与制冰空间20a连通的水箱41,回水单元60连通蓄水槽51a以及水箱41。也就是说,回水单元60能够将蓄水槽51a内的水回收至水箱41内,充分利用水资源。
需要说明的是,请参阅图1,水箱41的具体设置位置在此不做限制,示例性地,水箱41位于制冰空间20a的上方,即水流可以通过自重进入制冰空间20a。
为了避免冰箱内集成制冰模块带来的积水和发霉问题,制冰模块包括杀菌模块70,通过杀菌模块70对制冰模块进行杀菌消毒。
杀菌模块70的具体类型在此不做限制,示例性地,请参阅图1,杀菌模块70包括PTC加热器71,PTC加热器71又叫PTC发热体,采用PTC陶瓷发热元件与铝管组成,该类型PTC发热体有热阻小、换热效率高的优点,是一种自动恒温、省电的电加热器,可以通过PTC加热器71产生蒸汽对整个系统杀菌消毒。
一实施例中,请参阅图1,供水单元40包括供水管路42,通过供水管路42连通水箱41和制冰空间20a,回水单元60包括回水管路61,通过回水管路61连通蓄水槽51a和水箱41。
需要说明的是,杀菌模块70的具体设置位置在此不做限制,只要能够对制冰模块进行杀菌消毒即可,示例性地,一实施例中,请参阅图1,杀菌 模块70设置在供水管路42处,另一些实施例中,杀菌模块70设置在回水管路61处,又一些实施例中,杀菌模块70为多个,供水管路42处以及回水管路61处均设置有杀菌模块70。
一实施例中,请参阅图1,回水管路61包括主回水管路611,第一回水支路612以及第二回水支路613,主回水管路611的一端与蓄水槽51a连通,另一端分别通过第一回水支路612与供水管路42连通以及通过第二回水支路613与水箱41连通。也就是说,回水管路61通过设置第一回水支路612与供水管路42连通,以使至少部分回水管路61与至少部分供水管路42构成消毒回路,杀菌模块70设置在消毒回路中。
杀菌模块70设置在消毒回路中具体位置在此不做限制,示例性地,一实施例中,杀菌模块70设置在主回水管路611处,另一些实施例中,杀菌模块70设置在第一回水支路612处,又一些实施例中,杀菌模块70设置在第一回水支路612与制冰空间20a之间的供水管路42处,在其他实施例中,杀菌模块70还可以同时设置在主回水管路611处、第一回水支路612处以及第一回水支路612与制冰空间20a之间的供水管路42处中的两处或者三处。
一实施例中,请参阅图1,回水单元60包括设置在主回水管路611上的第一开关阀63,第一开关阀63的设置,能够防止水箱41内的水流通过回水单元60进入蓄水槽51a内。
回水单元60包括设置在第二回水支路613上的水泵62,在水泵62的作用下将蓄水槽51a内的水回收至水箱41内。
供水单元40包括设置在第一回水支路612与水箱41之间的供水管路42上的第二开关阀43,也就是说,通过设置第二开关阀43,用于控制供水。
一具体实施例中,冰箱具有制冰模式,杀菌模式等,以下对几种模式的控制进行描述。
当制冰模式开启:第二开关阀43开启,第一开关阀63关闭,PTC加热器71关闭,水泵62关闭,刮冰组件20和推杆100开启。此时,水箱41内的水流经供水管路42进入至制冰空间20a,并在主换热器11的表面进行换热凝固生成冰,刮冰组件20开启将主换热器11表面凝固生成的冰刮下,推杆100做往复式运动不停地将滤网表面的冰块推出,以实现连续不断地制冰。
当制冰模式停止:第二开关阀43关闭,第一开关阀63开启,PTC加热器71关闭,水泵62开启,刮冰组件20和推杆100关闭。此时,制冰结束,蓄水槽51a内蓄积了一部分水,通过水泵62将蓄水槽51a内的积水抽回至水箱41。
当杀菌模式开启:第二开关阀43关闭,第一开关阀63开启,PTC加热器71开启,水泵62关闭,刮冰组件20和推杆100关闭。通过PTC加热器71加热,产生蒸汽对整个制冰模块杀菌消毒。
请参阅图1至图3,刮冰组件20设置在外壳90内,刮冰组件20包括第一刮冰器21和第二刮冰器22,第一刮冰器21位于主换热器11的一侧,第二刮冰器22位于主换热器11背离第一刮冰器21的一侧,也就是说,第一刮冰器21和第二刮冰器22分别位于主换热器11的相对两侧。
