WO2020216241A1 - 紧凑型天线及移动终端 - Google Patents

紧凑型天线及移动终端 Download PDF

Info

Publication number
WO2020216241A1
WO2020216241A1 PCT/CN2020/086089 CN2020086089W WO2020216241A1 WO 2020216241 A1 WO2020216241 A1 WO 2020216241A1 CN 2020086089 W CN2020086089 W CN 2020086089W WO 2020216241 A1 WO2020216241 A1 WO 2020216241A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
parasitic
predetermined
feeding point
parasitic element
Prior art date
Application number
PCT/CN2020/086089
Other languages
English (en)
French (fr)
Inventor
钟永卫
吴镇仲
Original Assignee
深圳市万普拉斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市万普拉斯科技有限公司 filed Critical 深圳市万普拉斯科技有限公司
Priority to EP20794634.4A priority Critical patent/EP3961812A4/en
Publication of WO2020216241A1 publication Critical patent/WO2020216241A1/zh
Priority to US17/505,295 priority patent/US20220037787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Definitions

  • the present disclosure relates to the field of antenna technology, and in particular to a compact antenna and a mobile terminal.
  • the fifth generation (5G) communication technology includes the millimeter wave frequency band (24250MHZ ⁇ 52600MHZ), which may be extended to higher frequency bands for wireless communication.
  • the parasitic element can be used to reduce the operating frequency, broaden the frequency band and multi-band.
  • the existing millimeter wave antennas there are two structures: the first is a patch array with parasitic elements, and the second is a patch array with parasitic elements and an independent dipole array.
  • the millimeter wave antenna in the first structure has only a patch array, and the spatial coverage is at a disadvantage compared with the millimeter wave antenna in the second structure, and in mobile terminals, it is easy to cause poor signal coverage in the direction of the screen or back cover;
  • the millimeter wave antenna array in the two structures although the multiple antennas and corresponding parasitic elements in the millimeter wave antenna array improve the space coverage, the hardware size of the antenna is large, and the antenna usage scenarios tend to be more and more compact. Under the situation of modernization and refinement, large-sized antennas are not only unfavorable for installation and use, but also affect the volume of the terminal where the antenna is located.
  • the embodiments of the present disclosure provide a compact antenna and a mobile terminal.
  • a compact antenna which includes:
  • a feeding point is provided in the at least one parasitic unit, and the corresponding parasitic unit is fed through the feeding point so that the parasitic unit has an independent antenna function.
  • the radio frequency operating frequency of the parasitic unit corresponding to the feeding point is tuned by adjusting the position of the feeding point and the feeding mode of the feeding point, so that the parasitic unit is in a predetermined working frequency band .
  • the pattern of the predetermined antenna and the pattern of the parasitic element corresponding to the feeding point have Complementarity, wherein the structural parameters include the distance between the predetermined antenna and the corresponding parasitic element of the feeding point, the position of the feeding point, and the feeding mode to the feeding point.
  • the predetermined antenna corresponds to a parasitic element
  • a feeding point is provided on the parasitic element.
  • the predetermined antenna corresponds to a plurality of parasitic elements
  • a predetermined number of parasitic elements are selected from the plurality of parasitic elements to be provided with corresponding feeding points.
  • the multiple parasitic elements are respectively distributed on different sides of the predetermined antenna.
  • two feeding points are provided on the predetermined antenna, and the predetermined antenna is fed through the two feeding points.
  • the predetermined antenna is a patch antenna, and a parasitic element provided with a feeding point forms a monopole antenna.
  • the plurality of parasitic elements are arranged symmetrically with respect to the predetermined antenna.
  • the multiple parasitic elements have different shapes and/or sizes.
  • the parasitic element may be rectangular, circular or triangular.
  • a mobile terminal including at least one of the aforementioned compact antennas.
  • a compact antenna and mobile terminal in the embodiments of the present disclosure reuse the parasitic element in the existing antenna, so that the parasitic element has the parasitic function and also has the independent antenna function, which improves the antenna space coverage and reduces the hardware cost of the antenna And antenna size, easy to install the antenna and reduce the size of the terminal where the antenna is located.
  • Fig. 1 shows a schematic structural diagram of a compact antenna provided by an embodiment of the present disclosure.
  • Fig. 2 shows a schematic structural diagram of a compact antenna provided by an embodiment of the present disclosure.
  • Fig. 3 shows a schematic structural diagram of a compact antenna provided by an embodiment of the present disclosure.
  • Fig. 4 shows a schematic structural diagram of a compact antenna provided by an embodiment of the present disclosure.
  • Fig. 5 shows a schematic structural diagram of a compact antenna provided by an embodiment of the present disclosure.
  • 6a-6c show schematic diagrams of directions of a compact antenna provided by an embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of S-parameter comparison of a compact antenna provided by an embodiment of the present disclosure.
  • Fig. 8 shows a schematic structural diagram of a compact antenna provided by an embodiment of the present disclosure.
  • FIG. 9 shows a schematic structural diagram of a compact antenna provided by an embodiment of the present disclosure.
  • FIG. 10 shows a schematic structural diagram of an antenna array provided by an embodiment of the present disclosure.
  • Compact antenna 11-predetermined antenna; 121-first parasitic element; 122-second parasitic element; 123-third parasitic element; 124-fourth parasitic element; 13-substrate; 14-second feed point; 15 -The first feeding point; 151-the sixth feeding point; 16-the third feeding point; 17-the fourth feeding point; 18-the fifth feeding point; 20-the antenna array.
  • At least one parasitic element is often set around the antenna.
  • the at least one parasitic element cannot exist independently.
  • Corresponding antennas coexist and are electromagnetically coupled with corresponding antennas to realize parasitic functions, which are reducing the operating frequency of the antenna, expanding the antenna bandwidth, and forming multiple frequency bands.
  • the parasitic elements are arranged around the corresponding antenna near the corresponding antenna, and can be arranged in a predetermined manner.
  • the specific position of the parasitic element is set according to the radiation performance of the antenna, for example, based on the maximum impedance bandwidth that can be achieved between it and the corresponding antenna, and the coupling distance corresponding to the maximum impedance bandwidth can be one of the basis for setting the parasitic element.
  • the parasitic element may be a thin metal sheet, which is electromagnetically coupled with the corresponding antenna, and the effect after electromagnetic coupling can be equivalent to the capacitance and inductance connected in series or parallel, which is regarded as in addition to the antenna corresponding to the parasitic element.
  • the external excitation produces secondary radiation.
  • the radiation effect of the antenna corresponding to the parasitic element and the secondary radiation effect superimposed on a magnetic field will change the original electromagnetic field structure and strengthen the electromagnetic field in a certain direction, thereby increasing the The parasitic element corresponds to the gain of the antenna.
  • the parasitic element has the effect of expanding the bandwidth of its corresponding antenna
  • the parasitic element itself does not have an independent antenna function. It can only coexist with the corresponding antenna and work in the working frequency band of the corresponding antenna.
  • multiple antennas with different main lobe directions are often used to increase coverage.
  • this method improves antenna coverage, its corresponding hardware components are relatively increased. , The size of the antenna increases accordingly. With the development trend of thinner and lighter terminals, the antenna design is very challenging.
  • the parasitic elements are also provided with independent antenna functions.
