WO2024039193A1 - 레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지 - Google Patents

레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지 Download PDF

Info

Publication number
WO2024039193A1
WO2024039193A1 PCT/KR2023/012162 KR2023012162W WO2024039193A1 WO 2024039193 A1 WO2024039193 A1 WO 2024039193A1 KR 2023012162 W KR2023012162 W KR 2023012162W WO 2024039193 A1 WO2024039193 A1 WO 2024039193A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodine
cyclodextrin
flow battery
redox flow
methyl
Prior art date
Application number
PCT/KR2023/012162
Other languages
English (en)
French (fr)
Inventor
권용재
노찬호
신민규
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Publication of WO2024039193A1 publication Critical patent/WO2024039193A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolyte composition for a redox flow battery and a redox flow battery containing the same.
  • a redox flow battery is a secondary battery in which active materials with different electrochemical potentials store electrical energy through a charging/discharging process.
  • RFB has the advantage of being able to control energy and power separately, has excellent design flexibility, is relatively safe, and has a long lifespan.
  • the energy density is not sufficient and the cost of transition metals used as active materials is high, making it cost competitive compared to commercial battery technology. It is difficult to have.
  • the present invention is to solve the above-mentioned problems, and the purpose of the present invention is to provide an electrolyte solution for a redox flow battery containing an additive that can continuously remove the iodine film generated during charging/discharging of the battery from the surface of the electrode and the flow path.
  • the purpose is to provide.
  • Another object of the present invention is to increase the flow stability of the redox flow battery by applying an electrolyte for the redox flow battery and to provide a redox flow battery that operates stably.
  • the electrolyte composition for a redox flow battery according to an embodiment of the present invention includes iodide salt; and cyclodextrin (CD)-based additives.
  • the iodide salt is an iodide salt of an alkali metal, n-methylimidazolium iodine, n-ethylimidazolium iodine, 1-benzyl-2-methylimidazolium iodine, 1-ethyl-3 -Methylimidazolium iodine, 1-butyl-3-methylimidazolium iodine, 1-methyl-3-propylimidazolium iodine, 1-methyl-3-isopropylimidazolium iodine, 1-methyl-3 -Butylimidazolium iodine, 1-methyl-3-isobutylimidazolium iodine, 1-methyl-3-s-butylimidazolium iodine, 1-methyl-3-pentylimidazolium iodine, 1-methyl -3-Isopentylimidazolium iodine
  • the iodide salt may be 0.01 M to 7 M in the electrolyte composition for a redox flow battery.
  • the cyclodextrin-based additive may include at least one selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, and derivatives thereof.
  • the cyclodextrin-based additive may be 0.01 M to 2.0 M in the electrolyte composition for a redox flow battery.
  • the cyclodextrin-based additive may remove the iodine film of the oxidized species by forming a complex with the oxidized species in the iodide salt.
  • a redox flow battery includes an anode cell containing an anode and an anode electrolyte; A cathode cell containing a cathode and a cathode electrolyte; and an ion exchange membrane positioned between the anode cell and the cathode cell, wherein the anode electrolyte is an electrolyte composition for a redox flow battery according to an embodiment of the present invention.
  • the electrolyte composition for a redox flow battery according to an embodiment of the present invention can continuously remove the iodine film generated during charging/discharging of the battery from the surface and flow path of the electrode by including cyclodextrin as an additive.
  • the redox flow battery according to an embodiment of the present invention can increase the flow stability of the redox flow battery and operate stably by applying an electrolyte for redox flow batteries containing cyclodextrin as an additive.
  • Figure 1 is a diagram showing a) the chemical structural formula of cyclodextrin and b) the 3D structure of cyclodextrin according to an embodiment of the present invention.
  • Figure 2 is a diagram for explaining the principle of action of removing the iodine film of cyclodextrin according to an embodiment of the present invention.
  • Figure 3 is a diagram showing the redox reactivity of iodine according to the presence or absence of HP- ⁇ -CD as measured by cyclic voltammetry according to examples and comparative examples of the present invention.
  • Figure 4 is a diagram showing the redox reactivity of iodine according to the presence or absence of HP- ⁇ -CD measured at an electrode rotating at 1000 rpm according to an embodiment of the present invention.
  • Figure 5 is a graph of the cycling capacity of the iodine flow battery according to the inclusion or absence of cyclodextrin according to the Examples and Comparative Examples of the present invention.
  • Figure 6 is a charge/discharge curve of an iodine flow battery not containing cyclodextrin according to a comparative example of the present invention.
  • Figure 7 is a charge/discharge curve of an iodine flow battery containing cyclodextrin according to an embodiment of the present invention.
  • Figure 8 is a) a photograph of the electrode of an iodine battery not containing cyclodextrin, and b) a photograph of the electrode of an iodine battery including cyclodextrin according to the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term.
  • the electrolyte composition for a redox flow battery according to an embodiment of the present invention includes iodide salt; and cyclodextrin (CD)-based additives.
  • the electrolyte composition for a redox flow battery according to an embodiment of the present invention can continuously remove the iodine film generated during charging/discharging of the battery from the surface and flow path of the electrode by including cyclodextrin as an additive.
  • the iodide salt may contain iodine molecules (I 2 ) and I ⁇ .
  • iodine-based oxidation/reduction species may be formed from the iodide salt.
  • the iodine-based oxidation/reduction species may include I - /I 3 - .
  • the iodide salt is, for example, an iodide salt of an alkali metal such as LiI, NaI, KI, n-methylimidazolium iodine, n-ethylimidazolium iodine, 1-benzyl-2- Methylimidazolium iodine, 1-ethyl-3-methylimidazolium iodine, 1-butyl-3-methylimidazolium iodine, 1-methyl-3-propylimidazolium iodine, 1-methyl-3-iso Propylimidazolium iodine, 1-methyl-3-butylimidazolium iodine, 1-methyl-3-isobutylimidazolium iodine, 1-methyl-3-s-butylimidazolium iodine, 1-methyl- 3-pentyl imidazolium iodine, 1-methyl-3-isopentylim
  • the iodide salt is 0.01 M to 7 M in the electrolyte composition for a redox flow battery; 0.01 M to 6 M; 0.01 M to 5 M; 0.01 M to 4 M; 0.01 M to 3 M; 0.01 M to 2 M; 0.01 M to 1 M; 0.01 M to 0.1 M; 0.1 M to 7 M; 0.1 M to 6 M; 0.1 M to 5 M; 0.1 M to 4 M; 0.1 M to 3 M; 0.1 M to 2 M; 0.1 M to 1 M; 1 M to 7 M; 1 M to 6 M; 1 M to 5 M; 1 M to 4 M; 1 M to 3 M; 1 M to 2 M; 3 M to 7 M; 3 M to 6 M; 3 M to 5 M; 3 M to 4 M; 5 M to 7 M; Or it may be 6 M to 7 M; If the iodide salt exceeds 0.01 M in the electrolyte composition for a redox flow battery, a problem may occur in which the flow path of the redox flow battery
  • the cyclodextrin-based additive may include at least one selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, and derivatives thereof.
  • the derivatives of ⁇ -cyclodextrin include Hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD), Dimethyl- ⁇ -cyclodextrin (DM) - ⁇ -CD)), 2-Hydroxyethyl- ⁇ -cyclodextrin (2-HE- ⁇ -CD)), Trimethyl- ⁇ -cyclodextrin (TM - ⁇ -CD)), selected from the group consisting of Sulfobutylether- ⁇ -cyclodextrin (SBE- ⁇ -CD) and randomly methylated ⁇ -cyclodextrin (Randomly methylated ⁇ -cyclodextrin) It may include at least one of the following.
  • HP- ⁇ -CD Hydroxypropyl- ⁇ -cyclodextrin
  • DM Dimethyl- ⁇ -cyclodextrin
  • 2-HE- ⁇ -CD 2-Hydroxyethyl- ⁇ -cyclodextrin
  • TM - ⁇ -CD Trimethyl- ⁇
