WO2024041100A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2024041100A1
WO2024041100A1 PCT/CN2023/099394 CN2023099394W WO2024041100A1 WO 2024041100 A1 WO2024041100 A1 WO 2024041100A1 CN 2023099394 W CN2023099394 W CN 2023099394W WO 2024041100 A1 WO2024041100 A1 WO 2024041100A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
radiator
point
high frequency
ultra
Prior art date
Application number
PCT/CN2023/099394
Other languages
English (en)
French (fr)
Inventor
刘池
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024041100A1 publication Critical patent/WO2024041100A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas

Definitions

  • the present application relates to the field of communication technology, and more specifically, to an electronic device.
  • some electronic devices have folding functions.
  • implementing the folding function will take up space in some electronic devices to provide antennas for achieving low-frequency resonance, resulting in insufficient space in the electronic devices to install antennas that generate low-frequency resonance.
  • This application proposes an electronic device to improve the above defects.
  • a housing assembly includes a first part and a second part that can be relatively folded or unfolded along a rotation axis.
  • the first part includes a third part perpendicular to the rotation axis.
  • an antenna assembly arranged on the first part, including a first radiator, arranged on the first side, spaced apart from the first radiator
  • a first feed point, a first ground point and a second feed point are provided, and the first feed point is located on a side of the first ground point away from the second side;
  • a first feed source and The first feed point connection is used to feed an excitation signal in the low frequency band and an excitation signal in the mid-to-high frequency band to the first radiator to excite the first radiator located at a distance from the first ground point.
  • the first branch on the second side generates resonance in the low frequency band and first resonance in the mid-to-high frequency band; a second feed source is connected to the second feed point and is used to feed the first radiator.
  • the excitation signal enters the ultra-high frequency band to excite the second branch of the first radiator located at the first ground point toward the second side to generate a first resonance in the ultra-high frequency band.
  • Figure 1 shows a structural diagram of an electronic device provided by an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of an antenna assembly provided by an embodiment of the present application
  • Figure 3 shows a schematic structural diagram of an antenna assembly provided by yet another embodiment of the present application.
  • Figure 4 shows a schematic structural diagram of an antenna assembly provided by yet another embodiment of the present application.
  • Figure 5 shows a schematic structural diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 6 shows a schematic diagram of the relationship between S parameters and frequency provided by the embodiment of the present application.
  • Figure 7 shows a schematic diagram of the relationship between radiation efficiency and frequency of the present application
  • Figure 8 shows a schematic diagram of the relationship between S parameters and radiation efficiency and frequency in this application.
  • Figure 9 shows a schematic structural diagram of an antenna assembly provided by yet another embodiment of the present application.
  • Figure 10 shows a schematic structural diagram of an antenna assembly provided by yet another embodiment of the present application.
  • Figure 11 shows a schematic structural diagram of an antenna assembly provided by yet another embodiment of the present application.
  • Figure 12 shows a schematic structural diagram of an antenna assembly provided by yet another embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the described features.
  • “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be mechanical connection, electrical connection or mutual communication; it can be direct connection, or indirect connection through an intermediary, it can be internal connection of two elements or interaction of two elements relation.
  • the term “above” or “below” a first feature on a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • electronic devices generally may include multiple branches, where the plurality is at least two.
  • the branches can be excited by the excitation signal, thereby generating resonance in the frequency band corresponding to the excitation signal, so as to generate wireless communication signals in the frequency band corresponding to the excitation signal in space, that is, the radiation of wireless communication signals can be realized; it can also be used to receive transmission in space wireless communication signals.
  • the wireless communication signal may be an electromagnetic wave signal.
  • electronic devices can communicate based on multiple frequency bands through wireless communication signals of different frequency bands sent and received by multiple branches.
  • wireless communication technologies include global system for mobile communications (GSM), general packet wireless General packet radio service (GPRS), code division multiple access (CDMA), wideband code division multiple access (WCDMA), time-division code division multiple access, TD-SCDMA), long term evolution (LTE), Bluetooth (bluetooth, BT), global navigation satellite system (GNSS), wireless local area networks (WLAN) (such as wireless fidelity (wireless fidelity, Wi-Fi network), near field communication technology (near field communication, NFC), frequency modulation (frequency modulation, FM), and/or infrared technology (infrared, IR), etc.
  • GSM global system for mobile communications
  • GPRS general packet wireless General packet radio service
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TD-SCDMA time-division code division multiple access
  • LTE long term evolution
  • Bluetooth blue, BT
  • GNSS global navigation satellite system
  • WLAN wireless local area networks
  • WLAN such as wireless fidelity (wireless fidelity, Wi
  • the branches of the electronic device can generally be arranged on the housing assembly of the electronic device and can be used to send and receive wireless communication signals in different frequency bands.
  • the frequency and wavelength of the wireless communication signal are inversely related, that is, the higher the frequency of the wireless communication signal, the shorter the wavelength of the wireless communication signal.
  • the length of the branches required to send and receive wireless communication signals is positively related to the wavelength of the wireless communication signal. Therefore, the length of the branches is inversely related to the frequency of the wireless communication signal. That is, the higher the frequency of the wireless communication signal, the higher the frequency of the wireless communication signal. The shorter the length of the branches; the lower the frequency of the wireless communication signal, the longer the length of the branches required.
  • the corresponding branch lengths are longer, for example, up to 50 mm.
  • the branches required for the low-frequency LB band are generally arranged on the longer sides of the housing assembly of the electronic device, thereby realizing the sending and receiving of wireless communication signals in the low-frequency LB band.
  • An exemplary method may be to provide a rotation axis along the center line of the mobile phone, which can be relatively folded or unfolded along the rotation axis.
  • the center line of the mobile phone may be parallel to the longer side of the housing assembly of the electronic device, or may be parallel to the longer side of the housing assembly of the electronic device. Shorter sides are parallel. Among them, if the center line is parallel to the shorter side, the center line will intersect with the longer side.
  • the longer branches in existing electronic equipment used for transmitting and receiving wireless communication signals in the low-frequency LB band are generally distributed on both sides of the intersection of the longer side of the electronic equipment and the center line.
  • the intersection of the longer side with the center line needs to be provided with a rotating connection component for folding. Therefore, longer branches cannot be installed, making it difficult to design antennas corresponding to the low-frequency LB band of electronic devices. .
  • Figure 1 shows an electronic device 100.
  • the electronic device 100 includes a housing assembly 190.
  • the housing assembly may include a first part 101 and a second part 102.
  • the first part 101 and the second part 102 can be relatively folded or unfolded along a rotation axis 103 .
  • the first part 101 and the second part 102 can be relatively folded to a closed state, and can also be relatively unfolded to an open state. That is, the first part 101 and the second part 102 can be switched between a closed state and an open state via the rotation axis 103 .
  • the electronic device 100 shown in FIG. 1 corresponds to the open state of the electronic device 100 .
  • the first part 101 may be an upper part of the electronic device 100 when used by a normal hand
  • the second part 102 may be a lower part of the electronic device 100 when used by a normal hand.
  • first part 101 may also include a first side 104 and a second side 105, wherein the first side 104 is perpendicular to the rotation axis 103, and the second side 105 is parallel to the rotation axis 103.
  • second part 102 may also include a third side 106 and a fourth side 107 , wherein the third side 106 is perpendicular to the rotation axis 103 and the fourth side 107 is parallel to the rotation axis 103 .
  • the electronic device further includes a front case 110 and a back cover 120 , as well as a middle panel 150 .
  • the middle plate 150 can be surrounded by the first side 104 and the second side 105 of the first part 101, and the third side 106 and the fourth side 107 of the second part 102.
  • the middle plate 150 can also be Connected to the first side 104, the second side 105, the third side 106 or the fourth side 107 respectively.
  • the middle panel 150 includes a first side and a second side opposite to each other.
  • the back cover 120 is assembled on the first side of the middle panel 150
  • the front case 110 is assembled on the second side of the middle panel 150 .
  • the front case 110 and the back cover 120 are assembled on the first side 104, the second side 105, the third side 106 and the fourth side 107, and form a closed housing assembly 190.
  • the front housing 110 may include a display screen 160.
  • the front case 110 and the back cover 120 together form a receiving space to accommodate other components, such as the motherboard 170 and the battery 180 .
  • the first part 101 may also be provided with a first radiator (280 in Figure 2).
  • the first radiator 280 can be used to obtain an excitation signal of a specific frequency band, thereby generating resonance based on the excitation signal of the specific frequency band, thereby generating a wireless communication signal for transmission in space.
  • the frequency of the wireless communication signal is related to the excitation signal of a specific frequency band, so the wireless communication signal can have different frequencies, that is, the wireless communication signal can include signals in different frequency bands, for example, it can be a signal in the low-frequency LB band, or it can be The signal in the mid-frequency MB band can also be the signal in the high-frequency (HighBand, HB) band.
  • the wireless communication signal may also have different communication modes.
  • the wireless communication signal may be the Global System for Mobile Communications GSM, the Long Term Evolution LTE, or the new radio interface 5GNR.
  • the first radiator please refer to subsequent embodiments.
  • the front case 110 and the back cover 120 may be metal shells. It should be noted that the materials of the front case 110 and the back cover 120 in the embodiment of the present application are not limited to this, and other methods can also be used.
  • the front case 110 and the back cover 120 can be made of plastic. Glue part and metal part.
  • the front case 110 and the back cover 120 can be plastic cases, ceramic cases, etc.
  • the protective cover can be a glass cover, a sapphire cover, a plastic cover, etc., and provides protection for the display screen 160 to prevent dust, water vapor or oil stains from adhering to the display screen and avoid corrosion of the display screen 160 by the external environment.
  • the protective cover may include a display area and a non-display area.
  • the display area is transparent to correspond to the light emitting surface of the display screen 160 .
  • the non-display area is opaque to shield the internal structure of the electronic device.
  • the non-display area can have openings for sound and light transmission.
  • the electronic device 100 in the embodiment of the present application can also be designed with a full screen without retaining the non-display area.
  • the electronic device 100 may be provided with an earphone hole, a microphone hole, a speaker hole, and a universal serial bus interface hole on its periphery.
  • the headphone hole, microphone hole, speaker hole, and universal serial bus interface hole are all through holes and are formed on the housing component 190 and can be electrically connected to the motherboard 170 in the accommodation space.
  • the electronic device 100 may also include an antenna assembly 200.
  • FIG. 2 shows an antenna assembly 200.
  • the antenna assembly 200 may be applied to the electronic device shown in FIG. 1. 100, specifically, the antenna assembly 200 can be placed in the first part 101 of the electronic device 100, and the first part 101 can be included in the receiving space jointly surrounded by the front case 110 and the back cover 120.
  • the antenna assembly 200 may include a first radiator 280, which may be disposed on the first side 104.
  • the first radiator 280 is provided with first feeding points 2021 at intervals.
  • the first radiator 280 may be a metal conductor, and the first radiator 280 may be used to obtain an excitation signal of a specific frequency band, thereby generating resonance based on the excitation signal of the specific frequency band, thereby generating a signal for transmission in space. wireless communication signal.
  • the first radiator 280 may include a branch, and a feed point and a feed source may be connected to the branch, so that the feed source can feed an excitation signal of a specific frequency to the branch, so that the branch can The excitation signal of a specific frequency generates resonance, thereby generating a wireless communication signal.
  • the first radiator 280 may also include a plurality of branches, wherein the plurality is at least two. Different branches may be provided with feed sources respectively, and different branches may also have different lengths, so that different feed sources can be used to provide different radiation sources. The excitation signals are fed into the branches of different lengths, and resonances of different frequencies are formed through the branches of different lengths, thereby generating wireless communication signals of different frequencies.
  • the first radiator 280 may include a first branch 202 and a second branch 203, where the first branch 202 is a point away from the first ground point 201 in the first radiator 280.
  • the second branch 203 is a part of the first radiator 280 located at the first ground point 201 facing the second side 105 .
  • the antenna assembly 200 also includes a first feed source 204 and a second feed source 208, wherein the first feed source 204 is connected to the first feed point 2021, and the second feed source 208 is connected to the first feed point 2021.
  • the second feed point 2022 is connected.
  • the first ground point 201 is relatively closer to the direction of the second side 105 in the first radiator, so the first branch 202 may be longer than the second branch 203 .
  • the length of the branch has an anti-correlation relationship with the frequency of the wireless communication signal, it also has an anti-correlation relationship with the frequency of the excitation signal fed from the feed source, so that a lower frequency excitation can be fed into the first branch 202. signal, and a higher frequency excitation signal is fed to the second branch 203.
  • mode reuse can be used to minimize the space requirements for electronic equipment to achieve resonance in the low-frequency LB band.
  • mode reuse refers to feeding excitation signals of different frequency bands to the same branch, or to a part of the same branch, so that the same branch, or part of the same branch, can produce different patterns based on the excitation signals of different frequency bands.
  • Resonance thereby radiating wireless communication signals of different frequencies.
  • the required branch length is B1
  • the required branch length is B2.
  • the frequency generated by the two branches is For the resonance of A1 and A2, the required branch length is at least the sum of B1 and B2.
  • the resonance of the frequency band A1 can be generated through B1, and by using part of the length of B1, for example, using the branches of the length B2 in B1, the resonance of the A2 frequency band can be generated. , thus saving space in electronic equipment.
  • mode multiplexing can be performed on the first branch 202, so that resonances in multiple frequency bands can be generated through the first branch 202, thereby saving internal space of the electronic device and facilitating the layout of the branches.
  • the first branch 202 resonates with excitation signals of different frequencies, and the radiated wireless communication signals may be wireless communication signals of different frequencies corresponding to the same communication mode, where the communication mode may include Global System for Mobile Communications GSM, Long-term evolution LTE or new radio interface 5GNR, etc.
  • the wireless communication signals radiated by the first branch 202 may be low-frequency LB band signals and middle high-frequency (Middle High Band, MHB) band signals of the Long Term Evolution LTE communication mode.
  • the wireless communication signals radiated by the first branch 202 may also be wireless communication signals of different frequencies corresponding to different communication modes.
  • the wireless communication signals sent and received by the first branch 202 may be low-frequency LB band signals corresponding to Long Term Evolution LTE.
  • the N41 frequency band corresponding to the new air interface 5GNR can be 703MHz-960MHz
  • the N41 frequency band can be 2515MHz-2675MHz
  • the medium-high frequency MHB band can be 1710MHz-2690MHz.
  • the first feed source 204 can feed the excitation signal of the low-frequency LB band and the medium and high frequency to the first radiator 280 through the first feed point 2021 located on the first radiator 280 .