  • An independent antenna device coexisting with the corresponding antenna is formed.
  • the original antenna and the parasitic element corresponding to the antenna are combined to form multiple antenna structures to form the compact type described in this disclosure. antenna.
  • the compact antenna includes at least one parasitic element corresponding to the predetermined antenna.
  • a feeding point is provided in the at least one parasitic unit, and the corresponding parasitic unit is fed through the feeding point so that the parasitic unit has an independent antenna function.
  • the compact antenna 10 includes a predetermined antenna 11 and a first parasitic element 121 corresponding to the predetermined antenna 11.
  • the first parasitic unit 121 is arranged close to the predetermined antenna 11, and the specific position may be determined according to requirements.
  • the first parasitic unit 121 may be a thin metal sheet, which is electromagnetically coupled with the corresponding predetermined antenna 11 to achieve the effect of broadening the frequency band of the predetermined antenna 11.
  • the predetermined antenna 11 is provided with a first feeding point 15, and the predetermined antenna 11 is tuned to determine the radio frequency operating frequency of the predetermined antenna 11 by adjusting the position of the first feeding point 15 and the feeding mode.
  • the first parasitic unit 121 is provided with a second feeding point 14, and the second feeding point 14 is fed through a feeding network, so as to feed power to the first parasitic unit 121 so that all The first parasitic unit 121 forms a first antenna with radio frequency function.
  • the first parasitic unit 121 not only has a parasitic function, but also has an independent antenna function.
  • the first parasitic unit 121 is multiplexed as a first antenna for transmitting and receiving radio frequency signals.
  • both the predetermined antenna 11 and the first parasitic unit 121 have the function of an independent antenna, which improves the radiation performance of the compact antenna 10.
  • the metal sheet can play the role of the first parasitic unit or the role of the antenna radiator. If it plays the role of the first parasitic unit, it is coupled with a predetermined antenna to send and receive wireless signals. If it plays the role of an independent antenna, it is independent of the predetermined antenna and independently serves as a radiator to send and receive wireless signals.
  • the directional pattern of the first parasitic element 121 corresponding to the predetermined antenna 11 can be determined according to the coverage of the compact antenna 10 and the pattern of the predetermined antenna 11.
  • the second feeding point 14 on the first parasitic unit 121 is fed through the feeding network.
  • the first parasitic unit 121 where the second feeding point 14 is located has the function of an independent antenna.
  • the structural parameters between the predetermined antenna 11 and the first parasitic element 121 are tuned, so that the predetermined antenna 11 and the second feeding point 14 work in the same position corresponding to the first parasitic element 121.
  • the structural parameters include the predetermined antenna 11 and the second feeder.
  • the electrical points 14 correspond to the spacing between the first parasitic units 121, the position of the second feeding point 14, the way of feeding the second feeding point 14, the shape of the first parasitic unit 121 and the The size of the first parasitic unit 121 and the like are described.
  • the second feeding point 14 is fed through a feeding network.
  • the feed network may include a matching circuit, a power divider, a phase shifter and other devices.
  • the matching circuit may include adjustment devices such as capacitors and inductors.
  • the size and other structural parameters of the matching circuit continuously change the values of the capacitors or inductors in the matching circuit, and the matching circuit, the power splitter and the phase shifter work together to change the respective antennas of the predetermined antenna 11 and the first parasitic unit 121 Impedance, on the basis that the respective antenna impedances are matched with the impedances of the feeders and the currents on the antennas are balanced, the respective patterns of the predetermined antenna 11 and the first parasitic element 121 are complementary to achieve the best radiation performance.
  • the power feeding mode may include a parallel power feeding mode, a coaxial power feeding mode, and the like.
  • the predetermined antenna 11 is a patch antenna
  • the antenna formed by the first parasitic unit 121 provided with a feeding point is a monopole antenna
  • the first parasitic unit 121 is rectangular.
  • the first parasitic element 121 may also be circular, trapezoidal, triangular, etc., which is not limited here, and it depends on the antenna layout structure, practical requirements, and antenna radiation performance.
  • the compact antenna 10 is a millimeter wave antenna.
  • the millimeter wave refers to an electromagnetic wave of 24,250 MHz and 52,600 MHz specified in the 5G standard. With the changes in the 5G standard, it may be expanded to a higher frequency band in the future.
  • the compact antenna 10 further includes a substrate 13, and the substrate 13 provides a carrier for the compact antenna 10, that is, the predetermined antenna, all parasitic elements corresponding to the predetermined antenna, and the feed network, etc.
  • the devices are all arranged on the substrate 13.
  • the substrate 13 can also be set as a rectangle, a square, a circle, a trapezoid, a triangle, etc. according to scene requirements and radiation requirements, and the specific shape depends on the situation.
  • one side of the substrate 13 is provided with a ground with a radio frequency function formed by the predetermined antenna 11 and the first parasitic unit 121, and the ground formed by the predetermined antenna 11 and the first parasitic unit 121 has a radio frequency. After the functional antenna is grounded, it can prevent static electricity, lightning and interference.
  • the compact antenna 10 includes a predetermined antenna 11 and a first parasitic element 121 corresponding to the predetermined antenna 11.
  • a second feeding point 14 is provided on the first parasitic unit 121, and the first parasitic unit 121 is fed through the second feeding point 14, so that the first parasitic unit 121 forms a first parasitic unit with radio frequency function.
  • An antenna At this time, the first parasitic unit 121 not only has a parasitic function, but also has an independent antenna function.
  • the predetermined antenna 11 is provided with two feeding points, namely the first feeding point 15 and the sixth feeding point 151.
  • the predetermined antenna 11 is fed through the two feeding points, so that the predetermined antenna is dual-polarized and the number of antennas is saved.
  • the first parasitic element 121 is multiplexed, and the first parasitic element 121 is fed to form a first antenna with independent antenna function. And by adjusting the positions of the first feeding point 15 and the sixth feeding point 151 of the predetermined antenna 11 and the position of the second feeding point 14, the first feeding point 15 and the sixth feeding point in the first parasitic unit 121 151 feeding mode, feeding mode of the second feeding point 14 in the first parasitic unit 121, the distance between the predetermined antenna 11 and the first parasitic unit 121, the size of the first parasitic unit 121, and The structural parameters such as the shape of the first parasitic unit 121 tune the predetermined antenna 11 and the first parasitic unit 121, so that the predetermined antenna 11 and the first parasitic unit 121 work in the same frequency range, and the pattern of the predetermined antenna 11 It is complementary to the pattern of the first parasitic unit 121.
  • the compact antenna 10 includes a predetermined antenna 11 and a first parasitic element 121 and a second parasitic element 122 corresponding to the predetermined antenna 11.
  • a second feeding point 14 is provided on the first parasitic unit 121, and the first parasitic unit 121 is fed through the second feeding point 14, so that the first parasitic unit 121 forms a first parasitic unit with radio frequency function.
  • An antenna At this time, the first parasitic unit 121 not only has a parasitic function, but also has an independent antenna function.