  • the derivatives of ⁇ -cyclodextrin include 2-Hydroxypropyl- ⁇ -cyclodextrin, acetyl- ⁇ -cyclodextrin, and peracetyl- ⁇ -cyclodextrin. It may include at least one selected from the group consisting of cyclodextrin (peracetyl- ⁇ -cyclodextrin) and sulfobutylether- ⁇ -cyclodextrin (sulfobutylether ⁇ -cyclodextrin).
  • the cyclodextrin-based additive is 0.01 M to 2.0 M in the electrolyte composition for a redox flow battery; 0.01 M to 1.8 M; 0.01 M to 1.5 M; 0.01 M to 1.3 M; 0.01 M to 1.0 M; 0.01 M to 0.1 M; 0.1 M to 2.0 M; 0.1 M to 1.8 M; 0.1 M to 1.5 M; 0.1 M to 1.3 M; 0.1 M to 1.0 M; 0.3 M to 2.0 M; 0.3 M to 1.8 M; 0.3 M to 1.5 M; 0.3 M to 1.3 M; 0.3 M to 1.0 M; 0.5 M to 2.0 M; 0.5 M to 1.8 M; 0.5 M to 1.5 M; 0.5 M to 1.3 M; 0.5 M to 1.0 M; 1.0 M to 2.0 M; 1.0 M to 1.8 M; 1.0 M to 1.5 M; 0.5 M to 1.3 M; 0.5 M to 1.0 M; 1.0 M to 2.0 M; 1.0 M to 1.8 M; 1.0 M to 1.5 M; 1.0 M to 1.3 M
  • the cyclodextrin-based additive may remove the iodine film of the oxidized species by forming a complex with the oxidized species in the iodide salt.
  • Scheme 1 is a redox reaction
  • Scheme 2 is a chemical reaction
  • Scheme 3 is related to a redox reaction.
  • I 2(s) generated in these reactions is created in the form of a non-conducting film on the surface of the electrode during the oxidation reaction of I- ions, and blocks the electrode passage and acts as a resistor, deteriorating the overall performance of the battery. Therefore, it is important to continuously remove this iodine film to maintain stable performance of the iodine flow battery.
  • a cyclodextrin (CD)-based additive is included as an additive that can remove such iodine film.
  • Figure 1 is a diagram showing a) the chemical structural formula of cyclodextrin and b) the 3D structure of cyclodextrin according to an embodiment of the present invention.
  • I 2(s) is classified as a nonpolar molecule because it has a symmetric structure.
  • the electrolyte of an iodine flow battery is water-based, it is a polar electrolyte. Therefore, if an organic molecule of the cyclodextrin (CD) series, which can accommodate non-polar molecules on the inside and is polar on the outside and can easily dissolve in an aqueous electrolyte solution, is used as an additive, an iodine film is formed on the electrode surface. can be continuously moved to the electrolyte.
  • CD cyclodextrin
  • Figure 2 is a diagram for explaining the principle of action of removing the iodine film of cyclodextrin according to an embodiment of the present invention.
  • the iodine film moved into the electrolyte solution meets extra I-ions again and is converted into polar I 3 - molecules through the reaction of Scheme 2, and the polar I 3 - molecules are released from the cyclodextrin.
  • Cyclodextrin which has lost its internal receptor (here, the iodine film), can continuously remove the iodine film that is formed on the electrode surface, and this is an additive that can improve the phenomenon of continuous cell channel blockage even with a small amount of cyclodextrin compared to iodine. It can act as a
  • a redox flow battery includes an anode cell containing an anode and an anode electrolyte; A cathode cell containing a cathode and a cathode electrolyte; and an ion exchange membrane positioned between the anode cell and the cathode cell, wherein the anode electrolyte is an electrolyte composition for a redox flow battery according to an embodiment of the present invention.
  • the redox flow battery according to an embodiment of the present invention can increase the flow stability of the redox flow battery and operate stably by applying an electrolyte for redox flow batteries containing cyclodextrin as an additive.
  • An iodine electrolyte composition was prepared by preparing a 0.1 M KI 1.0 M KCl solution containing no HP- ⁇ -CD.
  • Reactivity was measured by Cyclic Voltammetry (CV) using the iodine electrolyte composition prepared according to the Examples and Comparative Examples of the present invention.
  • Figure 3 shows the cyclic voltammetry according to the Examples and Comparative Examples of the present invention. This is a diagram showing the redox reactivity of iodine according to the presence or absence of HP- ⁇ -CD as measured by the method.
  • Figure 4 is a diagram showing the redox reactivity of iodine according to the presence or absence of HP- ⁇ -CD measured at an electrode rotating at 1000 rpm according to Example 1 and Comparative Example 1 of the present invention.
  • Rotating the electrode is intended to maximize the mass transfer rate of ions by forming forced convection.
  • a sharp decrease in current peak occurred at 0.7 V (vs. Ag/AgCl). This is because a non-conducting iodine film is formed on the surface of the electrode, preventing the reactant from being supplied.
  • the data of the experimental group showed only a slight peak decrease around -0.85 V (vs. Ag/AgCl). This means that the CD added in Example 1 for the purpose of removing the iodine film is working effectively.
  • the effect of CD on iodine film removal was evaluated under actual battery operating conditions.
  • the electrolyte of the battery consisted of an iodine solution with a stage of charge (SOC) of 50%, and a symmetric cell experiment was conducted using this solution.
  • SOC stage of charge
  • the preparation of a 50% SOC battery electrolyte containing cyclodextrin is as follows.
  • DIW was added to the solution to adjust the volume to 20 ml.
  • Figure 5 is a graph of the cycling capacity of the iodine flow battery according to the inclusion or absence of cyclodextrin according to the Examples and Comparative Examples of the present invention
  • Figure 6 is a graph of the cycling capacity of the iodine flow battery without cyclodextrin according to the Comparative Example of the present invention.
  • /discharge curve and
  • Figure 7 is a charge/discharge curve of an iodine flow battery containing cyclodextrin according to an embodiment of the present invention.
  • Figure 8 is a) a photograph of the electrode of an iodine battery not containing cyclodextrin, and b) a photograph of the electrode of an iodine battery including cyclodextrin according to the present invention.
  • the electrode used in the comparative example experiment in a) of Figure 8 had an iodine film formed at the bottom of the arrow that could be observed with the naked eye, and in the battery using an electrolyte solution containing cyclodextrin in b), iodine was present. No film was observed.
  • cyclodextrin as an additive to the electrolyte solution is an effective method to suppress the formation of iodine film that may appear during charging/discharging of the iodine battery and to ensure the flow stability of the iodine battery.
  • the cyclodextrin used in the present invention is a technology that ensures freedom in capacity design, which is the original purpose of the flow battery, and at the same time, it can secure the flow stability of the iodine flow battery, providing an economic advantage in terms of BMS (Battery Management System). I can give it.
  • the amount of cyclodextrin in the electrolyte is less than the amount of iodine, it can be expected to have no significant impact on the increase in battery price due to the use of the additive because it can continuously remove the iodine film formed on the electrode surface.
  • the iodine electrolyte solution containing the additive developed in the present invention can ensure the flow stability of the battery, the existing system used in redox flow batteries can be used as is. Therefore, if a relatively inexpensive iodine electrolyte can be used in the redox flow battery market, which has previously been stagnant due to high electrolyte prices, it is expected that explosive growth of the redox flow battery market can be achieved.
  • adding cyclodextrin to the iodine electrolyte solution can ensure the flow stability of the electrolyte solution.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은, 레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지에 관한 것으로, 본 발명의 일 실시예에 따른 레독스 흐름전지용 전해액 조성물은, 요오드화염; 및 사이클로덱스트린(cyclodextrin; CD)계 첨가제;를 포함한다.