  • the excitation signal in the MHB frequency band is used to excite the first branch 202 of the first radiator 280 located at the first ground point 201 away from the second side 105 to generate resonance in the low frequency LB frequency band and the mid-to-high frequency MHB frequency band.
  • the first resonance, and then the first branch 202 can radiate wireless communication signals in the low-frequency LB band and wireless communication signals in the mid-to-high-frequency MHB band.
  • the second feed source 208 can feed the excitation signal in the ultra-high frequency band to the first radiator 280 through the second feed point 2022 located on the first radiator 280, thereby exciting the first radiator 280 located at the desired location.
  • the first ground point 202 faces the second branch 203 of the second side 105 to generate a first resonance in the ultra-high frequency band, and the second branch 203 can radiate wireless communication signals in the ultra-high frequency band.
  • the first branch 202 can be excited to generate low-frequency LB after acquiring the excitation signal of the low-frequency LB band and the excitation signal of the mid- and high-frequency MHB band fed by the first feed source 204
  • the resonance of the frequency band and the first resonance of the mid- to high-frequency MHB band can radiate wireless communication signals in the low-frequency LB band and wireless communication signals in the mid-to-high-frequency MHB band.
  • the first feed source 204 feeds the medium and high frequency excitation signals of the first branch 202, which may include excitation signals in the N41 frequency band.
  • the first radiator can obtain the excitation signal of the low-frequency LB band and the excitation signal of the mid- and high-frequency MHB band fed by the first feed source, so that the first branch in the first radiator generates the resonance sum of the low-frequency LB band.
  • the first resonance of the mid-to-high frequency MHB band can also be obtained from the excitation signal of the ultra-high frequency band fed by the second feed source, so that the second branch in the first radiator generates the first resonance of the ultra-high frequency band.
  • This embodiment realizes frequency band reuse of the low-frequency LB frequency band and the mid- and high-frequency MHB frequency band through the first branch, thereby reducing the branch length required to generate the resonance of the low-frequency LB frequency band and the first resonance of the mid- and high-frequency MHB frequency band, thereby satisfying the following requirements
  • the length of the second branch 203 is smaller than the length of the first branch 202, so the second branch 203 can be used to send and receive wireless communication signals with a higher frequency.
  • the second branch 203 can be excited to generate the first resonance of the ultra-high frequency band, and then Can radiate wireless communication signals in the ultra-high frequency band.
  • the UHF frequency band may include at least one of the N78 frequency band and the N79 frequency band.
  • the N78 frequency band can be 3400MHz-3600MHz
  • the N79 frequency band can be 4800MHz-4900MHz.
  • the first branch 202 and the second branch 203 both belong to the first radiator 280, if the frequency band where the first branch 202 of the first feed source 204 resonates is the same as or close to the frequency band where the second branch 203 generates resonance, it is easy to occur. interference, causing the radiation efficiency of the first radiator 280 to decrease.
  • the second feed source 208 feeds an excitation signal in the ultra-high frequency band into the first radiator 280 to excite the second branch 203 to generate the first resonance in the ultra-high frequency band.
  • the excitation signal in the ultra-high frequency band and the excitation signal in the mid-to-high frequency band have different frequency bands, and resonance occurs through different branches, the excitation signal in the ultra-high frequency band and the excitation signal in the mid-to-high frequency band in this application will not affect each other. It can ensure that the quality of the excitation signal in the ultra-high frequency band and the excitation signal in the mid-to-high frequency band is good.
  • Figure 3 shows an antenna assembly 200.
  • the antenna assembly 200 can be applied to the electronic device 100 shown in Figure 1. Specifically, the antenna assembly 200 can be placed in the first part of the electronic device 100. 101. The first part 101 may be included in the receiving space formed by the front case 110 and the back cover 120.
  • the antenna assembly 200 may include a first feed source 204, a second feed source 208 and a first radiator 280, wherein the first radiator 280 is provided with a first ground point 201, a first feed point 2021 and a second feed point.
  • the connection relationship and function of the electrical point 2022 please refer to the description of the foregoing embodiments, and will not be described again here.
  • the antenna assembly 200 shown in FIG. 3 also includes a second radiator 212 , and the second radiator 212 is disposed on the second side 105 .
  • a third feed point 2121 is provided on the second radiator 212 .
  • the second radiator 212 may be a metal conductor, and the second radiator 212 may be used to obtain an excitation signal of a specific frequency band, thereby generating resonance based on the excitation signal of the specific frequency band, thereby generating a signal for transmission in space. wireless communication signals.
  • the antenna assembly 200 further includes a third feed source 213, where the third feed source 213 is connected to the third feed point 2121.
  • the third feed source 212 can feed the excitation signal of the mid-high frequency MHB band and the ultra-high frequency band to the second radiator 212 through the third feed point 2121 located on the second radiator 212, thereby stimulating the second radiation.
  • the body 212 generates the second resonance of the mid-to-high frequency MHB band and the second resonance of the ultra-high frequency band, so that the second radiator can radiate wireless communication signals in the mid-to-high frequency MHB band and ultra-high frequency band wireless communication signals.
  • the ultra-high frequency band may include at least one of the N78 frequency band and the N79 frequency band.
  • FIG. 4 shows an antenna assembly 200.
  • the antenna assembly 200 can be applied to the electronic device 100 shown in FIG. 1. Specifically, the antenna assembly 200 can be placed on The first part 101 of the electronic device 100 may be included in the receiving space formed by the front case 110 and the back cover 120 .
  • the antenna assembly 200 may include a first feed source 204, a second feed source 208 and a first radiator 280, wherein the first radiator 280 is provided with a first ground point 201, a first feed point 2021 and a second feed point. electric point 2022.
  • first radiator 280 is provided with a first ground point 201, a first feed point 2021 and a second feed point. electric point 2022.
  • the antenna assembly 200 may also include a first parasitic radiator 209 .
  • a part of the first parasitic radiator 209 is disposed on the first side 104 and forms a first gap 211 with the first radiator, and the other part is disposed on the second side 105.
  • a second gap 214 is formed between the second gap 212 and the second radiator 212 .
  • the first parasitic radiator 209 is provided with second ground points 210 and third ground points 250 at intervals.
  • the second ground point 210 is located at a side of the third ground point 250 facing the first radiator 280 . side.
  • the first parasitic radiator 209 can couple the excitation signal through the first gap 211 or the second gap 214, thereby generating resonance at a frequency corresponding to the excitation signal, and thereby radiating wireless communication signals.
  • the excitation signal in the ultra-high frequency band fed into the first radiator 280 by the second feed source 208 can be coupled to the first parasitic radiator 209 through the first gap 211, and then the first parasitic radiator 209 can be coupled to the first parasitic radiator 209.
  • the excitation signal in the ultra-high frequency band produces the first parasitic resonance in the ultra-high frequency band.
  • the portion of the first parasitic radiator 209 located between the second ground point 210 and the first gap 211 is used to generate the first parasitic resonance of the ultra-high frequency band.
  • the third feed source 213 feeds the excitation signal of the mid-high frequency band and the ultra-high frequency band of the second radiator 212, and can be coupled to the first parasitic radiator 209 through the second gap 214, and then the first parasitic radiator 209
  • the first parasitic resonance of the mid-high frequency MHB band and the second parasitic resonance of the ultra-high frequency band may be generated based on the coupled excitation signals of the mid-high frequency band and the ultra-high frequency band.
  • the part of the first parasitic radiator 209 located between the third ground point 250 and the second gap 214 is used to form the first parasitic resonance of the mid-to-high frequency MHB band.
  • At least part of the first parasitic radiator 209 between the ground point 250 and the second gap 214 is also used to generate the second parasitic resonance of the ultra-high frequency band.
  • the efficiency of the first radiator 280 in radiating wireless communication signals in the ultra-high frequency band can be improved; through the first parasitic resonance in the medium and high frequency band, the efficiency of the second radiator 212 in radiating medium and high frequencies can be improved.
  • the efficiency of wireless communication signals in the frequency band; the second parasitic resonance in the ultra-high frequency band can improve the efficiency of the second radiator 212 in radiating wireless communication signals in the ultra-high frequency band.
  • the first radiator 280 can also be moved toward the direction of the first parasitic radiator 209, thereby leaving more space for the first branch 202, and making it easier to install the first branch 202.
  • the second feed source 208 feeds the excitation signal of the ultra-high frequency band of the second branch 203
  • the third feed source 213 feeds the excitation signal of the ultra-high frequency band of the third branch 212
  • the third feed source 213 feeds the excitation signal in the ultra-high frequency band to the second radiator 212, the excitation signal in the ultra-high frequency band will also be coupled to the second branch 203.
  • the second ground point 210 and the third ground point 250 can be used to increase the isolation between the second feed source 208 and the third feed source 213.
  • the specific isolation degree depends on the distance between the second ground point 210 and the third ground point 250. The distance is positively correlated. Therefore, as the distance between the second radiator 212 and the second branch 203 becomes smaller, that is, the distance between the second ground point 210 and the third ground point 250 becomes smaller, the distance between the second feed source 208 and the third feed source 213 becomes smaller. The isolation between them will decrease.
  • FIG. 5 shows an antenna assembly 200.
  • the antenna assembly 200 can be applied to the electronic device 100 shown in FIG. 1. Specifically, the antenna assembly 200 can be placed in the electronic device 100.
  • the first part 101 may be included in the receiving space enclosed by the front case 110 and the back cover 120 .
  • the antenna assembly 200 may include a first feed source 204, a second feed source 208 and a first radiator 280, wherein the first radiator 280 is provided with a first ground point 201, a first feed point 2021 and a second feed point.
  • the connection relationship and function of the electrical point 2022 please refer to the description of the foregoing embodiments, and will not be described again here.
  • a first matching point 2169 is also provided on the first parasitic radiator 209 .
  • the first matching point 2169 is located on the side of the third ground point 250 away from the second ground point 210 .
  • the antenna assembly may further include a first matching circuit 216 connected to the first matching point 2169 .
  • the first matching circuit 216 can improve the second feed source 208 and the third feed source 208 by increasing the equivalent isolation ground width of the first parasitic resonance of the ultra-high frequency band and the second parasitic resonance of the ultra-high frequency band. Isolation between sources 213 feeding UHF band excitation signals.
  • the distance between the third ground point 250 and the second ground point 210 is D1
  • the distance between the first matching point 2169 and the second feed point 210 is D2
  • the third ground point 250 is disposed at Between the first matching point 2169 and the second feed point 210, therefore D1 is smaller than D2.
  • the first radiator 280 moves toward the direction of the first parasitic radiator 209 , that is, toward the position of the second side 105
  • the second ground point 210 will move in the direction of the movement of the first radiator 280 , so this The distance D1 between the second ground point 210 and the third ground point 250 will become smaller.
  • the first matching point 2169 can ground the excitation signal in the ultra-high frequency band through the first matching circuit 216. Therefore, even if the second ground point 210 moves, the isolation between the second feed source 208 and the third feed source 213 will not be significantly affected.
  • the first matching circuit 216 can show greater resistance to lower frequency signals, so that the lower frequency signals are not easily grounded through the matching circuit; the first matching circuit 216 can also show greater resistance to higher frequency signals. The signal exhibits less resistance, making it easier for higher frequency signals to be grounded through the matching circuit.
  • the first matching circuit 216 is in a high impedance state for the excitation signal in the mid-to-high frequency band, and is in a low impedance state for the excitation signal in the ultra-high frequency band, thereby achieving the first matching point 2169
  • the width between the second ground point 210 and the second ground point 210 forms the equivalent isolation ground width of the first parasitic resonance of the ultra-high frequency band and the second parasitic resonance of the ultra-high frequency band.
  • the width between 250 and the second ground point 210 forms the isolation ground width between the first parasitic resonance of the ultra-high frequency band and the second parasitic resonance of the ultra-high frequency band.
  • the width of the equivalent isolation ground is wider, Therefore, the isolation between the second feed source 208 and the third feed source 213 can be improved.
  • the third feed source 213 feeds the second
  • the excitation signal of the ultra-high frequency band of the radiator 212 can be coupled to the first parasitic radiator 209 through the second gap 214, and the first parasitic radiator 209 is located between the first matching point 2169 and the second gap 214.
  • the second parasitic resonance of the ultra-high frequency band can be formed based on the excitation signal coupled to the ultra-high frequency band.
  • the first matching circuit 216 needs to be in a high impedance state for the excitation signal in the mid-to-high frequency band and in a low impedance state for the excitation signal in the ultra-high frequency band. Therefore, an example Alternatively, the first matching circuit may be a capacitor. Specifically, one end of the capacitor can be connected to the first matching point 2169, and the other end is grounded.
  • the capacitor Since the excitation signal in the ultra-high frequency band has a higher frequency than the excitation signal in the low-frequency LB band or the excitation signal in the mid-frequency MB band, the capacitor presents a lower resistance state to the excitation signal in the ultra-high frequency band at this time, that is, it can
  • the second feed source 208 feeds the excitation signal of the ultra-high frequency band of the first radiator 280 , and the part coupled to the first parasitic radiator 209 through the first gap 211 presents a lower impedance state, and can be used for the third feed source 213
  • the excitation signal in the ultra-high frequency band fed into the second radiator 212 is coupled to the first parasitic radiator 209 through the second gap 214 and exhibits a lower impedance state.
  • the portion coupled to the first parasitic radiator 209 through the second gap 214 exhibits a higher impedance state. Therefore, the part of the first parasitic radiator 209 located between the first matching point 2169 and the second gap 214 can form an ultra-high frequency band based on the coupled excitation signal of the ultra-high frequency band. Second parasitic resonance.
  • the first matching circuit 216 may also be a band-stop filter, that is, one end of the band-stop filter may be connected to the first matching point 2169 and the other end may be connected to ground.
  • the band stop filter can present a lower impedance state for the part of the excitation signal in the ultra-high frequency band that is fed into the first radiator 280 from the second feed source 208 and is coupled to the first parasitic radiator 209 through the first gap 211.
  • the part coupled to the first parasitic radiator 209 through the second gap 214 exhibits a lower impedance state.
  • the portion coupled to the first parasitic radiator 209 through the second gap 214 exhibits a higher impedance state. Therefore, the part of the first parasitic radiator 209 located between the first matching point 2169 and the second gap 214 can form an ultra-high frequency band based on the coupled excitation signal of the ultra-high frequency band. Second parasitic resonance.
  • the first matching circuit 216 may also be a high-pass filter, one end of the high-pass filter may be connected to the first matching point 2169, and the other end may be connected to ground.
  • the high-pass filter can present a lower resistance state for the part of the excitation signal in the ultra-high frequency band that is fed into the first radiator 280 from the second feed source 208 and is coupled to the first parasitic radiator 209 through the first gap 211, and For the excitation signal in the ultra-high frequency band fed into the second radiator 212 by the third feed source 213, the portion coupled to the first parasitic radiator 209 through the second gap 214 exhibits a lower impedance state.
  • the portion coupled to the first parasitic radiator 209 through the second gap 214 exhibits a higher impedance state. Therefore, the part of the first parasitic radiator 209 located between the first matching point 2169 and the second gap 214 can form an ultra-high frequency band based on the coupled excitation signal of the ultra-high frequency band. Second parasitic resonance.
