WO2024040896A1 - 一种表面修饰三元正极材料及其制备方法与应用 - Google Patents

一种表面修饰三元正极材料及其制备方法与应用 Download PDF

Info

Publication number
WO2024040896A1
WO2024040896A1 PCT/CN2023/077921 CN2023077921W WO2024040896A1 WO 2024040896 A1 WO2024040896 A1 WO 2024040896A1 CN 2023077921 W CN2023077921 W CN 2023077921W WO 2024040896 A1 WO2024040896 A1 WO 2024040896A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode material
ternary cathode
coating agent
modified
positive electrode
Prior art date
Application number
PCT/CN2023/077921
Other languages
English (en)
French (fr)
Inventor
陈希文
刘伟健
阮丁山
李长东
陈喜
许帅军
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024040896A1 publication Critical patent/WO2024040896A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a surface-modified ternary cathode material and its preparation method and application, and belongs to the technical field of lithium-ion batteries.
  • High-nickel ternary materials have many problems compared with other mainstream cathode materials, such as structural instability and more environmental impact. Sensitivity and security are worse, etc.
  • High-nickel ternary materials not only have high environmental requirements during material preparation, but also have very high environmental humidity requirements during the battery positive electrode slurry stirring and positive electrode sheet processing. Generally, the relative humidity is required to be below 5%, or even below 2%. The battery production process is long and covers a large area.
  • the purpose of this application is to overcome the shortcomings of the existing technology and provide a surface-modified ternary cathode material and its preparation method and application.
  • the surface-modified ternary cathode material has low sensitivity to the environment, high safety, and further reduces Production costs of surface-modified ternary cathode materials.
  • a surface-modified ternary cathode material including a ternary cathode material and a coating agent.
  • the chemical formula of the ternary cathode material is Li( Nix Co y Mn 1- xy )O 2 , where 0.6 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.4;
  • the coating agent includes an ionic liquid, and the anion of the ionic liquid contains Including TFSI- , one of; the cation of the ionic liquid is one of imidazole and pyridine; the coating agent is coated on the surface of the ternary cathode material by spraying.
  • This application uses ionic liquid as a coating agent and sprays it on the surface of the ternary cathode material, which can improve the conductivity, hydrophobicity and stability of the ternary cathode material, reduce the sensitivity of the ternary cathode material to humidity, and solve the problem.
  • the sensitivity of high-nickel ternary cathode materials to environmental humidity in battery production enables high-nickel ternary cathode materials to perform normally under higher humidity; it solves the problem of controlling the high-nickel ternary cathode materials in the process of manufacturing batteries.
  • the problem of excessive environmental humidity costs.
  • Ionic liquids can absorb residual lithium on the surface of surface-modified ternary cathode materials, reduce side reactions, and improve the cycle performance of surface-modified ternary cathode materials.
  • the volume of the ionic liquid is 0.1%-5.0% of the mass of the ternary cathode material; optionally, the volume of the ionic liquid is 0.1%-2.5% of the mass of the ternary cathode material.
  • the content of ionic liquid has a greater impact on the product. If the content of ionic liquid is too high, the discharge capacity of the product will be low, and if the content of ionic liquid is too small, the cycle performance of the product will decrease sharply. Therefore, the inventor prefers that the volume of the ionic liquid is 0.1%-5.0% of the mass of the ternary cathode material. More preferably, the volume of the ionic liquid is 0.1%-2.5% of the mass of the ternary cathode material. The inventor found through research that when the volume of the ionic liquid is within the above range, the discharge capacity and cycle performance of the product are better.
  • the coating agent further includes a lithium salt
  • the lithium salt is at least one of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium bisfluorosulfonimide, and lithium bistrifluoromethanesulfonimide.
  • LiFSI Lithium bisfluorosulfonimide
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • the inventor found that adding lithium salt to the ionic liquid can further improve the discharge capacity and cycle performance of the product.
  • Lithium salt can not only improve the conductivity of the product, but also form a layer of CEI film on the surface of the product (CEI film is a solid electrolyte interface film).
  • the CEI film can block the contact between the cobalt ions in the crystal structure of the product surface and the electrolyte, blocking Cobalt ions are dissolved in the electrolyte, thereby reducing the occurrence of irreversible phase changes and further improving High product electrical performance.
  • the mass of the lithium salt is 0.1%-1.6% of the mass of the ternary cathode material.
  • the mass of the lithium salt is 0.1%-0.6% of the mass of the ternary cathode material.
  • the content of lithium salt has a great impact on the performance of the product. If the content of lithium salt is too high, it will easily lead to a low proportion of active materials, reduced capacity, and increased side reactions, resulting in reduced stability. If the lithium salt content is too low, the lithium ion conductivity on the material surface may decrease. More preferably, the mass of the lithium salt is 0.1%-0.6% of the mass of the ternary cathode material. The inventor found that when the content of lithium salt is within the above range, the electrical performance of the product can be further improved.