Description

레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지
본 발명은 레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지에 관한 것이다.
레독스 흐름전지(Redox Flow Battery; RFB)는 서로 다른 전기 화학적 전위를 갖는 활물질이 충전/방전 과정을 통해 전기 에너지를 저장하는 이차전지이다.
RFB는 에너지와 전력을 각각 제어할 수 있어 뛰어난 설계 유연성을 갖고 비교적 안전성이 높으며 수명이 길다는 장점이 있지만 에너지 밀도가 충분하지 않고 활물질로 사용되는 전이금속들의 비용이 높아 상용 전지기술에 비해 가격 경쟁력을 가지기 힘들다.
이에 대한 대안책으로 비교적 저렴한 요오드(I, 원자번호 53)를 레독스 흐름전지의 활물질로 사용하는 시도가 있었지만, 전지의 충/방전 시 전해액에 녹지 않는 요오드 필름이 생성되며 이는 흐름전지의 유로를 막아(blockage) 전지의 성능을 감소시키는 문제가 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 전지의 충/방전 시 발생하는 요오드 필름을 전극의 표면과 유로에서 지속적으로 제거할 수 있는 첨가제를 포함하는 레독스 흐름전지용 전해액을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 레독스 흐름전지용 전해액을 적용하여 레독스 흐름전지의 유동안정성을 높이고 안정적으로 구동하는 레독스 흐름전지를 제공하는 것을 목적으로 한다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 레독스 흐름전지용 전해액 조성물은, 요오드화염; 및 사이클로덱스트린(cyclodextrin; CD)계 첨가제;를 포함한다.
일 실시형태에 있어서, 상기 요오드화염은, 알칼리 금속의 요오드화염, n-메틸이미다졸륨 요오드, n-에틸이미다졸륨 요오드, 1-벤질-2-메틸이미다졸륨 요오드, 1-에틸-3-메틸이미다졸륨 요오드, 1-부틸-3-메 틸이미다졸륨 요오드, 1-메틸-3-프로필이미다졸륨 요오드, 1-메틸-3-이소프로필이미다졸륨 요오드, 1-메틸-3-부 틸이미다졸륨 요오드, 1-메틸-3-이소부틸이미다졸륨 요오드, 1-메틸-3-s-부틸이미다졸륨 요오드, 1-메틸-3-펜틸 이미다졸륨 요오드, 1-메틸-3-이소펜틸이미다졸륨 요오드, 1-메틸-3-헥실이미다졸륨 요오드, 1-메틸-3-이소헥실 이미다졸륨 요오드, 1-메틸-3-엑틸이미다졸륨 요오드, 1,2-디메틸-3-프로필이미다졸륨 요오드, 1-에틸-3-이소프 로필이미다졸륨 요오드, 1-프로필-3-프로필이미다졸륨 요오드 및 1-프로필-3-메틸이미다졸륨 요오드로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 요오드화염은, 레독스 흐름전지용 전해액 조성물 중 0.01 M 내지 7 M인 것일 수 있다.
일 실시형태에 있어서, 상기 사이클로덱스트린계 첨가제는, α-사이클로덱스트린, β-사이클로덱스트린, γ-사이클로덱스트린 및 이들의 유도체로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 사이클로덱스트린계 첨가제는, 레독스 흐름전지용 전해액 조성물 중 0.01 M 내지 2.0 M인 것일 수 있다.
일 실시형태에 있어서, 상기 사이클로덱스트린계 첨가제는, 상기 요오드화염 중 산화종과 복합체(complex)를 형성함으로써 상기 산화종의 요오드 필름을 제거하는 것일 수 있다.
본 발명의 다른 실시예에 따른 레독스 흐름전지는, 양극 및 양극 전해액을 포함하는 양극셀; 음극 및 음극 전해액을 포함하는 음극셀; 및 상기 양극셀과 음극셀 사이에 위치하는 이온교환막;을 포함하고, 상기 양극 전해액은 본 발명의 일 실시예에 따른 레독스 흐름전지용 전해액 조성물이다.
본 발명의 일 실시예의 레독스 흐름전지용 전해액 조성물은, 사이클로덱스트린을 첨가제로 포함함으로써 전지의 충/방전 시 발생하는 요오드 필름을 전극의 표면과 유로에서 지속적으로 제거할 수 있다.
본 발명의 일 실시예에 따른 레독스 흐름전지는, 사이클로덱스트린을 첨가제로 포함하는 레독스 흐름전지용 전해액을 적용하여 레독스 흐름전지의 유동안정성을 높이고 안정적으로 구동할 수 있다.
도 1은 본 발명의 일 실시예에 따른 a) 사이클로덱스트린의 화학 구조식, b) 사이클로덱스트린의 3D 구조를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 사이클로덱스트린의 요오드 필름 제거 작용 원리를 설명하기 위한 도면이다.
도 3은 본 발명의 실시예 및 비교예에 따른 순환 전압전류법으로 측정한 HP-β-CD의 유무에 따른 요오드의 레독스 반응성을 나타낸 도면이다.
도 4는 본 발명의 실시예에 따른 1000 rpm으로 회전하는 전극에서 측정한 HP-β-CD의 유무에 따른 요오드의 레독스 반응성을 나타낸 도면이다.
도 5는 본 발명의 실시예 및 비교예에 따른 사이클로덱스트린의 포함 여부에 따른 요오드 흐름전지의 사이클링 용량 그래프이다.
도 6은 본 발명의 비교예에 따른 사이클로덱스트린을 포함하지 않은 요오드 흐름전지의 충/방전 곡선이다.
도 7은 본 발명의 실시예에 따른 사이클로덱스트린을 포함한 요오드 흐름전지의 충/방전 곡선이다.