本申请实施例的制冰模块,设置了包括第一刮冰器21和第二刮冰器22的刮冰组件20,第一刮冰器21位于主换热器11的一侧,第二刮冰器22位于主换热器11背离第一刮冰器21的一侧。在制冰的时候,可以利用第一刮冰器21将主换热器11一侧结的冰刮下,利用第二刮冰器22将主换热器11背离第一刮冰器21一侧结的冰刮下,也就是说,通过利用主换热器11相对两侧的换热面积进行换热并生成冰,并通过设置包括第一刮冰器21和第二刮冰器22的刮冰组件20进行刮冰,从而提高了主换热器11的换热量,进而提高了制冰速度。
需要说明的是,主换热器11的具体结构不做限制,示例性地,请参阅图2、图4和图6,主换热器11包括换热柱筒111,换热柱筒111内形成冷媒容纳腔11a,也就是说,换热柱筒111的内壁与外壁之间形成冷媒容纳腔11a,换热柱筒111的冷媒容纳腔11a内用于填充冷媒,冷媒与换热柱筒111的内壁以及外壁周侧的水均可以进行热交换,以使水在换热柱筒111的内壁以及外壁的周侧结冰,可以理解的是,一方面,采用换热柱筒111的结构形式,提高了主换热器11的换热面积,另一方面,冷媒与换热柱筒111的内壁以及外壁表面的水均可以进行热交换,进一步地提高了主换热器11的换热面积,由此,能够提高主换热器11的换热量以及主换热器11表面生成冰的速度。
需要说明的是,换热柱筒111的具体结构在此不做限制,换热柱筒111包括但不限于为圆形柱筒、方形柱筒、锥台柱筒等。
相关技术中,制冰机采用螺杆外壁面缠绕铜管的方式作为热交换单元,而本申请实施例的热交换单元设置为换热柱筒,这样相比于缠绕铜管的方式增加了换热面积,进而提高了制冰速度。
请参阅图1至图3,第一刮冰器21位于换热柱筒111的内侧,第二刮冰器22位于换热柱筒111的外侧。也就是说,通过将第一刮冰器21设置在换热柱筒111的内侧,可以将换热柱筒111的内侧结的冰刮下来,将第二刮冰器22设置在换热柱筒111的外侧,可以将换热柱筒111的外侧结的冰刮下来,进而提高了制冰速度。
一些实施方式中,主换热器11还可以是局部为环形的,第一刮冰器21和第二刮冰器22分别位于主换热器11的相对两侧。
另一些实施方式中,主换热器11还可以是板状的,第一刮冰器21和第二刮冰器22分别位于主换热器11的相对两侧。
一实施例中,请参阅图2、图3以及图8,第二刮冰器22包括环形柱 筒221以及呈螺旋状环绕在环形柱筒221内壁上的第二螺片222,也就是说,环形柱筒221套设在换热柱筒111的外侧,一方面,能够充分利用主换热器11的换热柱筒111的换热面积,从而提高制冰速度,另一方面,通过在环形柱筒221内壁上设置呈螺旋状环绕的第二螺片222,提高了第二刮冰器22对换热柱筒111的外壁的刮冰效率,从而进一步地提高了制冰效率。
请参阅图1至图3,第一刮冰器21位于环形柱筒221的内侧并与第二刮冰器22之间限定出制冰空间20a,也就是说,可以通过控制水流流经制冰空间20a的换热柱筒111,以使换热柱筒111充分与水接触,另外,环形柱筒221、第一刮冰器21以及换热柱筒111同轴设置,能够方便第一刮冰器21和第二刮冰器22分别对换热柱筒111的外壁以及内壁表面进行刮冰,且不会发生相对干涉,另外,还提高了制冰模块的结构稳定性和紧凑性。
一实施例中,请参阅图1至图3、图7,第一刮冰器21包括螺杆211以及呈螺旋状环绕在螺杆211上的第一螺片212。第一刮冰器21位于换热柱筒111的的内侧,第一螺片212呈螺旋状环绕在螺杆211上,用于对换热柱筒111内侧结的冰进行刮冰,进而提高了制冰速度。
一实施例中,请参阅图2和图6,换热柱筒111自上而下逐渐向内收缩,也就是说,换热柱筒111的外形尺寸随着靠近出冰口20b而逐渐减小,即换热柱筒111的外壁以及内壁与转动中心之间的距离自上而下逐渐减小,如此,换热柱筒111在高度方向的尺寸一定的情况下,增大了水流沿换热柱筒111的表面流动的距离,从而提高了水流与主换热器11的换热量,进而提高了水流在主换热器11的表面生成冰概率,即提高了制冰效率。另外,由于换热柱筒111自上而下逐渐向内收缩,即换热柱筒111倾斜设置,可以使得水流沿着换热柱筒111的表面往下流动,从而避免部分水流直接从主换热器11与刮冰组件20之间的间隙掉出制冰空间20a。
可以理解的是,由于换热柱筒111自上而下逐渐向内收缩,第一刮冰 器21以及第二刮冰器22也做适应性的倾斜,使得第一刮冰器21以及第二刮冰器22与换热柱筒111的倾斜角度适配,进而能够顺利高效的进行刮冰。