  • FIG. 6 shows a schematic diagram of the S-parameter and frequency relationship of the third feed source 213 in the antenna assembly 200 shown in FIG. 5 .
  • Figure 6 includes curve N1, curve N2 and curve N3.
  • the curve N1 is used to characterize the S parameter of the third feed source 213 when feeding the excitation signal of the intermediate frequency MB band.
  • the third feed source 213 obtains the excitation signal of the intermediate frequency MB band through the second radiator 212, and then radiates the intermediate frequency.
  • Wireless communication signals in the MB band is a schematic diagram of the S-parameter and frequency relationship of the third feed source 213 in the antenna assembly 200 shown in FIG. 5 .
  • Figure 6 includes curve N1, curve N2 and
  • Curve N2 is used to characterize the S parameter of the third feed source 213 when feeding into the ultra-high frequency HB band. At this time, the third feed source 213 acquires the high-frequency HB band signal through the second radiator 212 . Curve N3 is used to characterize the S parameter of the third feed source 213 when feeding into the ultra-high frequency band. At this time, the third feed source 213 radiates the ultra-high frequency band signal through the second radiator 212 . The smaller the S parameter is, the deeper the matching degree of the third feed source 213 is at this frequency, and the easier it is to generate resonance.
  • FIG. 7 shows a schematic diagram of the radiation efficiency and frequency relationship of the third feed source 213 in the antenna assembly 200 shown in FIG. 5 .
  • the abscissa shown in Figure 7 is frequency in GHz
  • the ordinate is radiation efficiency in dB.
  • the third feed source 213 and the third feed point 2121 can be connected through a third feed line 217, and the third feed source 213 feeds the excitation signal of the second radiator 212, acting on When the third feeder line 217 is used, different impedances will occur. Since the excitation signal generated by the second radiator 212 is an excitation signal in the mid-high frequency MHB band and ultra-high frequency band, the frequency is generally higher.
  • Figure 7 includes curve N4, curve N5, curve N6, curve N7, curve N8 and curve N9.
  • the curve N4, the curve N5 and the curve N6 are used to represent the radiation efficiency corresponding to the resonance in different frequency bands when considering the ideal impedance matching between the third feed source 213 and the third feed point 2121; while the curve N7, the curve N8 and the curve N9 is used to characterize the radiation efficiency corresponding to the resonance in different frequency bands when considering the actual impedance matching degree between the third feed source 213 and the third feed point 2121.
  • ideal impedance matching can be a complete impedance match.
  • the curve N4 is used to represent that when ideal impedance matching is considered between the third feed source 213 and the third feed point 2121, the third feed source 213 feeds the excitation signal of the intermediate frequency MB band to the second radiator 212, so that the third feed source 213 The two radiators 212 generate resonance in the intermediate frequency MB band, thereby radiating the radiation efficiency of the wireless communication signal in the intermediate frequency MB band.
  • Curve N5 is used to represent that when ideal impedance matching is considered between the third feed source 213 and the third feed point 2121, the third feed source 213 feeds the high-frequency HB band excitation signal to the second radiator 212, so that the second radiation
  • the body 212 generates resonance in the high-frequency HB band, thereby radiating the radiation efficiency of the wireless communication signal in the high-frequency HB band.
  • Curve N6 is used to represent that when ideal impedance matching is considered between the third feed source 213 and the third feed point 2121, the third feed source 213 feeds the excitation signal in the ultra-high frequency band to the second radiator 212, so that the second radiation The body 212 generates resonance in the ultra-high frequency band, thereby radiating the radiation efficiency of the wireless communication signal in the ultra-high frequency band.
  • Curve N7 is used to represent that when the actual impedance matching between the third feed source 213 and the third feed point 2121 is considered, the third feed source 213 feeds the excitation signal of the intermediate frequency MB band to the second radiator 212, so that the second radiator 212 generates resonance in the mid-frequency MB band, thereby radiating the radiation efficiency of wireless communication signals in the mid-frequency MB band.
  • Curve N8 is used to represent that when the actual impedance matching between the third feed source 213 and the third feed point 2121 is considered, the third feed source 213 feeds the excitation signal of the high-frequency HB band to the second radiator 212, so that the second radiation The body 212 generates resonance in the high-frequency HB band, thereby radiating the radiation efficiency of the wireless communication signal in the high-frequency HB band.
  • Curve N9 is used to represent that when the actual impedance matching between the third feed source 213 and the third feed point 2121 is considered, the third feed source 213 feeds the excitation signal in the ultra-high frequency band to the second radiator 212, so that the second radiation The body 212 generates resonance in the ultra-high frequency band, thereby radiating the radiation efficiency of the wireless communication signal in the ultra-high frequency band.
  • FIG. 8 is a schematic diagram illustrating the relationship between S parameters and radiation efficiency of the second feed source 208 in the wireless device 200 shown in FIG. 5 and frequency.
  • the abscissa shown in Figure 8 is frequency in GHz, and the ordinate is S parameter and radiation efficiency in dB.
  • Figure 8 includes curve N10 and curve N11.
  • the curve N10 is used to characterize the relationship between the S parameter of the second feed source 208 and frequency
  • the curve N11 is used to characterize the relationship between the radiation efficiency of the second feed source 208 and frequency. It is easy to see from Figure 8 that the wireless communication signal in the ultra-high frequency band radiated by the second feed source 208 through the second radiator 212 has better S parameters and radiation efficiency specifically in the N78 frequency band.
  • FIG. 9 shows an antenna assembly 200 .
  • the antenna assembly 200 can be applied to the electronic device 100 shown in FIG. 1 .
  • the antenna assembly 200 can be placed on the electronic device 100
  • the first part 101 may be included in the receiving space formed by the front case 110 and the back cover 120 .
  • the antenna assembly 200 may include a first feed source 204, a second feed source 208 and a first radiator 280, wherein the first radiator 280 is provided with a first ground point 201, a first feed point 2021 and a second feed point.
  • the connection relationship and function of the electrical point 2022 please refer to the description of the foregoing embodiments, and will not be described again here.
  • the first matching circuit 216 in the antenna assembly 200 shown in FIG. 9 can exhibit a greater sensitivity to lower frequency signals. Resistance, so that lower frequency signals are not easily grounded through the matching circuit; the first matching circuit 216 can also exhibit less resistance to higher frequency signals, so that higher frequency signals are easily grounded through the matching circuit. Therefore, the first matching circuit 216 may include a second capacitor C2 and a first inductor L1, wherein one end of the second capacitor C2 is connected to the first matching point 2169, and the other end is grounded, and the first inductor L1 One end is connected to the first matching point 2169, and the other end is connected to the ground. That is, the second capacitor C2 and the first inductor L1 are connected in parallel and then connected between the first matching point 2169 and the ground.
  • the second capacitor C2 and the first inductor L1 form a high-impedance state for the excitation signal in the mid-to-high frequency band, and a low-impedance state for the excitation signal in the ultra-high frequency band, thereby achieving the first matching point.
  • the width between 2169 and the second ground point 210 forms the equivalent isolation width of the first parasitic resonance of the ultra-high frequency band and the second parasitic resonance of the ultra-high frequency band.
  • the capacitance value of the second capacitor C2 may include any capacitance value ranging from 1.5 picofarads to 1.7pf
  • the inductive reactance of the first inductor L1 may include any inductive reactance ranging from 2.1 nanohenry to 2.3 nanohenry.
  • the capacitance of the second capacitor C2 may be 1.6pF
  • the inductance of the first inductor L1 may be 2.2nH.
  • Figure 10 shows an antenna assembly 200.
  • the antenna assembly 200 can be applied to the electronic device 100 shown in Figure 1. Specifically, the antenna assembly 200 can be placed on the electronic device 100.
  • the first part 101 may be included in the receiving space formed by the front case 110 and the back cover 120 .
  • the antenna assembly 200 may include a first feed source 204, a second feed source 208 and a first radiator 280, wherein the first radiator 280 is provided with a first ground point 201, a first feed point 2021 and a second feed point.
  • the connection relationship and function of the electrical point 2022 please refer to the description of the foregoing embodiments, and will not be described again here.
  • the antenna assembly 200 shown in FIG. 10 may also include a second parasitic radiator 290.
  • the second parasitic radiator 290 is disposed on the first side 104 and is located on the side of the first radiator 280 away from the first parasitic radiator 209 and is in contact with the first radiator.
  • a third gap 291 is formed between the second parasitic radiator 290 and a fourth grounding point 292 at one end close to the rotation axis 103 .
  • the second parasitic radiator 290 can couple the excitation signal through the third gap 291, thereby generating resonance at a frequency corresponding to the excitation signal, and thereby radiating the wireless communication signal.
  • one side of the rotation axis 103 is the first part 101 of the housing assembly 190 of the electronic device 100 and the other side is the second part 102, and the fourth grounding point 292 is located on one side of the first part 101, so that There is no need to provide a radiator across the rotation axis 103 , which reduces the difficulty of designing the radiator in the electronic device 100 .
  • the first feed source 204 feeds the excitation signal of the mid-to-high frequency MHB band of the first branch 202 in the first radiator 280, and part of it will be coupled to the second parasitic radiator 290 through the third gap 291.
  • the second parasitic radiation The body 290 can be used to form the second parasitic resonance of the mid- and high-frequency band, and then the wireless communication signal of the mid- and high-frequency MHB band can be radiated based on the second parasitic resonance, thereby improving the wireless communication signal of the mid- and high-frequency MHB band radiated by the first branch. Communication signal efficiency.
  • part of the excitation signal in the mid-to-high frequency MHB band coupled to the second parasitic radiator 290 can be used to form a mid-to-high frequency signal in the part of the second parasitic radiator 290 between the fourth ground point 292 and the third gap 291 The second spurious resonance in the MHB band.
  • Figure 11 shows an antenna assembly 200.
  • the antenna assembly 200 can be applied to the electronic device 100 shown in Figure 1. Specifically, the antenna assembly 200 can be placed on the electronic device 100.
  • the first part 101 may be included in the receiving space formed by the front case 110 and the back cover 120 .
  • the antenna assembly 200 may include a first feed source 204, a second feed source 208 and a first radiator 280, wherein the first radiator 280 is provided with a first ground point 201, a first feed point 2021 and a second feed point.
  • the connection relationship and function of the electrical point 2022 please refer to the description of the foregoing embodiments, and will not be described again here.
  • the first parasitic radiator 209 is also provided with a first tuning point 293 , and the first tuning point 293 is located on the side of the third ground point 250 away from the second ground point 210 .
  • the antenna assembly 200 further includes a first tuning switch 294, which is connected to the first tuning point 293.
  • the first tuning switch 294 has low resistance to the excitation signal of the ultra-high frequency band. state, and is in a high impedance state for the excitation signal in the mid-to-high frequency band.
  • the first tuning switch 294 may be used to make the part of the first parasitic radiator 209 between the first tuning point 293 and the second gap 214 form the second parasitic resonance of the ultra-high frequency band. .
  • the specific function is similar to the first matching circuit 216 in the previous embodiment, and will not be described again here.
  • the first radiator 280 is also provided with a second tuning point 295 , and the second tuning point 295 is located between the first ground point 201 and the first feeding point 2021 .
  • the antenna assembly 200 further includes a second tuning switch 296, which is connected to the second tuning point 295.
  • the second tuning switch 296 is in a low impedance state for the excitation signal in the mid-to-high frequency band. , and is in a high impedance state for the low-frequency band excitation signal.
  • the second tuning switch 296 can be used to cause the sub-branch of the first branch 202 located at the second tuning point 295 away from the second side 105 to generate the first resonance of the mid-to-high frequency MHB band, thereby reducing
  • the length of the branches that radiate the wireless communication signals in the mid- and high-frequency MHB frequency bands can, to a certain extent, improve the radiation efficiency of the first radiator 280 in radiating the wireless communication signals in the mid- and high-frequency MHB frequency bands. Rate.
  • Figure 12 shows an antenna assembly 200.
  • the antenna assembly 200 can be applied to the electronic device 100 shown in Figure 1. Specifically, the antenna assembly 200 can be placed on the electronic device 100.
  • the first part 101 may be included in the receiving space formed by the front case 110 and the back cover 120 .
  • the antenna assembly 200 may include a first feed source 204, a second feed source 208 and a first radiator 280, wherein the first radiator 280 is provided with a first ground point 201, a first feed point 2021 and a second feed point.
  • the connection relationship and function of the electrical point 2022 please refer to the description of the foregoing embodiments, and will not be described again here.
  • the grounding point of the radiator can be grounded through a capacitor with a larger capacitance, so that the radiator can be suspended from the ground.
  • the fourth ground point 292 can be grounded through the first capacitor C1, so that the second parasitic radiator 290 can be suspended from the ground.
  • the second ground point 210 can be grounded through the third capacitor C3; the third ground point 250 can be grounded through the fourth capacitor C4, so that the first parasitic radiator 209 can be suspended from the ground.
  • the first ground point 201 can be grounded through the fifth capacitor C5, so that the first radiator 280 can be suspended from the ground.
  • the capacitance of the first capacitor C1, the third capacitor C3, the fourth capacitor C4 and the fifth capacitor C5 may be 22 pF.
  • the electronic device provided by the present application includes a housing assembly and an antenna assembly, wherein the housing assembly includes a first part and a second part that can be relatively folded or unfolded along a rotation axis, and the first part includes a third part perpendicular to the rotation axis. one side and a second side parallel to the axis of rotation.
  • the antenna assembly is disposed on the first part and includes a first radiator disposed on the first side.
  • the first radiator is provided with first feed points, first ground points and second feed points at intervals. Electric point, the first feed point is located on the side of the first ground point away from the second side; a first feed source is connected to the first feed point and is used to provide power to the first ground point.
  • the radiator feeds an excitation signal in the low frequency band and an excitation signal in the mid-to-high frequency band to excite the first branch of the first radiator located at the first ground point away from the second side to generate resonance in the low frequency band. and the first resonance in the mid-to-high frequency band; a second feed source, connected to the second feed point, used to feed an excitation signal in the ultra-high frequency band to the first radiator to excite the first radiation
  • a second branch in the body located at the first ground point facing the second side generates a first resonance in the ultra-high frequency band.
  • the first radiator can obtain the excitation signal in the low frequency band and the excitation signal in the mid-to-high frequency band fed by the first feed source, so that the first branch in the first radiator generates resonance in the low-frequency band and mid-to-high frequency band.
  • the first resonance of the ultra-high frequency band can also be obtained from the excitation signal of the ultra-high frequency band fed by the second feed source, so that the second branch in the first radiator generates the first resonance of the ultra-high frequency band, which is realized through the first branch Frequency band reuse of low frequency band, mid-to-high frequency band, thereby reducing the graft length required to generate the resonance of the low-frequency band and the first resonance of the mid-to-high frequency band, thus satisfying the requirements for setting the resonance of the low-frequency band in foldable electronic devices Antenna space requirements.
  • the second feed source feeds an excitation signal in the ultra-high frequency band into the first radiator to excite the second branch to generate the first resonance in the ultra-high frequency band.
  • the excitation signal in the ultra-high frequency band and the excitation signal in the mid-to-high frequency band have different frequency bands, and resonance occurs through different branches, the excitation signal in the ultra-high frequency band and the excitation signal in the mid-to-high frequency band in this application will not affect each other. It can ensure that the quality of the excitation signal in the ultra-high frequency band and the excitation signal in the mid-to-high frequency band is good.