  • a third feeding point 16 is provided on the second parasitic unit 122, and the second parasitic unit 122 is fed through the third feeding point 16, so that the second parasitic unit 122 forms a second antenna with radio frequency function At this time, the second parasitic unit 122 not only has a parasitic function, but also has an independent antenna function.
  • the first parasitic element 121 and the second parasitic element 122 are multiplexed at the same time, and the first antenna and the second antenna with radio frequency function are formed after feeding them respectively. And by adjusting the position and feeding method of the first feeding point 15 of the predetermined antenna 11, the position and feeding method of the second feeding point 14, the position and feeding method of the third feeding point 16, the predetermined antenna 11 and The distance between the first parasitic element 121, the distance between the predetermined antenna 11 and the second parasitic element 122, the distance between the first parasitic element 121 and the second parasitic element 122, the distance between the first parasitic element 121 and the second parasitic element 122, the distance between the first parasitic element 121 and the second parasitic element 122
  • the shape and size of the first parasitic element 121 and the second parasitic element 122 tune the predetermined antenna 11, the first antenna and the second antenna so that the predetermined antenna 11, the first antenna and the second antenna work in the same frequency range, And the pattern of the predetermined antenna 11, the pattern of the first antenna, and the pattern of the
  • the multiple parasitic elements may be symmetrically arranged with respect to the predetermined antenna 11, such as the first parasitic element 121 and the second parasitic element 122 in FIG. 3.
  • all feeding points can be fed through the same feeding network.
  • the feed network includes a power divider, a phase shifter, and the like.
  • the first feeding point 15, the second feeding point 14, and the third feeding point 16 can be fed through the same feeding network. In some other embodiments, it is also possible to feed each feeding point independently through different feeding networks.
  • the shapes and sizes of the multiple parasitic elements are the same. In some other embodiments, the shapes and sizes of the multiple parasitic elements are all different, depending on the hardware design requirements and radiation performance of the compact antenna 10.
  • the compact antenna 10 includes a predetermined antenna 11 and a first parasitic element 121 and a second parasitic element 122 corresponding to the predetermined antenna 11.
  • the patch antenna includes four sides.
  • the number of parasitic elements is less than four, for example, three parasitic elements can be set in the patch antenna Any three sides, or two of the parasitic elements are arranged symmetrically with respect to the patch antenna, and the other parasitic element is arranged on either side of the other two sides; another example is that two parasitic elements can be arranged symmetrically with respect to the patch antenna. It can be installed on any two sides of the patch antenna.
  • the number of parasitic elements is equal to four, the four parasitic elements can be arranged symmetrically with respect to the patch antenna.
  • the first parasitic element 121 and the second parasitic element 122 are distributed on two adjacent sides of the predetermined antenna 11. This solution multiplexes the first parasitic unit 121 and the second parasitic unit 122 at the same time, and feeds them respectively to form a first antenna and a second antenna with radio frequency function.
  • the shape and size of the first parasitic element 121 and the second parasitic element 122 tune the predetermined antenna 11, the first antenna and the second antenna so that the predetermined antenna 11, the first antenna and the second antenna work in the same frequency range, And the pattern of the predetermined antenna 11, the pattern of the first antenna, and the pattern of the second antenna are complementary.
  • the predetermined antenna 11 corresponds to a plurality of parasitic elements
  • a predetermined number of parasitic elements in the plurality of parasitic elements are provided with a corresponding predetermined number of feed points
  • the predetermined number of feed points are provided to the predetermined number of parasitic elements.
  • the electric point performs power feeding, so that the predetermined number of parasitic elements form a corresponding predetermined number of antennas with independent antenna functions.
  • the compact antenna 10 includes a predetermined antenna 11 and a first parasitic element 121, a second parasitic element 122, and a third parasitic element corresponding to the predetermined antenna 11. 123 and the fourth parasitic unit 124.
  • a second feeding point 14 is provided on the first parasitic unit 121, and the first parasitic unit 121 is fed through the second feeding point 14, so that the first parasitic unit 121
  • the parasitic unit 121 forms a first antenna with radio frequency function.
  • the first parasitic unit 121 not only has a parasitic function, but also has an independent antenna function.
  • a third feeding point 16 is provided on the second parasitic unit 122, and the second parasitic unit 122 is fed through the third feeding point 16, so that the second parasitic unit 122 forms a second antenna with independent antenna function. Antenna, at this time, the second parasitic unit 122 not only has a parasitic function, but also has an independent antenna function.
  • the third parasitic unit 123 and the fourth parasitic unit 124 do not perform power feeding and only have a parasitic function.
  • the first parasitic element 121 and the second parasitic element 122 are multiplexed at the same time, and the first and second antennas with independent antenna functions are formed after feeding them respectively.
  • the first parasitic element 121, the second parasitic element 122, the third parasitic element 123, and the fourth parasitic element 124 also have a parasitic effect, broaden the bandwidth of the compact antenna, and improve the coverage of the compact antenna 10.
  • the position and feeding method of the first feeding point 15 of the predetermined antenna 11, the position and feeding method of the second feeding point 14, the position and feeding method of the third feeding point 16, the predetermined antenna 11 and the second The distance between a parasitic element 121, the distance between the predetermined antenna 11 and the second parasitic element 122, the distance between the predetermined antenna 11 and the third parasitic element 123, the distance between the predetermined antenna 11 and the fourth parasitic element 124, each The size of the parasitic element, the shape of each parasitic element, and the distance between each parasitic element and other structural parameters are tuned to the predetermined antenna 11, the first antenna and the second antenna, so that the predetermined antenna 11, the first antenna and the second antenna work at Within the same frequency band, the pattern of the predetermined antenna 11, the pattern of the first antenna, and the pattern of the second antenna are complementary.
  • the first parasitic element 121, the second parasitic element 122, the third parasitic element 123, and the fourth parasitic element 124 also have a parasitic effect, broaden the bandwidth of the compact antenna, and improve the coverage of the compact antenna 10.
  • the predetermined antenna 11 is a patch antenna, and both the first antenna and the second antenna are monopole antennas.
  • FIG. 6 is taken as an example to describe the pattern of the compact antenna 10.
  • Fig. 6a it is the pattern when the parasitic element in Fig. 5 is not changed to a monopole antenna. It can be seen that the signal is perpendicular to the front of the patch antenna, and the coverage on both sides is poor.
  • Figure 6b and Figure 6c are the directional patterns of the first antenna and the second antenna, respectively. It can be seen that the directional patterns of the first and second antennas cover the two sides respectively, and are complementary to the patch antenna pattern, which improves the compact antenna The space coverage performance.
  • FIG. 7 it is a comparison diagram of S parameters between the compact antenna 10 and other antennas without multiplexing parasitic elements.
  • the curve S1 represents the S parameter of the patch antenna without parasitic elements
  • the curve S2 represents the S parameter of the patch antenna with parasitic elements
  • curve S3 represents the S parameters of two monopole antennas
  • curve S4 represents the S parameters of compact antennas (patch antennas and multiplexed parasitic elements as monopole antennas)