需要说明的是,换热柱筒111的倾斜角度在此不做限制,示例性地,换热柱筒111自上而下的向内收缩角度为3°~20°,该角度范围内的水流换热效率以及结冰效率高,且能够使得制冰模块的结构紧凑。
另一些实施例中,换热柱筒111自下而上逐渐向内收缩,也就是说,换热柱筒111的外形尺寸随着靠近出冰口20b而逐渐增大,即换热柱筒111的外壁以及内壁与转动中心之间的距离自下而上逐渐减小,如此,换热柱筒111在高度方向的尺寸一定的情况下,增大了水流沿换热柱筒111的表面流动的距离,从而提高了水流与主换热器11的换热量,进而提高了水流在主换热器11的表面生成冰概率,即提高了制冰效率。另外,由于换热柱筒111自下而上逐渐向内收缩,即换热柱筒111倾斜设置,可以使得水流沿着换热柱筒111的表面往下流动,从而避免部分水流直接从主换热器11与刮冰组件20之间的间隙掉出制冰空间20a。
又一些实施例中,换热柱筒111为圆柱状,也就是说,即换热柱筒111的外壁以及内壁与转动中心之间的距离不变。
需要说明的是,刮冰组件20与主换热器11之间的配合方式有多种,且根据刮冰组件20与主换热器11之间的不同配合方式,刮冰组件20对主换热器11表面结的冰进行刮冰的方式也不同,本申请在此不做限制,只要刮冰组件20与主换热器11之间能够发生相对位移以进行刮冰即可,例如,刮冰组件20与主换热器11可以发生相对平动,相对转动等。
示例性地,请参阅图2,制冰模块包括驱动单元30,驱动单元30能够驱动刮冰组件20相对换热柱筒111转动。也就是说,换热柱筒111固定不动,驱动单元30与第一刮冰器21以及第二刮冰器22驱动连接,驱动单元30通过驱动环形柱筒221环绕换热柱筒111转动,以使环形柱筒221内壁 上的第二螺片222不停地将换热柱筒111外壁上生成的并刮下,驱动单元30通过驱动螺杆211转动,以使呈螺旋状环绕在螺杆211上的第一螺片212不停地将换热柱筒111内壁上生成的冰刮下,由于环形柱筒221、螺杆211以及换热柱筒111同轴设置,刮冰组件20转动过程中不会与换热柱筒111干涉,另外,该结构稳定且制冰速度快。
一些实施方式中,驱动单元30能够驱动换热柱筒111相对刮冰组件20转动。也就是说,第一刮冰器21以及第二刮冰器22固定不动,驱动单元30与换热柱筒111驱动连接,驱动单元30通过驱动换热柱筒111转动,以使换热柱筒111外壁上生成的冰被环形柱筒221内壁上的第二螺片222不停地刮下,以使热柱筒内壁上生成的冰被螺杆211上的第一螺片212不停地刮下。
另一些实施方式中,驱动单元30能够驱动刮冰组件20相对换热柱筒111沿轴向移动。也就是说,换热柱筒111固定不动,驱动单元30与第一刮冰器21以及第二刮冰器22驱动连接,驱动单元30通过驱动环形柱筒221沿轴向移动,以使环形柱筒221内壁上的第二螺片222不停地将换热柱筒111外壁上生成的并刮下,驱动单元30通过驱动螺杆211沿轴向移动,以使呈螺旋状环绕在螺杆211上的第一螺片212不停地将换热柱筒111内壁上生成的冰刮下,由于环形柱筒221、螺杆211以及换热柱筒111同轴设置,刮冰组件20转动过程中不会与换热柱筒111干涉,另外,该结构稳定且制冰速度快。
再一些实施方式中,驱动单元30能够驱动换热柱筒111相对刮冰组件20沿轴向移动。也就是说,第一刮冰器21以及第二刮冰器22固定不动,驱动单元30与换热柱筒111驱动连接,驱动单元30通过驱动换热柱筒111沿轴向移动,以使换热柱筒111外壁上生成的冰被环形柱筒221内壁上的第二螺片222不停地刮下,以使热柱筒内壁上生成的冰被螺杆211上的第 一螺片212不停地刮下。
需要说明的是,驱动单元30驱动刮冰组件20相对换热柱筒111转动的具体方式在此不做限制,例如可以分别单独驱动第一刮冰器21和第二刮冰器22,也可以同时驱动第一刮冰器21和第二刮冰器22,示例性地,请参阅图2,刮冰组件20包括与第一刮冰器21以及第二刮冰器22均连接的转盘23,驱动单元30与转盘23驱动连接,也就是说,驱动单元30通过驱动转盘23转动,进而带动第一刮冰器21和第二刮冰器22转动,提高了驱动单元30与刮冰组件20的结构稳定性。