Landscapes

  • Support Of Aerials (AREA)

Abstract

本申请公开了一种电子设备,包括壳体组件有第一部分和第二部分,第一部分有第一侧边和第二侧边;天线组件设置于第一部分,包括第一辐射体位于第一侧边,第一辐射体间隔有第一馈电点,第一接地点第二馈电点,第一馈电点于第一接地点背离第二侧边一侧;第一馈源与第一馈电点连接,向第一辐射体馈入低频频段激励信号和中高频频段激励信号,以激励第一辐射体位于第一接地点背离第二侧边第一枝节产生低频频段谐振和中高频频段第一谐振;第二馈源,与第二馈电点连接,向第一辐射体馈入超高频频段激励信号,以激励第一辐射体位于第一接地点朝向第二侧边第二枝节产生超高频频段第一谐振。解决可折叠电子设备中设置产生低频频段谐振的天线空间不足的问题。

Description

电子设备
相关申请的交叉引用
本申请要求于2022年8月25日提交中国专利局的申请号为202211026857.1、名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体的,涉及一种电子设备。
背景技术
目前,随着电子信息技术的飞速发展,一些电子设备具有折叠功能。然而,实现折叠功能会占用部分电子设备中设置用于实现低频频段谐振的天线的空间,导致电子设备中设置产生低频频段谐振的天线的空间不足。
发明内容
本申请提出了一种电子设备,以改善上述缺陷。
第一方面,本申请实施例提供了一种电子设备,壳体组件,包括可沿一转动轴线相对折叠或展开的第一部分和第二部分,所述第一部分包括垂直于所述转动轴线的第一侧边和平行于所述转动轴线的第二侧边;天线组件,设置于所述第一部分,包括,第一辐射体,设置于所述第一侧边,所述第一辐射体上间隔设置有第一馈电点,第一接地点和第二馈电点,所述第一馈电点位于所述第一接地点背离所述第二侧边的一侧;第一馈源,与所述第一馈电点连接,用于向所述第一辐射体馈入低频频段的激励信号和中高频频段的激励信号,以激励所述第一辐射体中位于所述第一接地点背离所述第二侧边的第一枝节产生低频频段的谐振和中高频频段的第一谐振;第二馈源,与所述第二馈电点连接,用于向所述第一辐射体馈入超高频频段的激励信号,以激励所述第一辐射体中位于所述第一接地点朝向所述第二侧边的第二枝节产生超高频频段的第一谐振。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例提供的一种电子设备的结构图;
图2示出了本申请实施例提供的天线组件的结构示意图;
图3示出了本申请又一实施例提供的天线组件的结构示意图;
图4示出了本申请还一实施例提供的天线组件的结构示意图;
图5示出了本申请另一实施例提供的天线组件的结构示意图;
图6示出了本申请实施例提供S参数和频率关系的示意图;
图7示出了本申请辐射效率和频率关系的示意图;
图8示出了本申请S参数和辐射效率与频率关系的示意图;
图9示出了本申请再一实施例提供的天线组件的结构示意图;
图10示出了本申请再一实施例提供的天线组件的结构示意图;
图11示出了本申请再一实施例提供的天线组件的结构示意图;
图12示出了本申请再一实施例提供的天线组件的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
目前,随着电子信息技术的飞速发展,一些电子设备具有折叠功能。然而,实现折叠功能会占用部分电子设备中设置用于产生低频频段谐振的天线的空间,导致电子设备中设置产生低频频段谐振的天线的空间不足。如何满足可折叠电子设备中,设置产生低频频段谐振的天线的空间需求,是一个亟待解决的问题。
目前,电子设备一般可以包括多个枝节,其中多个为至少两个。枝节可以被激励信号激励,从而产生该激励信号对应频段的谐振,以在空间中产生该激励信号对应的频段的无线通信信号,即可以实现无线通信信号的辐射;还可以用于接收空间中传输的无线通信信号。该无线通信信号可以为一种电磁波信号。进一步的,电子设备可以通过多个枝节收发的不同频段的无线通信信号,实现基于多个频段进行通信。
具体的,电子设备可以利用多个枝节、通过无线通信技术与网络或其他设备通信。其中,无线通信技术包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无 线服务(general packet radio service,GPRS),码分多址接入(codedivision multiple access,CDMA),宽带码分多址(wideband code division multipleaccess,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),无线局域网(wireless local areanetworks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),近距离无线通信技术(near field communication,NFC),调频(frequency modulation,FM),和/或红外技术(infrared,IR)等。
电子设备的枝节一般可以设置于电子设备的壳体组件,可以用于收发不同频段的无线通信信号。其中,由于无线通信信号的频率和波长是成反相关的关系,即无线通信信号的频率越高,该无线通信信号的波长就越短。而实现收发的无线通信信号所需要使用的枝节的长度,又和该无线通信信号的波长正相关,因此枝节的长度和无线通信信号的频率反相关,即无线通信信号的频率越高,所需要的枝节的长度就越短;无线通信信号的频率越低,所需要的枝节的长度就越长。因此,对于频率较低的无线通信信号,例如低频(LowerBand,LB)频段的信号,对应的枝节长度较长,例如可以达50mm。目前一般将低频LB频段所需要的枝节设置于电子设备的壳体组件中,较长的侧边,从而实现低频LB频段的无线通信信号的收发。
然而,随着电子设备中柔性显示屏等部件的发展,电子设备的可以具有可折叠的功能。一种示例性的,可以是沿着手机中线处设置有转动轴,可沿转动轴线相对折叠或展开,其中手机中线可以为与电子设备的壳体组件中较长一条侧边平行,也可以与较短的侧边平行。其中,若中线与较短的侧边平行,则该中线会与较长的侧边产生交点。而发明人在研究中发现,现有电子设备中用于收发低频LB频段的无线通信信号的较长枝节,一般会分布于电子设备较长的侧边上与中线交点的两侧。然而,对于可折叠的电子设备,较长的侧边上与中线的交点,需要设置用于折叠的转动连接部件,因此无法再设置较长的枝节,导致电子设备低频LB频段对应的天线设计困难。
因此,本申请提供了一种电子设备,用以解决或部分解决上述问题。下面将结合附图具体描述本申请的各实施例。
请参阅图1,图1示出了一种电子设备100,该电子设备100包括有壳体组件190,其中壳体组件可以包括第一部分101以及第二部分102,其中第一部分101和第二部分102可沿一转动轴线103相对折叠或展开。第一部分101和第二部分102能够相对折叠至闭合状态,也能够相对展开至打开状态。也即,第一部分101和第二部分102可以通过转动轴线103在闭合状态和打开状态之间切换。其中,图1示出的电子设备100,对应于电子设备100的打开状态。对于一些实施方式,第一部分101可以为电子设备100被正常手握使用时的上部分,而第二部分102可以为电子设备100被正常手握使用时的下部分。
进一步的,第一部分101还可以包括有第一侧边104以及第二侧边105,其中第一侧边104垂直于转动轴线103,而第二侧边105平行于转动轴线103。容易理解的是,第二部分102还可以包括有第三侧边106和第四侧边107,其中第三侧边106垂直于转动轴线103,而第四侧边107平行于转动轴线103。
对于一些实施方式,电子设备还包括一前壳110和一后盖120,以及中板150。其中中板150可以被围设于第一部分101的第一侧边104以及第二侧边105,以及第二部分102的第三侧边106和第四侧边107之内,中板150还可以分别与第一侧边104、第二侧边105、第三侧边106或第四侧边107连接。中板150包括相背的第一侧和第二侧,后盖120装配于中板150的第一侧,前壳110装配于中板150的第二侧,具体而言前壳110和后盖120均装配于第一侧边104、第二侧边105、第三侧边106以及第四侧边107,并形成封闭的壳体组件190,前壳110可以包括显示屏160。前壳110和后盖120共同围设成一收容空间以收容其他组成元件,例如,主板170和电池180等。
进一步的,第一部分101还可以设置第一辐射体(图2中280)。其中第一辐射体280可以用于获取特定频段的激励信号,从而可以产生基于该特定频段的激励信号的谐振,进而产生用于在空间中传输的无线通信信号。其中,无线通信信号的频率和特定频段的激励信号相关,因此该无线通信信号可以具有不同的频率,即无线通信信号可以包括不同频段的信号,例如,可以为低频LB频段的信号,也可以为中频MB频段的信号,还可以为高频(HighBand,HB)频段的信号。进一步的,无线通信信号还可以具有不同的通信模式,例如,该无线通信信号可以为全球移动通信系统GSM,也可以为长期演进LTE,还可以为新空口5GNR。关于第一辐射体具体的介绍,请参阅后续实施例。
对于一些实施方式,前壳110和后盖120可以为金属壳体。需要说明的是,本申请实施例前壳110和后盖120的材料并不限于此,还可以采用其它方式,比如:前壳110和后盖120可以包括塑 胶部分和金属部分。再比如:前壳110和后盖120可以为塑胶壳体、陶瓷壳体等。保护盖板可以为玻璃盖板、蓝宝石盖板、塑料盖板等,提供对显示屏160的保护作用,以防止灰尘、水气或油渍等附着于显示屏,避免外界环境对显示屏160的腐蚀,同时防止外界环境对显示屏160的冲击力,避免显示屏160的破碎。保护盖板可以包括显示区和非显示区。显示区为透明,以对应显示屏160的出光面。非显示区为非透明,以遮蔽电子设备的内部结构。非显示区可以开设供声音、及光线传导的开孔等。
需要说明的是,本申请实施例的电子设备100也可以全面屏设计,而不保留非显示区。电子设备100可以在其周缘设置有耳机孔、麦克风孔、扬声器孔、通用串行总线接口孔。该耳机孔、麦克风孔、扬声器孔、通用串行总线接口孔均为通孔,并形成于壳体组件190上,并可以与收容空间内的主板170电性连接。
进一步的,请一并参阅图1和图2,电子设备100还可以包括天线组件200,其中图2示出了一种天线组件200,所述天线组件200可以应用于图1示出的电子设备100中,具体的,该天线组件200可以置于电子设备100中的第一部分101,该第一部分101可以被包括于前壳110和后盖120共同围设成的收容空间中。
具体的,所述天线组件200可以包括第一辐射体280,该第一辐射体280可以设置于第一侧边104,该第一辐射体280上间隔设置有第一馈电点2021,第一接地点201和第二馈电点2022,其中,所述第一馈电点2021位于所述第一接地点201背离所述第二侧边105的一侧。第一辐射体280可以为一种金属导体,该第一辐射体280可以用于获取特定频段的激励信号,从而可以产生基于该特定频段的激励信号的谐振,进而产生用于在空间中传输的无线通信信号。一种示例性的,该第一辐射体280可以包括一个枝节,该枝节上可以连接有馈地点以及馈源,从而馈源可以向该枝节馈入特定频率的激励信号,使该枝节可以基于该特定频率的激励信号产生谐振,进而产生无线通信信号。该第一辐射体280还可以包括多个枝节,其中多个为至少两个,不同的枝节可以分别设置有馈源,不同的枝节还可以具有不同的长度,从而通过不同的馈源可以向不同长度的枝节馈入激励信号,进而通过不同长度的枝节形成不同频率的谐振,进而产生不同频率的无线通信信号。
对于本申请提供的一种实施方式,第一辐射体280可以包括第一枝节202以及第二枝节203,其中第一枝节202为第一辐射体280中所述第一接地点201背离所述第二侧边105的部分,第二枝节203为第一辐射体280中位于所述第一接地点201朝向所述第二侧边105的部分。关于通过第一枝节202和第二枝节203辐射无线通信信号的详细介绍,可以参阅后续实施例。
进一步的,请继续参阅图2,其中,天线组件200还包括有第一馈源204和第二馈源208,其中第一馈源204与第一馈电点2021连接,第二馈源208与第二馈电点2022连接。
对于一些实施方式,第一接地点201在第一辐射体中相对更靠近第二侧边105的方向,因此第一枝节202相比于第二枝节203可以更长一些。又由于枝节的长度和无线通信信号的频率具有反相关的关系,因此和馈源馈入的激励信号的频率也具有反相关的关系,从而可以对第一枝节202馈入频率较低的激励信号,而对第二枝节203馈入频率较高的激励信号。又由于通过枝节实现低频LB频段的谐振所需要的枝节长度较长,因此可以通过模式复用,尽量缩小实现低频LB频段的谐振对电子设备中空间的需求。具体的,模式复用是指对同一枝节,或对同一枝节中的一部分,馈入不同频段的激励信号,从而使同一枝节,或对同一枝节中的一部分可以基于不同频段的激励信号产生不同的谐振,进而辐射不同频率的无线通信信号。一种示例性的,若需要产生频段为A1的谐振,所需要的枝节长度为B1,需要产生频段为A2的谐振,所需要的枝节长度为B2,此时若分别通过两个枝节产生频率为A1和A2的谐振,则所需要的枝节长度至少为B1和B2之和。此时若通过模式复用,若上述示例中长度B1大于B2,则可以通过B1产生频段为A1的谐振,而通过使用B1中一部分长度,例如使用B1中B2长度的枝节,产生A2频段的谐振,从而节约了电子设备中的空间。
因此,可以对第一枝节202进行模式复用,从而可以通过第一枝节202产生多种频段的谐振,进而节省电子设备内部空间,更利于枝节的布局。进一步的,第一枝节202通过对不同频率的激励信号产生谐振,而辐射的无线通信信号,可以为相同通信模式对应的不同频率的无线通信信号,其中通信模式可以包括全球移动通信系统GSM,长期演进LTE或新空口5GNR等。例如,第一枝节202辐射的无线通信信号可以为长期演进LTE通信模式的低频LB频段信号和中高频(MiddleHighBand,MHB)频段信号。第一枝节202辐射的无线通信信号,还可以为不同通信模式对应的不同频率的无线通信信号,例如,第一枝节202收发的无线通信信号可以为长期演进LTE对应的低频LB频段信号,以及新空口5GNR对应的N41频段。其中,低频LB频段可以为703MHz-960MHz,N41频段可以为2515MHz-2675MHz,中高频MHB频段可以为1710MHz-2690MHz。