  • the patch antenna has no parasitic elements
  • the patch antenna is a single-frequency antenna without forming multiple frequencies.
  • Curve S2 adds the parasitic element to form a multi-frequency, the first frequency band is obviously lower than the operating frequency of the curve S1, so the parasitic element has the effect of forming multi-frequency and reducing the radio frequency operating frequency.
  • the two monopole antennas in curve S3 also form multiple frequencies, and the operating frequency of the first frequency band is obviously higher than that of curve S2.
  • the patch antenna and the parasitic element form a multi-frequency as a monopole. The role of the parasitic element still exists. At the same time, it also has a radio frequency function to form a multi-frequency and reduce the radio frequency operating frequency.
  • the first frequency band is relative to the above The frequencies of the three curves are low, and the frequencies of several frequency bands are relatively stable.
  • a fourth feeding point 17 is set on the third parasitic unit 123, and the third parasitic unit is fed through the fourth feeding point 17 123 performs power feeding, so that the third parasitic unit 123 forms a third antenna with an independent antenna function.
  • the fourth parasitic unit 124 does not feed power and only has a parasitic function.
  • the first parasitic element 121, the second parasitic element 122, and the third parasitic element 123 are multiplexed at the same time, and they are respectively fed to form the first antenna, the second antenna and the second antenna with radio frequency function.
  • the position and feeding method of the first feeding point 15 of the predetermined antenna 11, the location and feeding method of the second feeding point 14, the location and feeding method of the third feeding point 16, and the fourth feeding point The position of 17 and the feeding method, the distance between the predetermined antenna 11 and the first parasitic element 121, the distance between the predetermined antenna 11 and the second parasitic element 122, the distance between the predetermined antenna 11 and the third parasitic element 123, the predetermined antenna
  • the distance between the 11 and the fourth parasitic element 124, the size of each parasitic element, the shape of each parasitic element, and the distance between each parasitic element are compared with the predetermined antenna 11, the first antenna, the second antenna, and the third antenna.
  • Perform tuning make the predetermined antenna 11, the first antenna, the second antenna, and the third antenna work in the same frequency range, and the pattern of the predetermined antenna 11, the pattern of the first antenna, the pattern of the second antenna, and the The patterns of the three antennas are complementary.
  • the first parasitic element 121, the second parasitic element 122, the third parasitic element 123, and the fourth parasitic element 124 also have a parasitic effect, broaden the bandwidth of the compact antenna, and improve the coverage of the compact antenna 10.
  • the first parasitic element 121 is fed through the second feed point 14 to form a first antenna with independent antenna function
  • the third feeder Point 16 feeds the second parasitic element 122 to form a second antenna with independent antenna function
  • the third parasitic element 123 is fed to form a third antenna with independent antenna function
  • the fourth parasitic unit 124 is provided with a fifth feeding point 18, and the fourth parasitic unit 124 is fed through the fifth feeding point 18, so that the fourth parasitic unit 124 forms a fourth antenna with independent antenna function
  • the fourth parasitic unit 124 not only has a parasitic function, but also has an independent antenna function.
  • the first parasitic element 121, the second parasitic element 122, the third parasitic element 123, and the fourth parasitic element 124 are multiplexed at the same time, and they are fed separately to form a first parasitic unit with independent antenna function.
  • the position and feeding method of the fifth feeding point 18 of the predetermined antenna 11 By adjusting the position and feeding method of the first feeding point 15 of the predetermined antenna 11, the location and feeding method of the second feeding point 14, the location and feeding method of the third feeding point 16, and the fourth feeding point 17 position and feeding method, the position and feeding method of the fifth feeding point 18 of the predetermined antenna 11, the distance between the predetermined antenna 11 and the first parasitic element 121, the distance between the predetermined antenna 11 and the second parasitic element 122 , The predetermined distance between the antenna 11 and the third parasitic element 123, the distance between the predetermined antenna 11 and the fourth parasitic element 124, the size of each parasitic element, the shape of each parasitic element, and the distance between each parasitic element, etc.
  • the first parasitic unit 121, the second parasitic unit 122, the third parasitic unit 123, and the fourth parasitic unit 124 also have a parasitic effect, which broadens the bandwidth of the compact antenna. Therefore, on the basis of reducing the hardware cost and size, the compact antenna 10 has the functions of multiple frequencies and reducing the operating frequency of a single antenna, thereby improving the coverage rate of the compact antenna 10.
  • an antenna array 20 as shown in FIG. 9 includes a plurality of compact antennas 10 as described above.
  • the multiple compact antennas 10 may have a beam scanning function to improve EIRP (Effective Isotropic Radiated Power, effective omnidirectional transmit power) and spatial coverage of the beam, so as to meet the performance requirements of the millimeter wave frequency band of the 3GPP standard.
  • the compact antenna 10 in FIG. 10 is only schematically illustrated in one structure, and the compact antenna 10 in the antenna array 20 may also be any structure described in the foregoing embodiment.
  • the compact antenna 10 may be board-level, LTCC (Low Temperature Co-fired Ceramic), semiconductor and other integrated processes, and may be in the form of a PCB antenna, a package antenna, and an on-chip antenna.
  • LTCC Low Temperature Co-fired Ceramic
  • a mobile terminal is also provided, and the mobile terminal includes the above-mentioned compact antenna 10 or the above-mentioned antenna array 20.
  • the mobile terminal may also include a memory, an input unit, a display unit, a photographing unit, an audio circuit, a wireless fidelity (WiFi) module, and a power supply.
  • the memory may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system and at least one application program required by a function, and the storage data area may store data created according to the use of the mobile terminal;
  • the input unit may include The touch panel can also include other input devices;
  • the display unit can include a display panel;
  • the camera unit is used to collect image information within the imaging range;
  • the audio circuit can provide an audio interface between the user and the mobile terminal;
  • the wireless fidelity module can help the user It provides users with wireless broadband Internet access for sending and receiving emails, browsing web pages and accessing streaming media.
  • the main processor is the control center of the mobile terminal.
  • the main processor can also use various interfaces and lines Connect the various parts of the entire mobile terminal, by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory, executing various functions and processing data of the mobile terminal, so as to integrate the mobile terminal Monitoring:
  • the power supply can be connected to the processor logic through the power management system, so that functions such as charging, discharging, and power consumption management can be managed through the power management system.
  • the mobile terminal may include more or fewer components, or combine certain components, or arrange different components.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings.
  • each block in the structure diagram and/or flowchart, and the combination of the blocks in the structure diagram and/or flowchart can be used as a dedicated hardware-based system that performs specified functions or actions. , Or can be realized by a combination of dedicated hardware and computer instructions.
  • the functional modules or units in the various embodiments of the present disclosure may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.