  • a method for preparing the surface-modified ternary cathode material including the following steps:
  • step S2 Temper the material obtained in step S1 at 150-350°C for 3-10 hours to obtain the surface-modified ternary cathode material.
  • This application coats the coating agent on the surface of the ternary cathode material by spraying, which can not only improve the uniformity of the coating agent and improve the electrical performance of the product, but also reduce the loss of the coating agent and reduce the production of the product. cost.
  • the surface of the product contains F elements, further reducing the sensitivity of the product to environmental humidity.
  • the sprayed ternary cathode material can be tempered directly without the need for further separation, which simplifies the steps and helps shorten the production cycle.
  • the flow rate of the coating agent is 0.2 mL/s-50 mL/s; optionally, the flow rate of the coating agent is 0.2 mL/s-5 mL/s.
  • the flow rate of the coating agent will affect the coating condition of the coating layer. By controlling the flow rate of the coating agent, the uniformity of the coating agent can be improved. More preferably, the flow rate of the coating agent is 0.20.mL/s-5mL/s.
  • the linear speed of the stirring is 1m/s-20m/s; optionally, the linear speed of the stirring is 3m/s-10m/s.
  • the linear speed of stirring will affect the dispersion of the ternary cathode material. If the linear speed of stirring is too small, the ternary cathode material will be dispersed unevenly, which will lead to the uniformity of the coating agent. If the linear speed of stirring is too high, the ternary cathode material will be dispersed unevenly. The ternary cathode material is too dispersed, causing the coating agent to be unable to wrap the ternary cathode material.
  • the linear speed of stirring is 1m/s-20m/s, the coating agent can be effectively wrapped on the surface of the ternary cathode material; more preferably, when the linear speed of stirring is 3m/s-10m/s, the coating agent The agent is wrapped more evenly.
  • the sprayed droplet size is ⁇ 100 ⁇ m; optionally, the sprayed droplet size is 30 to 80 ⁇ m.
  • the size of the spray droplets will affect the coating of the coating agent.
  • Droplets with a particle size greater than 100 ⁇ m have a fast settling speed, large kinetic energy, and are not prone to drift. They have poor adhesion to the ternary cathode material and will not only lose a large amount of Coating agent will also reduce the performance of the product; droplets with a particle size less than 30 ⁇ m are light in weight, prone to drift, and easy to agglomerate, resulting in uneven coating, thereby reducing the performance of the product.
  • the coating agent can be evenly wrapped on the surface of the ternary cathode material and has strong adhesion, thereby improving the performance of the product in a high-humidity environment.
  • the coating agent By coordinating the spray droplet size, the flow rate of the coating agent and the linear speed of the stirring, the coating agent can be effectively and evenly wrapped on the surface of the ternary cathode material, thereby improving the performance of the product.
  • the present application provides a cathode sheet containing the surface-modified ternary cathode material.
  • the present application provides a lithium-ion battery containing the positive electrode sheet
  • This application uses ionic liquid as a coating agent to coat the surface of the ternary cathode material, which can improve the conductivity, hydrophobicity and stability of the ternary cathode material and reduce the sensitivity of the ternary cathode material to humidity.
  • This application adds lithium salt to the coating agent, which can not only improve the conductivity of the product, but also form a CEI film on the surface of the product, further improving the discharge capacity, cycle performance and safety of the product.
  • This application uses spraying to coat the coating agent on the surface of the ternary cathode material.
  • spray droplet size By controlling the spray droplet size, the flow rate of the coating agent and the linear speed of stirring, they work together to not only improve the coating It can improve the uniformity of coating agent and improve the electrical properties of the product. It can also reduce the loss of coating agent and reduce the production cost of the product; simplify the steps and shorten the production cycle.
  • Figure 1 is a cycle life diagram of the surface-modified ternary cathode material obtained in Examples 1-6 and Comparative Examples 1-2;
  • Figure 2 is a cycle life diagram of the surface-modified ternary cathode material obtained in Example 1, Examples 7-10 and Comparative Examples 1-2;
  • Figure 3 is an XPS spectrum diagram of the surface-modified ternary cathode material and the ternary cathode material obtained in Example 1 and Examples 3-6.
  • the ternary cathode material in the following embodiments and effect examples of this application is LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
  • a surface-modified ternary cathode material whose raw materials include 5kg ternary cathode material, 0.1L 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt, and 26g LiTFSI.
  • a method for preparing a surface-modified ternary cathode material including the following steps:
  • step S3 Temper the material obtained in step S2 at a temperature of 150°C for 3 hours to obtain a surface-modified ternary cathode material.
  • the difference between this example and Example 1 is that the raw materials are different.