因此,对于本申请提供的一种实施方式,第一馈源204可以通过位于第一辐射体280上的第一馈电点2021,向第一辐射体280馈入低频LB频段的激励信号和中高频MHB频段的激励信号,从而激励所述第一辐射体280中位于所述第一接地点201背离所述第二侧边105的第一枝节202产生低频LB频段的谐振和中高频MHB频段的第一谐振,进而第一枝节202可以辐射低频LB频段的无线通信信号和中高频MHB频段的无线通信信号。第二馈源208可以通过位于第一辐射体280上的第二馈电点2022,向第一辐射体280馈入超高频频段的激励信号,从而激励所述第一辐射体280中位于所述第一接地点202朝向所述第二侧边105的第二枝节203产生超高频频段的第一谐振,进而第二枝节203可以辐射超高频频段的无线通信信号。
对于本申请提供的一种实施方式,所述第一枝节202在获取到第一馈源204馈入的低频LB频段的激励信号和中高频MHB频段的激励信号后,可以被激励产生低频LB频段的谐振,以及中高频MHB频段的第一谐振,进而可以辐射低频LB频段的无线通信信号,以及中高频MHB频段的无线通信信号。一种示例性的,第一馈源204馈入第一枝节202的中高频激励信号中,可以包括N41频段的激励信号。
本申请中第一辐射体可以获取到第一馈源馈入的低频LB频段的激励信号和中高频MHB频段的激励信号,从而第一辐射体中的第一枝节产生低频LB频段的谐振和中高频MHB频段的第一谐振,还可以获取到第二馈源馈入的超高频频段的激励信号,从而第一辐射体中的第二枝节产生超高频频段的第一谐振。本实施例通过第一枝节实现低频LB频段和中高频MHB频段的频段复用,从而减小了产生低频LB频段的谐振和中高频MHB频段的第一谐振所需要的枝节长度,进而满足了可折叠电子设备中,设置产生低频频段谐振的天线空间需求。
进一步的,由前述介绍可知,第二枝节203的长度小于第一枝节202的长度,因此第二枝节203可以用于收发频率较高的无线通信信号。对于本申请提供的一种实施方式,所述第二枝节203在获取到第二馈源208馈入的超高频频段的激励信号后,可以被激励产生超高频频段的第一谐振,进而可以辐射超高频频段的无线通信信号。一种示例性的,超高频频段可以包括N78频段以及N79频段中至少一个。具体的,N78频段可以为3400MHz-3600MHz,N79频段可以为4800MHz-4900MHz。
又由于第一枝节202和第二枝节203同属于第一辐射体280,若第一馈电源204第一枝节202产生谐振的频段和第二枝节203产生谐振的频段相同或接近,容易发生干扰,造成第一辐射体280辐射效率降低。而本申请中第二馈源208向所述第一辐射体280馈入超高频频段的激励信号,以激励第二枝节203产生超高频频段的第一谐振。由于超高频频段的激励信号和中高频频段的激励信号的频段并不相同,且通过不同枝节产生谐振,因此本申请中超高频频段的激励信号和中高频频段的激励信号不会相互影响,可以保证超高频频段的激励信号和中高频频段的激励信号的质量较好。
请参阅图3,图3示出了一种天线组件200,所述天线组件200可以应用于图1示出的电子设备100,具体的,该天线组件200可以置于电子设备100中的第一部分101,该第一部分101可以被包括于前壳110和后盖120共同围设成的收容空间中。其中,天线组件200可以包括第一馈源204、第二馈源208以及第一辐射体280,其中第一辐射体280上设置有第一接地点201、第一馈电点2021以及第二馈电点2022,连接关系和作用可以参阅前述实施例的描述,此处就不再赘述。
进一步的,图3示出的天线组件200中还包括第二辐射体212,该第二辐射体212设置于第二侧边105。具体的,第二辐射体212上设置有第三馈电点2121。该第二辐射体212可以为一种金属导体,该第二辐射体212可以用于获取特定频段的激励信号,从而可以产生基于该特定频段的激励信号的谐振,进而产生用于在空间中传输的无线通信信号。
进一步的,天线组件200还包括有第三馈源213,其中第三馈源213和第三馈电点2121连接。第三馈源212可以通过位于第二辐射体212上的第三馈电点2121,向第二辐射体212馈入中高频MHB频段和超高频频段的激励信号,从而激励所述第二辐射体212产生中高频MHB频段的第二谐振和超高频频段第二谐振,进而第二辐射体可以辐射中高频MHB频段的无线通信信号和超高频频段无线通信信号。其中,超高频频段可以包括N78频段以及N79频段中至少一个。
又由于电子设备一般具有一个以上的辐射体,仅通过单个辐射体辐射无线通信信号效率较低。因此可以在其中一个辐射体辐射无线通信信号的时候,另一个辐射体可以作为该辐射体的寄生辐射体,通过产生寄生谐振,从而辐射无线通信信号。因此,对于一些实施方式,请参阅图4,图4示出了一种天线组件200,所述天线组件200可以应用于图1示出的电子设备100,具体的,该天线组件200可以置于电子设备100中的第一部分101,该第一部分101可以被包括于前壳110和后盖120共同围设成的收容空间中。其中,天线组件200可以包括第一馈源204、第二馈源208以及第一辐射体280,其中第一辐射体280上设置有第一接地点201、第一馈电点2021以及第二馈电点 2022,连接关系和作用可以参阅前述实施例的描述,此处就不再赘述。
进一步的,该天线组件200还可以包括第一寄生辐射体209。具体的,该第一寄生辐射体209的一部分设置于所述第一侧边104,并与所述第一辐射体之间形成第一缝隙211,另一部分设置于所述第二侧边105,并与所述第二辐射体212之间形成第二缝隙214。其中,该第一寄生辐射体209上间隔设置有第二接地点210和第三接地点250,所述第二接地点210位于所述第三接地点250朝向所述第一辐射体280的一侧。进一步的,第一寄生辐射体209可以通过第一缝隙211或第二缝隙214耦合激励信号,从而产生该激励信号对应的频率的谐振,进而辐射无线通信信号。
具体的,第二馈源208馈入第一辐射体280的超高频频段的激励信号,可以通过第一缝隙211耦合至第一寄生辐射体209,进而第一寄生辐射体209可以基于耦合到的超高频频段的激励信号,产生超高频频段的第一寄生谐振。具体的,所述第一寄生辐射体209位于所述第二接地点210与所述第一缝隙211之间的部分用于产生所述超高频频段的第一寄生谐振。
进一步的,第三馈源213馈入第二辐射体212的中高频频段和超高频频段的激励信号,可以通过第二缝隙214耦合至第一寄生辐射体209,进而第一寄生辐射体209可以基于耦合到的中高频频段和超高频频段的激励信号,产生中高频MHB频段的第一寄生谐振和超高频频段的第二寄生谐振。具体的,所述第一寄生辐射体209位于所述第三接地点250与所述第二缝隙214之间的部分用于形成所述中高频MHB频段的第一寄生谐振,位于所述第三接地点250与所述第二缝隙214之间的至少部分所述第一寄生辐射体209还用于产生所述超高频频段的第二寄生谐振。
因此,通过超高频频段的第一寄生谐振,可以提高第一辐射体280辐射超高频频段无线通信信号的效率;通过中高频频段的第一寄生谐振可以提高第二辐射体212辐射中高频频段的无线通信信号的效率;通过超高频频段的第二寄生谐振可以提高第二辐射体212辐射超高频频段的无线通信信号的效率。
可选的,还可以将第一辐射体280朝向第一寄生辐射体209的方向移动,从而为第一枝节202留出更多的空间,可以更方便的设置第一枝节202。
不难理解的是,若电子设备100中设置有多个馈电源,馈电源产生的激励信号对应的频段之间若存在相互覆盖的频段,则可能会使得不同馈电源之间产生耦合,进而降低不同馈电源之间的隔离度。一种示例性的,若电子设备设置有馈电源A以及馈电源B,其中馈电源A用于产生频段为X+Y的激励信号,而馈电源B用于产生频段为X的激励信号,则其中馈电源A和馈电源B都可以产生频段为X的激励信号。此时馈电源A产生的频段X的激励信号,可能耦合进入馈电源B,而馈电源B产生的频段X的激励信号,也可能耦合进入馈电源A,从而造成馈电源A与馈电源B之间产生耦合,降低了馈电源A的与馈电源B之间的隔离度。
对于本申请提供的实施方式,第二馈源208馈入第二枝节203的超高频频段的激励信号,和第三馈源213馈入第三枝节212的超高频频段的激励信号,都属于超高频频段,包括N78以及N79频段中的至少一个。因此,第二馈源208馈入第二枝节203超高频频段的激励信号时,第二辐射体212可以耦合到该超高频频段的激励信号。类似的,当第三馈源213向第二辐射体212馈入超高频频段的激励信号时,第二枝节203上同样会耦合得到该超高频频段的激励信号。其中,第二馈源208和第三馈源213之间可以通过第二接地点210以及第三接地点250增加隔离度,具体的隔离程度和第二接地点210以及第三接地点250之间的距离成正相关。因此,随着第二辐射体212与第二枝节203距离变小,即第二接地点210以及第三接地点250之间的距离变小,则第二馈源208与第三馈源213之间的隔离度会下降。
因此,请参阅图5,图5示出了一种天线组件200,所述天线组件200可以应用于图1示出的电子设备100,具体的,该天线组件200可以置于电子设备100中的第一部分101,该第一部分101可以被包括于前壳110和后盖120共同围设成的收容空间中。其中,天线组件200可以包括第一馈源204、第二馈源208以及第一辐射体280,其中第一辐射体280上设置有第一接地点201、第一馈电点2021以及第二馈电点2022,连接关系和作用可以参阅前述实施例的描述,此处就不再赘述。
进一步的,第一寄生辐射体209上还设置有第一匹配点2169,所述第一匹配点2169位于所述第三接地点250背离所述第二接地210点的一侧。
该天线组件还可以包括第一匹配电路216,该第一匹配电路216与所述第一匹配点2169连接。其中,该第一匹配电路216可以通过提高超高频频段的第一寄生谐振与所述超高频频段的第二寄生谐振的等效隔离地宽度,从而提高第二馈源208以及第三馈源213之间馈入超高频频段激励信号的隔离度。又由于第三馈源213馈入第二辐射体212的中高频频段的激励信号,和第二馈源208馈入第一辐射体280的超高频频段的激励信号之间的频率相差较大,因此中高频MHB频段的激励信号和 超高频频段的激励信号之间不会发生干扰,因此不会引起第二馈源208与第三馈源213之间隔离度降低的问题。
对于一些实施方式,若第三接地点250与第二接地点210之间的距离为D1,第一匹配点2169到第二馈地点210之间的距离为D2,由于第三接地点250设置于所述第一匹配点2169和所述第二馈地点210之间,因此D1小于D2。当第一辐射体280朝向第一寄生辐射体209的方向移动时,即朝向第二侧边105所在的位置移动,第二接地点210会跟随第一辐射体280移动的方向进行移动,因此此时第二接地点210与第三接地点250之间的距离D1会变小。又由于第一匹配点2169和第二接地点210之间的距离D2较大,此时即使第三接地点250移动,D2变小,对D2的影响不会太大,此时第一匹配点2169可以将超高频频段的激励信号通过第一匹配电路216接地。因此即使第二接地点210移动,也不会对第二馈源208和第三馈源213之间的隔离度造成明显影响。
因此,基于上述分析,第一匹配电路216可以对频率较低的信号呈现较大的抗性,从而使频率较低的信号不容易通过匹配电路接地;第一匹配电路216还可以对频率较高的信号呈现较小的抗性,从而使频率较高的信号容易通过匹配电路接地。
一种示例性的,所述第一匹配电路216对于所述中高频频段的激励信号呈高阻态,且对于所述超高频频段的激励信号呈低阻态,从而实现第一匹配点2169与所述第二接地点210之间的宽度形成所述超高频频段的第一寄生谐振与所述超高频频段的第二寄生谐振的等效隔离地宽度,相比于第三接地点250与第二接地点210之间宽度形成的成所述超高频频段的第一寄生谐振与所述超高频频段的第二寄生谐振的隔离地宽度,等效隔离地的宽度更宽,从而可以提高第二馈源208与第三馈源213之间的隔离度。
进一步的,由于第一匹配电路216对于所述中高频频段的激励信号呈高阻态,且对于所述超高频频段的激励信号呈低阻态,因此,第三馈源213馈入第二辐射体212的超高频频段的激励信号,可以通过第二缝隙214耦合至第一寄生辐射体209,进而第一寄生辐射体209位于所述第一匹配点2169与所述第二缝隙214之间的部分,可以基于耦合到的超高频频段的激励信号,形成所述超高频频段的第二寄生谐振。
可选的,通过上述分析可知,第一匹配电路216需要对于所述中高频频段的激励信号呈高阻态,且对于所述超高频频段的激励信号呈低阻态,因此,一种示例性的,该第一匹配电路可以为一种电容。具体的,该电容的一端可以和所述第一匹配点2169连接,另一端接地。由于超高频频段的激励信号相较于低频LB频段的激励信号或中频MB频段的激励信号频率较高,因此此时该电容对超高频频段的激励信号呈现较低阻态,即可以对第二馈源208馈入第一辐射体280的超高频频段的激励信号,通过第一缝隙211耦合至第一寄生辐射体209的部分呈现较低的阻态,以及可以对于第三馈源213馈入第二辐射体212的超高频频段的激励信号,通过第二缝隙214耦合至第一寄生辐射体209的部分呈现较低的阻态。而对于第三馈源213馈入第二辐射体212的中高频频段的激励信号,通过第二缝隙214耦合至第一寄生辐射体209的部分呈现较高的阻态。从而可以使第一寄生辐射体209位于所述第一匹配点2169与所述第二缝隙214之间的部分,可以基于耦合到的超高频频段的激励信号,形成所述超高频频段的第二寄生谐振。
另一种示例性的,该第一匹配电路216还可以为带阻滤波器,即该带阻滤波器的一端可以和所述第一匹配点2169连接,另一端接地。该带阻滤波器可以对第二馈源208馈入第一辐射体280的超高频频段的激励信号,通过第一缝隙211耦合至第一寄生辐射体209的部分呈现较低的阻态,以及可以对于第三馈源213馈入第二辐射体212的超高频频段的激励信号,通过第二缝隙214耦合至第一寄生辐射体209的部分呈现较低的阻态。而对于第三馈源213馈入第二辐射体212的中高频频段的激励信号,通过第二缝隙214耦合至第一寄生辐射体209的部分呈现较高的阻态。从而可以使第一寄生辐射体209位于所述第一匹配点2169与所述第二缝隙214之间的部分,可以基于耦合到的超高频频段的激励信号,形成所述超高频频段的第二寄生谐振。