도 8은 본 발명의 a) 사이클로덱스트린을 포함하지 않은 요오드 전지의 전극 사진, b) 사이클로덱스트린을 포함한 요오드 전지의 전극 사진이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
이하, 본 발명의 레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.
본 발명의 일 실시예에 따른 레독스 흐름전지용 전해액 조성물은, 요오드화염; 및 사이클로덱스트린(cyclodextrin; CD)계 첨가제;를 포함한다.
본 발명의 일 실시예의 레독스 흐름전지용 전해액 조성물은, 사이클로덱스트린을 첨가제로 포함함으로써 전지의 충/방전 시 발생하는 요오드 필름을 전극의 표면과 유로에서 지속적으로 제거할 수 있다.
일 실시형태에 있어서, 상기 요오드화염은, 요오드 분자(I2)와 I-을 포함하는 것일 수 있다. 예를 들어, 상기 요오드화염으로부터 요오드계 산화/환원종이 형성될 수 있다. 예를 들어, 상기 요오드계 산화/환원종은 I-/I3 -을 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 요오드화염은, 예를 들어, LiI, NaI, KI 등의 알칼리 금속의 요오드화염, n-메틸이미다졸륨 요오드, n-에틸이미다졸륨 요오드, 1-벤질-2-메틸이미다졸륨 요오드, 1-에틸-3-메틸이미다졸륨 요오드, 1-부틸-3-메 틸이미다졸륨 요오드, 1-메틸-3-프로필이미다졸륨 요오드, 1-메틸-3-이소프로필이미다졸륨 요오드, 1-메틸-3-부 틸이미다졸륨 요오드, 1-메틸-3-이소부틸이미다졸륨 요오드, 1-메틸-3-s-부틸이미다졸륨 요오드, 1-메틸-3-펜틸 이미다졸륨 요오드, 1-메틸-3-이소펜틸이미다졸륨 요오드, 1-메틸-3-헥실이미다졸륨 요오드, 1-메틸-3-이소헥실 이미다졸륨 요오드, 1-메틸-3-엑틸이미다졸륨 요오드, 1,2-디메틸-3-프로필이미다졸륨 요오드, 1-에틸-3-이소프 로필이미다졸륨 요오드, 1-프로필-3-프로필이미다졸륨 요오드 및 1-프로필-3-메틸이미다졸륨 요오드로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 요오드화염은, 레독스 흐름전지용 전해액 조성물 중 0.01 M 내지 7 M; 0.01 M 내지 6 M; 0.01 M 내지 5 M; 0.01 M 내지 4 M; 0.01 M 내지 3 M; 0.01 M 내지 2 M; 0.01 M 내지 1 M; 0.01 M 내지 0.1 M; 0.1 M 내지 7 M; 0.1 M 내지 6 M; 0.1 M 내지 5 M; 0.1 M 내지 4 M; 0.1 M 내지 3 M; 0.1 M 내지 2 M; 0.1 M 내지 1 M; 1 M 내지 7 M; 1 M 내지 6 M; 1 M 내지 5 M; 1 M 내지 4 M; 1 M 내지 3 M; 1 M 내지 2 M; 3 M 내지 7 M; 3 M 내지 6 M; 3 M 내지 5 M; 3 M 내지 4 M; 5 M 내지 7 M; 또는 6 M 내지 7 M;인 것일 수 있다. 상기 요오드화염이 레독스 흐름전지용 전해액 조성물 중 0.01 M 초과인 경우 레독스 흐름전지의 유로가 막히는 문제가 발생할 수 있다.
일 실시형태에 있어서, 상기 사이클로덱스트린계 첨가제는, α-사이클로덱스트린, β-사이클로덱스트린, γ-사이클로덱스트린 및 이들의 유도체로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
예를 들어, 상기 β-사이클로덱스트린의 유도체는, 하이드록시프로필-β-사이클로덱스트린(Hydroxypropyl-β-cyclodextrin(HP-β-CD)), 디메틸-β-사이클로덱스트린(Dimethyl-β-cyclodextrin(DM-β-CD)), 2-하이드록시에틸-β-사이클로덱스트린(2-Hydroxyethyl-β-cyclodextrin(2-HE-β-CD)), 트리메틸-β-사이클로덱스트린(Trimethyl-β-cyclodextrin(TM-β-CD)), 설포부틸에테르-β-사이클로덱스트린(Sulfobutylether-β-cyclodextrin(SBE-β-CD)) 및 랜덤리 메틸화된 β-사이클로덱스트린(Randomly methylated β-cyclodextrin)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
예를 들어, 상기 γ-사이클로덱스트린의 유도체는, 하이드록시프로필-γ-사이클로덱스트린(2-Hydroxypropyl-γ-cyclodextrin), 아세틸-γ-사이클로덱스트린(acetyl-γ-cyclodextrin), 퍼아세틸-γ-사이클로덱스트린(peracetyl- γ-cyclodextrin) 및 설포부틸에테르-γ-사이클로덱스트린(sulfobutylether γ-cyclodextrin)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 사이클로덱스트린계 첨가제는, 레독스 흐름전지용 전해액 조성물 중 0.01 M 내지 2.0 M; 0.01 M 내지 1.8 M; 0.01 M 내지 1.5 M; 0.01 M 내지 1.3 M; 0.01 M 내지 1.0 M; 0.01 M 내지 0.1 M; 0.1 M 내지 2.0 M; 0.1 M 내지 1.8 M; 0.1 M 내지 1.5 M; 0.1 M 내지 1.3 M; 0.1 M 내지 1.0 M; 0.3 M 내지 2.0 M; 0.3 M 내지 1.8 M; 0.3 M 내지 1.5 M; 0.3 M 내지 1.3 M; 0.3 M 내지 1.0 M; 0.5 M 내지 2.0 M; 0.5 M 내지 1.8 M; 0.5 M 내지 1.5 M; 0.5 M 내지 1.3 M; 0.5 M 내지 1.0 M; 1.0 M 내지 2.0 M; 1.0 M 내지 1.8 M; 1.0 M 내지 1.5 M; 1.0 M 내지 1.3 M; 1.0 M 내지 1.0 M; 1.5 M 내지 2.0 M; 1.5 M 내지 1.8 M; 또는 1.8 M 내지 2.0 M;인 것일 수 있다. 상기 사이클로덱스트린계 첨가제가 레독스 흐름전지용 전해액 조성물 중 0.01 M 미만인 경우 첨가제의 효과가 발생하지 하는 문제가 발생할 수 있고, 2.0 M 초과인 경우 첨가제가 용해되지 못하고 석출하는 문제가 발생할 수 있다.