Abstract

本公开公开了一种紧凑型天线及移动终端,该紧凑型天线包括:预定天线,及与预定天线对应的至少一寄生单元;在所述至少一寄生单元中设置有馈电点,通过所述馈电点对相应的所述寄生单元进行馈电使所述寄生单元具备独立天线功能。

Description

紧凑型天线及移动终端
本公开是基于申请为:201910324106.X,申请日为2019年04月22日提出的中国申请提出的,并要求该中国申请的优先权。该中国申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及天线技术领域,尤其涉及一种紧凑型天线及移动终端。
背景技术
第五代(5G)通信技术包括了毫米波频段(24250MHZ~52600MHZ),可能会扩展到更高频段,用于无线通信。寄生单元在天线工程中,可以用于降低工作频率,展宽频带和多频带等目的。现有的毫米波天线中,有两种结构:第一种为带寄生单元的贴片阵列,第二种为带寄生单元的贴片阵列和独立的偶极子阵列。
第一种结构中的毫米波天线只有贴片阵列,空间覆盖率相比于第二种结构中的毫米波天线处于劣势,且在移动终端中,容易造成屏幕或后盖方向信号覆盖差;第二种结构中的毫米波天线阵列,虽然该毫米波天线阵列中的多个天线及对应的寄生单元提高了空间覆盖率,但是天线的硬件尺寸大,在天线的使用场景越来越趋于小型化、精细化的形势下,尺寸大的天线不仅不利于安装使用,还影响了天线所在终端的体积。
发明内容
本公开实施例提供一种紧凑型天线及移动终端。
根据本公开的一个实施方式,提供一种紧凑型天线,该紧凑型天线包括:
预定天线,及与所示预定天线对应的至少一寄生单元;
在所述至少一寄生单元中设置有馈电点,通过所述馈电点对相应的所述寄生单元进行馈电使所述寄生单元具备独立天线功能。
在上述的紧凑型天线中,通过调节所述馈电点的位置及对该馈电点的馈电方式来调谐该馈电点对应寄生单元的射频工作频率,以使该寄生单元处于预定工作频段。
在上述的紧凑型天线中,通过调谐所述预定天线与所述馈电点对应寄生单元之间结 构参数,以使所述预定天线的方向图与所述馈电点对应寄生单元的方向图具有互补性,其中,所述结构参数包括所述预定天线与所述馈电点对应寄生单元之间的间距、所述馈电点的位置及对所述馈电点的馈电方式。
在上述的紧凑型天线中,若所述预定天线对应有一个寄生单元,在所述寄生单元设置有一馈电点。
在上述的紧凑型天线中,若所述预定天线对应有多个寄生单元,在所述多个寄生单元中选取预定数量的寄生单元设置有相应的馈电点。
在上述的紧凑型天线中,所述多个寄生单元分别分布于所述预定天线的不同侧。
在上述的紧凑型天线中,通过馈电网络对所有馈电点进行馈电。
在上述的紧凑型天线中,在所述预定天线设置有两个馈电点,通过该两个馈电点对所述预定天线进行馈电。
在上述的紧凑型天线中,所述预定天线为贴片天线,设置有馈电点的寄生单元形成单极子天线。
在上述的紧凑型天线中,所述多个寄生单元相对于所述预定天线对称设置。
在上述的紧凑型天线中,所述多个寄生单元的形状和/或尺寸不同。
在上述的紧凑型天线中,所述寄生单元可以为矩形、圆形或三角形。
根据本公开的另一个实施方式,提供一种移动终端,该移动终端包括至少一个上述的紧凑型天线。
本公开实施例中一种紧凑型天线及移动终端,复用现有天线中的寄生单元,使寄生单元在具有寄生功能的同时还具有独立天线功能,提高天线空间覆盖率,减少天线的硬件成本及天线尺寸,便于天线安装及减小天线所在终端尺寸。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对本公开保护范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还 可以根据这些附图获得其他相关的附图。
图1示出了本公开实施例提供的一种紧凑型天线的结构示意图。
图2示出了本公开实施例提供的一种紧凑型天线的结构示意图。
图3示出了本公开实施例提供的一种紧凑型天线的结构示意图。
图4示出了本公开实施例提供的一种紧凑型天线的结构示意图。
图5示出了本公开实施例提供的一种紧凑型天线的结构示意图。
图6a-6c示出了本公开实施例提供的一种紧凑型天线的方向示意图。
图7示出了本公开实施例提供的一种紧凑型天线的S参数对比示意图。
图8示出了本公开实施例提供的一种紧凑型天线的结构示意图。
图9示出了本公开实施例提供的一种紧凑型天线的结构示意图。
图10示出了本公开实施例提供的一种天线阵列的结构示意图。
主要元件符号说明:
紧凑型天线;11-预定天线;121-第一寄生单元;122-第二寄生单元;123-第三寄生单元;124-第四寄生单元;13-基板;14-第二馈电点;15-第一馈电点;151-第六馈电点;16-第三馈电点;17-第四馈电点;18-第五馈电点;20-天线阵列。
具体实施方式
下面将结合本公开实施例中附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面结合附图,对本公开的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
随着无线通信技术的不断发展,各种通信系统对宽带化的要求越来越高,为了扩展天线的带宽,往往在天线周围设置至少一个寄生单元,该至少一个寄生单元不能独立存 在,其与对应的天线共存,与对应的天线进行电磁耦合,以实现寄生功能,该寄生功能即降低天线的工作频率,扩展天线带宽及形成多频带等。
所述寄生单元设置在对应天线周围靠近对应天线的位置,可以通过预定方式进行排列。寄生单元的具体位置根据天线的辐射性能设定,例如以其与对应天线之间能够实现最大阻抗带宽为准,该最大阻抗带宽对应的耦合距离即可作为寄生单元设置的依据之一。所述寄生单元可以为金属薄片,该金属薄片与对应的天线进行电磁耦合,电磁耦合后产生的影响可等效为串联或并联接入的电容和电感,视为除了与该寄生单元对应天线之外的激励,从而产生二次辐射,寄生单元对应天线的辐射作用及该二次辐射作用叠加在一个磁场上,就改变了原有的电磁场结构,使电磁场在某一方向上加强,从而增大该寄生单元对应天线的增益。
虽然寄生单元对其对应天线具有扩展带宽的作用,然而,寄生单元自身并不具备独立的天线功能,其只能依附对应天线共存,工作在对应天线的工作频段内。在对天线覆盖率需求较高的场景中,往往通过设置多个主瓣方向不同的天线的形式来提高覆盖率,然而,该种方式虽然提高了天线覆盖率,其对应的硬件器件也相对增多,天线尺寸相应增大,在终端越来越轻薄的发展趋势下,天线设计受到非常大的挑战。
因此,针对上述的情况,提出了一种复用天线对应的寄生单元的方案,在使寄生单元相对于其对应的天线的寄生功能不受影响的情况下,还使寄生单元具有独立天线功能,形成与对应天线并存的独立天线设备,该种情形下,在不增加硬件器件的基础上,使原来的天线及该天线对应的寄生单元共同组成多个天线结构,形成本公开所述的紧凑型天线。
所述紧凑型天线包括与所述预定天线对应的至少一寄生单元。在所述至少一寄生单元中设置有馈电点,通过馈电点对相应的寄生单元进行馈电以使所述寄生单元具备独立天线功能。
作为紧凑型天线10的一种方案,如图1所示,该紧凑型天线10包括预定天线11、与预定天线11对应的一个第一寄生单元121。
所述第一寄生单元121靠近预定天线11设置,具体位置可根据需求而定。所述第一寄生单元121可以为金属薄片,与对应的预定天线11进行电磁耦合,达到展宽预定天线11的频带的效果。
所述预定天线11设置有第一馈电点15,通过调节第一馈电点15的位置及馈电方式对预定天线11进行调谐确定该预定天线11的射频工作频率。
所述第一寄生单元121设置有第二馈电点14,通过馈电网络对所述第二馈电点14进行馈电,进而达到对所述第一寄生单元121进行馈电,以使所述第一寄生单元121形成具有射频功能的第一天线。此时,该第一寄生单元121不但具有寄生功能,还同时具有独立天线功能,复用了第一寄生单元121作为第一天线进行收发射频信号。换句话说,预定天线11和第一寄生单元121都具有独立天线的功能,提高了紧凑型天线10的辐射性能。如此通过馈电点的位置调节,使得金属薄片扮演第一寄生单元的角色或者作为天线辐射体的角色。若扮演第一寄生单元的角色,则与预定天线耦合收发无线信号。若扮演独立天线的角色,则独立于所述预定天线,独立作为辐射体收发无线信号。
在一些实施例中,在确定预定天线11的射频工作频段后,可根据紧凑型天线10的覆盖范围及该预定天线11的方向图确定该预定天线11对应的第一寄生单元121的方向图。
在确定第一寄生单元121的射频工作频段后,通过馈电网络对该第一寄生单元121上的第二馈电点14进行馈电。
在一些实施例中,在对第二馈电点14进行馈电后,使第二馈电点14所在的第一寄生单元121具有了独立天线的功能。