其中,转盘23的具体结构在此不做限制,例如转盘23可以是与第二刮冰器22一体成型,即可以是构成环形柱筒221的一部分,然后与第一刮冰器21连接,驱动单元30通过驱动转盘23转动,进而带动第一刮冰器21和第二刮冰器22转动;转盘23也可以是与第一刮冰器21一体成型,然后与第二刮冰器22连接,驱动单元30通过驱动转盘23转动,进而带动第一刮冰器21和第二刮冰器22转动,示例性地,请参阅图2,转盘23是与第一刮冰器21以及第二刮冰器22均独立的单独零件,转盘23与第一刮冰器21以及第二刮冰器22均连接。
需要说明的是,给制冰空间20a供水的具体方式在此不做限制,例如可以直接向制冰空间20a供水,示例性地,请参阅图2和图3,转盘23形成有与制冰空间20a连通的过水通道23a,制冰模块包括与过水通道23a连通的供水单元40,也就是说,通过在转盘23上设置与制冰空间20a连通的过水通道23a,供水单元40通过过水通道23a向制冰空间20a供水,提高了制冰模块的结构紧凑性以及可靠性,另外,还能够避免供水单元40影响刮冰组件20的转动。
一实施例中,第一刮冰器21包括设置在螺杆211靠近转盘23一端的安装座(图未示),安装座盖设在过水通道23a上,也就是说,第一刮冰器 21通过安装座与转盘23连接,以使转盘23带动第一刮冰器21一起转动。
安装座上设置有连通制冰空间20a和过水通道23a的第一过水孔,也就是说,供水单元40流入过水通道23a的水经第一过水孔进入制冰空间20a,安装座的设置,在实现第一刮冰器21安装在转盘23的同时,还能够实现过水通道23a的水经第一过水孔进入制冰空间20a。
可以理解的是,为了便于第一刮冰器21安装在转盘23的同时,还能够实现过水通道23a的水进入制冰空间20a,过水通道23a随着逐渐靠近第一刮冰器21而呈外扩状,如此设置,一方面,便于水流的流动,另一方面,能够使得安装座第一过水孔在连通过水通道23a的同时,避开螺杆211。
一实施例中,请参阅图2,制冰模块包括具有冰成型孔80a的冰成型板80,冰成型板80盖设在制冰空间20a的出冰口20b处,驱动单元30驱动刮冰组件20转动时,推动制冰空间20a内冷凝产生的冰经由冰成型板80成型并挤出。
请参阅图1、图2、图4和图6,主换热器11包括冷媒进管112和冷媒出管113,冷媒经冷媒出管113进入主换热器11,并经冷媒出管113流出主换热器11,从而实现冷媒的循环流动。
冷媒进管112的出口位于冷媒容纳腔11a的底部,冷媒出管113的进口位于冷媒容纳腔11a的顶部,如此,可以使得主换热器11的内部充满冷媒,另外,还可以使得其符合热分层效应,即较低温度的冷媒位于底部,较高温度位于顶部,提高了制冰速度。
为了防止主换热器11表面结冰过厚而导致无法从表面刮下,从而减小热导率,需要控制第一刮冰器21与主换热器11之间的距离,示例性地,第一刮冰器21与主换热器11的距离为0.2mm~1mm,由此,在防止主换热器11表面结冰过厚而导致无法从表面刮下的同时,还能够防止第一刮冰器21与主换热器11之间发生干涉。
一实施例中,第二刮冰器22与主换热器11的距离为0.2mm~1mm,由此,在防止主换热器11表面结冰过厚而导致无法从表面刮下的同时,还能够防止第二刮冰器22与主换热器11之间发生干涉。
可以理解的是,第一刮冰器21以及第二刮冰器22与主换热器11的距离可以一致,也可以不同,可以根据实际情况决定。
一实施例中,请参阅图2和图5,制冰模块包括衬套110以及减阻钢珠120,衬套110设置在刮冰组件20与外壳90之间,减阻钢珠120设置在衬套110内且与刮冰组件20抵接,也就是说,通过在外壳90和刮冰组件20之间的衬套110中设置减阻钢珠120,从而将刮冰组件20与衬套110之间存在的接触滑动摩擦转化为滚动摩擦,从而减小转动所需扭矩。
一实施例中,请参阅图2和图5,制冰模块包括减阻钢珠120以及设置在出冰口20b处的冰成形板,减阻钢珠120设置在冰成形板上且与刮冰组件20抵接,也就是说,通过在刮冰组件20和冰成形板之间设置减阻钢珠120,从而将刮冰组件20与冰成形板存在的接触滑动摩擦转化为滚动摩擦,从而减小转动所需扭矩。
在本申请的描述中,参考术语“一实施例中”、“另一些实施例中”、“又一些实施例中”、或“示例性”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不是必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本申请中描述的不同实施例或示例以及不同实施例或示例的特征进行结合。
