WO2019013541A2 - 전해질 및 이를 포함하는 리튬 황 전지 - Google Patents

전해질 및 이를 포함하는 리튬 황 전지 Download PDF

Info

Publication number
WO2019013541A2
WO2019013541A2 PCT/KR2018/007841 KR2018007841W WO2019013541A2 WO 2019013541 A2 WO2019013541 A2 WO 2019013541A2 KR 2018007841 W KR2018007841 W KR 2018007841W WO 2019013541 A2 WO2019013541 A2 WO 2019013541A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
lithium
carbonate
sulfur battery
protective layer
Prior art date
Application number
PCT/KR2018/007841
Other languages
English (en)
French (fr)
Other versions
WO2019013541A3 (ko
Inventor
선양국
김희민
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180079793A external-priority patent/KR102138693B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US16/629,236 priority Critical patent/US20200194834A1/en
Publication of WO2019013541A2 publication Critical patent/WO2019013541A2/ko
Publication of WO2019013541A3 publication Critical patent/WO2019013541A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte and a lithium sulfur battery using the same, and more particularly, to an electrolyte including an electrolyte additive and a lithium sulfur battery including the same.
  • the lithium-sulfur battery uses a sulfur-based compound having an SS bond (difulfide bond) as a cathode active material, an alkali metal such as lithium, or a carbon-based material in which a metal ion such as lithium ion is inserted / It is used as an anode active material. If the current density flowing in the lithium-sulfur battery is too high, it will damage the negative electrode. In addition, lithium sulfide melts into the electrolyte and moves to the cathode, damaging the cathode. As a result, the life of the battery is reduced.
  • SS bond diifulfide bond
  • Korean Patent Laid-Open No. 10-2016-0037079 (Applicant: LG Chem Co., Ltd., Application No. 10-2015-0151556) relates to a lithium-sulfur battery, which comprises an anode current collector and an anode current collector lithium-
  • a lithium-sulfur battery including an anode, a cathode containing sulfur, an electrolyte provided between the anode and the cathode, and an insulating film between the anode current collector and lithium, wherein lithium damage is suppressed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electrolyte for suppressing damage to a cathode in a lithium sulfur battery.
  • Another object of the present invention is to provide a lithium sulfur battery having an extended lifetime.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides an electrolyte of a lithium sulfur battery.
  • the electrolyte of the lithium sulfur battery includes a base electrolyte including a lithium salt and an organic solvent, and an electrolyte additive, wherein the electrolyte additive may include a metal nitrate.
  • the electrolyte additive may include at least one of indium nitrate, magnesium nitrate, and aluminum nitrate.
  • the lithium salt is LiPF 6, LiBF 4, LiClO 4 , LiSbF 6, LiAsF 6, LiN (SO 2 C 2 F 5) 2, LiN (CF 3 SO 2) 2, LiN (SO 3 C 2 F 5 ) 2 , LiN (SO 2 F) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC 6 H 5 SO 3 , LiSCN, LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 2 ) (C y F 2y + 1 SO 2 ), LiCl, LiI, or LiB (C 2 O 4 ) 2 .
  • the organic solvent is a non-aquaeous organic solvent
  • the non-aqueous organic solvent is selected from cyclic carbonate-based materials, linear carbonate-based materials, ether-based materials, 1,2- 1,2-dimethoxyethane, 1,3-dioxolane, or dimethyl sulfoxide may be used.
  • the cyclic carbonate-based material includes at least one of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinylethylene carbonate, or fluorethylene carbonate, and the linear carbonate- , At least one of diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, methyl isopropyl carbonate, and ethyl propyl carbonate, and the ether-based material is selected from the group consisting of diethylene glycol dimethyl ether, Lauryl dimethyl ether, or tetraethylene glycol dimethyl ether.
  • the present invention provides a lithium sulfur battery.
  • the lithium sulfur battery comprises an electrolyte comprising a cathode comprising a sulfur compound, a lithium salt, a base electrolyte comprising an organic solvent, and an electrolyte additive comprising a metal nitrate, lithium.
  • the electrolyte additive may include at least one of indium nitrate, magnesium nitrate, and aluminum nitrate.
  • the lithium sulfur battery is subjected to a charge / discharge operation, and the electrolyte additive may form a protective layer on the surface of the cathode.
  • the present invention provides a method for producing a lithium sulfur battery.
  • a method of preparing a lithium selenium battery comprising the steps of: preparing an electrolyte for forming a protective layer comprising a base electrolyte containing a lithium salt and an organic solvent and an electrolyte additive including a metal nitrate; Forming a protective layer on the negative electrode by immersing a negative electrode containing lithium in an electrolyte for forming a protective layer; preparing an electrolyte containing the electrolyte additive and a base electrolyte at a lower concentration than the electrolyte for forming the protective layer; And producing the lithium sulfur battery using the anode, the anode including the electrolyte, the cathode formed with the protective layer, and the sulfur.
  • a lithium sulfur battery according to an embodiment of the present invention includes an electrolyte including an electrolyte additive.
  • the electrolyte additive may include at least one of indium nitrate, magnesium nitrate, and aluminum nitrate.
  • the electrolyte additive may form a protective layer on the surface of the negative electrode when the lithium sulfur battery is charged and discharged. Accordingly, damage to the negative electrode including lithium can be suppressed, and a lithium sulfur battery having an extended life span can be provided.
  • the electrolyte additive includes cations having a standard electrode potential value of 1.8-2.8 V in a lithium battery.
  • FIG. 1 is a view for explaining a lithium sulfur battery manufactured according to an embodiment of the present invention.
  • FIG 3 is a graph showing lifetime characteristics of a lithium-sulfur battery according to Examples 1 to 3 and Comparative Example 1 of the present invention.
  • Example 5 is a CV graph of a lithium-sulfur battery according to Example 3 of the present invention.
  • FIG. 6 is a graph showing the discharge capacity characteristics of the lithium sulfur battery according to Examples 3 and 4 and Comparative Example 1 of the present invention.
  • Example 7 is a graph showing lifetime characteristics of a lithium-sulfur battery according to Examples 3 and 4 and Comparative Example 1 of the present invention.
  • first, second, third, etc. in the various embodiments of the present disclosure are used to describe various components, these components should not be limited by these terms. These terms have only been used to distinguish one component from another. Thus, what is referred to as a first component in any one embodiment may be referred to as a second component in another embodiment.
  • Each embodiment described and exemplified herein also includes its complementary embodiment. Also, in this specification, 'and / or' are used to include at least one of the front and rear components.
  • FIG. 1 is a view for explaining a lithium sulfur battery manufactured according to an embodiment of the present invention.
  • a lithium sulfur battery includes an anode 10, an electrolyte 20, a separator 30, a protection layer 40, and a cathode 50.
  • the anode 10 may comprise a sulfur compound and a conductive material.
  • the conductive material may be at least one selected from the group consisting of graphite (natural graphite, artificial graphite and the like), carbon black (carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, Conductive metal oxide (titanium oxide, etc.), conductive material (polyphenylene derivative, etc.), conductive metal oxide (metal oxide, Or at least one of them.
  • the anode 10 can be produced by mixing the sulfur compound and the conductive material into a binder and a solvent, coating on a current collector, and drying.
  • the binder may be a chitosan binder
  • the current collector may be a conductive material such as copper (Cu), nickel (Ni), aluminum (Al), or stainless steel
  • the solvent may be secondary distilled water.
  • the anode 10 may have a mixing ratio of the sulfur compound, the conductive material, and the binder of 6: 3: 1.
  • the cathode 50 includes lithium.
  • the cathode 50 may be formed of lithium metal or an alloy of lithium and another metal.
  • the cathode 50 includes an alloy of silicon (Si), aluminum (Al), tin (Sn), magnesium (Mg), indium (In), vanadium can do.
  • the electrolyte 20 includes a base electrolyte including a lithium salt and an organic solvent, and an electrolyte additive.
  • the electrolyte 20 is prepared by adding the electrolyte additive to the base electrolyte and stirring the base electrolyte.
  • the base electrolyte may be prepared by adding the lithium salt to the organic solvent and then stirring.
  • the organic solvent may be a non-aquaeous organic solvent, and may be a cyclic carbonate-based material, a linear carbonate-based material, an ether-based material, dimethoxyethane, (1,3-dioxolane), or dimethylsulfoxide (dimethyl sulfoxide).
  • the cyclic carbonate-based material includes at least one of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinylethylene carbonate, and fluoroethylene carbonate
  • the linear carbonate-based material is selected from the group consisting of dimethyl carbonate, diethyl
  • the ether-based material is at least one selected from the group consisting of diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol dimethyl ether, Ether, or tetraethylene glycol dimethyl ether.