  • the raw materials of this example include 5kg ternary cathode material, 0.1L 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt ,17gLiFSI.
  • the difference between this example and Example 1 is that the raw materials are different.
  • the raw materials of this example include 5kg ternary cathode material, 0.1L 1-butyl-3-dimethylimidazole tetrafluoroborate, 8.6g LiBF4 .
  • the difference between this example and Example 1 is that the raw materials are different.
  • the raw materials in this example include 5kg ternary cathode material, 0.1L N-butylpyridine tetrafluoroborate, and 8.6g LiBF 4 .
  • the difference between this example and Example 1 is that the raw materials are different.
  • the raw materials in this example include 5kg ternary cathode material, 0.1L 1-butyl-3-methylimidazole hexafluorophosphate, and 8.6g LiFP 6 .
  • the difference between this embodiment and Example 1 is that the raw materials are different.
  • the raw materials of this embodiment include Including 5kg ternary cathode material, 0.1L 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt.
  • a surface-modified ternary cathode material whose raw materials include 5kg ternary cathode material, 0.25L 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt, and 70g LiTFSI.
  • a method for preparing a surface-modified ternary cathode material including the following steps:
  • step S3 Temper the material obtained in step S2 at a temperature of 200°C for 6 hours to obtain a surface-modified ternary cathode material.
  • a surface-modified ternary cathode material whose raw materials include 5kg ternary cathode material, 0.1L 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt, and 26g LiTFSI.
  • a method for preparing a surface-modified ternary cathode material including the following steps:
  • step S3 Temper the material obtained in step S2 at a temperature of 350°C for 3 hours to obtain a surface-modified ternary cathode material.
  • a surface-modified ternary cathode material whose raw materials include 5kg ternary cathode material, 0.1L 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt, and 26g LiTFSI.
  • a method for preparing a surface-modified ternary cathode material including the following steps:
  • step S3 Temper the material obtained in step S2 at a temperature of 150°C for 3 hours to obtain a surface-modified ternary cathode material.
  • a surface-modified ternary cathode material whose raw materials include 5kg ternary cathode material, 0.1L 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt, and 26g LiTFSI.
  • a method for preparing a surface-modified ternary cathode material including the following steps:
  • step S3 Temper the material obtained in step S2 at a temperature of 150°C for 3 hours to obtain a surface-modified ternary cathode material.
  • the difference between this example and Example 1 is that the raw materials are different.
  • the raw materials of this example include 5kg ternary cathode material, 0.1L 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt ,8.6gLiFSI.
  • This effect example tests the performance of the ternary cathode material.
  • Test method Assemble the ternary cathode material into a battery in an environment with a humidity of 10%, as Comparative Example 1; assemble the ternary cathode material into a battery in an environment with a humidity of 30%, as a Comparative Example 2; respectively
  • the surface-modified ternary cathode material obtained in Examples 1-11 was assembled into a battery in an environment with a humidity of 30%; the first-week discharge specific capacity of the obtained battery was tested at 45°C, 2.8-4.25V, and 0.33C rate. ;
  • the cycle performance of the obtained battery was tested at 45°C, 2.8-4.25V, and 1C rate.
  • the test results are shown in Table 1, Figure 1 and Figure 2.
  • the specific discharge capacity of Comparative Example 1 is 200.38mAh/g
  • the specific discharge capacity of Comparative Example 2 is 194.67mAh/g, indicating that the environmental humidity has a greater impact on the specific discharge capacity of the battery, and in the environment
  • the discharge specific capacities of the batteries prepared in Examples 1-10 are all greater than 198 mAh/g, indicating that the surface-modified ternary cathode material of the present application has low sensitivity to environmental humidity.
  • the batteries of Examples 1-10 have a high cycle retention rate after 100 cycles, indicating that the coating agent of the present application can reduce the impact of environmental humidity on the battery.
  • This effect example tests the elements of the surface-modified ternary cathode material.
  • Test method Using the unmodified ternary cathode material as Comparative Example 1, the ternary cathode materials of Example 1, Examples 3-6 and Comparative Example 1 were subjected to XPS energy spectrum testing. The results are shown in Figure 3.
  • Figure 3 is the XPS spectrum of the surface-modified ternary cathode material obtained in Example 1, Examples 3-6 and Comparative Example 1.
  • the surface of the unmodified ternary cathode material does not contain the F element.
  • the surface of the surface-modified ternary cathode material in this application contains the F element, indicating that the coating agent exists on the surface of the ternary cathode material and there is no return due to the presence of the coating agent. Evaporated by fire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了一种表面修饰三元正极材料及其制备方法与应用,属于锂电池技术领域。该表面修饰三元正极材料包括三元正极材料和包覆剂,所述三元正极材料的化学式为Li(NixCoyMn1-x-y)O2,其中0.6≤x≤1,0≤y≤0.4;所述包覆剂包括离子液体,所述离子液体的阴离子为TFSI⁻、PF⁻6、BF⁻4中的一种;所述离子液体的阳离子为咪唑盐离子、吡啶盐离子中的一种;所述包覆剂通过喷涂包覆在三元正极材料表面。本申请使用离子液体作为包覆剂,包覆在三元正极材料表面,可以提高三元正极材料的电导率、疏水性和稳定性,降低三元正极材料对湿度的敏感性,解决了高镍三元正极材料在制造电池的过程中控制环境湿度成本过高的问题。