还一种示例性的,该第一匹配电路216还可以为高通滤波器,该高通滤波器的一端可以和所述第一匹配点2169连接,另一端接地。该高通滤波器可以对第二馈源208馈入第一辐射体280的超高频频段的激励信号,通过第一缝隙211耦合至第一寄生辐射体209的部分呈现较低的阻态,以及可以对于第三馈源213馈入第二辐射体212的超高频频段的激励信号,通过第二缝隙214耦合至第一寄生辐射体209的部分呈现较低的阻态。而对于第三馈源213馈入第二辐射体212的中高频频段的激励信号,通过第二缝隙214耦合至第一寄生辐射体209的部分呈现较高的阻态。从而可以使第一寄生辐射体209位于所述第一匹配点2169与所述第二缝隙214之间的部分,可以基于耦合到的超高频频段的激励信号,形成所述超高频频段的第二寄生谐振。
请参阅图6,图6示出了图5示出的天线组件200中的第三馈源213的S参数和频率关系的示意图。其中,图6中示出的横坐标为频率,单位为GHz,其中1GHz=1000MHz,纵坐标为S参数,单位为dB。具体的,图6中包括曲线N1、曲线N2以及曲线N3。其中,曲线N1用于表征第三馈源213在馈入中频MB频段的激励信号时的S参数,此时第三馈源213通过第二辐射体212获取中频MB频段的激励信号,进而辐射中频MB频段的无线通信信号。曲线N2用于表征第三馈源213在馈入超高频HB频段时的S参数,此时第三馈源213通过第二辐射体212获取的高频HB频段的信号。曲线N3用于表征第三馈源213在馈入超高频频段时的S参数,此时第三馈源213通过第二辐射体212辐射的超高频频段的信号。其中S参数越小,表征第三馈源213在该频率处匹配程度越深,越容易产生谐振。
进一步的,请参阅图7,图7示出了图5示出的天线组件200中的第三馈源213的辐射效率和频率关系的示意图。其中,图7中示出的横坐标为频率,单位为GHz,纵坐标为辐射效率,单位为dB。请结合图5,其中,第三馈源213和第三馈电点2121之间,可以通过第三馈电线217连接,而第三馈源213馈入第二辐射体212的激励信号,作用于第三馈电线217时,会产生不同的阻抗。由于第二辐射体212产生的激励信号为中高频MHB频段以及超高频频段的激励信号,频率一般较高,因此若第三馈电线217和第三馈源213之间的阻抗不匹配,会使得第三馈源213馈入第二辐射体212的激励信号,经过第三馈电线217馈入至第三馈电点2121的过程中,有一部分激励信号会反射回第三馈源213,造成第三馈源213馈入激励信号的效率下降。
具体的,请继续参阅图7,图7中包括曲线N4、曲线N5、曲线N6、曲线N7、曲线N8以及曲线N9。其中,曲线N4、曲线N5以及曲线N6用于表征第三馈源213与第三馈电点2121之间考虑阻抗理想匹配时,不同频段的谐振对应的辐射效率;而曲线N7、曲线N8以及曲线N9用于表征第三馈源213与第三馈电点2121之间考虑阻抗实际匹配程度时,不同频段的谐振对应的辐射效率。其中,阻抗理想匹配,可以为阻抗完全匹配,由于阻抗完全匹配在现实中不易实现,因此还考虑阻抗实际匹配,即现实中容易得到的阻抗实际匹配值。具体的,曲线N4用于表征第三馈源213与第三馈电点2121之间考虑阻抗理想匹配时,第三馈源213馈入中频MB频段的激励信号至第二辐射体212,使第二辐射体212产生中频MB频段的谐振,进而辐射中频MB频段的无线通信信号的辐射效率。曲线N5用于表征第三馈源213与第三馈电点2121之间考虑阻抗理想匹配时,第三馈源213馈入高频HB频段的激励信号至第二辐射体212,使第二辐射体212产生高频HB频段的谐振,进而辐射高频HB频段的无线通信信号的辐射效率。曲线N6用于表征第三馈源213与第三馈电点2121之间考虑阻抗理想匹配时,第三馈源213馈入超高频频段的激励信号至第二辐射体212,使第二辐射体212产生超高频频段的谐振,进而辐射超高频频段的无线通信信号的辐射效率。曲线N7用于表征第三馈源213与第三馈电点2121之间考虑阻抗实际匹配时,第三馈源213馈入中频MB频段的激励信号至第二辐射体212,使第二辐射体212产生中频MB频段的谐振,进而辐射中频MB频段的无线通信信号的辐射效率。曲线N8用于表征第三馈源213与第三馈电点2121之间考虑阻抗实际匹配时,第三馈源213馈入高频HB频段的激励信号至第二辐射体212,使第二辐射体212产生高频HB频段的谐振,进而辐射高频HB频段的无线通信信号的辐射效率。曲线N9用于表征第三馈源213与第三馈电点2121之间考虑阻抗实际匹配时,第三馈源213馈入超高频频段的激励信号至第二辐射体212,使第二辐射体212产生超高频频段的谐振,进而辐射超高频频段的无线通信信号的辐射效率。
进一步的,请参阅图8,图8示出了图5示出的无线装置200中的第二馈源208的S参数和辐射效率与频率关系的示意图。图8中示出的横坐标为频率,单位为GHz,纵坐标为S参数和辐射效率,单位为dB。具体的,图8中包括曲线N10和曲线N11。其中,曲线N10用于表征第二馈源208的S参数和频率的关系,N11用于表征第二馈源208的辐射效率和频率的关系。图8中易知,第二馈源208通过第二辐射体212辐射的超高频频段的无线通信信号,具体在N78频段有较好的S参数和辐射效率。
可选的,请参阅图9,图9示出了一种天线组件200,所述天线组件200可以应用于图1示出的电子设备100,具体的,该天线组件200可以置于电子设备100中的第一部分101,该第一部分101可以被包括于前壳110和后盖120共同围设成的收容空间中。其中,天线组件200可以包括第一馈源204、第二馈源208以及第一辐射体280,其中第一辐射体280上设置有第一接地点201、第一馈电点2021以及第二馈电点2022,连接关系和作用可以参阅前述实施例的描述,此处就不再赘述。
进一步的,图9示出的天线组件200中的第一匹配电路216可以对频率较低的信号呈现较大的 抗性,从而使频率较低的信号不容易通过匹配电路接地;第一匹配电路216还可以对频率较高的信号呈现较小的抗性,从而使频率较高的信号容易通过匹配电路接地。因此,该第一匹配电路216可以包括第二电容C2和第一电感L1,其中所述第二电容C2的一端和所述第一匹配点2169连接,另一端接地,所述第一电感L1的一端和所述第一匹配点2169连接,另一端接地,即第二电容C2和第一电感L1并联后接入于第一匹配点2169和地之间。此时通过第二电容C2和第一电感L1,形成对于所述中高频频段的激励信号呈高阻态,且对于所述超高频频段的激励信号呈低阻态,从而实现第一匹配点2169与所述第二接地点210之间的宽度形成所述超高频频段的第一寄生谐振与所述超高频频段的第二寄生谐振的等效隔离地宽度。其中,第二电容C2的容值可以包括1.5皮法至1.7pf中任意容值,第一电感L1的感抗包括2.1纳亨至2.3纳亨中任意感抗。例如,第二电容C2的容值可以为1.6pF,第一电感L1感抗可以为2.2nH。
可选的,请参阅图10,图10示出了一种天线组件200,所述天线组件200可以应用于图1示出的电子设备100,具体的,该天线组件200可以置于电子设备100中的第一部分101,该第一部分101可以被包括于前壳110和后盖120共同围设成的收容空间中。其中,天线组件200可以包括第一馈源204、第二馈源208以及第一辐射体280,其中第一辐射体280上设置有第一接地点201、第一馈电点2021以及第二馈电点2022,连接关系和作用可以参阅前述实施例的描述,此处就不再赘述。
图10中示出的天线组件200还可以包括第二寄生辐射体290。具体的,该第二寄生辐射体290设置于所述第一侧边104,且位于所述第一辐射体280背离所述第一寄生辐射体209的一侧,并与所述第一辐射体280之间形成第三缝隙291,所述第二寄生辐射体290在靠近所述转动轴线103的一端设置有第四接地点292。进一步的,第二寄生辐射体290可以通过第三缝隙291耦合激励信号,从而产生该激励信号对应的频率的谐振,进而辐射无线通信信号。需要说明的是,转动轴线103的一侧为该电子设备100中壳体组件190的第一部分101,另一侧为第二部分102,而第四接地点292位于第一部分101的一侧,从而不需要设置跨越转动轴线103的辐射体,降低了电子设备100中辐射体的设计难度。
第一馈电源204馈入第一辐射体280中第一枝节202的中高频MHB频段的激励信号,有部分会通过第三缝隙291耦合至第二寄生辐射体290,此时第二寄生辐射体290可以用于形成所述中高频频段的第二寄生谐振,则可以基于该第二寄生谐振辐射中高频MHB频段的无线通信信号,从而提高了第一枝节辐射的中高频MHB频段的无线通信信号的效率。
具体的,第二寄生辐射体290上耦合得到的部分中高频MHB频段的激励信号,可以在第二寄生辐射体290位于第四接地点292与第三缝隙291之间的部分用于形成中高频MHB频段的第二寄生谐振。
可选的,请参阅图11,图11示出了一种天线组件200,所述天线组件200可以应用于图1示出的电子设备100,具体的,该天线组件200可以置于电子设备100中的第一部分101,该第一部分101可以被包括于前壳110和后盖120共同围设成的收容空间中。其中,天线组件200可以包括第一馈源204、第二馈源208以及第一辐射体280,其中第一辐射体280上设置有第一接地点201、第一馈电点2021以及第二馈电点2022,连接关系和作用可以参阅前述实施例的描述,此处就不再赘述。
其中,第一寄生辐射体209上还设置有第一调谐点293,所述第一调谐点293位于所述第三接地点250背离所述第二接地点210的一侧。
进一步的,天线组件200还包括第一调谐开关294,该第一调谐开关294与所述第一调谐点293连接,所述第一调谐开关294对于所述超高频频段的激励信号呈低阻态,且对于所述中高频频段的激励信号呈高阻态。其中,第一调谐开关294可以用于使第一寄生辐射体209中位于所述第一调谐点293与所述第二缝隙214之间的部分行成所述超高频频段的第二寄生谐振。具体的作用和前述实施例中的第一匹配电路216类似,此处就不再赘述。
请继续参阅图11,所述第一辐射体280上还设置有第二调谐点295,所述第二调谐点295位于所述第一接地点201和所述第一馈电点2021之间。进一步的,天线组件200还包括第二调谐开关296,该第二调谐开关296与所述第二调谐点295连接,所述第二调谐开关296对于所述中高频频段的激励信号呈低阻态,且对于所述低频频段激励信号呈高阻态。
其中,第二调谐开关296可以用于使第一枝节202中位于所述第二调谐点295背离所述第二侧边105的子枝节产生中高频MHB频段的第一谐振,从而减小了辐射中高频MHB频段的无线通信信号的枝节长度,可以在一定程度上提高第一辐射体280辐射中高频MHB频段的无线通信信号的辐射效 率。
可选的,请参阅图12,图12示出了一种天线组件200,所述天线组件200可以应用于图1示出的电子设备100,具体的,该天线组件200可以置于电子设备100中的第一部分101,该第一部分101可以被包括于前壳110和后盖120共同围设成的收容空间中。其中,天线组件200可以包括第一馈源204、第二馈源208以及第一辐射体280,其中第一辐射体280上设置有第一接地点201、第一馈电点2021以及第二馈电点2022,连接关系和作用可以参阅前述实施例的描述,此处就不再赘述。
可选的,为了使该天线组件200中的辐射体可以复用为具有电磁波能量吸收比率感应(SpecificAbsorption Rate Sensor,SARSensor)功能的感应辐射体,需要将对应的辐射体对地悬空。因此,对于本申请提供的一种实施方式,可以将辐射体的接地点通过较大容值的电容接地,从而实现辐射体对地悬空。具体的,第四接地点292可以通过第一电容C1接地,从而可以将第二寄生辐射体290实现对地悬空。第二接地点210可以通过第三电容C3接地;第三接地点250可以通过第四电容C4接地,从而可以将第一寄生辐射体209实现对地悬空。第一接地点201可以通过第五电容C5接地,从而可以将第一辐射体280实现对地悬空。
一种示例性的,上述第一电容C1、第三电容C3、第四电容C4以及第五电容C5的容值可以为22pF。
本申请提供的电子设备,包括壳体组件和天线组件,其中壳体组件包括可沿一转动轴线相对折叠或展开的第一部分和第二部分,所述第一部分包括垂直于所述转动轴线的第一侧边和平行于所述转动轴线的第二侧边。其中天线组件设置于所述第一部分,包括,第一辐射体,设置于所述第一侧边,所述第一辐射体上间隔设置有第一馈电点,第一接地点和第二馈电点,所述第一馈电点位于所述第一接地点背离所述第二侧边的一侧;第一馈源,与所述第一馈电点连接,用于向所述第一辐射体馈入低频频段的激励信号和中高频频段的激励信号,以激励所述第一辐射体中位于所述第一接地点背离所述第二侧边的第一枝节产生低频频段的谐振和中高频频段的第一谐振;第二馈源,与所述第二馈电点连接,用于向所述第一辐射体馈入超高频频段的激励信号,以激励所述第一辐射体中位于所述第一接地点朝向所述第二侧边的第二枝节产生超高频频段的第一谐振。本申请中第一辐射体可以获取到第一馈源馈入的低频频段的激励信号和中高频频段的激励信号,从而第一辐射体中的第一枝节产生低频频段的谐振和中高频频段的第一谐振,还可以获取到第二馈源馈入的超高频频段的激励信号,从而第一辐射体中的第二枝节产生超高频频段的第一谐振即通过第一枝节实现低频频段、中高频频段的频段复用,从而减小了产生低频频段的谐振和中高频频段的第一谐振所需要的接枝长度,进而满足了可折叠电子设备中,设置产生低频频段谐振的天线空间需求。进一步的,本申请中第二馈源向所述第一辐射体馈入超高频频段的激励信号,以激励第二枝节产生超高频频段的第一谐振。由于超高频频段的激励信号和中高频频段的激励信号的频段并不相同,且通过不同枝节产生谐振,因此本申请中超高频频段的激励信号和中高频频段的激励信号不会相互影响,可以保证超高频频段的激励信号和中高频频段的激励信号的质量较好。
以上所述,仅是本申请的具体实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭示如上,然而并非用以限定本申请,任何本领域技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (20)