일 실시형태에 있어서, 상기 사이클로덱스트린계 첨가제는, 상기 요오드화염 중 산화종과 복합체(complex)를 형성함으로써 상기 산화종의 요오드 필름을 제거하는 것일 수 있다.
일반적으로, 요오드의 레독스(redox) 반응 및 화학 반응은 다음과 같다:
[반응식 1]
2I- ↔ I2(s) + 2e-
[반응식 2]
I2(s) + I- ↔ I3 -
[반응식 3]
2I3 - ↔ 3I2(s) + 2e-
반응식 1은 레독스 반응이고, 반응식 2는 화학 반응이고, 반응식 3은 레독스 반응과 관련된 것이다.
이 반응들에서 생성되는 I2(s)는 I- 이온의 산화반응 시 전극의 표면에 부도체의 필름형태로 생성되며, 전극의 유로를 막고 저항체로 작용하여 전지의 전체적인 성능을 저하시킨다. 그렇기 때문에 이 요오드 필름을 지속적으로 제거해주는 것이 요오드 흐름전지의 성능을 안정적으로 유지시키는 것이 중요하다.
본 발명에서는 이러한 요오드 필름을 제거해줄 수 있는 첨가제로서 사이클로덱스트린(cyclodextrin; CD)계 첨가제를 포함하는 것이다.
도 1은 본 발명의 일 실시예에 따른 a) 사이클로덱스트린의 화학 구조식, b) 사이클로덱스트린의 3D 구조를 나타낸 도면이다.
I2(s)은 대칭성 구조를 가지고 있기 때문에 무극성 분자로 분류된다. 그리고 요오드 흐름전지의 전해액은 물을 기반으로 하기 때문에 극성의 전해질이다. 따라서, 첨가제로 내부는 무극성 분자를 수용할 수 있고, 외부는 극성을 띄고 있어 수계 전해액에 잘 녹을 수 있는 사이클로덱스트린(cyclodextrin; CD) 계열의 유기분자를 첨가제로 이용한다면 전극표면에서 생성되는 요오드 필름을 지속적으로 전해액으로 이동시킬 수 있다.
도 2는 본 발명의 일 실시예에 따른 사이클로덱스트린의 요오드 필름 제거 작용 원리를 설명하기 위한 도면이다.
도 2를 참조하면, 전해액으로 이동된 요오드 필름은 다시 여분의 I-이온과 만나 반응식 2의 반응을 통해 극성인 I3 -분자로 바뀌고, 극성인 I3 -분자는 사이클로덱스트린으로부터 이탈한다. 내부 수용체 (여기서는 요오드 필름)를 잃은 사이클로덱스트린은 지속적으로 전극 표면에 생성되는 요오드 필름을 제거할 수 있고, 이는 요오드에 비해 적은 양의 사이클로덱스트린으로도 지속적인 전지의 유로 막힘 현상을 개선할 수 있는 첨가제로서 역할을 할 수 있다.
본 발명의 다른 실시예에 따른 레독스 흐름전지는, 양극 및 양극 전해액을 포함하는 양극셀; 음극 및 음극 전해액을 포함하는 음극셀; 및 상기 양극셀과 음극셀 사이에 위치하는 이온교환막;을 포함하고, 상기 양극 전해액은 본 발명의 일 실시예에 따른 레독스 흐름전지용 전해액 조성물이다.
본 발명의 일 실시예에 따른 레독스 흐름전지는, 사이클로덱스트린을 첨가제로 포함하는 레독스 흐름전지용 전해액을 적용하여 레독스 흐름전지의 유동안정성을 높이고 안정적으로 구동할 수 있다.
이하, 하기 실시예 및 비교예를 참조하여 본 발명을 상세하게 설명하기로 한다. 그러나, 본 발명의 기술적 사상이 그에 의해 제한되거나 한정되는 것은 아니다.
[실시예]
HP-β-CD가 포함된 요오드 전해액 조성물
요오드 필름(I2(s))의 전극 표면 생성 반응과 사이클로덱스트린(cyclodextrin; CD)에 의한 제거 효과를 확인하기 위해 3-전극 셀을 구성하여 전기화학 실험을 진행하였다. 사이클로덱스트린을 포함한 요오드 전해액 조성물을 만드는 방법은 다음과 같다.
1. 0.332 g의 KI를 15 ml의 DIW에 녹였다.
2. 해당 용액에 1.5 g의 KCl을 녹였다.
3. 해당 용액에 1 g의 2-Hydroxypropyl-β-cyclodextrin(HP-β-CD)을 녹였다.
4. 해당 용액에 DIW를 추가하여 20 ml의 부피를 맞췄다.
(0.1 M KI 1 g 2-Hydroxypropyl-β-cyclodextrin 1.0 M KCl 수용액)
[비교예]
HP-β-CD가 포함되지 않은 요오드 전해액 조성물
HP-β-CD가 포함되지 않은 0.1 M KI 1.0 M KCl 용액을 준비하여 요오드 전해액 조성물을 제조하였다.
본 발명의 실시예 및 비교예에 따라 제조된 요오드 전해액 조성물을 이용하여 순환 전압전류법(Cyclic Voltammetry; CV)으로 반응성을 측정하였다.도 3은 본 발명의 실시예 및 비교예에 따른 순환 전압전류법으로 측정한 HP-β-CD의 유무에 따른 요오드의 레독스 반응성을 나타낸 도면이다.
도 3을 참조하면, 비교예에 대해서 순환 전압전류법(Cyclic Voltammetry; CV)으로 반응성을 측정한 결과 두 개의 산화 피크 (순서대로 [반응식 1], [반응식 3] 반응)가 나타났고, 산화 피크보다 큰 환원 피크가 나타났다. 이는 전극의 표면에 확산속도가 무한대로 취급되는 흡착물 (요오드 필름)이 생성됐다는 것을 의미한다. 반면에 실험군의 순환 전압전류법 반응성 실험에서는 [반응식 1]에 해당하는 산화 피크 및 환원 피크가 각각 1개씩만 나타났다.