Description

一种表面修饰三元正极材料及其制备方法与应用 技术领域
本申请涉及一种表面修饰三元正极材料及其制备方法与应用,属于锂离子电池技术领域。
背景技术
研究人员一直在探索高镍三元材料的性能极限,目前虽然市面已有成熟的产品,但高镍三元材料相比于其他主流正极材料仍有许多问题,比如结构不稳定性,对环境更敏感和安全性更差等。高镍三元材料不仅在材料制备时对环境要求很高,也在电池正极浆料搅拌和正极极片处理过程中对环境湿度要求非常高。一般要求相对湿度5%以下,甚至2%以下。而电池生产流程长,且占地面积大。如果要做到很大空间的除湿,对设备要求非常高,同时能耗非常高,这非常不利于高镍三元材料在电池中的推广应用。如果能降低高镍三元材料对环境的敏感性,使其对环境湿度要求没有那么高,那么就可以显著降低电池生产的门槛和成本,从而加大高镍三元材料在电池中的应用。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于克服现有技术的不足,提供一种表面修饰三元正极材料及其制备方法与应用,所述表面修饰三元正极材料对环境的敏感性低,安全性高,进一步降低了表面修饰三元正极材料的生产成本。
为实现上述目的,本申请采取的技术方案为:一种表面修饰三元正极材料,包括三元正极材料和包覆剂,所述三元正极材料的化学式为Li(NixCoyMn1-x-y)O2,其中0.6≤x≤1,0≤y≤0.4;所述包覆剂包括离子液体,所述离子液体的阴离子包 括TFSI-中的一种;所述离子液体的阳离子为咪唑、吡啶中的一种;所述包覆剂通过喷涂包覆在三元正极材料表面。
本申请使用离子液体作为包覆剂,通过喷涂包覆在三元正极材料表面,可以提高三元正极材料的电导率、疏水性和稳定性,降低三元正极材料对湿度的敏感性,解决了高镍三元正极材料在电池制作中对环境湿度的敏感性,使高镍三元正极材料在更高湿度下也能发挥正常性能;解决了高镍三元正极材料在制造电池的过程中控制环境湿度成本过高的问题。离子液体可以吸收表面修饰三元正极材料表面的残余锂,减少副反应,提升表面修饰三元正极材料的循环性能。
可选地,所述离子液体的体积为三元正极材料质量的0.1%-5.0%;可选地,所述离子液体的体积为三元正极材料质量的0.1%-2.5%。
离子液体的含量对产品的影响程度较大,若离子液体的含量过高,产品的放电量较低,而如果离子液体的含量过少,产品的循环性能骤减。因此发明人优选所述离子液体的体积为三元正极材料质量的0.1%-5.0%。更优选地,所述离子液体的体积为三元正极材料质量的0.1%-2.5%。发明人经过研究发现,在离子液体的体积上述范围内时,产品的放电量和循环性能较佳。
可选地,所述包覆剂还包括锂盐,所述锂盐为六氟磷酸锂、四氟硼酸锂、双氟磺酰亚胺锂盐、双三氟甲磺酰亚胺锂中的至少一种。
双氟磺酰亚胺锂盐简称LiFSI,双三氟甲磺酰亚胺锂简称LiTFSI;发明人经过研究发现,在离子液体中加入锂盐,可以进一步提升产品的放电量和循环性能。锂盐不仅可以提高产品的电导性,还可以在产品表面形成一层CEI膜(CEI膜为固体电解质界面膜),CEI膜可以阻断产品表面晶体结构中的钴离子与电解液接触,阻断钴离子溶解于电解液中,从而降低不可逆相变的发生,进一步提 高产品的电性能。
可选地,所述锂盐的质量为三元正极材料质量的0.1%-1.6%。
可选地,所述锂盐的质量为三元正极材料质量的0.1%-0.6%。
锂盐的含量对产品的性能影响较大,锂盐的含量过高,则容易导致活性物质占比较低降低容量且副反应增加造成稳定性下降。若锂盐的含量过低,可能导致材料表面的锂离子电导率下降。更优选地,所述锂盐的质量为三元正极材料质量的0.1%-0.6%。发明人发现,锂盐的含量在上述范围内,可以进一步提高产品的电性能。
另一当面,还提供了一种所述表面修饰三元正极材料的制备方法,包括以下步骤:
S1:在搅拌下,将包覆剂喷涂到三元正极材料表面;
S2:将步骤S1所得物料在150-350℃下回火3-10h,即得表面修饰三元正极材料。
本申请通过喷涂的方式将包覆剂包覆在三元正极材料表面,不仅可以提高包覆剂包裹的均匀性,提高产品的电性能,同时还可以减少包覆剂的损失,降低产品的生产成本。同时通过控制回火的温度和时间,使产品表面中含有F元素,进一步降低产品对环境湿度的敏感性。此外,喷涂后的三元正极材料可以直接进行回火,不需要进行再一次分离,简化了步骤,有利于缩短生产周期。
可选地,所述包覆剂的流量为0.2mL/s-50mL/s;可选地,所述包覆剂的流量为0.2mL/s-5mL/s。
包覆剂的流量会影响包覆层的包覆情况,通过控制包覆剂的流量可以提高包覆剂包裹的均匀性。更优选地,所述包覆剂的流量为0.20.mL/s-5mL/s。
可选地,所述搅拌的线速度为1m/s-20m/s;可选地,所述搅拌的线速度为 3m/s-10m/s。
搅拌的线速度会影响三元正极材料的分散情况,若是搅拌的线速度太小,三元正极材料分散不均匀,进而导致包覆剂包覆的均匀性;若是搅拌的线速度太高,三元正极材料分散的太散,导致包覆剂不能包裹三元正极材料。当搅拌的线速度为1m/s-20m/s时,包覆剂可以有效的包裹在三元正极材料表面;更优选地,当搅拌的线速度为3m/s-10m/s时,包覆剂包裹的更均匀。
可选地,所述喷涂的雾滴粒径≤100μm;可选地,所述喷涂的雾滴粒径为30~80μm。
喷雾雾滴的大小会影响包覆剂的包覆情况,粒径大于100μm的雾滴,沉降速度快,动能较大,不容易发生漂移,在三元正极材料附着力差,不仅会损失大量的包覆剂,同时还会降低产品的性能;粒径小于30μm的雾滴,质量轻,容易发生漂移,同时容易团聚,导致包覆不均匀,进而降低产品的性能。当喷涂的雾滴粒径为30~80μm时,包覆剂能均匀的包裹在三元正极材料表面,同时附着力强,进而提高产品在高湿度环境下的性能。
通过协调喷涂的雾滴粒径、包覆剂的流量以及搅拌的线速度,共同发挥作用,使包覆剂有效、均匀的包裹在三元正极材料表面,提高产品的性能。
第三方面,本申请提供了一种正极片,该正极片含有所述表面修饰三元正极材料。
第四方面,本申请提供了一种锂离子电池,所述锂离子电池含有所述的正极片
与现有技术相比,本申请的有益效果为:
1、本申请使用离子液体作为包覆剂包覆在三元正极材料表面,可以提高三元正极材料的电导率、疏水性和稳定性,降低三元正极材料对湿度的敏感性。
2、本申请在包覆剂中加入锂盐,不仅可以提高产品的电导性,还可以在产品表面形成一层CEI膜,进一步提升产品的放电量、循环性能和安全性。
3、本申请采用喷涂的方式将包覆剂包覆在三元正极材料表面,通过控制喷涂的雾滴粒径、包覆剂的流量以及搅拌的线速度,共同发挥作用,不仅可以提高包覆剂包裹的均匀性,提高产品的电性能,同时还可以减少包覆剂的损失,降低产品的生产成本;简化步骤,缩短生产周期。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为实施例1-6和对比例1-2中所得表面修饰三元正极材料的循环寿命图;