在一些实施例中,通过调谐所述预定天线11与第一寄生单元121之间的结构参数,以使所述预定天线11与所述第二馈电点14对应第一寄生单元121工作在同一频段范围内,且预定天线的方向图和第一寄生单元121的方向图具有互补性,提高紧凑型天线10的覆盖范围,其中,所述结构参数包括所述预定天线11与所述第二馈电点14对应第一寄生单元121之间的间距、所述第二馈电点14的位置、对所述第二馈电点14的馈电方式、所述第一寄生单元121的形状及所述第一寄生单元121的尺寸等。
在一些实施例中,通过馈电网络对所述第二馈电点14进行馈电。所述馈电网络可包括匹配电路、功分器及移相器等器件。匹配电路可包括电容、电感等调节器件。
不断调节第二馈电点14的位置、对第二馈电点14的馈电方式、预定天线11和第一寄生单元121之间的间距、第一寄生单元121的形状及第一寄生单元121的尺寸等结构参数,使匹配电路中电容或电感等器件的值不断发生改变,进而使该匹配电路与功分器、移相器共同作用来改变预定天线11和第一寄生单元121各自的天线阻抗,在各自的天线阻抗和馈电线的阻抗相匹配,天线上电流达到平衡的基础上,使预定天线11和第一寄生单元121各自的方向图具有互补性,达到最好的辐射性能。
其中,所述馈电方式可以包括并联馈电方式、同轴馈电方式等。
在一些实施例中,所述预定天线11为贴片天线,设置有馈电点的第一寄生单元121形成的天线为单极子天线。
本实施例中,为了使所述紧凑型天线10更好的适应实用及辐射需求,所述第一寄生单元121为矩形。在一些其他的实施例中,所述第一寄生单元121还可以为圆形、梯形或三角形等,在此不做限定,具体视天线布设结构、实用需求及天线辐射性能而定。
本实施例中,所述紧凑型天线10为毫米波天线,毫米波指5G标准规定的24250MHz52600MHz的电磁波,未来随着5G标准的变化,可能会扩展到更高频段。
在一些实施例中,所述紧凑型天线10还包括基板13,所述基板13为所述紧凑型天线10提供载体,即所述预定天线、该预定天线对应的所有寄生单元及馈电网络等器件均设置在所述基板13上。
在一些实施例中,所述基板13也可根据场景需求及辐射需求设置为矩形、方形、圆形、梯形及三角形等,具体形状视情况而定。
在一些实施例中,所述基板13的一侧设置有预定天线11及所述第一寄生单元121形成的具有射频功能的天线的地,在预定天线11及第一寄生单元121形成的具有射频功能的天线接地后可防止静电、雷击及干扰。
作为紧凑型天线10的另一种方案,如图2所示,所述紧凑型天线10包括预定天线11及与所述预定天线11对应的第一寄生单元121。
在所述第一寄生单元121设置第二馈电点14,通过第二馈电点14对所述第一寄生单元121进行馈电,以使所述第一寄生单元121形成具有射频功能的第一天线,此时,第一寄生单元121不但具有寄生功能,还同时具有独立天线功能。
预定天线11设置有两个馈电点,即第一馈电点15和第六馈电点151。通过该两个馈电点对所述预定天线11进行馈电,以使所述预定天线实现双极化,节省天线数量。
本实施例中,在预定天线11的基础上,仅复用了第一寄生单元121,对其进行馈电后使其形成具有独立天线功能的第一天线。并且通过调节预定天线11的第一馈电点15和第六馈电点151的位置及第一寄生单元121中第二馈电点14的位置、第一馈电点15和第六馈电点151馈电方式、第一寄生单元121中第二馈电点14的馈电方式、所述预定天线11和所述第一寄生单元121之间的间距、所述第一寄生单元121的尺寸及所述第一寄生单元121的形状等结构参数对预定天线11和第一寄生单元121进行调谐,使预定天线11和第一寄生单元121工作在相同的频段范围内,且预定天线11的方向图和第一寄生单元121的方向图具有互补性。
作为紧凑型天线10的另一种方案,如图3所示,所述紧凑型天线10包括预定天线11及与所述预定天线11对应的第一寄生单元121及第二寄生单元122。
在所述第一寄生单元121设置第二馈电点14,通过第二馈电点14对所述第一寄生单元121进行馈电,以使所述第一寄生单元121形成具有射频功能的第一天线,此时,第一寄生单元121不但具有寄生功能,还同时具有独立的天线功能。
在所述第二寄生单元122设置第三馈电点16,通过第三馈电点16对第二寄生单元122进行馈电,以使所述第二寄生单元122形成具有射频功能的第二天线,此时,该第二寄生单元122不但具有寄生功能,还同时具有独立天线功能。
本实施例中,同时复用了第一寄生单元121及第二寄生单元122,分别对其进行馈电后使其形成具有射频功能的第一天线和第二天线。并且通过调节预定天线11的第一馈电点15的位置和馈电方式、第二馈电点14的位置及馈电方式、第三馈电点16的位置及馈电方式、预定天线11和第一寄生单元121的间距、预定天线11和第二寄生单元122之间的间距、第一寄生单元121和第二寄生单元122之间的间距、第一寄生单元121和第二寄生单元122的形状、第一寄生单元121和第二寄生单元122的尺寸对预定天线11、第一天线及第二天线进行调谐、使预定天线11、第一天线及第二天线工作在相同的频段范围内,且预定天线11的方向图、第一天线的方向图及第二天线的方向图具有互补性。
在一些实施例中,为了便于天线布局,所述多个寄生单元可相对于预定天线11对称设置,如图3中的第一寄生单元121及第二寄生单元122。
在一些实施例中,可通过同一个馈电网络对所有馈电点进行馈电。所述馈电网络包括功分器、移相器等。
本实施例中,为了减少天线硬件代价,可通过同一个馈电网络分别对所述第一馈电点15、第二馈电点14及第三馈电点16进行馈电。在一些其他的实施例中,还可以通过不同的馈电网络分别独立对每一馈电点进行馈电。
本实施例中,所述多个寄生单元的形状和尺寸均相同。在一些其他的实施例中,所述多个寄生单元的形状和尺寸均不相同,具体根据紧凑型天线10的硬件设计需求及辐射性能而定。
作为紧凑型天线10的另一种方案,如图4所示,所述紧凑型天线10包括预定天线11及与所述预定天线11对应的第一寄生单元121及第二寄生单元122。
为了便于紧凑型天线10的硬件布局,若预定天线11为贴片天线,该贴片天线包含 四个侧面,在寄生单元的数目少于四个时,比如三个寄生单元可设置在贴片天线任意三个侧面,或者其中两个寄生单元相对于贴片天线对称设置,另外一个寄生单元设置在另外两个侧面中任一侧面;又如两个寄生单元可以相对于贴片天线对称设置,也可以设置在贴片天线任意两个侧面。在寄生单元的数目等于四个时,该四个寄生单元可相对于贴片天线两两对称设置。
本实施例中,所述第一寄生单元121和所述第二寄生单元122分布于所述预定天线11的相邻两侧。该方案同时复用了第一寄生单元121及第二寄生单元122,分别对其进行馈电后使其形成具有射频功能的第一天线和第二天线。并且通过调节预定天线11的第一馈电点15的位置和馈电方式、第二馈电点14的位置及馈电方式、第三馈电点16的位置及馈电方式、预定天线11和第一寄生单元121的间距、预定天线11和第二寄生单元122之间的间距、第一寄生单元121和第二寄生单元122之间的间距、第一寄生单元121和第二寄生单元122的形状、第一寄生单元121和第二寄生单元122的尺寸对预定天线11、第一天线及第二天线进行调谐、使预定天线11、第一天线及第二天线工作在相同的频段范围内,且预定天线11的方向图、第一天线的方向图及第二天线的方向图具有互补性。
在一些实施例中,若所述预定天线11对应有多个寄生单元,在所述多个寄生单元中的预定数量个寄生单元设置相应的预定数量个馈电点,对所述预定数量个馈电点进行馈电,以使所述预定数量个寄生单元形成相应的具有独立天线功能的预定数量个天线。
作为紧凑型天线10的另一种方案,如图5所示,所述紧凑型天线10包括预定天线11及与预定天线11对应的第一寄生单元121、第二寄生单元122、第三寄生单元123及第四寄生单元124。
在所述预定数量为2时,在所述第一寄生单元121设置第二馈电点14,通过第二馈电点14对所述第一寄生单元121进行馈电,以使所述第一寄生单元121形成具有射频功能的第一天线,此时,第一寄生单元121不但具有寄生功能,还同时具有独立天线功能。
在所述第二寄生单元122设置第三馈电点16,通过第三馈电点16对第二寄生单元122进行馈电,以使所述第二寄生单元122形成具有独立天线功能的第二天线,此时,该第二寄生单元122不但具有寄生功能,还同时具有独立天线功能。第三寄生单元123及第四寄生单元124不进行馈电,仅具有寄生功能。
本实施例中,同时复用了第一寄生单元121及第二寄生单元122,分别对其进行馈 电后使其形成具有独立天线功能的第一天线和第二天线。同时,第一寄生单元121、第二寄生单元122、第三寄生单元123及第四寄生单元124还具有寄生作用,扩宽所述紧凑型天线的带宽,提高紧凑型天线10的覆盖率。