  • the lithium salt may be LiPF 6 , LiBF 4 , LiClO 4 , LiSbF 6 , LiAsF 6 , Li (NO 3 ) 3 , LiN (SO 2 C 2 F 5 ) 2 , LiN (CF 3 SO 2 ) 2, LiN (SO 3 C 2 F 5) 2, LiN (SO 2 F) 2, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiC 6 H 5 SO 3, LiSCN, LiAlO 2, LiAlCl 4, LiN ( C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), LiCl, LiI, or LiB (C 2 O 4 ) 2 .
  • the electrolyte additive may comprise a metal nitrate.
  • the electrolyte additive may include at least one of indium nitrate, magnesium nitrate, and aluminum nitrate.
  • the electrolyte additive includes a metal compound
  • the metal compound is at least one selected from the group consisting of Li, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, , Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, At least one of W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Si, P, As, Se, , S, C, I, Br, Cl, or F.
  • the cation may include at least one of the cations having a standard electrode potential value of 1.8 to 2.8 V in a lithium battery.
  • the anion is nitrate (NO 3 -), sulfite (SO 3 2-), carbonate (CO 3 2-), iodide (I -), bromide (Br -), chloride (Cl - ), fluorine (F - ), or carboxylate anion (COO - ).
  • the separator 30 may be formed of a glass fiber, an olefin resin, a fluorine resin (e.g., polyvinylidene fluoride, polytetrafluoroethylene), an ester resin (e.g., polyethylene terephthalate) And a cellulose-based nonwoven fabric.
  • the separation membrane 30 may be formed of various kinds of materials in addition to the examples described above.
  • the protective layer 40 may be formed on the surface of the cathode 50 in the form of a film.
  • the protective layer 40 may be a solid electrolyte interphase (SEI) layer.
  • SEI solid electrolyte interphase
  • the electrolyte additive included in the electrolyte 20 may form the protective layer 40 on the surface of the cathode 50.
  • the protective layer 40 may prevent the surface of the cathode 50 from being damaged by a high current density during charging / discharging of the lithium sulfur battery.
  • the protective layer 40 prevents the lithium polysulfide produced due to the sulfur which is the anode 10 from moving through the electrolyte 20 and damaging the cathode 50 .
  • the protective layer 40 may be formed by preparing a lithium sulfur battery using the electrolyte 20 including the electrolyte additive, .
  • the step of forming the protective layer 40 may be performed before the lithium sulfur battery is manufactured using the electrolyte 20.
  • the forming of the passivation layer 40 may include forming the electrolyte 20 containing the electrolyte additive, immersing the cathode 50 in the electrolyte 20, Forming the protective layer 40 on the cathode 50 and cleaning and drying the cathode 50 on which the protective layer 40 is formed.
  • a heat treatment process may be further performed. Accordingly, the protective layer 40 may be formed on the surface of the cathode 50 sufficiently.
  • an electrolyte for forming a protective layer having a higher concentration of the electrolyte additive than the electrolyte 20 And the protective layer 40 may be formed by immersing the cathode 50 in the electrolyte for forming the protective layer.
  • the electrolyte for forming the protective layer may include the base electrolyte and an excessive amount of the electrolyte additive. Accordingly, the protective layer 40 can be easily formed on the cathode 50.
  • an excess amount of the electrolyte additive may be added to the base electrolyte to prepare the electrolyte 20, the negative electrode 50 may be immersed in the electrolyte 20 to which an excessive amount of the electrolyte additive is added, In the case of producing a lithium sulfur battery using the electrolyte 20 to which the electrolyte additive is added, even if the protective layer 40 is easily formed due to the excessive amount of the electrolyte additive, the charge / Can be degraded. However, as described above, when the electrolyte for forming the protective layer having a high concentration of the electrolyte additive is separately prepared, the protective layer 40 can be easily made and the charge / discharge characteristics of the lithium sulfur battery can be optimized .
  • the electrolyte for forming the protective layer may include the base electrolyte and the electrolyte additive of the same kind as the electrolyte 20.
  • the electrolyte for forming the protective layer may include an electrolyte additive including the base electrolyte of the same kind as that of the electrolyte 20, which facilitates formation of the protective layer 40 (for example, Magnesium nitrate), and the electrolyte may include the base electrolyte, and other types of electrolyte additives that are easy to charge / discharge capacity / life stability / thermal stability / fast filling.
  • a lithium sulfur battery manufactured according to an embodiment of the present invention includes the electrolyte 20 including the base electrolyte and the electrolyte additive.
  • the electrolyte additive may form the protective layer 40 on the surface of the cathode 50 when the lithium-sulfur battery is charged / discharged. Accordingly, the damage of the cathode 50 including lithium can be suppressed, and the life of the lithium sulfur battery can be prolonged.
  • the protection layer 40 may not be easily formed.
  • the lithium selenium may damage the cathode 50 as the current density increases during the charging and discharging process.
  • the lithium polysulfide produced by the sulfur which is the anode 10
  • the lithium polysulfide produced by the sulfur may move to the cathode 50 through the electrolyte 20, thereby damaging the cathode 50.
  • the lifetime of the lithium sulfur battery is reduced, and instability may be caused.
  • the protective layer 40 can be easily formed, The damage of the cathode 50 can be suppressed. Thereby, a lithium sulfur battery with reduced instability and increased lifetime can be provided.
  • LiTFSI and LiNO 3 as lithium salts were added to a mixed solvent containing dimethoxyethane and 1,3-dioxalane as an organic solvent at a ratio of 1: 1, stirred at room temperature to prepare a base electrolyte, Indium nitrate was added in an amount of 0.01 m as an electrolyte additive and stirred to prepare an electrolyte according to Example 1.
  • Sulfur, carbon dehydrogenation agent and chitosan binder were mixed in a ratio of 6: 3: 1 to a secondary distilled water as a solvent to prepare a slurry, coated on aluminum foil as a collector, dried for 24 hours to remove the solvent, To prepare a positive electrode having a content of 5 mg / cm 2 .
  • the lithium sulphone according to Example 1 was produced using the anode, the electrolyte and the lithium foil as the cathode.
  • a base electrolyte was prepared in the same manner as in Example 1 described above, and 0.01 m of aluminum nitrate was added as an electrolyte additive and stirred to prepare an electrolyte according to Example 2.
  • Example 2 a lithium sulfur battery according to Example 2 was prepared using the electrolyte according to Example 2 in the same manner as in Example 1 described above.
  • a base electrolyte was prepared in the same manner as in Example 1, and 0.01 m of magnesium nitrate was added as an electrolyte additive and stirred to prepare an electrolyte according to Example 3.
  • Example 3 a lithium sulfur battery according to Example 3 was produced using the electrolyte according to Example 3 in the same manner as in Example 1 described above.
  • a base electrolyte was prepared in the same manner as in Example 1 described above, and 0.03 m of magnesium nitrate was added as an electrolyte additive and stirred to prepare an electrolyte according to Example 4.
  • Example 4 a lithium sulfur battery according to Example 4 was produced using the electrolyte according to Example 4 in the same manner as in Example 1 described above.
  • a lithium sulfur battery according to Comparative Example 1 was produced in the same manner as in Example 1, except that the base electrolyte prepared in the same manner as in Example 1 was used without the electrolyte additive.
  • FIG. 2 is a graph showing the discharge capacity characteristics of the lithium-sulfur battery according to Examples 1 to 3 and Comparative Example 1 of the present invention.
  • FIG. 3 is a graph showing the discharge capacity characteristics of the lithium-sulfur battery according to Examples 1 to 3 and Comparative Example 1 of the present invention. And the lifetime characteristics of the battery.
  • the lithium sulfur battery including the electrolyte having magnesium nitrate according to Example 3 has higher capacity and excellent lifetime characteristics . ≪ / RTI >
  • FIG. 4 is a CV graph of a lithium-sulfur battery according to Comparative Example 1
  • FIG. 5 is a CV graph of a lithium-sulfur battery according to Example 3 of the present invention.
  • the lithium sulphate battery according to Example 3 including the electrolyte additive (magnesium nitrate) in the first cycle has an additional reaction at 2.47 V, unlike the lithium sulpheath battery according to Comparative Example 1 in which there is no electrolyte additive, and from the second cycle Did not occur.
  • FIG. 6 is a graph showing the discharge capacity characteristics of the lithium sulfur battery according to Examples 3 and 4 and Comparative Example 1 of the present invention
  • FIG. 7 is a graph showing the discharge capacity characteristics of the lithium sulfur battery according to Examples 3 and 4 and Comparative Example 1 of the present invention
  • FIG. 8 is a graph showing the charge-discharge efficiency of the lithium-sulfur battery according to Examples 3 and 4 and Comparative Example 1 of the present invention.
  • the electrolyte for a lithium sulfur battery and the lithium sulfur battery including the same can be utilized in various industrial fields such as a portable mobile device, an electric vehicle, and an energy storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬 황 전지의 전해질이 제공된다. 상기 리튬 황 전지의 전해질은, 리튬염 및 유기 용매를 포함하는 베이스 전해질(base electrolyte), 및 전해질 첨가제를 포함하되, 상기 전해질 첨가제는, 질산금속을 포함할 수 있다.