图2为实施例1、实施例7-10和对比例1-2中所得表面修饰三元正极材料的循环寿命图;
图3为实施例1、实施例3-6中所得表面修饰三元正极材料和三元正极材料的XPS能谱图。
具体实施方式
为更好的说明本申请的目的、技术方案和优点,下面将结合具体实施例和附图对本申请作进一步的说明。
本申请下述实施例和效果例中的三元正极材料为LiNi0.8Co0.1Mn0.1O2
实施例1
一种表面修饰三元正极材料,其原料包括5kg三元正极材料、0.1L1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、26gLiTFSI。
一种表面修饰三元正极材料的制备方法,包括以下步骤:
S1:将LiTFSI溶于1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐中,所得包覆剂倒入喷雾液罐中,并准备好喷雾系统;
S2:将三元正极材料置于混料设备中,并开启搅拌,搅拌桨的线速度为3m/s,搅拌1min,保证三元正极材料充分弥散在腔体内;然后开启喷雾系统,将包覆剂以0.5mL/s喷涂到三元正极材料表面,喷涂的雾滴粒径≤100μm,喷涂结束后,继续搅拌3min,进一步保证物料均匀;
S3:将步骤S2所得物料在温度为150℃下进行回火,时间为3h,即得表面修饰三元正极材料。
实施例2
本实施例与实施例1的不同之处在于,所述原料不同,本实施例的原料包括5kg三元正极材料、0.1L1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、17gLiFSI。
实施例3
本实施例与实施例1的不同之处在于,所述原料不同,本实施例的原料包括5kg三元正极材料、0.1L1-丁基-3-二甲基咪唑四氟硼酸盐、8.6g LiBF4
实施例4
本实施例与实施例1的不同之处在于,所述原料不同,本实施例的原料包括5kg三元正极材料、0.1L N-丁基吡啶四氟硼酸盐、8.6g LiBF4
实施例5
本实施例与实施例1的不同之处在于,所述原料不同,本实施例的原料包括5kg三元正极材料、0.1L1-丁基-3-甲基咪唑六氟磷酸盐、8.6g LiFP6
实施例6
本实施例与实施例1的不同之处在于,所述原料不同,本实施例的原料包 括5kg三元正极材料、0.1L1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐。
实施例7
一种表面修饰三元正极材料,其原料包括5kg三元正极材料、0.25L1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、70gLiTFSI。
一种表面修饰三元正极材料的制备方法,包括以下步骤:
S1:将LiTFSI溶于1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐中,所得包覆剂倒入喷雾液罐中,并准备好喷雾系统;
S2:将三元正极材料置于混料设备中,并开启搅拌,搅拌桨的线速度为3m/s,搅拌1min,保证三元正极材料充分弥散在腔体内;然后开启喷雾系统,将包覆剂以0.5mL/s喷涂到三元正极材料表面,喷涂的雾滴粒径≤100μm,喷涂结束后,继续搅拌3min,进一步保证物料均匀;
S3:将步骤S2所得物料在温度为200℃下进行回火,时间为6h,即得表面修饰三元正极材料。
实施例8
一种表面修饰三元正极材料,其原料包括5kg三元正极材料、0.1L1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、26gLiTFSI。
一种表面修饰三元正极材料的制备方法,包括以下步骤:
S1:将LiTFSI溶于1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐中,所得包覆剂倒入喷雾液罐中,并准备好喷雾系统;
S2:将三元正极材料置于混料设备中,并开启搅拌,搅拌桨的线速度为3m/s,搅拌1min,保证三元正极材料充分弥散在腔体内;然后开启喷雾系统,将包覆剂以0.5mL/s喷涂到三元正极材料表面,喷涂的雾滴粒径≤100μm,喷涂结束后,继续搅拌3min,进一步保证物料均匀;
S3:将步骤S2所得物料在温度为350℃下进行回火,时间为3h,即得表面修饰三元正极材料。
实施例9
一种表面修饰三元正极材料,其原料包括5kg三元正极材料、0.1L1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、26gLiTFSI。
一种表面修饰三元正极材料的制备方法,包括以下步骤:
S1:将LiTFSI溶于1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐中,所得包覆剂倒入喷雾液罐中,并准备好喷雾系统;
S2:将三元正极材料置于混料设备中,并开启搅拌,搅拌桨的线速度为3m/s,搅拌1min,保证三元正极材料充分弥散在腔体内;然后开启喷雾系统,将包覆剂以0.2mL/s喷涂到三元正极材料表面,喷涂的雾滴粒径≤100μm,喷涂结束后,继续搅拌3min,进一步保证物料均匀;
S3:将步骤S2所得物料在温度为150℃下进行回火,时间为3h,即得表面修饰三元正极材料。
实施例10
一种表面修饰三元正极材料,其原料包括5kg三元正极材料、0.1L1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、26gLiTFSI。
一种表面修饰三元正极材料的制备方法,包括以下步骤:
S1:将LiTFSI溶于1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐中,所得包覆剂倒入喷雾液罐中,并准备好喷雾系统;
S2:将三元正极材料置于混料设备中,并开启搅拌,搅拌桨的线速度为3m/s,搅拌1min,保证三元正极材料充分弥散在腔体内;然后开启喷雾系统,将包覆剂以3mL/s喷涂到三元正极材料表面,喷涂的雾滴粒径≤100μm,喷涂结束后, 继续搅拌3min,进一步保证物料均匀;
S3:将步骤S2所得物料在温度为150℃下进行回火,时间为3h,即得表面修饰三元正极材料。
实施例11
本实施例与实施例1的不同之处在于,所述原料不同,本实施例的原料包括5kg三元正极材料、0.1L1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、8.6gLiFSI。
效果例1
本效果例测试了三元正极材料的性能。
测试方法:将三元正极材料在湿度为10%的环境下,组装成电池,作为对比例1;将三元正极材料在湿度为30%的环境下,组装成电池,作为对比例2;分别将实施例1-11所得表面修饰三元正极材料,在湿度为30%的环境下,组装成电池;所得电池在45℃、2.8-4.25V、0.33C倍率下,测试其首周放电比容量;所得电池在45℃、2.8-4.25V、1C倍率下,测试其循环性能。测试结果如表1、图1和图2所示。
表1