본 발명의 실시예에 및 비교예에 따라 제조된 요오드 전해액 조성물을 이용하여 전극을 1000 rpm으로 회전시키면서 순환 전압전류법 측정실험을 진행하였다.
도 4는 본 발명의 실시예 1 및 비교예 1에 따른 1000 rpm으로 회전하는 전극에서 측정한 HP-β-CD의 유무에 따른 요오드의 레독스 반응성을 나타낸 도면이다.
전극을 회전시키는 것은 강제대류를 형성함으로써 이온의 물질전달속도를 극대화시키고자 함이다. 전극회전이 추가된 비교예 1의 CV 측정결과 0.7 V (vs. Ag/AgCl)에서 급격한 전류의 감소 피크가 나타났다. 이는 전극의 표면에 부도체인 요오드 필름이 생성되면서 반응물이 공급되지 못하기 때문이다. 반면에 실험군의 데이터에서는 -0.85 V(vs. Ag/AgCl)부근에서 약간의 피크 감소만 나타났다. 이는 실시예 1에 요오드 필름의 제거목적으로 추가된 CD가 효과적으로 작용을 하고 있다는 것을 의미한다.
[시험예] 레독스 흐름전지
실제 전지 구동조건에서 CD가 요오드 필름 제거에 끼치는 영향을 평가하였다. 전지의 전해액은 50 %의 stage of charge (SOC)를 가지는 요오드 용액으로 구성하고, 이 용액을 사용하여 symmetric cell 실험을 진행하였다. 사이클로덱스트린을 포함한 50 % SOC의 전지 전해액의 제조는 다음과 같다.
1. 0.64g의 I2(s)를 15ml의 DIW에 녹였다.
2. 해당 용액에 0.83g의 KI를 녹였다.
3. 해당 용액에 1.07g의 NH4Cl을 녹였다.
4. 해당 용액에 1g의 2-Hydroxypropyl-β-cyclodextrin(HP-β-CD)을 녹였다.
5. 해당 용액에 DIW를 추가하여 20 ml의 부피를 맞추었다.
(0.125 M I2 0.25 M KI 1 g 2-Hydroxypropyl-b-cyclodextrin 1.0 M NH4Cl 수용액)
비교예로는 HP-β-CD가 포함되지 않은 0.125 M I2 0.25 M KI 1.0 M NH4Cl 용액을 준비하였다.
도 5는 본 발명의 실시예 및 비교예에 따른 사이클로덱스트린의 포함 여부에 따른 요오드 흐름전지의 사이클링 용량 그래프이고, 도 6은 본 발명의 비교예에 따른 사이클로덱스트린을 포함하지 않은 요오드 흐름전지의 충/방전 곡선이고, 도 7은 본 발명의 실시예에 따른 사이클로덱스트린을 포함한 요오드 흐름전지의 충/방전 곡선이다.
도 5 내지 도 7을 참조하면, 요오드 전해액 조성물을 이용한 전지의 구동 결과 사이클로덱스트린이 포함되지 않은 비교예에서는 전지의 구동 중 전극의 표면에 요오드 필름이 형성되며 급격한 저항상승, 유로막힘과 같이 일정하게 전지를 구동하기 어려운 결과가 나타났다.
반면에, 사이클로덱스트린을 포함한 흐름전지를 구동했을 경우 사이클링 재현성이 뛰어나며 요오드 필름에 의해 나타나는 저상 상승, 유로 막힘과 같은 현상이 전혀 나타나지 않았다.
이는 사이클로덱스트린이 전지의 충/방전 상태에서 요오드 필름의 제거 역할만을 효과적으로 수행하며, 전지의 용량에는 전혀 영향을 끼치지 않는다는 것을 의미한다.
흐름전지 실험 종료 후 전극의 상태를 관찰하였다.
도 8은 본 발명의 a) 사이클로덱스트린을 포함하지 않은 요오드 전지의 전극 사진, b) 사이클로덱스트린을 포함한 요오드 전지의 전극 사진이다.
도 8을 참조하면, 도 8의 a)에 비교예 실험에 사용된 전극에는 육안으로 관측될 수 있는 화살표 하단에 생성된 요오드 필름이 존재하였으며, b)에 사이클로덱스트린을 포함한 전해액을 사용한 전지에서는 요오드 필름이 관측되지 않았다.
따라서, 요오드 전지의 충/방전 중 나타날 수 있는 요오드 필름의 형성을 억제하고 요오드 전지의 유동안정성을 확보하기 위해 사이클로덱스트린을 전해액의 첨가제로 사용하는 것은 효과적인 방법인 것을 확인하였다.
종래에는 전지의 충/방전 중 생성되는 요오드 필름을 제어하기 어려웠기 때문에 흐름전지의 장점인 용량설계의 자유성을 버리고 한정된 용량만을 사용할 수밖에 없었다. 본 발명에서 사용된 사이클로 덱스트린은 흐름전지 본래의 목적인 용량 설계의 자유성을 확보할 수 있게 하는 기술이며, 동시에 요오드 흐름전지의 유동안정성을 확보할 수 있기 때문에 BMS(Battery Manegement System) 측면에서도 경제적 이점을 줄 수 있다. 또한, 전해액 내의 사이클로덱스트린 양이 요오드의 양에 비해 적을지라도 전극 표면에 생성되는 요오드 필름을 지속적으로 제거해줄 수 있기 때문에 첨가액 사용에 따른 전지의 가격상승에 큰 영향을 주지 않을 것으로 기대할 수 있다.
본 발명에서 개발된 첨가제를 포함하는 요오드 전해액은 전지의 유동안정성을 확보해 줄 수 있기 때문에 기존에 레독스 흐름전지에 사용되는 시스템을 그대로 이용할 수 있다. 따라서, 종래에 높은 전해액 가격으로 정체되어 있던 레독스 흐름전지시장에 비교적 저렴한 요오드 전해액을 사용할 수 있다면, 레독스 흐름전지 시장의 폭발적인 성장을 이뤄낼 수 있을 것으로 전망된다.
또한, 요오드 전해액에 사이클로덱스트린을 첨가하는 것은 전해액의 유동안정성을 확보해줄 수 있다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (5)