通过调节预定天线11的第一馈电点15的位置和馈电方式、第二馈电点14的位置及馈电方式、第三馈电点16的位置及馈电方式、预定天线11和第一寄生单元121的间距、预定天线11和第二寄生单元122之间的间距、预定天线11和第三寄生单元123之间的间距、预定天线11和第四寄生单元124之间的间距、各个寄生单元的尺寸、各个寄生单元的形状及各个寄生单元之间的距离等结构参数对预定天线11、第一天线及第二天线进行调谐、使预定天线11、第一天线及第二天线工作在相同的频段范围内,且预定天线11的方向图、第一天线的方向图及第二天线的方向图具有互补性。
同时,第一寄生单元121、第二寄生单元122、第三寄生单元123及第四寄生单元124还具有寄生作用,扩宽所述紧凑型天线的带宽,提高紧凑型天线10的覆盖率。
其中,预定天线11为贴片天线,第一天线和第二天线均为单极子天线。
本方案中以图6为例对紧凑型天线10的方向图进行说明。如图6a所示,是未将图5中的寄生单元改成单极子天线时的方向图,可见信号垂直于贴片天线正前方,两侧覆盖差。图6b和图6c分别是第一天线和第二天线的方向图,可见第一天线和第二天线的方向图分别覆盖两侧方向,与贴片天线方向图具备互补性,提高了紧凑型天线的空间覆盖性能。
如图7所示,为紧凑型天线10和其他没有复用寄生单元的天线的S参数对比图。由图中可以看出,曲线S1表示不带寄生单元的贴片天线的S参数|S(1,1)|,曲线S2表示带寄生单元的贴片天线的S参数|S(1,1)|,曲线S3表示两个单极子天线的S参数|S(1,1)|,曲线S4表示紧凑型天线(贴片天线及复用寄生单元作为单极子天线)的S参数|S(1,1)|。曲线S1中贴片天线没有寄生单元,贴片天线为单频天线,没有形成多频。曲线S2加上寄生单元后形成多频,第一个频段明显低于曲线S1的工作频率,因此寄生单元具有形成多频和降低射频工作频率的作用。曲线S3中两个单极子天线也形成多频,第一个频段的明显比曲线S2的工作频率高。曲线S4中贴片天线和寄生单元作为单极子之间形成多频,寄生单元的作用仍然存在,同时还具射频功能,形成多频,并降低了射频工作频率,第一个频段相对于上述三种曲线的频率较低,且几个频段的频率较为稳定。
在所述预定数量为3时,如图8所示,在通过第二馈电点14对所述第一寄生单元 121进行馈电形成具有独立天线功能的第一天线,及通过第三馈电点16对第二寄生单元122进行馈电形成具有独立天线功能的第二天线后,在所述第三寄生单元123设置第四馈电点17,通过第四馈电点17对第三寄生单元123进行馈电,以使所述第三寄生单元123形成具有独立天线功能的第三天线。第四寄生单元124不进行馈电,仅具有寄生功能。
本实施例中,同时复用了第一寄生单元121、第二寄生单元122及第三寄生单元123,分别对其进行馈电后使其形成具有射频功能的第一天线、第二天线及第三天线。
通过调节预定天线11的第一馈电点15的位置和馈电方式、第二馈电点14的位置及馈电方式、第三馈电点16的位置及馈电方式、第四馈电点17的位置及馈电方式、预定天线11和第一寄生单元121的间距、预定天线11和第二寄生单元122之间的间距、预定天线11和第三寄生单元123之间的间距、预定天线11和第四寄生单元124之间的间距、各个寄生单元的尺寸、各个寄生单元的形状及各个寄生单元之间的距离等结构参数对预定天线11、第一天线、第二天线及第三天线进行调谐、使预定天线11、第一天线、第二天线及第三天线工作在相同的频段范围内,且预定天线11的方向图、第一天线的方向图、第二天线的方向图及第三天线的方向图具有互补性。
同时,第一寄生单元121、第二寄生单元122、第三寄生单元123及第四寄生单元124还具有寄生作用,扩宽所述紧凑型天线的带宽,提高紧凑型天线10的覆盖率。
在所述预定数量为4时,如图9所示,在通过第二馈电点14对所述第一寄生单元121进行馈电形成具有独立天线功能的第一天线,及通过第三馈电点16对第二寄生单元122进行馈电形成具有独立天线功能的第二天线,及通过第四馈电点17对第三寄生单元123进行馈电形成具有独立天线功能的第三天线后,在所述第四寄生单元124设置第五馈电点18,通过第五馈电点18对第四寄生单元124进行馈电,以使所述第四寄生单元124形成具有独立天线功能的第四天线,此时,该第四寄生单元124不但具有寄生功能,还同时具有独立天线功能。
本实施例中,同时复用了第一寄生单元121、第二寄生单元122、第三寄生单元123及第四寄生单元124,分别对其进行馈电后使其形成具有独立天线功能的第一天线、第二天线、第三天线及第四天线。
通过调节预定天线11的第一馈电点15的位置和馈电方式、第二馈电点14的位置及馈电方式、第三馈电点16的位置及馈电方式、第四馈电点17的位置及馈电方式、预定天线11的第五馈电点18的位置和馈电方式、预定天线11和第一寄生单元121的间 距、预定天线11和第二寄生单元122之间的间距、预定天线11和第三寄生单元123之间的间距、预定天线11和第四寄生单元124之间的间距、各个寄生单元的尺寸、各个寄生单元的形状及各个寄生单元之间的距离等结构参数对预定天线11、第一天线、第二天线、第三天线及第四天线进行调谐、使预定天线11、第一天线、第二天线、第三天线及第四天线工作在相同的频段范围内,且预定天线11的方向图、第一天线的方向图、第二天线的方向图、第三天线的方向图及第四天线的方向图具有互补性。
同时,第一寄生单元121、第二寄生单元122、第三寄生单元123及第四寄生单元124还具有寄生作用,扩宽所述紧凑型天线的带宽。因此,该紧凑型天线10在降低硬件成本和尺寸的基础上,具有多频和降低单个天线工作频率的作用,提高紧凑型天线10的覆盖率。
在一些实施例中,为了克服毫米波频段电磁波传播损耗较高的缺点,如图9所示的一种天线阵列20,该天线阵列20中包括多个如上所述的紧凑型天线10。该多个紧凑型天线10可具有波束扫描功能,来提高波束的EIRP(Effective Isotropic Radiated Power,有效全向发射功率)和空间覆盖率,以满足3GPP标准的毫米波频段的性能要求。
值得注意的是,图10中的紧凑型天线10仅以一种结构形式进行示意说明,该天线阵列20中的紧凑型天线10还可以为上述实施例中所述的任一种结构。
在一些实施例中,该紧凑型天线10可以是板级、LTCC(Low Temperature Co-fired Ceramic,低温共烧陶瓷)、半导体等集成工艺,可以为PCB天线、封装天线和片上天线等形式。
本公开的其他实施例中,还提供了一种移动终端,该移动终端包括上述的紧凑型天线10或者上述的天线阵列20。所述移动终端还可以包括存储器、输入单元、显示单元、摄影单元、音频电路、无线保真(wireless fidelity,WiFi)模块以及电源等部件。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序,存储数据区可存储根据移动终端的使用所创建的数据;输入单元可以包括触控面板并且可以包括其他输入设备;显示单元可以包括显示面板;摄影单元用于采集成像范围内的图像信息;音频电路可提供用户与移动终端之间的音频接口;无线保真模块可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问;主处理器是移动终端的控制中心,除上述功能外,主处理器还可以利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,执行移动终端的各种功能和 处理数据,从而对移动终端进行整体监控;电源可以通过电源管理系统与处理器逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。本领域技术人员可以理解,上述的各器件并不构成对移动终端的限定,所述移动终端可以包括更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和结构图显示了根据本公开的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,结构图和/或流程图中的每个方框、以及结构图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本公开各个实施例中的各功能模块或单元可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或更多个模块集成形成一个独立的部分。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。