以上所述仅为本申请的较佳实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精 神和原则之内,所作的任何修改、等同替换、改进等,均包含在本申请的保护范围之内。

Claims (16)

  1. 一种制冰模块,包括:
    外壳,所述外壳内具有制冰空间,所述制冰空间的底部具有出冰口;
    热交换单元,所述热交换单元包括主换热器,所述主换热器设置在所述制冰空间内;
    刮冰组件,所述刮冰组件与所述主换热器间隔设置。
  2. 根据权利要求1所述的制冰模块,所述主换热器包括换热柱筒,所述换热柱筒内形成冷媒容纳腔,所述刮冰组件包括第一刮冰器和第二刮冰器,所述第一刮冰器位于所述换热柱筒的内侧,所述第二刮冰器位于所述换热柱筒的外侧。
  3. 根据权利要求2所述的制冰模块,所述第二刮冰器包括环形柱筒以及呈螺旋状环绕在所述环形柱筒内壁上的第二螺片,所述第一刮冰器位于所述环形柱筒的内侧并与所述第二刮冰器之间限定出所述制冰空间,所述换热柱筒位于所述制冰空间内,所述环形柱筒、所述第一刮冰器以及所述换热柱筒同轴设置。
  4. 根据权利要求3所述的制冰模块,所述第一刮冰器包括螺杆以及呈螺旋状环绕在所述螺杆上的第一螺片。
  5. 根据权利要求2所述的制冰模块,所述换热柱筒自上而下逐渐向内收缩。
  6. 根据权利要求1所述的制冰模块,所述热交换单元包括辅助换热器,所述制冰模块包括与所述制冰空间连通的供水单元,所述供水单元的水流与所述辅助换热器换热后进入所述制冰空间。
  7. 根据权利要求6所述的制冰模块,所述主换热器的主冷媒出口与所述辅助换热器的辅助冷媒入口连通。
  8. 根据权利要求1所述的制冰模块,所述制冰模块包括储冰单元,所述储冰单元包括具有蓄水槽的蓄水盒以及盖设在所述蓄水盒上的过滤装置,所述蓄水盒位于所述出冰口的下方。
  9. 根据权利要求8所述的制冰模块,所述制冰模块包括供水单元以及回水单元,所述供水单元包括与所述制冰空间连通的水箱,所述回水单元连通所述蓄水槽以及所述水箱。
  10. 根据权利要求9所述的制冰模块,所述制冰模块包括杀菌模块,所述供水单元包括供水管路,所述回水单元包括回水管路;
    所述杀菌模块设置在供水管路处;和/或,
    所述杀菌模块设置在回水管路处。
  11. 根据权利要求4所述的制冰模块,所述制冰模块包括驱动单元,所述驱动单元能够驱动所述刮冰组件相对所述换热柱筒转动。
  12. 根据权利要求11所述的制冰模块,所述刮冰组件包括与所述第一刮冰器以及所述第二刮冰器均连接的转盘,所述驱动单元与所述转盘驱动连接。
  13. 根据权利要求12所述的制冰模块,所述转盘形成有与所述制冰空间连通的过水通道,所述制冰模块包括与所述过水通道连通的供水单元。
  14. 根据权利要求13所述的制冰模块,所述第一刮冰器包括设置在所述螺杆靠近所述转盘一端的安装座,所述安装座盖设在所述过水通道上,所述安装座上设置有连通所述制冰空间和所述过水通道的过水孔。
  15. 根据权利要求1所述的制冰模块,所述制冰模块包括衬套以及减阻钢珠,所述衬套设置在所述刮冰组件与所述外壳之间,所述减阻钢珠设置在所述衬套内且与所述刮冰组件抵接;和/或,
    所述制冰模块包括减阻钢珠以及设置在所述出冰口处的冰成形板,所述减阻钢珠设置在所述冰成形板上且与所述刮冰组件抵接。
  16. 一种制冰设备,包括机体以及权利要求1-15中任意一项所述的制冰模块,所述制冰模块设置在所述机体内。
PCT/CN2023/105556 2022-08-23 2023-07-03 一种制冰模块及制冰设备 WO2024041231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211012527.7 2022-08-23
CN202211012527.7A CN115388589B (zh) 2022-08-23 2022-08-23 一种制冰模块及制冰设备

Publications (1)