  1. 요오드화염; 및
    사이클로덱스트린(cyclodextrin; CD)계 첨가제;
    를 포함하는,
    레독스 흐름전지용 전해액 조성물.
  2. 제1항에 있어서,
    상기 요오드화염은, 알칼리 금속의 요오드화염, n-메틸이미다졸륨 요오드, n-에틸이미다졸륨 요오드, 1-벤질-2-메틸이미다졸륨 요오드, 1-에틸-3-메틸이미다졸륨 요오드, 1-부틸-3-메 틸이미다졸륨 요오드, 1-메틸-3-프로필이미다졸륨 요오드, 1-메틸-3-이소프로필이미다졸륨 요오드, 1-메틸-3-부 틸이미다졸륨 요오드, 1-메틸-3-이소부틸이미다졸륨 요오드, 1-메틸-3-s-부틸이미다졸륨 요오드, 1-메틸-3-펜틸 이미다졸륨 요오드, 1-메틸-3-이소펜틸이미다졸륨 요오드, 1-메틸-3-헥실이미다졸륨 요오드, 1-메틸-3-이소헥실 이미다졸륨 요오드, 1-메틸-3-엑틸이미다졸륨 요오드, 1,2-디메틸-3-프로필이미다졸륨 요오드, 1-에틸-3-이소프 로필이미다졸륨 요오드, 1-프로필-3-프로필이미다졸륨 요오드 및 1-프로필-3-메틸이미다졸륨 요오드로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것이고,
    상기 요오드화염은, 레독스 흐름전지용 전해액 조성물 중 0.01 M 내지 7 M인 것인,
    레독스 흐름전지용 전해액 조성물.
  3. 제1항에 있어서,
    상기 사이클로덱스트린계 첨가제는, α-사이클로덱스트린, β-사이클로덱스트린, γ-사이클로덱스트린 및 이들의 유도체로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것이고,
    상기 사이클로덱스트린계 첨가제는, 레독스 흐름전지용 전해액 조성물 중 0.01 M 내지 2.0 M인 것인,
    레독스 흐름전지용 전해액 조성물.
  4. 제1항에 있어서,
    상기 사이클로덱스트린계 첨가제는,
    상기 요오드화염 중 산화종과 복합체(complex)를 형성함으로써 상기 산화종의 요오드 필름을 제거하는 것인,
    레독스 흐름전지용 전해액 조성물.
  5. 양극 및 양극 전해액을 포함하는 양극셀;
    음극 및 음극 전해액을 포함하는 음극셀; 및
    상기 양극셀과 음극셀 사이에 위치하는 이온교환막;
    을 포함하는 레독스 흐름전지로서,
    상기 양극 전해액은 제1항 내지 제4항 중 어느 한 항의 레독스 흐름전지용 전해액 조성물인 것인,
    레독스 흐름전지.
PCT/KR2023/012162 2022-08-18 2023-08-17 레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지 WO2024039193A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220103102A KR20240025183A (ko) 2022-08-18 2022-08-18 레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지
KR10-2022-0103102 2022-08-18