从表1中可以看出,对比例1的放电比容量为200.38mAh/g,对比例2的放电比容量为194.67mAh/g,说明环境湿度对电池的放电比容量影响较大,而在环境湿度为30%的情况下,实施例1-10所得制备的电池,其放电比容量均大于198mAh/g,说明本申请表面修饰三元正极材料对环境湿度的敏感性低。
从图1和图2中可以看出,对比例1的电池在循环100圈后,其循环稳定性尚可;而对比例2的电池在循环100圈后,其循环稳定性显著下降。本申请
实施例1-10的电池在循环100圈后,具有较高的循环保持率,说明本申请的包覆剂可以降低环境湿度对电池的影响。
效果例2
本效果例测试了表面修饰三元正极材料的元素。
测试方法:以未经修饰的三元正极材料作为对比例1,将实施例1、实施例3-6和对比例1的三元正极材料进行XPS能谱测试。结果如图3所示,图3为实施例1、实施例3-6和对比例1中所得表面修饰三元正极材料的XPS能谱图。从图3中可以看出,未经修饰的三元正极材料表面不含有F元素,本申请表面修饰三元正极材料表面含有F元素,说明包覆剂存在于三元正极材料表面,没有因为回火而挥发掉。
综上可知,从循环性能和放电比容量的结果来看,表面修饰正极材料包覆离子液体对电池的整体性能都有明显提升,特别是在高湿度环境下制作电池时的性能。
最后所应当说明的是,以上实施例用以说明本申请的技术方案而非对本申请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者同等替换,而不脱离本申请技术方案的实质和范围。