Description

전해질 및 이를 포함하는 리튬 황 전지
본 발명은 전해질 및 이를 이용한 리튬 황 전지 에 관한 것으로, 보다 상세하게는, 전해질 첨가제를 포함하는 전해질 및 이를 포함하는 리튬 황 전지에 관한 것이다.
휴대용 전자기기의 성능이 향상됨에 따라, 배터리의 소모량도 높아지고 있다. 또한, 전기 자동차와 같은 다양한 수송용 기계에 이용되는 배터리의 필요성이 증가되고 있고, 여름철 대규모 정전에 대비한 중대형 전기 저장 장치의 중요성이 부각되고 있다. 이에 따라, 상기 요구들을 충족시키는 이차전지로, 리튬-황 전지가 주목받고 있다.
리튬-황 전지는 S-S 결합(difulfide bond)을 가지는 황 계열 화합물을 양극 활물질(active material)로 사용하고, 리튬과 같은 알카리 금속 또는 리튬 이온 등과 같은 금속 이온의 삽입 및 탈삽입이 일어나는 카본계 물질을 음극 활물질로 사용한다. 리튬-황 전지에 흐르는 전류밀도가 너무 높은 경우, 음극에 손상을 주게 된다. 또한, 황화리튬(lithium sulfide)이 전해질 내에 녹아들어가면서 음극으로 이동하여 음극에 손상을 주게 된다. 이로 인해, 전지의 수명이 감소한다.
이에 따라, 리튬을 포함하는 음극의 손상이 억제된 리튬-황 전지에 대한 활발한 연구가 진행되고 있다.
예를 들어, 대한민국 특허 공개 번호 10-2016-0037079 (출원인: 주식회사 엘지화학, 출원번호: 10-2015-0151556)는 리튬-황 전지에 관한 것으로, 애노드 집전체 및 애노드 집전체 상의 리튬을 포함하는 애노드, 황을 포함하는 캐소드, 상기 애노드 및 캐소드 사이에 구비된 전해질, 및 상기 애노드 집전체와 리튬 사이의 절연막을 포함하여 리튬의 손상이 억제된 리튬-황 전지를 개시한다.
본 발명이 해결하고자 하는 일 기술적 과제는, 리튬 황 전지에서 음극의 손상을 억제시키는 전해질을 제공하는 데 있다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 리튬 황 전지에서 음극의 표면에 보호층이 형성된 리튬 황 전지를 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 수명이 연장된 리튬 황 전지를 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 고효율의 리튬 황 전지를 제공하는 데 있다.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다.
상기 기술적 과제를 해결하기 위해, 본 발명은 리튬 황 전지의 전해질을 제공한다.
일 실시 예에 따르면, 상기 리튬 황 전지의 전해질은 리튬염 및 유기 용매를 포함하는 베이스 전해질(base electrolyte) 및 전해질 첨가제를 포함하되, 상기 전해질 첨가제는, 질산 금속을 포함할 수 있다.
일 실시 예에 따르면, 상기 전해질 첨가제는, 질산인듐, 질산마그네슘, 또는 질산알루미늄 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 리튬염은 LiPF6, LiBF4, LiClO4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, LiN(CF3SO2)2, LiN(SO3C2F5)2, LiN(SO2F)2, LiCF3SO3, LiC4F9SO3, LiC6H5SO3, LiSCN, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2), LiCl, LiI 또는 LiB(C2O4)2 중에서 적어도 어느 하나 이상인 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 유기 용매는 비수성(non-aquaeous) 유기 용매이고, 상기 비수성 유기 용매는 환형 카보네이트계 물질, 선형 카보네이트계 물질, 에테르(Ether)계 물질, 1,2-메톡시에탄 (1,2-Dimethoxyethane), 1,3-다이옥살레인(1,3-Dioxolane), 또는 디메틸 설폭사이드(Dimethyl sulfoxide) 중에서 적어도 어느 하나 이상인 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 환형 카보네이트계 물질은 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트, 또는 플루오르에틸렌카보네이트 중에서 적어도 어느 하나를 포함하고, 상기 선형 카보네이트계 물질은 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 또는 에틸프로필카보네이트 중에서 적어도 어느 하나를 포함하고, 상기 에테르계 물질은 디에틸렌 글라이콜 디메틸 에테르, 트리에틸렌 글라이콜 디메틸 에테르, 또는 테트라에틸렌 글라이콜 디메틸 에테르 중에서 적어도 어느 하나를 포함할 수 있다.
상기 기술적 과제를 해결하기 위해, 본 발명은 리튬 황 전지를 제공한다.
일 실시 예에 따르면, 상기 리튬 황 전지는 황(sulfur) 화합물을 포함하는 양극(cathode), 리튬염, 유기 용매를 포함하는 베이스 전해질, 및 질산 금속을 포함하는 전해질 첨가제를 포함하는 전해질 및 리튬(lithium)을 포함한다.
일 실시 예에 따르면, 상기 전해질 첨가제는, 질산인듐, 질산마그네슘, 또는 질산알루미늄 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 리튬 황 전지는 충방전 동작이 수행되어, 상기 전해질 첨가제가 상기 음극 표면에 보호층을 형성하는 것을 포함할 수 있다.
상기 기술적 과제를 해결하기 위해, 본 발명은 리튬 황 전지의 제조 방법을 제공한다.
일 실시 예에 따르면, 상기 리튬 황 전지의 제조 방법은, 리튬염 및 유기 용매를 포함하는 포함하는 베이스 전해질, 및 질산 금속을 포함하는 전해질 첨가제를 포함하는 보호층 형성용 전해질을 준비하는 단계, 상기 보호층 형성용 전해질에 리튬을 포함하는 음극을 침지하여, 상기 음극 상에 보호층을 형성하는 단계, 상기 보호층 형성용 전해질보다 낮은 농도의 상기 전해질 첨가제, 및 상기 베이스 전해질을 포함하는 전해질을 준비하는 단계, 및 상기 전해질, 상기 보호층이 형성된 상기 음극, 및 황을 포함하는 양극을 이용하여, 상기 리튬 황 전지를 제조하는 단계를 포함할 수 있다.