Publications (1)

Publication Number Publication Date
WO2024039193A1 true WO2024039193A1 (ko) 2024-02-22

Family

ID=89941975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012162 WO2024039193A1 (ko) 2022-08-18 2023-08-17 레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지

Country Status (2)

Country Link
KR (1) KR20240025183A (ko)
WO (1) WO2024039193A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235011A (ja) * 2003-01-30 2004-08-19 Mitsubishi Paper Mills Ltd ヨウ素−シクロデキストリン包接化物用いた電解液、並びにそれを用いた光電変換素子
JP2018195571A (ja) * 2017-05-18 2018-12-06 日立化成株式会社 電解液、二次電池、二次電池システム及び発電システム
JP2019003750A (ja) * 2017-06-12 2019-01-10 日立化成株式会社 フロー電池、フロー電池システム及び発電システム
KR20210116043A (ko) * 2020-03-17 2021-09-27 한국에너지기술연구원 내부 단락 방지형 아연 요오드 흐름전지
KR20220067124A (ko) * 2020-11-17 2022-05-24 한국에너지기술연구원 흐름 전지 및 이를 포함하는 발전 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235011A (ja) * 2003-01-30 2004-08-19 Mitsubishi Paper Mills Ltd ヨウ素−シクロデキストリン包接化物用いた電解液、並びにそれを用いた光電変換素子
JP2018195571A (ja) * 2017-05-18 2018-12-06 日立化成株式会社 電解液、二次電池、二次電池システム及び発電システム
JP2019003750A (ja) * 2017-06-12 2019-01-10 日立化成株式会社 フロー電池、フロー電池システム及び発電システム
KR20210116043A (ko) * 2020-03-17 2021-09-27 한국에너지기술연구원 내부 단락 방지형 아연 요오드 흐름전지
KR20220067124A (ko) * 2020-11-17 2022-05-24 한국에너지기술연구원 흐름 전지 및 이를 포함하는 발전 시스템

Also Published As

Publication number Publication date
KR20240025183A (ko) 2024-02-27

Similar Documents

Publication Publication Date Title
JP5399892B2 (ja) リチウム充電式電気化学電池
WO2017131377A1 (ko) 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
JP6002807B2 (ja) イオン液体
WO2015053588A1 (ko) 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지
WO2016129745A1 (ko) 가역적인 산-염기 상호작용을 통해 물리적으로 가교된 실리콘 음극용 고분자 바인더
EP2956978B1 (en) Crosslinked polymer electrolyte
US20200274188A1 (en) Preparation of ionic liquids based on boron clusters
WO2019035575A1 (ko) 이차 전지용 전해질 및 이를 포함하는 이차 전지
CN110291668B (zh) 电极材料及其制备方法
WO2020149682A1 (ko) 음극 및 이를 포함하는 리튬 이차 전지
WO2021235760A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019103311A1 (ko) 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
WO2013137596A1 (ko) 리튬 이차전지용 비수 전해액 및 그를 포함하는 리튬 이차전지
WO2024039193A1 (ko) 레독스 흐름전지용 전해액 조성물 및 이를 포함하는 레독스 흐름전지
Aher et al. Effect of aromatic rings and substituent on the performance of lithium batteries with rylene imide cathodes
WO2016129769A1 (ko) 리튬이온 이차전지용 전해질 및 이를 갖는 리튬이온 이차전지
WO2019160393A1 (ko) 리튬-황 전지용 분리막, 그의 제조방법, 및 그를 포함하는 리튬-황 전지
EP1843426A1 (en) Lithium rechargeable electrochemical cell
WO2018131820A1 (ko) 완전 생분해성 슈퍼커패시티 및 그 제조방법
WO2020059927A1 (ko) 이차 전지의 전극용 양극소재의 제조방법
WO2019112330A1 (en) Positive active material for lithium-sulfur battery and method of fabricating the same
WO2017086546A1 (ko) 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지
WO2019013541A2 (ko) 전해질 및 이를 포함하는 리튬 황 전지
WO2022149877A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2024053810A1 (ko) 레독스 흐름전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855159

Country of ref document: EP

Kind code of ref document: A1