Claims (12)

  1. 一种表面修饰三元正极材料,其中,包括三元正极材料和包覆剂,所述三元正极材料的化学式为Li(NixCoyMn1-x-y)O2,其中0.6≤x≤1,0≤y≤0.4;所述包覆剂包括离子液体,所述离子液体的阴离子为TFSI-中的一种;所述离子液体的阳离子为咪唑盐离子、吡啶盐离子中的一种;所述包覆剂通过喷涂包覆在三元正极材料表面。
  2. 如权利要求1所述的表面修饰三元正极材料,其中,所述离子液体的体积为三元正极材料质量的0.1%-5.0%。
  3. 如权利要求1所述的表面修饰三元正极材料,其中,所述离子液体的体积为三元正极材料质量的0.1%-2.5%。
  4. 如权利要求1所述的表面修饰三元正极材料,其中,所述包覆剂还包括锂盐,所述锂盐为六氟磷酸锂、四氟硼酸锂、双氟磺酰亚胺锂盐、双三氟甲磺酰亚胺锂中的至少一种。
  5. 如权利要求4所述的表面修饰三元正极材料,其中,所述锂盐的质量为三元正极材料质量的0.1%-1.6%。
  6. 如权利要求4所述的表面修饰三元正极材料,其中,所述锂盐的质量为三元正极材料质量的0.1%-0.6%。
  7. 一种如权利要求1-6任一项所述表面修饰三元正极材料的制备方法,其中,包括以下步骤:
    S1:在搅拌下,将包覆剂喷涂到三元正极材料表面;
    S2:将步骤S1所得物料在150-350℃下回火3-10h,即得表面修饰三元正极材料。
  8. 如权利要求7所述的制备方法,其中,所述包覆剂的流量为0.2mL/s-50mL/s;可选地,所述包覆剂的流量为0.2mL/s-5mL/s。
  9. 如权利要求7所述的制备方法,其中,所述搅拌的线速度为1m/s-20m/s;可选地,所述搅拌的线速度为3m/s-10m/s。
  10. 如权利要求7所述的制备方法,其中,所述喷涂的雾滴粒径≤100μm;可选地,所述喷涂的雾滴粒径为30-80μm。
  11. 一种正极片,其中,包括权利要求1~6任一项所述表面修饰三元正极材料。
  12. 一种锂离子电池,其中,包括权利要求11所述的正极片。
PCT/CN2023/077921 2022-08-22 2023-02-23 一种表面修饰三元正极材料及其制备方法与应用 WO2024040896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211009503.6 2022-08-22
CN202211009503.6A CN115360345A (zh) 2022-08-22 2022-08-22 一种表面修饰三元正极材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2024040896A1 true WO2024040896A1 (zh) 2024-02-29

Family

ID=84003182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077921 WO2024040896A1 (zh) 2022-08-22 2023-02-23 一种表面修饰三元正极材料及其制备方法与应用

Country Status (3)