본 발명의 실시 예에 따른 리튬 황 전지는 전해질 첨가제를 포함하는 전해질을 포함한다. 상기 전해질 첨가제는, 질산인듐, 질산마그네슘, 또는 질산알루미늄 중에서 적어도 어느 하나를 포함할 수 있다. 상기 전해질 첨가제는 리튬 황 전지의 충방전이 수행되면 음극 표면에 보호층을 형성할 수 있다. 이에 따라, 리튬을 포함하는 음극의 손상이 억제되어 수명이 연장된 리튬 황 전지가 제공될 수 있다.
또한, 본 발명의 실시 예에 따르면, 상기 전해질 첨가제는, 리튬 전지에서 표준 전극 전위(standard electrode potential) 값이 1.8~2.8V에 포함되는 양이온을 포함한다. 이에 따라, 전지의 사이클 수가 증가하여도 용량 값의 감소 폭이 낮고, 충반전 효율이 향상된 리튬 황 전지가 제공될 수 있다.
도 1은 본 발명의 실시 예에 따라 제조된 리튬 황 전지를 설명하기 위한 도면이다.
도 2는 본 발명의 실시 예 1 내지 3, 비교 예 1에 따른 리튬 황 전지의 방전 용량 특성을 측정한 그래프이다.
도 3은 본 발명의 실시 예 1 내지 3, 비교 예 1에 따른 리튬 황 전지의 수명 특성을 측정한 그래프이다.
도 4는 비교 예 1에 따른 리튬 황 전지의 CV 그래프이다.
도 5는 본 발명의 실시 예 3에 따른 리튬 황 전지의 CV 그래프이다.
도 6은 본 발명의 실시 예 3 및 4, 비교 예 1에 따른 리튬 황 전지의 방전 용량 특성을 측정한 그래프이다.
도 7은 본 발명의 실시 예 3 및 4, 비교 예 1에 따른 리튬 황 전지의 수명 특성을 측정한 그래프이다.
도 8은 본 발명의 실시 예 3 및 4, 비교 예 1에 따른 리튬 황 전지의 충방전 효율을 측정한 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
도 1은 본 발명의 실시 예에 따라 제조된 리튬 황 전지를 설명하기 위한 도면이다.
도 1을 참조하면, 리튬 황 전지는 양극(10), 전해질(20), 분리막(30), 보호층(40) 및 음극(50)을 포함한다.
상기 양극(10)은 황(sulfur) 화합물 및 도전성 재료를 포함할 수 있다. 예를 들어, 상기 도전성 재료는, 흑연(천연 흑연, 인조 흑연 등), 카본블랙(카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등), 도전성 섬유(탄소 섬유, 금속 섬유 등), 금속 분말(불화 카본, 알루미늄, 니켈 분말 등), 도전성 위스키(산화아연, 티탄산 칼륨 등), 도전성 금속 산화물(산화 티탄 등), 도전성 소재(폴리페닐렌 유도체 등) 중 적어도 어느 하나일 수 있다.
상기 양극(10)은, 상기 황 화합물 및 상기 도전성 재료가 바인더 및 용매에 혼합되어, 집전체 상에 코팅 및 건조되어 제조될 수 있다. 예를 들어, 상기 바인더는, 키토산 바인더이고, 상기 집전체는, 구리(Cu), 니켈(Ni), 알루미늄(Al) 또는 스테인리스강 등의 도전성 물질이고, 상기 용매는 이차증류수일 수 있다.
일 실시 예에 따르면, 상기 양극(10)은 상기 황 화합물, 상기 도전성 재료 및 상기 바인더의 혼합 비율이 6:3:1일 수 있다.
상기 음극(50)은 리튬(lithium)을 포함한다. 상기 음극(50)은 리튬 금속, 또는 리튬과 다른 금속의 합금으로 형성될 수 있다. 예를 들어, 상기 음극(50)은, 실리콘(Si), 알루미늄(Al), 주석(Sn), 마그네슘(Mg), 인듐(In), 바나듐(V) 등과 상기 리튬(Li)의 합금을 포함할 수 있다.
상기 전해질(20)은 리튬염 및 유기 용매를 포함하는 베이스 전해질(base electrolyte) 및 전해질 첨가제를 포함한다.
상기 전해질(20)은 상기 베이스 전해질에 상기 전해질 첨가제를 첨가한 후 교반하여 제조되고, 상기 베이스 전해질은 상기 유기 용매에 상기 리튬염을 첨가한 후 교반하여 제조될 수 있다.
예를 들면, 상기 유기 용매는 비수성(non-aquaeous) 유기 용매이고, 환형 카보네이트계 물질, 선형 카보네이트계 물질, 에테르(Ether)계 물질, 디메톡시에탄 (Dimethoxyethane), 1,3-디옥살레인(1,3-Dioxolane), 또는 디메틸 설폭사이드(Dimethyl sulfoxide) 중에서 적어도 어느 하나 이상을 포함할 수 있다.
다시 말하면, 상기 환형 카보네이트계 물질은 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트, 또는 플루오르에틸렌카보네이트 중에서 적어도 어느 하나를 포함하고, 상기 선형 카보네이트계 물질은 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 또는 에틸프로필카보네이트 중에서 적어도 어느 하나를 포함하고, 상기 에테르계 물질은 디에틸렌 글라이콜 디메틸 에테르, 트리에틸렌 글라이콜 디메틸 에테르, 또는 테트라에틸렌 글라이콜 디메틸 에테르 중에서 적어도 어느 하나를 포함할 수 있다.
또한, 예를 들면, 상기 리튬염은 LiPF6, LiBF4, LiClO4, LiSbF6, LiAsF6, Li(NO3)3, LiN(SO2C2F5)2, LiN(CF3SO2)2, LiN(SO3C2F5)2, LiN(SO2F)2, LiCF3SO3, LiC4F9SO3, LiC6H5SO3, LiSCN, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2), LiCl, LiI 또는 LiB(C2O4)2 중에서 적어도 어느 하나 이상을 포함할 수 있다.
일 실시 예에 따르면, 상기 전해질 첨가제는 질산금속을 포함할 수 있다. 예를 들어, 상기 전해질 첨가제는 질산인듐, 질산마그네슘, 또는 질산알루미늄 중에서 적어도 어느 하나를 포함할 수 있다.