Publication Number Publication Date
WO2024041231A1 true WO2024041231A1 (zh) 2024-02-29

Family

ID=84120304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105556 WO2024041231A1 (zh) 2022-08-23 2023-07-03 一种制冰模块及制冰设备

Country Status (2)

Country Link
CN (1) CN115388589B (zh)
WO (1) WO2024041231A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115388589B (zh) * 2022-08-23 2024-03-22 广东美的白色家电技术创新中心有限公司 一种制冰模块及制冰设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2165386Y (zh) * 1993-06-15 1994-05-18 王育郎 连续式内外螺旋制冰装置
CN103175359A (zh) * 2013-04-16 2013-06-26 天津商业大学 小型化紧凑型动态制取冰浆系统
CN103968630A (zh) * 2014-05-20 2014-08-06 福建雪人股份有限公司 流态冰制冰器
CN108826777A (zh) * 2018-04-08 2018-11-16 中国科学院广州能源研究所 一种螺旋刮刀式动态制冰浆装置
CN209877432U (zh) * 2019-05-05 2019-12-31 宁波斯凯沃夫电器科技有限公司 一种家用制冰机
JP2020020561A (ja) * 2018-08-03 2020-02-06 ホシザキ株式会社 製氷機
CN215176244U (zh) * 2021-05-14 2021-12-14 广东新宝电器股份有限公司 一种制冰组件以及制冰机
CN216282188U (zh) * 2021-11-29 2022-04-12 滁州东菱电器有限公司 一种制冰组件以及制冰机
CN115388590A (zh) * 2022-08-23 2022-11-25 广东美的白色家电技术创新中心有限公司 一种制冰模块及制冰设备
CN115388589A (zh) * 2022-08-23 2022-11-25 广东美的白色家电技术创新中心有限公司 一种制冰模块及制冰设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112478A (ja) * 1997-06-12 1999-01-06 Takenaka Komuten Co Ltd 製氷装置
JP2004239489A (ja) * 2003-02-05 2004-08-26 Sanueru Japan:Kk 製氷機
JP2006023068A (ja) * 2004-06-08 2006-01-26 Hoshizaki Electric Co Ltd 製氷機
CA2471969A1 (en) * 2004-06-23 2005-12-23 Lionel Gerber Heat exchanger for use in an ice machine
KR101335953B1 (ko) * 2013-09-04 2013-12-04 대영이앤비 주식회사 제빙기
JP3209011U (ja) * 2016-12-06 2017-03-02 太平冷機株式会社 流動氷製造装置および流動氷製造システム
CN107655248B (zh) * 2017-10-20 2020-09-18 中国科学院广州能源研究所 一种流态冰制冰桶
CN108716795B (zh) * 2018-07-25 2024-06-28 广州高野能源科技有限公司 多筒制冰机
CN211650844U (zh) * 2020-02-21 2020-10-09 河南科技大学 一种壁面刮削式动态制取冰浆装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2165386Y (zh) * 1993-06-15 1994-05-18 王育郎 连续式内外螺旋制冰装置