  1. 一种电子设备,其特征在于,包括:
    壳体组件,包括可沿一转动轴线相对折叠或展开的第一部分和第二部分,所述第一部分包括垂直于所述转动轴线的第一侧边和平行于所述转动轴线的第二侧边;
    天线组件,设置于所述第一部分,包括,
    第一辐射体,设置于所述第一侧边,所述第一辐射体上间隔设置有第一馈电点,第一接地点和第二馈电点,所述第一馈电点位于所述第一接地点背离所述第二侧边的一侧;
    第一馈源,与所述第一馈电点连接,用于向所述第一辐射体馈入低频频段的激励信号和中高频频段的激励信号,以激励所述第一辐射体中位于所述第一接地点背离所述第二侧边的第一枝节产生低频频段的谐振和中高频频段的第一谐振;
    第二馈源,与所述第二馈电点连接,用于向所述第一辐射体馈入超高频频段的激励信号,以激励所述第一辐射体中位于所述第一接地点朝向所述第二侧边的第二枝节产生超高频频段的第一谐振。
  2. 根据权利要求1所述的电子设备,其特征在于,所述天线组件还包括:
    第二辐射体,设置于所述第二侧边,所述第二辐射体上设置有第三馈电点;
    第三馈源,与所述第三馈电点连接,用于向所述第二辐射体馈入中高频频段和超高频频段的激励信号,以激励所述第二辐射体产生中高频频段的第二谐振和超高频频段的第二谐振。
  3. 根据权利要求2所述的电子设备,其特征在于,所述天线组件还包括:
    第一寄生辐射体,一部分设置于所述第一侧边,并与所述第一辐射体之间形成第一缝隙,另一部分设置于所述第二侧边,并与所述第二辐射体之间形成第二缝隙;
    所述第一寄生辐射体上间隔设置有第二接地点和第三接地点,所述第二接地点位于所述第三接地点朝向所述第一辐射体的一侧;
    所述第一寄生辐射体位于所述第二接地点与所述第一缝隙之间的部分用于产生所述超高频频段的第一寄生谐振;
    所述第一寄生辐射体位于所述第三接地点与所述第二缝隙之间的部分用于形成所述中高频频段的第一寄生谐振,位于所述第三接地点与所述第二缝隙之间的至少部分所述第一寄生辐射体还用于产生所述超高频频段的第二寄生谐振。
  4. 根据权利要求3所述的电子设备,其特征在于,所述第一寄生辐射体上还设置有第一匹配点,所述第一匹配点位于所述第三接地点背离所述第二接地点的一侧,所述天线组件还包括:
    第一匹配电路,与所述第一匹配点连接,所述第一匹配电路对于所述中高频频段的激励信号呈高阻态,且对于所述超高频频段的激励信号呈低阻态。
  5. 根据权利要求4所述的电子设备,其特征在于,所述第一匹配电路用于通过所述第一匹配点将超高频频段的激励信号接地。
  6. 根据权利要求4所述的电子设备,其特征在于,所述第一匹配点与所述第二接地点之间的宽度形成所述超高频频段的第一寄生谐振与所述超高频频段的第二寄生谐振的等效隔离地宽度。
  7. 根据权利要求4至6任一项所述的电子设备,其特征在于,所述第一寄生辐射体位于所述第一匹配点与所述第二缝隙之间的部分用于形成所述超高频频段的第二寄生谐振。
  8. 根据权利要求4所述的电子设备,其特征在于,所述第一匹配电路包括电容、带阻滤波器或高通滤波器,所述电容、带阻滤波器或高通滤波器的一端和所述第一匹配点连接,另一端接地。
  9. 根据权利要求4所述的电子设备,其特征在于,所述第一匹配电路包括第二电容和第一电感,所述第二电容的一端和所述第一匹配点连接,所述第二电容的另一端接地,所述第一电感的一端和所述第一匹配点连接,所述第一电感的另一端接地。
  10. 根据权利要求9所述电子设备,其特征在于,所述第二电容的容值包括1.5皮法至1.7pf中任意容值,所述第一电感的感抗包括2.1纳亨至2.3纳亨中任意感抗。
  11. 根据权利要求3至10任一项所述的电子设备,其特征在于,所述天线组件还包括:
    第二寄生辐射体,设置于所述第一侧边,且位于所述第一辐射体背离所述第一寄生辐射体的一侧,并与所述第一辐射体之间形成第三缝隙,所述第二寄生辐射体在靠近所述转动轴线的一端设置有第四接地点;
    所述第二寄生辐射体用于形成所述中高频频段的第二寄生谐振。
  12. 根据权利要求11所述的电子设备,其特征在于,所述第四接地点通过第一电容接地。
  13. 根据权利要求3或4所述的电子设备,其特征在于,所述第二接地点通过第三电容接地,所述第三接地点通过第四电容接地。
  14. 根据权利要求3或4所述的电子设备,其特征在于,所述第一寄生辐射体上还设置有第一调谐点,所述第一调谐点位于所述第三接地点背离所述第二接地点的一侧,所述天线组件还包括:
    第一调谐开关,与所述第一调谐点连接,所述第一调谐开关对于所述超高频频段的激励信号呈低阻态,且对于所述中高频频段的激励信号呈高阻态。
  15. 根据权利要求14所述的电子设备,其特征在于,所述第一寄生辐射体中位于所述第一调谐点与所述第二缝隙之间的部分用于行成所述超高频频段的第二寄生谐振。
  16. 根据权利要求14所述的电子设备,其特征在于,所述第二接地点以及所述第三接地点之间的距离,与所述第二馈源和第三馈源之间的隔离度正相关。
  17. 根据权利要求1所述的电子设备,其特征在于,所述第一接地点通过第五电容接地。
  18. 根据权利要求1所述的电子设备,其特征在于,所述第一辐射体上还设置有第二调谐点,所述第二调谐点位于所述第一接地点和所述第一馈电点之间,所述天线组件还包括:
    第二调谐开关,与所述第二调谐点连接,所述第二调谐开关对于所述中高频频段的激励信号呈低阻态,且对于所述低频频段激励信号呈高阻态。
  19. 根据权利要求18所述的电子设备,其特征在于,所述第一枝节中位于所述第二调谐点背离所述第二侧边的子枝节产生中高频频段的第一谐振。
  20. 根据权利要求1所述的电子设备,其特征在于,所述中高频频段包括N41频段,所述超高频频段包括N78以及N79频段中的至少一个。
PCT/CN2023/099394 2022-08-25 2023-06-09 电子设备 WO2024041100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211026857.1 2022-08-25
CN202211026857.1A CN117673697A (zh) 2022-08-25 2022-08-25 电子设备