또한, 다른 실시 예에 따르면, 상기 전해질 첨가제는, 금속 화합물을 포함하고, 상기 금속 화합물은 양이온으로 Li, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Si, P, As, Se, 또는 Te 중에서 적어도 어느 하나를 포함하고, 음이온으로 N, S, C, I, Br, Cl, 또는 F 중에서 적어도 어느 하나를 포함할 수 있다.
또는, 다른 예를 들면, 상기 양이온은 리튬 전지에서 표준 전극 전위(standard electrode potential) 값이 1.8~2.8V인 양이온 중에서 적어도 어느 하나를 포함할 수 있다.
또는, 다른 예를 들면, 상기 음이온은 나이트레이트(NO3 -), 설파이트(SO3 2-), 카보네이트 (CO3 2-), 아이오다이드(I-), 브로마이드(Br-), 클로라이드(Cl-), 플루오르(F-), 또는 카르복실레이트 음이온(COO-) 중에서 적어도 어느 하나를 포함할 수 있다.
상기 분리막(30)은 유리 섬유, 올레핀계 수지, 불소계 수지(예를 들어, 폴리비닐리덴플루오라이드, 폴리테트라플루오루에틸렌 등), 에스테르계 수지(예를 들어, 폴레에틸렌테레프탈레이트 등), 또는 셀룰로오스계 부직포 중에서 적어도 어느 하나를 포함할 수 있다. 상기 분리막(30)은 상술된 예들 외에 다양한 종류의 물질들로 형성될 수 있다.
상기 보호층(40)은, 상기 음극(50)의 표면에 피막(film) 형태로 형성될 수 있다. 상기 보호층(40)은 SEI(solid electrolyte interphase)층 일 수 있다. 본 발명의 실시 예에 따라 제조된 리튬 황 전지의 충방전이 수행되면, 상기 전해질(20)에 포함된 상기 전해질 첨가제가 상기 음극(50) 표면에 상기 보호층(40)을 형성할 수 있다. 상기 보호층(40)은, 리튬 황 전지의 충방전시 높은 전류밀도에 의해 상기 음극(50) 표면이 손상되는 것을 방지해줄 수 있다. 또한, 상기 보호층(40)은, 상기 양극(10)인 황으로 인해 생성되는 리튬폴리설파이드(lithium polysulfide)가 상기 전해질(20)을 통해 이동하여 상기 음극(50)에 손상을 주는 것을 방지해줄 수 있다.
일 실시 예에 따르면, 상기 보호층(40)은 상술된 바와 같이, 상기 전해질 첨가제를 포함하는 상기 전해질(20)을 이용하여 리튬 황 전지를 제조하고, 상기 리튬 황 전지의 충방전 과정에서 형성될 수 있다.
또는, 다른 실시 예에 따르면, 상기 보호층(40)을 형성하는 단계는, 상기 전해질(20)을 이용하여 리튬 황 전지를 제조하기 전에 수행될 수 있다. 구체적으로, 예를 들어, 상기 보호층(40)을 형성하는 단계는, 상기 전해질 첨가제를 포함하는 상기 전해질(20)을 제조한 후, 상기 음극(50)을 상기 전해질(20)에 침지시켜, 상기 음극(50) 상에 상기 보호층(40)을 형성하는 단계, 및 상기 보호층(40)이 형성된 상기 음극(50)을 세정 및 건조하는 단계를 포함할 수 있다. Dl 경우, 상기 음극(50)을 상기 전해질(20)에 침지시킨 후, 열처리 공정이 추가적으로 수행될 수 있다. 이에 따라, 상기 음극(50)의 표면에 충분히 상기 보호층(40)이 형성될 수 있다.
또는, 또 다른 실시 예에 따르면, 상술된 바와 같이, 리튬 황 전지를 제조하기 전에 상기 보호층(40)을 형성하는 경우, 상기 전해질(20) 보다 상기 전해질 첨가제의 농도가 높은 보호층 형성용 전해질을 별도로 제조하고, 상기 보호층 형성용 전해질에 상기 음극(50)을 침지시켜 상기 보호층(40)을 형성할 수 있다. 이 경우, 상기 보호층 형성용 전해질은, 상기 베이스 전해질 및 과량의 상기 전해질 첨가제를 포함할 수 있다. 이에 따라, 상기 음극(50) 상에 상기 보호층(40)이 용이하게 형성될 수 있다. 이와 달리, 상기 베이스 전해질에 과량의 상기 전해질 첨가제를 첨가하여 상기 전해질(20)을 제조하고, 과량의 상기 전해질 첨가제가 첨가된 상기 전해질(20)에 상기 음극(50)을 침지시키고, 과량의 상기 전해질 첨가제가 첨가된 상기 전해질(20)을 이용하여 리튬 황 전지를 제조하는 경우, 과량의 상기 전해질 첨가제로 인해, 상기 보호층(40)이 용이하게 형성되더라도, 상기 리튬 황 전지의 충방전 특성이 저하될 수 있다. 하지만, 상술된 바와 같이, 상기 전해질 첨가제의 농도가 높은 보호층 형성용 전해질을 별도로 제조하는 경우, 상기 보호층(40)을 용이하게 하는 동시에, 상기 리튬 황 전지의 충방전 특성을 최적화할 수 있다.
또한, 이 경우, 상기 보호층 형성용 전해질은, 상기 전해질(20)과 동일한 종류의 상기 베이스 전해질 및 상기 전해질 첨가제를 포함할 수 있다. 또는, 일 변형 예에 따르면, 상기 보호층 형성용 전해질은, 상기 전해질(20)과 동일한 종류의 상기 베이스 전해질을 포함하되, 상기 보호층(40)을 형성하기 용이한 전해질 첨가제(예를 들어, 질산 마그네슘)을 포함하고, 상기 전해질은, 상기 베이스 전해질, 및 충방전 용량/수명특성/열적안정성/고속충전이 용이한 다른 종류의 전해질 첨가제를 포함할 수 있다.
본 발명의 실시 예에 따라 제조된 리튬 황 전지는 상기 베이스 전해질 및 상기 전해질 첨가제를 포함하는 상기 전해질(20)을 포함한다. 상기 전해질 첨가제는, 리튬 황 전지의 충방전이 수행되면, 상기 음극(50) 표면에 상기 보호층(40)을 형성할 수 있다. 이에 따라, 리튬을 포함하는 상기 음극(50)의 손상이 억제되어 수명이 연장된 리튬 황 전지가 제공될 수 있다.
본 발명의 실시 예와 달리, 상기 전해질 첨가제를 포함하지 못하는 상기 전해질(20)을 포함하는 리튬 황 전지의 경우, 상기 보호층(40)이 용이하게 형성되지 않을 수 있다. 상기 보호층(40)이 형성되지 않는 경우, 리튬 황 전지는, 충방전 과정에서 전류 밀도가 높아질수록 상기 음극(50)을 손상시킬 수 있다. 또한, 상기 양극(10)인 황으로 인해 생성되는 리튬폴리설파이드가 상기 전해질(20)을 통해 상기 음극(50)으로 이동하여, 상기 음극(50)을 손상시킬 수 있다. 이로 인해, 리튬 황 전지의 수명이 감소하고, 불안정성이 야기될 수 있다.