Claims (10)

  1. 一种紧凑型天线,其中,所述紧凑型天线包括:
    预定天线,及与所述预定天线对应的至少一寄生单元;
    在所述至少一寄生单元中设置有馈电点,通过所述馈电点对相应的所述寄生单元进行馈电使所述寄生单元具备独立天线功能。
  2. 根据权利要求1所述的紧凑型天线,其中,通过调节所述馈电点的位置及对该馈电点的馈电方式来调谐该馈电点对应寄生单元的射频工作频率,以使该寄生单元处于预定工作频段。
  3. 根据权利要求2所述的紧凑型天线,其中,通过调谐所述预定天线与所述馈电点对应寄生单元之间的结构参数,以使所述预定天线的方向图与所述馈电点对应寄生单元的方向图具有互补性,其中,所述结构参数包括所述预定天线与所述馈电点对应寄生单元之间的间距、所述馈电点的位置及对所述馈电点的馈电方式。
  4. 根据权利要求1所述的紧凑型天线,其中,所述预定天线对应有一个寄生单元,在所述寄生单元设置有一馈电点。
  5. 根据权利要求1所述的紧凑型天线,其中,所述预定天线对应有多个寄生单元,在所述多个寄生单元中选取预定数量的寄生单元设置有相应的馈电点。
  6. 根据权利要求5所述的紧凑型天线,其中,所述多个寄生单元分别分布于所述预定天线的不同侧。
  7. 根据权利要求5所述的紧凑型天线,其中,通过馈电网络对所有馈电点进行馈电。
  8. 根据权利要求1所述的紧凑型天线,其中,在所述预定天线设置有两个馈电点,通过该两个馈电点对所述预定天线进行馈电。
  9. 根据权利要求1所述的紧凑型天线,其中,所述预定天线为贴片天线,设置有馈电点的寄生单元形成为单极子天线。
  10. 一种移动终端,其中,所述移动终端包括至少一个如权利要求1~9任一项所述的紧凑型天线。
PCT/CN2020/086089 2019-04-22 2020-04-22 紧凑型天线及移动终端 WO2020216241A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20794634.4A EP3961812A4 (en) 2019-04-22 2020-04-22 COMPACT ANTENNA AND MOBILE DEVICE
US17/505,295 US20220037787A1 (en) 2019-04-22 2021-10-19 Compact antenna, antenna array and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910324106.X 2019-04-22
CN201910324106.XA CN110048230B (zh) 2019-04-22 2019-04-22 紧凑型天线及移动终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/505,295 Continuation US20220037787A1 (en) 2019-04-22 2021-10-19 Compact antenna, antenna array and terminal

Publications (1)

Publication Number Publication Date
WO2020216241A1 true WO2020216241A1 (zh) 2020-10-29

Family

ID=67278435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086089 WO2020216241A1 (zh) 2019-04-22 2020-04-22 紧凑型天线及移动终端

Country Status (4)

Country Link
US (1) US20220037787A1 (zh)
EP (1) EP3961812A4 (zh)
CN (1) CN110048230B (zh)
WO (1) WO2020216241A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048230B (zh) * 2019-04-22 2021-08-31 深圳市万普拉斯科技有限公司 紧凑型天线及移动终端
KR102607538B1 (ko) * 2019-08-08 2023-11-28 삼성전기주식회사 안테나 장치
CN112448147B (zh) * 2019-08-29 2022-12-27 上海诺基亚贝尔股份有限公司 一种环贴片天线
EP4016735A1 (en) * 2020-12-17 2022-06-22 INTEL Corporation A multiband patch antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204179219U (zh) * 2014-10-28 2015-02-25 普尔信通讯科技(深圳)有限公司 Lds工艺的lte天线
US20180254560A1 (en) * 2017-03-03 2018-09-06 Fujitsu Limited Antenna device
CN108615973A (zh) * 2018-04-26 2018-10-02 常州信息职业技术学院 一种用于智能终端的天线的制造方法
CN207977466U (zh) * 2018-03-30 2018-10-16 深圳市睿德通讯科技有限公司 一种应用于智能机器人的内置超宽带lte天线
CN110048230A (zh) * 2019-04-22 2019-07-23 深圳市万普拉斯科技有限公司 紧凑型天线及移动终端

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527163A (en) * 1983-04-06 1985-07-02 California Institute Of Technology Omnidirectional, circularly polarized, cylindrical microstrip antenna
US6320544B1 (en) * 2000-04-06 2001-11-20 Lucent Technologies Inc. Method of producing desired beam widths for antennas and antenna arrays in single or dual polarization
US6456245B1 (en) * 2000-12-13 2002-09-24 Magis Networks, Inc. Card-based diversity antenna structure for wireless communications
CN106935960B (zh) * 2015-12-29 2020-04-14 华为技术有限公司 一种天线单元及mimo天线和终端
CN205488563U (zh) * 2016-01-08 2016-08-17 东莞市信太通讯设备有限公司 一种基于pifa结构多频段手机天线
CN206497979U (zh) * 2017-01-23 2017-09-15 深圳市凯普深通讯科技有限公司 一种同时利用底壳与面壳的lte天线
CN206947516U (zh) * 2017-03-28 2018-01-30 深圳市昱晟通讯设备有限公司 一种多频段三触角天线
CN206962008U (zh) * 2017-08-08 2018-02-02 惠州硕贝德无线科技股份有限公司 一种改善手机人头手数据的天线结构
US11139588B2 (en) * 2018-04-11 2021-10-05 Apple Inc. Electronic device antenna arrays mounted against a dielectric layer
CN108767481B (zh) * 2018-05-29 2020-05-12 电子科技大学 一种宽波束的方向图可重构整流天线
CN108598668A (zh) * 2018-05-30 2018-09-28 京信通信系统(中国)有限公司 便携式通信终端及其pifa天线
KR102647883B1 (ko) * 2019-01-25 2024-03-15 삼성전자주식회사 안테나 모듈을 포함하는 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204179219U (zh) * 2014-10-28 2015-02-25 普尔信通讯科技(深圳)有限公司 Lds工艺的lte天线
US20180254560A1 (en) * 2017-03-03 2018-09-06 Fujitsu Limited Antenna device
CN207977466U (zh) * 2018-03-30 2018-10-16 深圳市睿德通讯科技有限公司 一种应用于智能机器人的内置超宽带lte天线
CN108615973A (zh) * 2018-04-26 2018-10-02 常州信息职业技术学院 一种用于智能终端的天线的制造方法
CN110048230A (zh) * 2019-04-22 2019-07-23 深圳市万普拉斯科技有限公司 紧凑型天线及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961812A4

Also Published As

Publication number Publication date
US20220037787A1 (en) 2022-02-03
CN110048230B (zh) 2021-08-31
EP3961812A1 (en) 2022-03-02
CN110048230A (zh) 2019-07-23
EP3961812A4 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
WO2020216241A1 (zh) 紧凑型天线及移动终端
US10971819B2 (en) Multi-band wireless signaling
CN109346833B (zh) 具有wifi mimo天线的终端设备
US10403971B2 (en) Antenna and mobile terminal
AU2018423290B2 (en) Antenna system and terminal device
US8711043B2 (en) Wideband antenna
US9300055B2 (en) Mobile device with two antennas and antenna switch modules
US9306282B2 (en) Antenna arrangement
US8860623B2 (en) Antenna system with high isolation characteristics
US11688930B2 (en) Antenna apparatus and mobile terminal
US10490902B2 (en) Mobile device
JP6008352B2 (ja) マルチモードブロードバンドアンテナモジュールおよびワイヤレス端末
US11404782B2 (en) Electronic device
US10476137B1 (en) Terminal housing and terminal
US11962099B2 (en) Antenna structure and high-frequency multi-band wireless communication terminal
JP2014533474A5 (zh)
US20230238717A1 (en) Terminal antenna and terminal electronic device
WO2020010941A1 (zh) 天线及通信设备
WO2020134328A1 (zh) 天线模组及移动终端
US20140347247A1 (en) Antenna device for electronic device
CN112151944A (zh) 天线模组、电子设备及电子设备的天线频段调节方法
US11239557B2 (en) Antenna structure and communication device
CN112751195A (zh) 一种终端天线系统及移动终端
US11949167B2 (en) Antenna terminal with power supply and single feed combination
US20140292608A1 (en) Antenna apparatus capable of reducing decrease in gain due to adjacent metal components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020794634

Country of ref document: EP

Effective date: 20211122