Publications (1)

Publication Number Publication Date
WO2024041100A1 true WO2024041100A1 (zh) 2024-02-29

Family

ID=90012340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099394 WO2024041100A1 (zh) 2022-08-25 2023-06-09 电子设备

Country Status (2)

Country Link
CN (1) CN117673697A (zh)
WO (1) WO2024041100A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711579A (zh) * 2015-11-13 2017-05-24 三星电子株式会社 具有金属框架天线的电子设备
KR20180097225A (ko) * 2017-02-23 2018-08-31 엘지전자 주식회사 폴더블 이동 단말기
CN110177160A (zh) * 2019-05-31 2019-08-27 Oppo广东移动通信有限公司 可折叠壳体组件及可折叠电子设备
US20200352046A1 (en) * 2019-05-03 2020-11-05 Samsung Electronics Co., Ltd. Foldable electronic device including hidden damper
CN112448162A (zh) * 2020-11-02 2021-03-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN113922048A (zh) * 2021-05-28 2022-01-11 荣耀终端有限公司 一种终端天线及终端电子设备
CN215911582U (zh) * 2021-06-23 2022-02-25 华为技术有限公司 折叠终端
CN216903329U (zh) * 2022-03-24 2022-07-05 北京小米移动软件有限公司 天线结构和折叠式电子设备
CN114822255A (zh) * 2022-04-28 2022-07-29 华为技术有限公司 可折叠支撑板、柔性屏模组和可折叠电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711579A (zh) * 2015-11-13 2017-05-24 三星电子株式会社 具有金属框架天线的电子设备
KR20180097225A (ko) * 2017-02-23 2018-08-31 엘지전자 주식회사 폴더블 이동 단말기
US20200352046A1 (en) * 2019-05-03 2020-11-05 Samsung Electronics Co., Ltd. Foldable electronic device including hidden damper
CN110177160A (zh) * 2019-05-31 2019-08-27 Oppo广东移动通信有限公司 可折叠壳体组件及可折叠电子设备
CN112448162A (zh) * 2020-11-02 2021-03-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN113922048A (zh) * 2021-05-28 2022-01-11 荣耀终端有限公司 一种终端天线及终端电子设备
CN215911582U (zh) * 2021-06-23 2022-02-25 华为技术有限公司 折叠终端
CN216903329U (zh) * 2022-03-24 2022-07-05 北京小米移动软件有限公司 天线结构和折叠式电子设备
CN114822255A (zh) * 2022-04-28 2022-07-29 华为技术有限公司 可折叠支撑板、柔性屏模组和可折叠电子设备

Also Published As

Publication number Publication date
CN117673697A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US7199762B2 (en) Wireless device with distributed load
EP3855567B1 (en) Coupled antenna device and electronic device
US11316255B2 (en) Antenna and terminal device
KR102060331B1 (ko) 평면형 안테나 장치 및 방법
US11355853B2 (en) Antenna structure and wireless communication device using the same
TW201644095A (zh) 天線結構及應用該天線結構的無線通訊裝置
TW201524001A (zh) 多頻天線結構
US20140361941A1 (en) Multi-type antenna
WO2020216241A1 (zh) 紧凑型天线及移动终端
TWI672863B (zh) 天線結構
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
WO2024027258A1 (zh) 天线结构及电子设备
JP2019528602A (ja) 通信デバイス
WO2023273604A1 (zh) 天线模组及电子设备
WO2023273607A1 (zh) 天线模组及电子设备
CN108321490B (zh) 电子装置及其天线单元
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
TWI717932B (zh) 行動裝置和可拆卸天線結構
WO2024041100A1 (zh) 电子设备
CN102157794B (zh) 谐振产生的三频段天线
TWI776303B (zh) 天線結構及具有該天線結構的無線通訊裝置
WO2022017220A1 (zh) 一种电子设备
WO2022001740A1 (zh) 一种电子设备
CN210379412U (zh) 天线、天线组件以及电子设备
TWI668910B (zh) 天線結構及具有該天線結構之無線通訊裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856192

Country of ref document: EP

Kind code of ref document: A1