하지만, 본 발명의 실시 예와 같이, 상기 전해질 첨가제를 포함하는 상기 전해질(20)을 포함하여 리튬 황 전지의 경우, 상기 보호층(40)이 용이하게 형성될 수 있고, 이에 따라, 리튬을 포함하는 상기 음극(50)의 손상이 억제될 수 있다. 이에 따라, 불안정성이 감소되고 수명이 증가된 리튬 황 전지가 제공될 수 있다.
이하, 상술된 본 발명의 실시 예의 구체적인 실험 예 및 특성 평가 결과가 설명된다.
실시 예 1에 따른 전해질 및 리튬 황 전지
유기 용매로서 디메톡시에탄 및 1,3-디옥살레인을 1:1의 비율로 포함하는 혼합 용매에 리튬염으로서 LiTFSI 및 LiNO3를 첨가하고, 상온에서 교반하여 베이스 전해질을 제조하고, 상기 베이스 전해질 10ml에 전해질 첨가제로서 질산 인듐를 0.01m 첨가하고 교반하여 실시 예 1에 따른 전해질을 제조하였다.
용매인 이차증류수에 황, 카본도전제 및 키토산 바인더를 6:3:1의 비율로 혼합하여 슬러리형태로 제조한 뒤, 집전체인 알루미늄 포일에 코팅하고, 24시간 동안 건조시켜 용매를 제거한, 황의 함유량이 5mg/cm2인 양극을 제조하였다. 상기 양극, 상기 전해질 및 음극으로서 리튬 호일을 사용하여 실시 예 1에 따른 리튬 황 전지를 제조하였다.
실시 예 2에 따른 전해질 및 리튬 황 전지
상술된 실시 예 1과 동일한 방법으로 베이스 전해질을 제조하고, 전해질 첨가제로 질산알루미늄을 0.01m 첨가하고, 교반하여 실시 예 2에 따른 전해질을 제조하였다.
이후, 상술된 실시 예 1과 동일한 방법으로 실시 예 2에 따른 전해질을 이용하여 실시 예 2에 따른 리튬 황 전지를 제조하였다.
실시 예 3에 따른 전해질 및 리튬 황 전지
상술된 실시 예 1과 동일한 방법으로 베이스 전해질을 제조하고, 전해질 첨가제로 질산마그네슘을 0.01m 첨가하고, 교반하여 실시 예 3에 따른 전해질을 제조하였다.
이후, 상술된 실시 예 1과 동일한 방법으로 실시 예 3에 따른 전해질을 이용하여 실시 예 3에 따른 리튬 황 전지를 제조하였다.
실시 예 4에 따른 전해질 및 리튬 황 전지
상술된 실시 예 1과 동일한 방법으로 베이스 전해질을 제조하고, 전해질 첨가제로 질산마그네슘을 0.03m 첨가하고, 교반하여 실시 예 4에 따른 전해질을 제조하였다.
이후, 상술된 실시 예 1과 동일한 방법으로 실시 예 4에 따른 전해질을 이용하여 실시 예 4에 따른 리튬 황 전지를 제조하였다.
비교 예 1에 따른 전해질 및 리튬 황 전지
전해질 첨가제 없이, 상술된 실시 예 1과 동일한 방법으로 제조된 베이스 전해질을 이용하여, 상술된 실시 예 1과 동일한 방법으로, 비교 예 1에 따른 리튬 황 전지를 제조하였다.
도 2는 본 발명의 실시 예 1 내지 3, 비교 예 1에 따른 리튬 황 전지의 방전 용량 특성을 측정한 그래프이고, 도 3은 본 발명의 실시 예 1 내지 3, 비교 예 1에 따른 리튬 황 전지의 수명 특성을 측정한 그래프이다.
도 2 및 도 3을 참조하면, 실시 예 1 내지 3, 비교 예 1에 따른 리튬 황 전지의 방전 용량 특성 및 수명 특성을 측정하였다.
도 2 및 도 3에 도시된 바와 같이, 실시 예 1 내지 실시 예 3에 따라서 질산 인듐, 질산 알루미늄, 및 질산 마그네슘을 갖는 전해질을 포함하는 리튬 황 전지의 용량 및 수명 특성이, 비교 예 1에 따라서 전해질 첨가제(질산금속)을 갖지 않는 전해질을 포함하는 리튬 황 전지의 용량 및 수명 특성보다 우수한 것을 확인할 수 있다.
특히, 실시 예 3에 따라서 질산마그네슘을 갖는 전해질을 포함하는 리튬 황 전지의 경우, 실시 예 1 및 2에 따라서 질산 인듐 및 질산 알루미늄을 갖는 전해질을 포함하는 리튬 황 전지보다, 높은 용량 및 우수한 수명 특성을 갖는 것을 알 수 있다.
도 4는 비교 예 1에 따른 리튬 황 전지의 CV 그래프이고, 도 5는 본 발명의 실시 예 3에 따른 리튬 황 전지의 CV 그래프이다.
도 4 및 도 5를 참조하면, 비교 예 1 및 실시 예 3에 따른 리튬 황 전지의 CV 특성을 충방전 횟수에 따라서 측정하였다.
첫 번째 사이클에서 전해질 첨가제(질산 마그네슘)가 포함된 실시 예 3에 따른 리튬 황 전지는 전해질 첨가제가 없는 비교 예 1에 따른 리튬 황 전지와 다르게 2.47V에서 추가 반응이 존재하고, 두 번째 사이클에서부터는 발생하지 않았다.
도 6은 본 발명의 실시 예 3 및 4, 비교 예 1에 따른 리튬 황 전지의 방전 용량 특성을 측정한 그래프이고, 도 7은 본 발명의 실시 예 3 및 4, 비교 예 1에 따른 리튬 황 전지의 수명 특성을 측정한 그래프이고, 도 8은 본 발명의 실시 예 3 및 4, 비교 예 1에 따른 리튬 황 전지의 충방전 효율을 측정한 그래프이다.
도 6 내지 도 8을 참조하면, 실시 예 3 및 4, 비교 예 1에 따른 리튬 황 전지의 방전 용량, 수명 특성 및 충방전 효율을 측정하였다.
도 6 내지 도 8에 도시된 바와 같이, 실시 예 3, 및 4에 따라서 질산 마그네슘을 갖는 전해질을 포함하는 리튬 황 전지의 용량, 수명 특성, 및 충방전 효율이, 비교 예 1에 따라서 전해질 첨가제(질산금속)을 갖지 않는 전해질을 포함하는 리튬 황 전지의 용량, 수명 특성, 및 충방전 효율보다 우수한 것을 확인할 수 있다.
또한, 도 8에 도시된 바와 같이, 실시 예 3에 따라서 0.01m의 질산마그네슘을 포함하는 전해질을 사용하는 경우, 실시 예 4에 따라서 0.03m의 질산마그네슘을 포함하는 전해질을 사용하는 경우와 비교하여, 충방전 효율이 현저하게 향상되는 것을 확인할 수 있다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
본 발명의 실시 예에 따른 리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지는 휴대용 모바일 기기, 전기 자동차, 에너지 저장장치 등 다양한 산업 분야에 활용될 수 있다.

Claims (10)

  1. 리튬염 및 유기 용매를 포함하는 베이스 전해질(base electrolyte); 및
    전해질 첨가제를 포함하되,
    상기 전해질 첨가제는, 질산금속을 포함하는 리튬 황 전지의 전해질.
  2. 제1항에 있어서,
    상기 전해질 첨가제는, 질산인듐, 질산마그네슘, 또는 질산알루미늄 중에서 적어도 어느 하나를 포함하는 리튬 황 전지의 전해질.
  3. 제1항에 있어서,
    상기 리튬염은 LiPF6, LiBF4, LiClO4, LiSbF6, LiAsF6, Li(NO3)3, LiN(SO2C2F5)2, LiN(CF3SO2)2, LiN(SO3C2F5)2, LiN(SO2F)2, LiCF3SO3, LiC4F9SO3, LiC6H5SO3, LiSCN, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2), LiCl, LiI 또는 LiB(C2O4)2 중에서 적어도 어느 하나 이상인 것을 포함하는 리튬 황 전지의 전해질.
  4. 제1항에 있어서,
    상기 유기 용매는 비수성(non-aquaeous) 유기 용매이고,
    상기 비수성 유기 용매는 환형 카보네이트계 물질, 선형 카보네이트계 물질, 에테르(Ether)계 물질, 1,2-메톡시에탄 (1,2-Dimethoxyethane), 1,3-다이옥살레인(1,3-Dioxolane), 또는 디메틸 설폭사이드(Dimethyl sulfoxide) 중에서 적어도 어느 하나 이상인 것을 포함하는 리튬 황 전지의 전해질.
  5. 제4항에 있어서,
    상기 환형 카보네이트계 물질은 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트, 또는 플루오르에틸렌카보네이트 중에서 적어도 어느 하나를 포함하고,
    상기 선형 카보네이트계 물질은 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 또는 에틸프로필카보네이트 중에서 적어도 어느 하나를 포함하고,
    상기 에테르계 물질은 디에틸렌 글라이콜 디메틸 에테르, 트리에틸렌 글라이콜 디메틸 에테르, 또는 테트라에틸렌 글라이콜 디메틸 에테르 중에서 적어도 어느 하나를 포함하는 리튬 황 전지의 전해질.
  6. 황(sulfur) 화합물을 포함하는 양극(cathode);
    제1 항에 따른 상기 베이스 전해질 및 상기 전해질 첨가제를 포함하는 전해질; 및
    리튬(lithium)을 포함하는 음극(anode)을 포함하는 리튬 황 전지.
  7. 제6항에 있어서,
    상기 전해질 첨가제는, 질산인듐, 질산마그네슘, 또는 질산알루미늄 중에서 적어도 어느 하나를 포함하는 리튬 황 전지.
  8. 제6항에 있어서,
    충방전 동작이 수행되어, 상기 전해질 첨가제가 상기 음극 보호층을 형성하는 것을 포함하는 리튬 황 전지.
  9. 리튬염 및 유기 용매를 포함하는 포함하는 베이스 전해질, 및 질산 금속을 포함하는 전해질 첨가제를 포함하는 보호층 형성용 전해질을 준비하는 단계;
    상기 보호층 형성용 전해질에 리튬을 포함하는 음극을 침지하여, 상기 음극 상에 보호층을 형성하는 단계;
    상기 보호층 형성용 전해질보다 낮은 농도의 상기 전해질 첨가제, 및 상기 베이스 전해질을 포함하는 전해질을 준비하는 단계; 및
    상기 전해질, 상기 보호층이 형성된 상기 음극, 및 황을 포함하는 양극을 이용하여, 리튬 황 전지를 제조하는 단계를 포함하는 리튬 황 전지의 제조 방법.
  10. 제1 항에 있어서,
    상기 보호층을 형성하는 단계는,
    상기 보호층 형성용 전해질에 상기 음극을 침지한 후, 열처리하는 것을 포함하는 리튬 황 전지의 제조 방법.
PCT/KR2018/007841 2017-07-11 2018-07-11 전해질 및 이를 포함하는 리튬 황 전지 WO2019013541A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/629,236 US20200194834A1 (en) 2017-07-11 2018-07-11 Electrolyte and lithium-sulfur battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0087833 2017-07-11
KR20170087833 2017-07-11
KR10-2018-0079793 2018-07-10
KR1020180079793A KR102138693B1 (ko) 2017-07-11 2018-07-10 전해질 및 이를 포함하는 리튬 황 전지

Publications (2)

Publication Number Publication Date
WO2019013541A2 true WO2019013541A2 (ko) 2019-01-17
WO2019013541A3 WO2019013541A3 (ko) 2019-04-11

Family

ID=65001738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007841 WO2019013541A2 (ko) 2017-07-11 2018-07-11 전해질 및 이를 포함하는 리튬 황 전지

Country Status (1)

Country Link
WO (1) WO2019013541A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313086A (zh) * 2019-12-24 2020-06-19 安徽圣格能源科技有限公司 一种电解液及锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358012B2 (en) * 2004-01-06 2008-04-15 Sion Power Corporation Electrolytes for lithium sulfur cells
US7354680B2 (en) * 2004-01-06 2008-04-08 Sion Power Corporation Electrolytes for lithium sulfur cells
KR20160077266A (ko) * 2014-12-22 2016-07-04 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
KR102050836B1 (ko) * 2015-12-08 2019-12-03 주식회사 엘지화학 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
KR20170133544A (ko) * 2016-05-25 2017-12-06 한양대학교 산학협력단 리튬 공기 전지용 전해질, 및 이를 포함하는 리튬 공기 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313086A (zh) * 2019-12-24 2020-06-19 安徽圣格能源科技有限公司 一种电解液及锂离子电池

Also Published As

Publication number Publication date
WO2019013541A3 (ko) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2018062719A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
KR20190006923A (ko) 전해질 및 이를 포함하는 리튬 황 전지
WO2013191476A1 (ko) 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2018097523A1 (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
WO2015016482A1 (ko) 음극 전극의 전리튬화 방법
WO2013165077A1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2016089099A1 (ko) 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019112167A1 (ko) 리튬금속전지용 음극 및 이를 포함한 리튬금속전지
WO2015126082A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2010117219A2 (en) Lithium-sulfur battery
WO2020153822A1 (ko) 리튬 이차 전지
WO2016104904A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2019013521A2 (ko) 리튬 이차 전지
WO2017213441A1 (ko) 리튬전지
WO2012074299A2 (ko) 리튬 이차전지
WO2019050162A1 (ko) 리튬 이차 전지
WO2015037852A1 (ko) 비수계 전해액 및 이를 포함하는 리튬 이차전지
WO2017030416A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019013541A2 (ko) 전해질 및 이를 포함하는 리튬 황 전지
WO2019194407A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR100801592B1 (ko) 숙신산 및 트리메틸실릴 보레이트를 포함하는 비수성전해액 및 이를 포함하는 리튬 2차 전지
WO2013191475A1 (ko) 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831711

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831711

Country of ref document: EP

Kind code of ref document: A2