Country Link
CN (1) CN115360345A (zh)
FR (1) FR3138971A1 (zh)
WO (1) WO2024040896A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115360345A (zh) * 2022-08-22 2022-11-18 广东邦普循环科技有限公司 一种表面修饰三元正极材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832103A (zh) * 2018-06-20 2018-11-16 江苏翔鹰新能源科技有限公司 一种改性高镍三元正极材料及其制备方法和应用
CN109830643A (zh) * 2019-01-11 2019-05-31 蜂巢能源科技有限公司 降低锂电池界面阻抗的膜及其制备方法和应用
CN110137470A (zh) * 2019-05-15 2019-08-16 华南理工大学 一种氟基离子液体表面修饰锂离子电池三元正极材料的方法
CN110233244A (zh) * 2019-06-28 2019-09-13 北京科技大学 一种高镍三元正极材料颗粒表面稳定化处理方法
CN111276690A (zh) * 2020-02-19 2020-06-12 中国科学院过程工程研究所 一种低孔隙率正极极片、其制备方法及其在固态锂金属电池中的应用
CN113328072A (zh) * 2021-05-17 2021-08-31 宜宾锂宝新材料有限公司 高镍三元锂离子电池正极材料及其生产方法
CN115360345A (zh) * 2022-08-22 2022-11-18 广东邦普循环科技有限公司 一种表面修饰三元正极材料及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832103A (zh) * 2018-06-20 2018-11-16 江苏翔鹰新能源科技有限公司 一种改性高镍三元正极材料及其制备方法和应用
CN109830643A (zh) * 2019-01-11 2019-05-31 蜂巢能源科技有限公司 降低锂电池界面阻抗的膜及其制备方法和应用
CN110137470A (zh) * 2019-05-15 2019-08-16 华南理工大学 一种氟基离子液体表面修饰锂离子电池三元正极材料的方法
CN110233244A (zh) * 2019-06-28 2019-09-13 北京科技大学 一种高镍三元正极材料颗粒表面稳定化处理方法
CN111276690A (zh) * 2020-02-19 2020-06-12 中国科学院过程工程研究所 一种低孔隙率正极极片、其制备方法及其在固态锂金属电池中的应用
CN113328072A (zh) * 2021-05-17 2021-08-31 宜宾锂宝新材料有限公司 高镍三元锂离子电池正极材料及其生产方法
CN115360345A (zh) * 2022-08-22 2022-11-18 广东邦普循环科技有限公司 一种表面修饰三元正极材料及其制备方法与应用

Also Published As

Publication number Publication date
FR3138971A1 (fr) 2024-02-23
CN115360345A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
EP3944390A1 (en) Composite material and preparation method therefor, and lithium ion battery
JP6028237B2 (ja) 二次電池
EP2923401B1 (en) Electrode compositions comprising conductive polymers and method for their production
WO2020258996A1 (zh) 一种低产气高容量的三元正极材料
WO2024040896A1 (zh) 一种表面修饰三元正极材料及其制备方法与应用
JP5985975B2 (ja) リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
CN111916711A (zh) 一种双核壳结构三元正极材料及其制备方法
CN106486639A (zh) 一种锂电池极片及其制作方法
CN103985900A (zh) 一种改性聚合物电解质、其制备方法及其在锂电池中的应用
CN109192956B (zh) 磷酸锆锂快离子导体包覆镍钴铝酸锂正极材料及制备方法
WO2021012423A1 (zh) 一种有机无机复合固态电解质及其制备方法和应用
CN103904304A (zh) 一种锂离子电池的负极活性材料及其制备方法和一种锂离子电池
WO2018014164A1 (zh) 一种钠离子电池的补钠方法及制备得到的极片和电池
CN103904305B (zh) 一种锂离子电池的负极活性材料及其制备方法和一种锂离子电池
WO2022121571A1 (zh) 电极极片、二次电池及其制备方法和含有二次电池的装置
Jang et al. Surface coating layer on Li metal for increased cycle stability of Li–O2 batteries
WO2024011620A1 (zh) 二次电池、电池模块、电池包和用电装置
TW201841426A (zh) 半固體電解質層、電池單元薄片及二次電池
CN104779366A (zh) 一种锂离子电池负极片的制备方法及所制得的锂离子电池
Zeng et al. Nano‐Sized AlPO4 Coating Layer on Graphite Powder to Improve the Electrochemical Properties of High‐Voltage Graphite/LiNi0. 5Mn1. 5O4 Li‐Ion Cells
CN107408736B (zh) 电解液
Hareendrakrishnakumar et al. Ion-selective PEDOT: PSS-decorated separator as a potential polysulfide immobilizer for lithium-sulfur batteries
Zhang et al. Functional polyethylene separator with impurity entrapment and faster Li+ ions transfer for superior lithium-ion batteries
WO2017206063A1 (zh) 一种镁离子电池及其制备方法
WO2023216029A1 (zh) 二次电池、电池模组、电池包及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855993

Country of ref document: EP

Kind code of ref document: A1