CN103175359A (zh) * 2013-04-16 2013-06-26 天津商业大学 小型化紧凑型动态制取冰浆系统
CN103968630A (zh) * 2014-05-20 2014-08-06 福建雪人股份有限公司 流态冰制冰器
CN108826777A (zh) * 2018-04-08 2018-11-16 中国科学院广州能源研究所 一种螺旋刮刀式动态制冰浆装置
JP2020020561A (ja) * 2018-08-03 2020-02-06 ホシザキ株式会社 製氷機
CN209877432U (zh) * 2019-05-05 2019-12-31 宁波斯凯沃夫电器科技有限公司 一种家用制冰机
CN215176244U (zh) * 2021-05-14 2021-12-14 广东新宝电器股份有限公司 一种制冰组件以及制冰机
CN216282188U (zh) * 2021-11-29 2022-04-12 滁州东菱电器有限公司 一种制冰组件以及制冰机
CN115388590A (zh) * 2022-08-23 2022-11-25 广东美的白色家电技术创新中心有限公司 一种制冰模块及制冰设备
CN115388589A (zh) * 2022-08-23 2022-11-25 广东美的白色家电技术创新中心有限公司 一种制冰模块及制冰设备

Also Published As

Publication number Publication date
CN115388589A (zh) 2022-11-25
CN115388589B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN103890526B (zh) 冰蓄冷槽和具有该冰蓄冷槽的水冷却器
CN115388590B (zh) 一种制冰模块及制冰设备
US10047982B2 (en) Ice storage apparatus and ice making apparatus comprising same
KR20140113945A (ko) 온디맨드 음료수 쿨러
KR100296653B1 (ko) 냉각시스템에 있어서 제빙장치용 열교환기
WO2024041231A1 (zh) 一种制冰模块及制冰设备
US20090173088A1 (en) Condenser and metering device in refrigeration system for saving energy
US4036621A (en) Beverage dispensers
CN104006594A (zh) 淡水/海水两用的管状冰制冰机及其制冰工艺
WO2025133986A1 (en) Ice maker with bearing
CN200940970Y (zh) 热管式蓄冰融冰蓄冷装置
JP2004522126A (ja) 震動式熱交換装置
CN1323126C (zh) 一种水合物浆及其制备方法
CN115307236B (zh) 一种中央空调用冰蓄冷式蓄冰槽和冰蓄冷系统
CN117570615A (zh) 一种流态冰制取器、装置及制取方法
W. Ma et al. Review of recent patents on ice slurry generation
CN1325859C (zh) 直接接触式生成二元冰的方法
CN101042273A (zh) 引射泵供液立筒式制冰机
CN209978450U (zh) 一种复合螺杆式制冰装置
KR101939048B1 (ko) 2중관형 해수 샤베트 아이스 제조장치
KR102733132B1 (ko) 아이스 슬러리 제조장치
CN1256541C (zh) 潜热型空调系统
JP4399309B2 (ja) 氷蓄熱装置
KR100460100B1 (ko) 진동식 열교환장치
CN220892667U (zh) 一种储冰式速冷模组及净水设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE