WO2024038532A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2024038532A1
WO2024038532A1 PCT/JP2022/031144 JP2022031144W WO2024038532A1 WO 2024038532 A1 WO2024038532 A1 WO 2024038532A1 JP 2022031144 W JP2022031144 W JP 2022031144W WO 2024038532 A1 WO2024038532 A1 WO 2024038532A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
determination value
indoor fan
detection sensor
air conditioner
Prior art date
Application number
PCT/JP2022/031144
Other languages
English (en)
French (fr)
Inventor
和樹 渡部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/031144 priority Critical patent/WO2024038532A1/ja
Publication of WO2024038532A1 publication Critical patent/WO2024038532A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to an air conditioner having a refrigerant circuit.
  • the present disclosure has been made to solve the above-mentioned problems, and provides an air conditioner that reduces the frequency of false detections of a refrigerant detection sensor and improves user convenience.
  • An air conditioner includes an indoor unit that has a load-side heat exchanger, an indoor fan, and a refrigerant detection sensor and that conditions air in a space to be air-conditioned, and an outdoor unit that has a compressor and a heat source-side heat exchanger.
  • a refrigerant circuit in which a refrigerant circulates between the indoor unit and the outdoor unit via a liquid refrigerant pipe and a gas refrigerant pipe connecting the indoor unit and the outdoor unit, and a refrigerant circuit provided in the liquid refrigerant pipe, a liquid-side shutoff valve that shuts off the flow of the refrigerant in the liquid refrigerant piping, and a controller that controls the indoor fan, the compressor, and the liquid-side shutoff valve, and the controller is configured to detect the refrigerant by the refrigerant detection sensor.
  • the indoor fan is rotating, the rotation of the indoor fan is stopped; when the indoor fan is not rotating, the indoor fan is maintained not rotating, and the refrigerant concentration is After determining that the refrigerant concentration exceeds the first determination value, it is determined whether the refrigerant concentration exceeds a second determination value that is larger than the first determination value, and the refrigerant concentration exceeds the second determination value.
  • the liquid-side shutoff valve is switched from the open state to the closed state, the compressor is operated so that the heat source-side heat exchanger functions as a condenser, and the refrigerant is transferred to the refrigerant circuit other than the indoor unit. It performs a pump-down operation to collect the waste at a location.
  • the indoor fan when the refrigerant concentration detected by the refrigerant detection sensor exceeds the first determination value, the indoor fan is brought into a state where rotation is stopped. If a refrigerant leak occurs while the indoor fan is not rotating, the leaked refrigerant will remain inside the indoor unit and will be prevented from spreading outside the indoor unit, increasing the refrigerant concentration detected by the refrigerant detection sensor. . If the refrigerant concentration exceeds the second determination value while the rotation of the indoor fan is stopped, it is determined that refrigerant leakage has actually occurred, and pump-down operation is performed.
  • the refrigerant concentration is less than or equal to the second determination value while the rotation of the indoor fan is stopped, it is determined that the refrigerant detection sensor has erroneously detected, and the air conditioner continues to operate. Therefore, the frequency of occurrence of pump down operation due to erroneous detection by the refrigerant detection sensor is reduced, and user convenience can be improved.
  • FIG. 1 is a refrigerant circuit diagram showing a configuration example of an air conditioner according to Embodiment 1.
  • FIG. 1 is a schematic external view showing a configuration example of an indoor unit of an air conditioner according to Embodiment 1.
  • FIG. 3 is a plan view of the indoor unit shown in FIG. 2.
  • FIG. 4 is a schematic cross-sectional view taken along line AA of the indoor unit shown in FIG. 3.
  • FIG. 3 is a perspective view of the exterior of the indoor unit shown in FIG. 2 with a decorative panel removed.
  • FIG. 6 is an external perspective view showing the indoor unit shown in FIG. 5 with an inner panel removed.
  • FIG. 5 is a schematic cross-sectional view of the indoor unit shown in FIG. 4 for explaining air flow.
  • FIG. 1 is a schematic external view showing a configuration example of an indoor unit of an air conditioner according to Embodiment 1.
  • FIG. 3 is a plan view of the indoor unit shown in FIG. 2.
  • FIG. 4 is a schematic cross-sectional view taken along
  • FIG. 2 is a functional block diagram showing an example of the configuration of the controller shown in FIG. 1.
  • FIG. 9 is a hardware configuration diagram showing an example of the configuration of the controller shown in FIG. 8.
  • FIG. 9 is a hardware configuration diagram showing another configuration example of the controller shown in FIG. 8.
  • FIG. 2 is a diagram showing an example of installation positions of a liquid-side cutoff valve and a gas-side cutoff valve in the air conditioner according to the first embodiment.
  • FIG. 7 is a diagram showing another example of the installation positions of a liquid side cutoff valve and a gas side cutoff valve in the air conditioner according to the first embodiment.
  • 3 is a flowchart showing an operation procedure of the air conditioner according to the first embodiment.
  • 3 is a flowchart showing an operation procedure of the air conditioner according to the first embodiment.
  • FIG. 14 is a flowchart showing a first modification of the procedure shown in FIG. 13 regarding the operation of the air conditioner according to the first embodiment. 14 is a flowchart showing a second modification of the procedure shown in FIG. 13 regarding the operation of the air conditioner according to the first embodiment.
  • FIG. 3 is a refrigerant circuit diagram showing a configuration example of an air conditioner according to a second embodiment.
  • FIG. 1 is a refrigerant circuit diagram showing a configuration example of an air conditioner according to a first embodiment.
  • the air conditioner 1 includes an outdoor unit 2 and an indoor unit 3.
  • the outdoor unit 2 generates heat to be supplied to the indoor unit 3.
  • the indoor unit 3 is installed in a room that is an air-conditioned space, and uses heat supplied from the indoor unit 3 to condition the indoor air.
  • a remote controller 40 for a user to operate the air conditioner 1 is provided indoors.
  • the outdoor unit 2 includes a compressor 4, a four-way valve 5, a heat source side heat exchanger 6, an expansion valve 7, an outdoor fan 11, and a controller 30.
  • the compressor 4, the four-way valve 5, the heat source side heat exchanger 6, and the expansion valve 7 are connected via a refrigerant pipe 9a.
  • the indoor unit 3 includes a load-side heat exchanger 8 and an indoor fan 12. In the indoor unit 3, the load side heat exchanger 8 is connected to the refrigerant pipe 9b.
  • the refrigerant pipe 9a of the outdoor unit 2 and the refrigerant pipe 9b of the indoor unit 3 are connected via a liquid refrigerant pipe 13 and a gas refrigerant pipe 14.
  • the compressor 4, the heat source side heat exchanger 6, the expansion valve 7, and the load side heat exchanger 8 are connected via refrigerant pipes 9a and 9b, a liquid refrigerant pipe 13, and a gas refrigerant pipe 14, and the refrigerant circulates.
  • a circuit 10 is configured.
  • the air conditioner 1 has a cooling operation and a heating operation as the operation modes, but in addition to these operation modes, it may also have a defrosting operation and a blowing operation. .
  • the four-way valve 5 switches the flow direction of the refrigerant circulating in the refrigerant circuit 10.
  • the operation mode is cooling operation
  • the inside of the four-way valve 5 shown in FIG. 1 becomes a flow path shown by a solid line.
  • the operation mode is heating operation
  • the inside of the four-way valve 5 shown in FIG. 1 becomes a flow path shown by a broken line.
  • the four-way valve 5 is connected to the controller 30 via a signal line (not shown).
  • the four-way valve 5 is controlled by a controller 30.
  • the compressor 4 sucks in low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges it.
  • the compressor 4 is, for example, an inverter compressor whose capacity can be adjusted by changing the operating frequency.
  • the compressor 4 is connected to a controller 30 via a signal line (not shown).
  • the heat source side heat exchanger 6 is a heat exchanger that exchanges heat between the outside air and the refrigerant. In the case of cooling operation, the heat source side heat exchanger 6 functions as a condenser, and in the case of heating operation, the heat source side heat exchanger 6 functions as an evaporator.
  • the load-side heat exchanger 8 is a heat exchanger that exchanges heat between indoor air and refrigerant. In the case of cooling operation, the load-side heat exchanger 8 functions as an evaporator, and in the case of heating operation, the load-side heat exchanger 8 functions as a condenser.
  • the heat source side heat exchanger 6 and the load side heat exchanger 8 are, for example, fin-and-tube type heat exchangers having heat transfer tubes and a plurality of heat radiation fins.
  • the expansion valve 7 decompresses and expands the liquid refrigerant flowing from the heat source side heat exchanger 6 or the load side heat exchanger 8, which functions as a condenser.
  • the expansion valve 7 is, for example, an electronic expansion valve.
  • the expansion valve 7 is connected to the controller 30 via a signal line (not shown).
  • a low pressure sensor 22 is provided on the refrigerant suction side of the compressor 4.
  • the low pressure sensor 22 detects suction pressure, which is the pressure of refrigerant sucked into the compressor 4.
  • the suction pressure corresponds to a low pressure Lp that is a pressure on the low pressure side in the refrigerant circuit 10.
  • Low pressure sensor 22 is connected to controller 30 via a signal line (not shown). The low pressure sensor 22 transmits the value of the low pressure Lp to the controller 30.
  • the indoor unit 3 is provided with a suction temperature sensor 21 that detects room temperature, which is the temperature of air sucked into the indoor unit 3 from the room.
  • the suction temperature sensor 21 is, for example, a thermistor.
  • the suction temperature sensor 21 is connected to the controller 30 via a signal line (not shown).
  • the suction temperature sensor 21 transmits the value of the room temperature to the controller 30.
  • the indoor unit 3 is provided with a refrigerant detection sensor 20 that detects the refrigerant concentration in the air.
  • the refrigerant detection sensor 20 is connected to a controller 30 via a signal line (not shown).
  • the refrigerant detection sensor 20 is, for example, a semiconductor gas sensor.
  • a semiconductor gas sensor includes a semiconductor (not shown) whose electrical resistance changes depending on the concentration of a refrigerant in contact with the surface, and a heater (not shown) that heats the semiconductor using supplied power.
  • the refrigerant detection sensor 20 transmits to the controller 30 a voltage value Crv corresponding to the detected refrigerant concentration or an output pulse indicating the state of the refrigerant detection sensor 20 based on the voltage value Crv.
  • a liquid-side shutoff valve 15 is provided in the liquid refrigerant pipe 13.
  • a gas-side shutoff valve 16 is provided in the gas refrigerant pipe 14 .
  • the liquid side cutoff valve 15 and the gas side cutoff valve 16 are, for example, electromagnetic valves.
  • the opening and closing of the liquid side shutoff valve 15 and the gas side shutoff valve 16 is controlled by a controller 30.
  • the liquid side shutoff valve 15 and the gas side shutoff valve 16 are maintained in an open state while the air conditioner 1 is operating in heating mode and cooling mode.
  • the liquid side cutoff valve 15 and the gas side cutoff valve 16 are connected to the controller 30 via a signal line (not shown).
  • the remote controller 40 is connected to the controller 30 via a signal line (not shown).
  • the remote controller 40 includes an operation section (not shown) for a user to input instructions to the controller 30, a notification device 43 for notifying people in the room of the air-conditioned space of refrigerant leakage, and a display for displaying a message. It has a device 45.
  • the notification device 43 includes, for example, a speaker (not shown) that outputs an alarm sound to notify of a refrigerant leak, and a light source such as an LED (Light Emitting Diode) that turns on or blinks to notify of a refrigerant leak. This is a configuration that has one or both of the following.
  • the display device 45 is, for example, a display (not shown) that displays a message prompting the user to replace the refrigerant detection sensor 20.
  • the remote controller 40 may be wirelessly connected to the controller 30 via a communication means (not shown) based on a communication standard such as Wi-Fi (registered trademark) or Bluetooth (registered trademark).
  • FIG. 2 is a schematic external view showing a configuration example of the indoor unit of the air conditioner according to the first embodiment.
  • FIG. 3 is a plan view of the indoor unit shown in FIG. 2.
  • FIG. 4 is a schematic cross-sectional view of the indoor unit shown in FIG. 3 taken along line AA.
  • the indoor unit 3 has a housing 19 that houses the load-side heat exchanger 8, indoor fan 12, suction temperature sensor 21, and refrigerant detection sensor 20 shown in FIG.
  • a decorative panel 25a facing the indoor space is provided in the gravitational direction of the housing 19 (in the direction opposite to the Z-axis arrow).
  • the decorative panel 25a is provided with an inlet 17 that sucks air into the casing 19 from the room by the rotation of the indoor fan 12, and an outlet 18 which blows out the airflow generated by the rotation of the indoor fan 12 into the room.
  • the air outlet 18 blows out conditioned air into the room after the air sucked into the housing 19 exchanges heat with the refrigerant in the load-side heat exchanger 8 .
  • the indoor unit 3 shown in FIG. 2 is a ceiling-embedded indoor unit that can be embedded in the ceiling of a room.
  • the indoor unit 3 shown in FIG. 2 is a four-way cassette-type indoor unit in which air outlets 18 are formed in four directions.
  • the indoor unit 3 may be a two-way cassette type indoor unit in which the air outlet 18 is formed in two directions.
  • the suction port 17 is provided with a filter 24 that removes dust from the air sucked into the casing 19 from the room.
  • the air outlet 18 is provided with a wind direction vane 23 that adjusts the angle of depression with respect to the blowing direction of air blown into the room from the air outlet 18.
  • the wind direction will be referred to as the wind direction.
  • the wind direction vane 23 serves to switch the air outlet 18 between an open state and a closed state.
  • the closed state means that the air outlet 18 is covered by the wind direction vane 23, and is not limited to the case where the air outlet 18 is sealed, but may have a gap.
  • the wind direction vane 23 is connected to a controller 30 via a signal line (not shown) and is controlled by the controller 30.
  • FIG. 3 shows a state in which the filter 24 is removed from the indoor unit 3 shown in FIG. 2.
  • 2 and 3 show a case where the wind direction vane 23 closes the air outlet 18.
  • the housing 19 is provided with a control board 26 on which an electronic circuit (not shown) for the controller 30 to control the indoor fan 12 and the wind direction vane 23 is mounted.
  • the control board 26 is connected to the controller 30 via a signal line (not shown).
  • the suction temperature sensor 21 is provided at the suction port 17, as shown in FIG.
  • an inner panel 25b is provided inside the decorative panel 25a.
  • a bell mouth 27 that relays air taken in from the suction port 17 to the indoor fan 12 is provided on the inner panel 25b.
  • FIG. 5 is an external perspective view showing the indoor unit shown in FIG. 2 with the decorative panel removed.
  • FIG. 6 is an external perspective view of the indoor unit shown in FIG. 5 with the inner panel removed.
  • FIG. 7 is a schematic cross-sectional view of the indoor unit shown in FIG. 4 for explaining the flow of air.
  • the load-side heat exchanger 8 is provided in a rectangular shape so as to surround the indoor fan 12. Inside the housing 19, a space 51 surrounded by the rectangular load-side heat exchanger 8, a heat transfer tube (not shown) of the load-side heat exchanger 8, and the refrigerant pipe 9b shown in FIG. 1 are connected.
  • a partition plate 28 is provided to separate the space from the space. The partition plate 28 is provided at a position to fill a horizontal gap in the rectangular load-side heat exchanger 8.
  • a refrigerant detection sensor 20 is provided on the partition plate 28 at a position facing the space 51 surrounded by the load-side heat exchanger 8 .
  • a member (not shown) for suppressing the wiring of the indoor fan 12, for example, is attached to the surface opposite to the surface on the space 51 side.
  • the refrigerant detection sensor 20 can easily detect the refrigerant leaking from the load-side heat exchanger 8 into the space 51. Furthermore, when the indoor fan 12 is not rotating, the refrigerant leaking into the space 51 is suppressed from diffusing, so the refrigerant detection sensor 20 can detect refrigerant leakage more quickly.
  • FIG. 7 shows that when the indoor fan 12 shown in FIG. 6 rotates when the air outlet 18 is in the open state, an airflow shown by the broken line arrow is generated.
  • the partition plate 28 shown in FIG. 6 is not shown in the figure, the refrigerant detection sensor 20 attached to the partition plate 28 is shown by a broken line.
  • the inner panel 25b has a drain pan 29 that collects condensed water when the load-side heat exchanger 8 functions as an evaporator.
  • the drain pan 29 is provided along the load-side heat exchanger 8 so as to cover the surface of the load-side heat exchanger 8 shown in FIG. 6 in the gravity direction (the direction opposite to the Z-axis arrow).
  • the refrigerant detection sensor 20 is located at a position lower than half the height of the load-side heat exchanger 8 in the partition plate 28 shown in FIG. 6 in the height direction (Z-axis arrow direction). It is located. Specifically, the refrigerant detection sensor 20 is arranged at a position closer to the drain pan 29 than half the height of the load-side heat exchanger 8 . This means that when refrigerant that is heavier than air leaks from the load-side heat exchanger 8, it tends to accumulate in the drain pan 29 in the direction of gravity of the load-side heat exchanger 8, making it easier for the refrigerant detection sensor 20 to detect refrigerant leakage. This is to do so.
  • FIG. 8 is a functional block diagram showing an example of the configuration of the controller shown in FIG. 1.
  • Controller 30 is, for example, a microcomputer.
  • the controller 30 includes a refrigeration cycle control means 31, a determination means 32, a pre-stage means 33, a refrigerant recovery control means 34, and a timer 35 for measuring time.
  • the refrigeration cycle control means 31 switches the flow path of the four-way valve 5 in accordance with the operating mode. For example, when the operation mode is cooling operation, the refrigeration cycle control means 31 controls the flow path in the four-way valve 5 shown in FIG. 1 to be a solid line. In the case of heating operation and cooling operation, the refrigeration cycle control means 31 controls the operating frequency of the compressor 4, the opening degree of the expansion valve 7, and the outdoor fan 11 so that the room temperature detected by the suction temperature sensor 21 matches the set temperature. control the rotation speed.
  • the operating mode and set temperature are input to the controller 30 via the remote controller 40 by the user.
  • the volume and direction of air blown out from the indoor unit 3 may be set by the user via the remote controller 40.
  • the air volume is the amount of air that moves per unit time due to the rotation of the indoor fan 12.
  • the operation mode in which the refrigeration cycle control means 31 causes the air conditioner 1 to perform heating operation or cooling operation according to the user's settings will be referred to as a normal mode below.
  • the refrigeration cycle control means 31 When the refrigeration cycle control means 31 receives information indicating that the normal mode is to be continued from the determination means 32, the refrigeration cycle control means 31 continues the normal mode. On the other hand, when the refrigeration cycle control means 31 receives information indicating that the normal mode is to be stopped from the determining means 32, it stops the normal mode.
  • the determining means 32 determines whether the voltage value Crv indicating the refrigerant concentration detected by the refrigerant detection sensor 20 exceeds a predetermined first determination value Th1. When the voltage value Crv is less than or equal to the first determination value Th1, the determination means 32 transmits information to the refrigeration cycle control means 31 to the effect that the normal mode is to be continued. When the voltage value Crv exceeds the first determination value Th1, the determination means 32 transmits the determination result to the preceding means 33.
  • the determining means 32 determines whether the voltage value Crv exceeds a predetermined second determination value Th2.
  • the determination means 32 operates the notification device 43 in order to notify the user that the refrigerant is leaking.
  • the determination means 32 transmits information to the effect that the normal mode is to be stopped to the refrigeration cycle control means 31, and also transmits the determination result to the refrigerant recovery control means 34. do.
  • the determining means 32 determines whether the voltage value Crv exceeds a predetermined third determination value Th3. As a result of the determination, if the voltage value Crv is less than or equal to the third determination value Th3, the determination means 32 resets the detection value of the refrigerant detection sensor 20. On the other hand, if the voltage value Crv exceeds the third determination value Th3, the determination means 32 causes the display device 45 to display a message urging replacement of the refrigerant detection sensor 20. This is because the refrigerant detection sensor 20 cannot normally detect the refrigerant concentration after the semiconductor (not shown) comes into contact with refrigerant whose voltage value Crv exceeds the third determination value Th3. It is.
  • the first determination value Th1 to the third determination value Th3 are stored in the controller 30 in advance.
  • the relationship between the first determination value Th1 and the third determination value Th3 is Th3>Th2>Th1.
  • the refrigerant concentration corresponding to the first judgment value Th1 is expressed as C th1
  • the refrigerant concentration corresponding to the second judgment value Th2 is expressed as C th2
  • the refrigerant concentration corresponding to the third judgment value Th3 is expressed as C th3 .
  • the refrigerant concentration C th1 is 0.1 to 0.2% of the atmosphere
  • the refrigerant concentration C th2 is 0.5% of the atmosphere
  • the refrigerant concentration C th3 is 1.0% of the atmosphere. .
  • the pre-stage means 33 determines whether the indoor fan 12 is rotating or not. As a result of the determination, if the indoor fan 12 is rotating, the front stage means 33 stops the rotation of the indoor fan 12. If the result of the determination is that the indoor fan 12 is not rotating, the front stage means 33 maintains the state in which the indoor fan 12 is not rotating.
  • the pre-stage means 33 determines whether or not the air outlet 18 is closed by the wind direction vane 23. It's okay. If the result of the determination is that the air outlet 18 is in the open state, the pre-stage means 33 controls the wind direction vane 23 to switch the air outlet 18 from the open state to the closed state. If the result of the determination is that the air outlet 18 is in the closed state, the pre-stage means 33 maintains the air outlet 18 in the closed state.
  • the refrigerant recovery control means 34 switches the liquid side cutoff valve 15 from the open state to the closed state, and starts the pump down operation. Start. In the pump-down operation, the compressor 4 is operated with the operation mode set to cooling operation for the purpose of recovering the refrigerant sealed in the refrigerant circuit 10 to a location other than the indoor unit 3 of the refrigerant circuit 10.
  • the location other than the indoor unit 3 is at least the outdoor unit 2.
  • the refrigerant recovery control means 34 controls the flow direction of the refrigerant in the refrigerant circuit 10 via the determination means 32 and the refrigeration cycle control means 31 so that the heat source side heat exchanger 6 functions as a condenser. 5 is switched, and the compressor 4 is operated.
  • the refrigerant recovery control means 34 determines that the refrigerant recovery has been completed, the refrigerant recovery control means 34 stops the compressor 4, terminates the pump-down operation, and switches the gas side cutoff valve 16 from the open state to the closed state.
  • the parameter for determining whether or not the refrigerant recovery is completed may be the low pressure Lp or the elapsed time tp from the start of the pump down operation.
  • the refrigerant recovery control means 34 determines that the refrigerant recovery has ended when the low pressure Lp becomes equal to or less than a predetermined threshold pressure.
  • the refrigerant recovery control means 34 monitors the time measured by the timer 35, and determines that the refrigerant recovery has ended when the elapsed time tp reaches a predetermined threshold time.
  • FIG. 9 is a hardware configuration diagram showing an example of the configuration of the controller shown in FIG. 8.
  • the controller 30 shown in FIG. 8 is configured with a processing circuit 90, as shown in FIG.
  • the functions of the refrigeration cycle control means 31, determination means 32, pre-stage means 33, refrigerant recovery control means 34, and timer 35 shown in FIG. 8 are realized by the processing circuit 90.
  • the processing circuit 90 may be implemented using, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). Array) or a combination of these.
  • the functions of the refrigeration cycle control means 31, the determination means 32, the pre-stage means 33, the refrigerant recovery control means 34, and the timer 35 may be realized by separate processing circuits 90. Furthermore, the functions of the refrigeration cycle control means 31, the determination means 32, the pre-stage means 33, the refrigerant recovery control means 34, and the timer 35 may be realized by one processing circuit 90.
  • FIG. 10 is a hardware configuration diagram showing another example of the configuration of the controller shown in FIG. 8.
  • the controller 30 shown in FIG. 8 is configured with a processor 91 such as a CPU (Central Processing Unit) and a memory 92, as shown in FIG.
  • the functions of the refrigeration cycle control means 31, the determination means 32, the pre-stage means 33, the refrigerant recovery control means 34, and the timer 35 are realized by the processor 91 and the memory 92.
  • FIG. 10 shows that processor 91 and memory 92 are communicably connected to each other via bus 93.
  • a memory 92 stores first to third determination values Th1 to Th3.
  • Examples of the memory 92 include ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM), and EEPROM (Electrically Erasable and Programmable ROM).
  • a nonvolatile semiconductor memory such as a grammable ROM (ROM) is used.
  • a volatile semiconductor memory such as RAM (Random Access Memory) may be used.
  • a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versatile Disc) may be used.
  • FIG. 1 shows a configuration in which the controller 30 is provided in the outdoor unit 2, the controller 30 may be provided in the indoor unit 3. Further, although FIG. 1 shows a configuration in which the liquid side cutoff valve 15 and the gas side cutoff valve 16 are provided on the outdoor unit 2 side, they may be provided on the indoor unit 3 side.
  • FIG. 11 is a diagram illustrating an example of the installation positions of the liquid side cutoff valve and the gas side cutoff valve in the air conditioner according to the first embodiment.
  • FIG. 12 is a diagram showing another example of the installation positions of the liquid side cutoff valve and the gas side cutoff valve in the air conditioner according to the first embodiment.
  • the outdoor unit 2 and the indoor unit 3 are schematically represented, and the liquid side shutoff valve 15 and the gas side shutoff valve 16 are represented by symbols.
  • a liquid side shutoff valve 15 is provided in a position close to the outdoor unit 2 in the liquid refrigerant pipe 13, and a gas side cutoff valve 16 is provided in a position close to the outdoor unit 2 in the gas refrigerant pipe 14.
  • the refrigerant sealed in the refrigerant circuit 10 can be mainly recovered to the outdoor unit 2 during pump-down operation.
  • a liquid side shutoff valve 15 is provided in a position close to the indoor unit 3 in the liquid refrigerant pipe 13, and a gas side cutoff valve 16 is provided in a position close to the indoor unit 3 in the gas refrigerant pipe 14. ing.
  • the refrigerant sealed in the refrigerant circuit 10 can be stored not only in the outdoor unit 2 but also in the liquid refrigerant pipe 13, which is a refrigerant pipe other than the indoor unit 3. .
  • the refrigerant recovery location is not limited to the outdoor unit 2.
  • the configuration has been described in which the notification device 43 and the display device 45 are provided in the remote controller 40; however, one or both of the notification device 43 and the display device 45 are provided in the remote controller 40. It does not have to be provided.
  • the notification device 43 and the display device 45 may be provided indoors.
  • each refrigerant device such as the compressor 4 and each sensor such as the refrigerant detection sensor 20 are connected to the controller 30 by wire, they may be connected wirelessly.
  • the indoor unit 3 is a ceiling-embedded indoor unit, but it may be a wall-mounted indoor unit that is mounted on a wall, or a floor-standing indoor unit that is placed on the floor. It may be a machine.
  • the wind direction vane 23 may be configured to be able to adjust one or both of the depression angle and the elevation angle.
  • the number of air outlets 18 provided in the indoor unit 3 may be one or more.
  • FIGS. 13 and 14 are flowcharts showing the operating procedure of the air conditioner according to the first embodiment.
  • the air conditioner 1 is in a cooling operation.
  • step S101 upon receiving the voltage value Crv indicating the refrigerant concentration detected by the refrigerant detection sensor 20 from the refrigerant detection sensor 20, the determination means 32 determines whether the voltage value Crv exceeds the first determination value Th1. do. As a result of the determination by the determination means 32, if the voltage value Crv is less than or equal to the first determination value Th1, the refrigeration cycle control means 31 continues the normal mode (step S105). Here, the refrigeration cycle control means 31 continues the cooling operation.
  • step S101 determines whether or not the indoor fan 12 is rotating (step S102).
  • the pre-stage means 33 stops the rotation of the indoor fan 12 (step S103). Assuming that refrigerant is leaking from the indoor unit 3, the leaked refrigerant will be less likely to be diffused indoors and the refrigerant will be more easily detected by the refrigerant detection sensor 20 when the rotation of the indoor fan 12 is stopped. Refrigerant leakage is detected earlier than when the indoor fan 12 is rotating.
  • step S104 the determining means 32 determines whether the voltage value Crv exceeds the second determination value Th2.
  • the refrigeration cycle control means 31 continues the normal mode (step S105). For example, when a user sprays an insecticide indoors, the voltage value Crv of the refrigerant detection sensor 20 may temporarily exceed the first determination value Th1. Even if there is such an erroneous detection, the air conditioner 1 does not start pump-down operation, so it is possible to avoid stopping the operation of the air conditioner 1.
  • step S104 if the voltage value Crv exceeds the second determination value Th2, the refrigerant recovery control means 34 switches the liquid side cutoff valve 15 from the open state to the closed state (step S106). Then, the refrigerant recovery control means 34 starts pump-down operation (step S107).
  • the refrigerant recovery control means 34 since the air conditioner 1 is performing cooling operation, the refrigerant recovery control means 34 does not need to switch the flow path of the four-way valve 5, and only needs to maintain the operation of the compressor 4.
  • the determining means 32 operates the notification device 43 to notify the user that the refrigerant is leaking.
  • the notification device 43 outputs an alarm sound from a speaker (not shown) and causes a light source (not shown) to blink in order to notify the user of refrigerant leakage.
  • a determining means 32 determines that the refrigerant leak is not a false detection and that the refrigerant leak has occurred. Can be done.
  • the determining means 32 operates the notification device 43 and notifies the information of the refrigerant leak to a terminal device (not shown) such as a smartphone of the user registered in advance. It may be configured as follows.
  • step S109 the refrigerant recovery control means 34 determines whether or not the refrigerant recovery has been completed. For example, the refrigerant recovery control means 34 determines whether the low pressure Lp is equal to or lower than a threshold pressure. The refrigerant recovery control means 34 determines that the refrigerant recovery has not been completed when the low pressure Lp is greater than the threshold pressure, and determines that the refrigerant recovery has been completed when the low pressure Lp is less than or equal to the threshold pressure.
  • step S109 if the refrigerant recovery control means 34 determines that the refrigerant recovery has been completed, it stops the compressor 4 and ends the pump-down operation (step S110). Subsequently, the refrigerant recovery control means 34 switches the gas-side cutoff valve 16 from the open state to the closed state (step S111). This prevents the refrigerant collected on the outdoor unit 2 side from leaking from the refrigerant pipe 9a to the indoor unit 3 side via the gas refrigerant pipe 14.
  • FIG. 15 is a graph showing an example of the relationship between refrigerant concentration and time when refrigerant leakage occurs in the load-side heat exchanger shown in FIG. 1.
  • FIG. The vertical axis in FIG. 15 is the refrigerant concentration [%] in the refrigerant detection sensor 20.
  • the horizontal axis in FIG. 15 is time [sec] indicating how much time has passed since refrigerant leakage occurred in the load-side heat exchanger 8.
  • Graph Gr1 shown in FIG. 15 is a graph showing changes in refrigerant concentration when the indoor fan 12 is not rotating.
  • Graph Gr2 is a graph showing changes in the refrigerant concentration when the indoor fan 12 is rotating.
  • Graph Gr2a is a graph showing the change in refrigerant concentration from the time when the indoor fan 12 stopped rotating at time t2.
  • Graph Gr2b is a graph showing a change in the refrigerant concentration when the rotation of the indoor fan 12 is continued without stopping the rotation of the indoor fan 12 even at time t2.
  • time t6 at which the refrigerant concentration reaches C th2 is later than the time t3.
  • time t6 is more than twice as long as time t3. In other words, if the indoor fan 12 continues to rotate, it will take time to start pump-down operation.
  • step S103 consider a case where the indoor fan 12 is rotating in the determination in step S102 shown in FIG. 13, but the process in step S103 is performed.
  • the change in refrigerant concentration measured by the refrigerant detection sensor 20 is represented by graph Gr2 up to time t2, and by graph Gr2a after time t2. Since the slope of the graph Gr2a is equal to the slope SL ⁇ , the time t4 at which the refrigerant concentration reaches C th2 is earlier than the time t6.
  • the time from when refrigerant leakage occurs to when the pump-down operation starts can be shortened compared to when the indoor fan 12 continues to rotate. .
  • step S108 shown in FIG. 14 is not limited to the case where it is performed after step S107.
  • the process of step S108 may be performed before step S106, or may be performed between step S106 and step S107.
  • the operation of the air conditioner 1 is not limited to the processing in the flowcharts shown in FIGS. 13 and 14. Below, a modification of the operation of the air conditioner 1 will be explained.
  • FIG. 16 is a flowchart showing a first modification of the procedure shown in FIG. 13 regarding the operation of the air conditioner according to the first embodiment.
  • Modification 1 a detailed explanation of the processing in steps S101 to S105 described with reference to FIG. 13 will be omitted.
  • step S101 when the determination means 32 determines that the voltage value Crv indicating the refrigerant concentration exceeds the first determination value Th1, the pre-stage means 33 determines whether or not the outlet 18 is in the closed state ( Step S121). If the result of the determination in step S121 is that the air outlet 18 is in the open state, the pre-stage means 33 controls the wind direction vane 23 to switch the air outlet 18 from the open state to the closed state (step S122). On the other hand, if the result of the determination in step S121 is that the air outlet 18 is in the closed state, the pre-stage means 33 maintains the air outlet 18 in the closed state and proceeds to step S104.
  • the blower outlet 18 is switched from the open state to the closed state.
  • the slope of the change in refrigerant concentration becomes larger than the slope SL ⁇ shown in FIG. 15. Therefore, when a refrigerant leak occurs in the indoor unit 3, the refrigerant concentration in the indoor unit 3 exceeds C th2 more quickly, so that the refrigerant detection sensor 20 detects the refrigerant leak more quickly.
  • steps S121 to S122 shown in FIG. 16 is not limited to the case where it is performed after step S103.
  • the processing of steps S121 to S122 may be performed in parallel with steps S102 to S103, or may be performed before step S102.
  • Modification 2 determines whether the voltage value Crv indicating the refrigerant concentration exceeds the third determination value Th3.
  • FIG. 17 is a flowchart showing a second modification of the procedure shown in FIG. 13 regarding the operation of the air conditioner according to the first embodiment. In Modification 2, detailed description of the processing in steps S101 to S105 described with reference to FIG. 13 will be omitted.
  • step S104 when determining that the voltage value Crv exceeds the second determination value Th2, the determining means 32 determines whether the voltage value Crv exceeds the third determination value Th3 (step S131). As a result of the determination in step S131, if the voltage value Crv is equal to or less than the third determination value Th3, the determining means 32 restarts the refrigerant detection sensor 20 (step S133). Specifically, the determining means 32 temporarily stops supplying power to the refrigerant detection sensor 20, and then starts supplying power to the refrigerant detection sensor 20 again.
  • the refrigerant detection sensor 20 detects that if the concentration of the refrigerant with which the semiconductor (not shown) has come into contact is below C th3 , the power supplied to the refrigerant detection sensor 20 is turned off, and the electrical resistance of the semiconductor contacts the refrigerant. This is because it can be returned to its previous state and reused.
  • step S131 if the voltage value Crv exceeds the third determination value Th3, the determination means 32 causes the display device 45 to display a message urging replacement of the refrigerant detection sensor 20 (step S132). This is because if the semiconductor (not shown) comes into contact with the refrigerant having the refrigerant concentration C th3 , the refrigerant detection sensor 20 will no longer be able to normally detect the refrigerant concentration. Further, after step S111 shown in FIG. 14, the determination means 32 transmits information to the effect that the operation of the air conditioner 1 is to be stopped to the refrigeration cycle control means 31.
  • the refrigerant detection sensor 20 when the refrigerant concentration detected by the refrigerant detection sensor 20 is C th3 or less, the refrigerant detection sensor 20 can be restarted to continue using the refrigerant detection sensor 20 .
  • the display device 45 displays a message prompting the user to replace the refrigerant detection sensor 20. If the refrigerant detection sensor 20 is exposed to a highly concentrated refrigerant, there is a risk that the refrigerant detection sensor 20 will malfunction. If the detected refrigerant concentration exceeds C th3 , the refrigerant detection sensor 20 is exposed to a high concentration refrigerant.
  • the air conditioner 1 of Embodiment 1 connects the indoor unit 3 to the outdoor unit via a liquid refrigerant pipe 13 and a gas refrigerant pipe 14 that connect the indoor unit 3 and the outdoor unit 2.
  • the indoor unit 3 includes a load-side heat exchanger 8, an indoor fan 12, and a refrigerant detection sensor 20.
  • the outdoor unit 2 has a compressor 4 and a heat source side heat exchanger 6.
  • the controller 30 determines whether the refrigerant concentration detected by the refrigerant detection sensor 20 exceeds a predetermined first determination value Th1, and if the refrigerant concentration exceeds the first determination value Th1, the indoor fan 12 It is determined whether or not the indoor fan 12 is rotating, and when the indoor fan 12 is rotating, the rotation of the indoor fan 12 is stopped, and when the indoor fan 12 is not rotating, the indoor fan 12 is not rotating. maintain. Then, after determining that the refrigerant concentration exceeds the first determination value Th1, if the refrigerant concentration exceeds the second determination value Th2, the controller 30 switches the liquid-side shutoff valve 15 from the open state to the closed state to cool the air conditioner. A pump-down operation is executed in which the compressor 4 is operated and the refrigerant is recovered to a location other than the indoor unit 3 in the refrigerant circuit 10.
  • the indoor fan 12 when the refrigerant concentration detected by the refrigerant detection sensor 20 exceeds the first determination value, the indoor fan 12 is brought into a state where its rotation is stopped. If a refrigerant leak occurs while the rotation of the indoor fan 12 is stopped, the leaked refrigerant stays inside the indoor unit and is prevented from spreading outside the indoor unit, causing the refrigerant concentration detected by the refrigerant detection sensor 20 to decrease. Rise. If the refrigerant concentration exceeds the second determination value while the rotation of the indoor fan 12 is stopped, it is determined that refrigerant leakage has actually occurred, and pump-down operation is performed.
  • the refrigerant concentration is equal to or lower than the second determination value while the rotation of the indoor fan 12 is stopped, it is determined that the refrigerant detection sensor 20 has erroneously detected, and the air conditioner 1 continues to operate. Therefore, the frequency of occurrence of pump down operation due to erroneous detection by the refrigerant detection sensor 20 is reduced, and user convenience can be improved. Furthermore, by reducing the frequency of false detections by the refrigerant detection sensor 20, the reliability of the air conditioner 1 can be improved.
  • the safety standards for air conditioners stipulate that refrigerant leakage must be detected within a predetermined time. In order to satisfy this standard, it is conceivable to lower the determination value of refrigerant leakage of the refrigerant detection sensor, but if the determination value of refrigerant leakage is made too low, there is a problem that the frequency of false detection increases.
  • the refrigerant leakage determination value is set in multiple stages, and different controls are performed on devices such as the compressor 4 and the indoor fan 12 for each stage. .
  • the first determination value is set to a low value so that the refrigerant concentration can be easily detected even when the indoor fan 12 is rotating. Then, when the refrigerant concentration detected by the refrigerant detection sensor 20 exceeds the first determination value, the air conditioner 1 stops the rotation of the indoor fan 12. This prevents miscellaneous gas contained in the room from being sucked into the indoor unit 3 by the indoor fan 12.
  • the refrigerant concentration exceeds the first judgment value due to a user using an insecticide in a room, the rotation of the indoor fan 12 will stop and the ingredients of the insecticide will not be taken into the indoor unit 3. It disappears. If the refrigerant is not leaking from the indoor unit 3, the refrigerant concentration will not increase, so the air conditioner 1 can determine that the refrigerant leak is falsely detected and return to normal mode control. On the other hand, if refrigerant is actually leaking from the load-side heat exchanger 8, the refrigerant concentration detected by the refrigerant detection sensor 20 increases after the indoor fan 12 stops rotating.
  • the air conditioner 1 determines that there is a refrigerant leak, and performs pump-down operation to supply refrigerant to the outdoor unit 2, etc. other than the indoor unit 3. can be driven away. In this way, the presence or absence of refrigerant leakage can be determined more quickly and accurately.
  • the determination means 32 determines the necessity of restarting the refrigerant detection sensor 20, and when it determines that the restart is necessary, the restart is executed. Not limited to cases. For example, a worker at a maintenance company for the air conditioner 1 determines whether or not it is necessary to restart the refrigerant detection sensor 20, and when determining that it is necessary to restart the refrigerant detection sensor 20, manually restarts the refrigerant detection sensor 20. You may also perform startup.
  • Embodiment 2 the air conditioner has a plurality of indoor units 3.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and detailed explanation thereof will be omitted. Descriptions of the same configuration and operation as the air conditioner 1 of Embodiment 1 will be omitted.
  • FIG. 18 is a refrigerant circuit diagram showing a configuration example of the air conditioner according to the second embodiment.
  • the air conditioner 1a includes an outdoor unit 2 and a plurality of indoor units 3-1 to 3-n. n is an integer of 2 or more.
  • the outdoor unit 2 includes a compressor 4, a four-way valve 5, a heat source side heat exchanger 6, an expansion valve 7a, an outdoor fan 11, and a controller 30.
  • the indoor unit 3-k includes a load-side heat exchanger 8, an indoor fan 12, an expansion valve 7b, a refrigerant detection sensor 20, and a suction temperature sensor 21.
  • a remote controller 40-k is provided in a room to be air-conditioned by the indoor unit 3-k.
  • the air conditioner 1a is installed in a facility such as a hospital or a nursing care facility, for example.
  • a facility such as a hospital or a nursing care facility, for example.
  • an indoor unit 3-k is installed in each of a plurality of rooms in the facility.
  • the operation of the air conditioner 1a of the second embodiment is the same as that of the first embodiment except that the number of indoor units 3-k is different from that of the first embodiment, so a detailed explanation thereof will be omitted. Omitted.
  • an accumulator (not shown) for refrigerant reservoir may be provided on the refrigerant suction port side of the compressor 4 of the outdoor unit 2.
  • a part of the refrigerant sealed in the refrigerant circuit 10 can be recovered into the accumulator.
  • Embodiment 2 has been described in the case where the liquid side cutoff valve 15 and the gas side cutoff valve 16 are provided on the outdoor unit 2 side, but as shown in FIG. A valve 15 and a gas-side shutoff valve 16 may be provided.
  • the indoor unit 3 may be provided with an expansion valve 7b as in the second embodiment. In this case, the expansion valve 7b may serve as the liquid-side shutoff valve 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機は、負荷側熱交換器、室内ファンおよび冷媒検知センサを有する室内機と、圧縮機および熱源側熱交換器を有する室外機と、液冷媒配管およびガス冷媒配管を介して室内機と室外機との間で冷媒が循環する冷媒回路と、液冷媒配管に設けられ、液冷媒配管の冷媒の流通を遮断する液側遮断弁と、コントローラとを有し、コントローラは、冷媒検知センサによって検出される冷媒濃度が予め決められた第1の判定値を超えるか否かを判定し、冷媒濃度が第1の判定値を超えている場合、室内ファンが回転しているか否かを判定し、室内ファンが回転しているとき、室内ファンの回転を停止し、室内ファンが回転していないとき、室内ファンが回転していない状態を維持し、冷媒濃度が第1の判定値を超えると判定した後、冷媒濃度が第1の判定値よりも大きい第2の判定値を超える場合、液側遮断弁を開状態から閉状態に切り替え、圧縮機を動作させて冷媒を冷媒回路の室内機以外の場所に回収するポンプダウン運転を実行する。

Description

空気調和機
 本開示は、冷媒回路を有する空気調和機に関する。
 従来、冷媒漏洩検知手段が冷媒漏洩を検知すると、空調対象空間への冷媒の漏洩量を減らすために、室外機に冷媒を回収するポンプダウン運転を行う空気調和システムが提案されている(例えば、特許文献1参照)。
特開2019-143877号公報
 特許文献1に開示された空気調和システムは、冷媒検知手段に誤検知が発生すると、実際には冷媒漏洩が発生していないのに、ポンプダウン運転が実行されてしまうことになる。この場合、空気調和システムが運転を再開するまで、ユーザが不便を強いられることになってしまう。
 本開示は、上記のような課題を解決するためになされたもので、冷媒検知センサの誤検知の頻度を低下してユーザの利便性を向上させる空気調和機を提供するものである。
 本開示に係る空気調和機は、負荷側熱交換器、室内ファンおよび冷媒検知センサを有し、空調対象空間の空気を調和する室内機と、圧縮機および熱源側熱交換器を有する室外機と、前記室内機および前記室外機を接続する液冷媒配管およびガス冷媒配管を介して、前記室内機と前記室外機との間で冷媒が循環する冷媒回路と、前記液冷媒配管に設けられ、前記液冷媒配管の前記冷媒の流通を遮断する液側遮断弁と、前記室内ファン、前記圧縮機および前記液側遮断弁を制御するコントローラと、を有し、前記コントローラは、前記冷媒検知センサによって検出される冷媒濃度が予め決められた第1の判定値を超えるか否かを判定し、前記冷媒濃度が前記第1の判定値を超えている場合、前記室内ファンが回転しているか否かを判定し、前記室内ファンが回転しているとき、前記室内ファンの回転を停止し、前記室内ファンが回転していないとき、前記室内ファンが回転していない状態を維持し、前記冷媒濃度が前記第1の判定値を超えると判定した後、前記冷媒濃度が前記第1の判定値よりも大きい第2の判定値を超えるか否かを判定し、前記冷媒濃度が前記第2の判定値を超える場合、前記液側遮断弁を開状態から閉状態に切り替え、前記熱源側熱交換器が凝縮器として機能するように前記圧縮機を動作させて前記冷媒を前記冷媒回路の前記室内機以外の場所に回収するポンプダウン運転を実行するものである。
 本開示によれば、冷媒検知センサによって検出される冷媒濃度が第1の判定値を超える場合、室内ファンは回転が停止した状態にされる。室内ファンの回転が停止した状態において冷媒漏洩が発生していると、漏れ出た冷媒は室内機内に滞留し室内機外への拡散が防止され、冷媒検知センサで検出される冷媒濃度が上昇する。室内ファンの回転が停止した状態で冷媒濃度が第2の判定値を超える場合、実際に冷媒漏洩が発生していると判定され、ポンプダウン運転が行われる。一方、室内ファンの回転が停止した状態で冷媒濃度が第2の判定値以下である場合、冷媒検知センサの誤検知と判定され、空気調和機は運転を継続する。そのため、冷媒検知センサの誤検知に起因するポンプダウン運転の発生頻度が低下し、ユーザの利便性を向上させることができる。
実施の形態1に係る空気調和機の一構成例を示す冷媒回路図である。 実施の形態1に係る空気調和機の室内機の一構成例を示す外観模式図である。 図2に示した室内機の平面図である。 図3に示した室内機についてA-A線部分で切ったときの断面模式図である。 図2に示した室内機において化粧パネルを外した状態を示す外観斜視図である。 図5に示した室内機において内側パネルを外した状態を示す外観斜視図である。 図4に示した室内機の断面模式図において、空気の流れを説明するための模式図である。 図1に示したコントローラの一構成例を示す機能ブロック図である。 図8に示したコントローラの一構成例を示すハードウェア構成図である。 図8に示したコントローラの別の構成例を示すハードウェア構成図である。 実施の形態1に係る空気調和機において、液側遮断弁およびガス側遮断弁の設置位置の一例を示す図である。 実施の形態1に係る空気調和機において、液側遮断弁およびガス側遮断弁の設置位置の別の例を示す図である。 実施の形態1に係る空気調和機の動作手順を示すフローチャートである。 実施の形態1に係る空気調和機の動作手順を示すフローチャートである。 図1に示した負荷側熱交換器において冷媒漏洩が発生したときの冷媒濃度と時間との関係の一例を示すグラフである。 実施の形態1に係る空気調和機の動作について、図13に示した手順の変形例1を示すフローチャートである。 実施の形態1に係る空気調和機の動作について、図13に示した手順の変形例2を示すフローチャートである。 実施の形態2に係る空気調和機の一構成例を示す冷媒回路図である。
 本実施の形態の空気調和機を、図を参照して説明する。実施の形態の説明の便宜上、図面の一部に、方向を定義する3つの軸(X軸、Y軸およびZ軸)の矢印を表示している。Z軸矢印の反対方向を重力方向とする。
実施の形態1.
 本実施の形態1の空気調和機の構成を説明する。図1は、実施の形態1に係る空気調和機の一構成例を示す冷媒回路図である。図1に示すように、空気調和機1は、室外機2および室内機3を有する。
 室外機2は、室内機3に供給する熱を生成する。室内機3は、空調対象空間となる部屋に設置され、室内機3から供給される熱によって室内の空気を調和する。室内には、ユーザが空気調和機1を操作するためのリモートコントローラ40が設けられている。
 室外機2は、圧縮機4と、四方弁5と、熱源側熱交換器6と、膨張弁7と、室外ファン11と、コントローラ30とを有する。室外機2において、圧縮機4、四方弁5、熱源側熱交換器6および膨張弁7は冷媒配管9aを介して接続されている。室内機3は、負荷側熱交換器8と、室内ファン12とを有する。室内機3において、負荷側熱交換器8は冷媒配管9bに接続されている。
 室外機2の冷媒配管9aと室内機3の冷媒配管9bとは、液冷媒配管13およびガス冷媒配管14を介して接続されている。圧縮機4、熱源側熱交換器6、膨張弁7および負荷側熱交換器8が冷媒配管9aおよび9bと、液冷媒配管13およびガス冷媒配管14とを介して接続され、冷媒が循環する冷媒回路10が構成される。
 本実施の形態1においては、空気調和機1が運転モードとして冷房運転および暖房運転を有する場合で説明するが、これらの運転モードの他に、除霜運転および送風運転を有していてもよい。
 四方弁5は、冷媒回路10を循環する冷媒の流通方向を切り替える。運転モードが冷房運転の場合、図1に示す四方弁5内は実線に示す流路となる。運転モードが暖房運転の場合、図1に示す四方弁5内は破線に示す流路となる。四方弁5は、信号線(図示せず)を介してコントローラ30と接続される。四方弁5は、コントローラ30によって制御される。
 圧縮機4は、低温および低圧の冷媒を吸入し、吸入した冷媒を圧縮して吐出する。圧縮機4は、例えば、運転周波数を変更することで容量を調節することができるインバータ圧縮機である。圧縮機4は信号線(図示せず)を介してコントローラ30と接続されている。
 熱源側熱交換器6は、外気と冷媒とを熱交換させる熱交換器である。冷房運転の場合、熱源側熱交換器6は凝縮器として機能し、暖房運転の場合、熱源側熱交換器6は蒸発器として機能する。負荷側熱交換器8は、室内の空気と冷媒とを熱交換させる熱交換器である。冷房運転の場合、負荷側熱交換器8は蒸発器として機能し、暖房運転の場合、負荷側熱交換器8は凝縮器として機能する。熱源側熱交換器6および負荷側熱交換器8は、例えば、伝熱管および複数の放熱フィンを有するフィンアンドチューブ型熱交換器である。
 膨張弁7は、凝縮器として機能する熱源側熱交換器6または負荷側熱交換器8から流入する液冷媒を減圧して膨張させる。膨張弁7は、例えば、電子膨張弁である。膨張弁7は信号線(図示せず)を介してコントローラ30と接続されている。
 室外機2において、圧縮機4の冷媒吸入口側に低圧センサ22が設けられている。低圧センサ22は、圧縮機4に吸入される冷媒の圧力である吸入圧力を検出する。吸入圧力は、冷媒回路10における低圧側の圧力である低圧圧力Lpに相当する。低圧センサ22は信号線(図示せず)を介してコントローラ30と接続されている。低圧センサ22は、低圧圧力Lpの値をコントローラ30に送信する。
 室内機3には、室内から室内機3に吸い込まれる空気の温度である室温を検出する吸い込み温度センサ21が設けられている。吸い込み温度センサ21は、例えば、サーミスタである。吸い込み温度センサ21は信号線(図示せず)を介してコントローラ30と接続されている。吸い込み温度センサ21は、室温の値をコントローラ30に送信する。
 室内機3には、空気中における冷媒濃度を検出する冷媒検知センサ20が設けられている。冷媒検知センサ20は信号線(図示せず)を介してコントローラ30と接続されている。冷媒検知センサ20は、例えば、半導体ガスセンサである。半導体ガスセンサは、表面に接触する冷媒濃度に対応して電気抵抗が変化する半導体(図示せず)と、供給される電力によって半導体を加熱するヒータ(図示せず)とを有する。冷媒検知センサ20は、検出する冷媒濃度に対応する電圧値Crv、または電圧値Crvに基づく冷媒検知センサ20の状態を示す出力パルスをコントローラ30に送信する。
 液冷媒配管13に液側遮断弁15が設けられている。ガス冷媒配管14にガス側遮断弁16が設けられている。液側遮断弁15およびガス側遮断弁16は、例えば、電磁弁である。液側遮断弁15およびガス側遮断弁16の開閉はコントローラ30によって制御される。液側遮断弁15およびガス側遮断弁16は、空気調和機1が暖房運転および冷房運転で運転中、開状態を維持する。液側遮断弁15およびガス側遮断弁16は、コントローラ30と信号線(図示せず)を介して接続されている。
 リモートコントローラ40は、信号線(図示せず)を介してコントローラ30と接続されている。リモートコントローラ40は、ユーザがコントローラ30に指示を入力するための操作部(図示せず)と、空調対象空間の部屋にいる人に冷媒の漏洩を報知する報知装置43と、メッセージを表示する表示装置45とを有する。報知装置43は、例えば、冷媒の漏洩を報知するための警報音を出力するスピーカ(図示せず)および、点灯または点滅することで、冷媒の漏洩を報知するLED(Light Emitting Diode)等の光源の一方または両方を有する構成である。表示装置45は、例えば、ユーザに冷媒検知センサ20の交換を促すメッセージを表示するディスプレイ(図示せず)である。なお、リモートコントローラ40は、例えば、Wi-Fi(登録商標)またはBluetooth(登録商標)等の通信規格に基づいて通信手段(図示せず)を介してコントローラ30と無線接続されてもよい。
 図2は、実施の形態1に係る空気調和機の室内機の一構成例を示す外観模式図である。図3は、図2に示した室内機の平面図である。図4は、図3に示した室内機についてA-A線部分で切ったときの断面模式図である。
 図2に示すように、室内機3は、図1に示した負荷側熱交換器8、室内ファン12、吸い込み温度センサ21および冷媒検知センサ20を収納する筐体19を有する。筐体19の重力方向(Z軸矢印の反対方向)には、室内空間に面した化粧パネル25aが設けられている。化粧パネル25aには、室内ファン12の回転によって室内から筐体19に空気を吸い込む吸込口17と、室内ファン12の回転によって生じる空気流を室内に吹き出す吹出口18とが設けられている。吹出口18は、筐体19内に吸い込まれた空気が負荷側熱交換器8において冷媒と熱交換した後の空調空気を室内に吹き出す。
 図2に示す室内機3は、部屋の天井に埋め込むことができる天井埋め込み型の室内機である。図2に示す室内機3は、四方向に吹出口18が形成された四方向カセット型の室内機である。室内機3は、二方向に吹出口18が形成された二方向カセット型の室内機であってもよい。
 図2に示すように、吸込口17には、室内から筐体19に吸い込まれる空気から塵埃を取り除くフィルタ24が設けられている。吹出口18には、吹出口18から室内に吹き出される空気の吹き出し方向について俯角を調整する風向ベーン23が設けられている。以下では、吹出口18から室内に吹き出される空気の吹き出し方向を風向と称する。また、風向ベーン23は、吹出口18を開状態または閉状態に切り替える役目を果たす。閉状態とは、吹出口18が風向ベーン23によって覆われることを意味し、吹出口18が密閉される場合に限らず、隙間が生じていてもよい。風向ベーン23は、コントローラ30と図に示さない信号線を介して接続され、コントローラ30によって制御される。
 図3は、図2に示した室内機3からフィルタ24を外した状態を示す。図2および図3は、風向ベーン23が吹出口18を閉状態にした場合を示す。図3に示すように、筐体19には、コントローラ30が室内ファン12および風向ベーン23を制御するための電子回路(図示せず)が搭載された制御基板26が設けられている。制御基板26は、信号線(図示せず)を介してコントローラ30と接続されている。吸い込み温度センサ21は、図3に示すように、吸込口17に設けられている。
 図4に示すように、化粧パネル25aの内側には内側パネル25bが設けられている。内側パネル25bに、吸込口17から取り込まれた空気を室内ファン12に中継するベルマウス27が設けられている。
 図5は、図2に示した室内機において化粧パネルを外した状態を示す外観斜視図である。図6は、図5に示した室内機において内側パネルを外した状態を示す外観斜視図である。図7は、図4に示した室内機の断面模式図において、空気の流れを説明するための模式図である。
 室内機3について、図5に示した状態から内側パネル25bを外すと、図6に示した状態になる。図6に示すように、負荷側熱交換器8は、室内ファン12を囲むように矩形状に設けられている。筐体19内には、矩形状の負荷側熱交換器8によって囲まれる空間51と、負荷側熱交換器8の伝熱管(図示せず)と図1に示した冷媒配管9bとが接続される空間とを仕切る仕切り板28が設けられている。仕切り板28は、矩形状の負荷側熱交換器8の水平方向の隙間を埋める位置に設けられている。仕切り板28において、負荷側熱交換器8によって囲まれる空間51に面する位置に冷媒検知センサ20が設けられている。仕切り板28において、空間51側の面とは反対側の面には、例えば、室内ファン12の配線を押さえる部材(図示せず)などが取り付けられている。
 負荷側熱交換器8に冷媒が漏洩したとき、負荷側熱交換器8が矩形状に設けられているので、負荷側熱交換器8で囲まれた空間51に冷媒が溜まりやすくなり、空間51の冷媒濃度が高くなる。そのため、仕切り板28の空間51に面する位置に冷媒検知センサ20を設けることで、冷媒検知センサ20が、負荷側熱交換器8から空間51に漏れ出た冷媒を検知しやすくなる。さらに、室内ファン12が回転していない場合、空間51に漏れ出た冷媒が拡散することが抑制されるため、冷媒検知センサ20はより早く冷媒漏洩を検知することができる。
 図7は、吹出口18が開状態である場合において、図6に示した室内ファン12が回転すると、破線矢印に示す気流が生じることを示す。また、図7は、図6に示した仕切り板28が図に示されていないが、仕切り板28に取り付けられた冷媒検知センサ20を破線で示している。図7に示すように、内側パネル25bは、負荷側熱交換器8が蒸発器として機能したときの結露水を溜めるドレンパン29を有する。ドレンパン29は、図6に示した負荷側熱交換器8の重力方向(Z軸矢印の反対方向)の面を覆うように、負荷側熱交換器8に沿って設けられている。
 図7に示すように、冷媒検知センサ20は、高さ方向(Z軸矢印方向)について、図6に示した仕切り板28において、負荷側熱交換器8の高さの半分よりも低い位置に配置されている。具体的には、冷媒検知センサ20は、負荷側熱交換器8の高さの半分よりもドレンパン29に近い位置に配置されている。これは、空気よりも重い冷媒が負荷側熱交換器8から漏洩したとき、負荷側熱交換器8の重力方向にあるドレンパン29に溜まりやすくなり、冷媒検知センサ20によって冷媒の漏洩を検知しやすくするためである。
 次に、コントローラ30の構成を説明する。図8は、図1に示したコントローラの一構成例を示す機能ブロック図である。コントローラ30は、例えば、マイクロコンピュータである。コントローラ30は、冷凍サイクル制御手段31と、判定手段32と、前段手段33と、冷媒回収制御手段34と、時間を計測するタイマー35とを有する。
 冷凍サイクル制御手段31は、運転モードに対応して、四方弁5の流路を切り替える。例えば、運転モードが冷房運転の場合、冷凍サイクル制御手段31は、図1に示した四方弁5内の流路が実線になるように制御する。冷凍サイクル制御手段31は、暖房運転および冷房運転の場合、吸い込み温度センサ21によって検出される室温が設定温度と一致するように、圧縮機4の運転周波数、膨張弁7の開度および室外ファン11の回転数を制御する。
 運転モードおよび設定温度は、ユーザによってリモートコントローラ40を介してコントローラ30に入力される。室内機3から吹き出される空気の風量および風向が、ユーザによってリモートコントローラ40を介して設定されてもよい。風量とは、室内ファン12の回転によって単位時間あたりに移動する空気の量である。冷凍サイクル制御手段31がユーザの設定にしたがって空気調和機1に暖房運転または冷房運転をさせる運転モードを、以下では、通常モードと称する。
 冷凍サイクル制御手段31は、通常モードを継続する旨の情報を判定手段32から受信すると、通常モードを継続する。一方、冷凍サイクル制御手段31は、通常モードを停止する旨の情報を判定手段32から受信すると、通常モードを停止する。
 判定手段32は、冷媒検知センサ20によって検出される冷媒濃度を示す電圧値Crvが予め決められた第1の判定値Th1を超えるか否かを判定する。電圧値Crvが第1の判定値Th1以下である場合、判定手段32は通常モードを継続する旨の情報を冷凍サイクル制御手段31に送信する。電圧値Crvが第1の判定値Th1を超える場合、判定手段32は、判定結果を前段手段33に送信する。
 また、判定手段32は、電圧値Crvが第1の判定値Th1を超える場合、電圧値Crvが予め決められた第2の判定値Th2を超えるか否かを判定する。電圧値Crvが第2の判定値Th2を超える場合、判定手段32は、冷媒が漏洩していることをユーザに報知するために、報知装置43を動作させる。また、電圧値Crvが第2の判定値Th2を超える場合、判定手段32は、通常モードを停止する旨の情報を冷凍サイクル制御手段31に送信するとともに、判定結果を冷媒回収制御手段34に送信する。
 判定手段32は、電圧値Crvが第2の判定値Th2を超える場合、電圧値Crvが予め決められた第3の判定値Th3を超えるか否かを判定する。判定の結果、電圧値Crvが第3の判定値Th3以下である場合、判定手段32は、冷媒検知センサ20の検出値をリセットする。一方、電圧値Crvが第3の判定値Th3を超える場合、判定手段32は、冷媒検知センサ20の交換を促すメッセージを表示装置45に表示させる。これは、冷媒検知センサ20は、電圧値Crvが第3の判定値Th3を超える冷媒濃度の冷媒に半導体(図示せず)が接触してしまうと、その後、正常に冷媒濃度を検出できなくなるからである。
 第1の判定値Th1~第3の判定値Th3はコントローラ30に予め記憶されている。第1の判定値Th1~第3の判定値Th3は、Th3>Th2>Th1の関係である。第1の判定値Th1に対応する冷媒濃度をCth1と表し、第2の判定値Th2に対応する冷媒濃度をCth2と表し、第3の判定値Th3に対応する冷媒濃度をCth3と表す。この場合、例えば、冷媒濃度Cth1は大気の0.1~0.2%であり、冷媒濃度Cth2は大気の0.5%であり、冷媒濃度Cth3は大気の1.0%である。
 前段手段33は、判定手段32によって冷媒濃度を示す電圧値Crvが第1の判定値Th1を超えると判定されると、室内ファン12が回転しているか否かを判定する。判定の結果、室内ファン12が回転している場合、前段手段33は室内ファン12の回転を停止する。判定の結果、室内ファン12が回転していない場合、前段手段33は室内ファン12が回転していない状態を維持する。
 前段手段33は、判定手段32によって冷媒濃度を示す電圧値Crvが第1の判定値Th1を超えると判定されると、風向ベーン23によって吹出口18が閉状態になっているか否かを判定してもよい。判定の結果、吹出口18が開状態である場合、前段手段33は、風向ベーン23を制御して吹出口18を開状態から閉状態に切り替える。判定の結果、吹出口18が閉状態である場合、前段手段33は、吹出口18の閉状態を維持する。
 冷媒回収制御手段34は、判定手段32によって冷媒濃度を示す電圧値Crvが第2の判定値Th2を超えると判定されると、液側遮断弁15を開状態から閉状態に切り替え、ポンプダウン運転を開始する。ポンプダウン運転は、冷媒回路10に封入された冷媒を冷媒回路10の室内機3以外の場所に回収することを目的として、運転モードを冷房運転にして圧縮機4を動作させるものである。室内機3以外の場所とは、少なくとも室外機2である。具体的には、冷媒回収制御手段34は、冷媒回路10における冷媒の流通方向を、熱源側熱交換器6が凝縮器として機能するように判定手段32および冷凍サイクル制御手段31を介して四方弁5の流路を切り替え、圧縮機4を運転させる。冷媒回収制御手段34は、冷媒の回収が終了したと判定すると、圧縮機4を停止してポンプダウン運転を終了させ、ガス側遮断弁16を開状態から閉状態に切り替える。
 冷媒の回収が終了したか否かを判定するパラメータは、低圧圧力Lpであってもよく、ポンプダウン運転開始からの経過時間tpであってもよい。パラメータが低圧圧力Lpの場合、冷媒回収制御手段34は、低圧圧力Lpが予め決められた閾値圧力以下になると、冷媒の回収が終了したと判定する。パラメータが経過時間tpである場合、冷媒回収制御手段34は、タイマー35が計測する時間を監視し、経過時間tpが予め決められた閾値時間に到達すると、冷媒の回収が終了したと判定する。
 ここで、図8に示したコントローラ30のハードウェアの一例を説明する。図9は、図8に示したコントローラの一構成例を示すハードウェア構成図である。コントローラ30の各種機能がハードウェアで実行される場合、図8に示したコントローラ30は、図9に示すように、処理回路90で構成される。図8に示した、冷凍サイクル制御手段31、判定手段32、前段手段33、冷媒回収制御手段34およびタイマー35の各機能は、処理回路90により実現される。
 各機能がハードウェアで実行される場合、処理回路90は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものに該当する。冷凍サイクル制御手段31、判定手段32、前段手段33、冷媒回収制御手段34およびタイマー35の各手段の機能のそれぞれを別々の処理回路90で実現してもよい。また、冷凍サイクル制御手段31、判定手段32、前段手段33、冷媒回収制御手段34およびタイマー35の各手段の機能を1つの処理回路90で実現してもよい。
 また、図8に示したコントローラ30の別のハードウェアの一例を説明する。図10は、図8に示したコントローラの別の構成例を示すハードウェア構成図である。コントローラ30の各種機能がソフトウェアで実行される場合、図8に示したコントローラ30は、図10に示すように、CPU(Central Processing Unit)等のプロセッサ91およびメモリ92で構成される。冷凍サイクル制御手段31、判定手段32、前段手段33、冷媒回収制御手段34およびタイマー35の各機能は、プロセッサ91およびメモリ92により実現される。図10は、プロセッサ91およびメモリ92が互いにバス93を介して通信可能に接続されることを示している。メモリ92が、第1の判定値Th1~第3の判定値Th3を記憶している。
 各機能がソフトウェアで実行される場合、冷凍サイクル制御手段31、判定手段32、前段手段33、冷媒回収制御手段34およびタイマー35の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。
 メモリ92として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ92として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。さらに、メモリ92として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。
 なお、図1はコントローラ30が室外機2に設けられた場合の構成を示しているが、コントローラ30は室内機3に設けられていてもよい。また、図1は液側遮断弁15およびガス側遮断弁16が室外機2側に設けられている場合の構成を示しているが、室内機3側に設けられていてもよい。図11は、実施の形態1に係る空気調和機において、液側遮断弁およびガス側遮断弁の設置位置の一例を示す図である。図12は、実施の形態1に係る空気調和機において、液側遮断弁およびガス側遮断弁の設置位置の別の例を示す図である。図11および図12においては、室外機2および室内機3を模式的に表し、液側遮断弁15およびガス側遮断弁16を記号で表している。
 図11に示す設置例においては、液側遮断弁15が液冷媒配管13において室外機2に近い位置に設けられ、ガス側遮断弁16がガス冷媒配管14において室外機2に近い位置に設けられている。図11に示す設置例の場合、ポンプダウン運転の際、冷媒回路10に封入された冷媒を主に室外機2に回収することができる。図12に示す設置例においては、液側遮断弁15が液冷媒配管13において室内機3に近い位置に設けられ、ガス側遮断弁16がガス冷媒配管14において室内機3に近い位置に設けられている。図12に示す設置例の場合、ポンプダウン運転の際、冷媒回路10に封入された冷媒を室外機2だけでなく、室内機3以外の冷媒配管である液冷媒配管13に収容することができる。この場合、冷媒の回収場所は室外機2に限定されない。
 また、本実施の形態1においては、報知装置43および表示装置45がリモートコントローラ40に設けられている場合の構成で説明したが、報知装置43および表示装置45の一方または両方はリモートコントローラ40に設けられていなくてもよい。報知装置43および表示装置45は室内に設けられていればよい。さらに、圧縮機4等の各冷媒機器および冷媒検知センサ20等の各センサが、コントローラ30と有線で接続される場合で説明したが、無線で接続されてもよい。
 なお、本実施の形態1においては、室内機3が天井埋め込み型室内機の場合で説明したが、壁に取り付けられる壁掛け型室内機であってもよく、床の上に置かれる床置き型室内機であってもよい。室内機3が壁掛け型室内機または床置き型室内機である場合、風向ベーン23は俯角および仰角のうち一方または両方を調整できる構成であってもよい。室内機3に設けられる吹出口18の数は、1つであってもよく、複数であってもよい。
 次に、本実施の形態1の空気調和機1の動作を説明する。図13および図14は、実施の形態1に係る空気調和機の動作手順を示すフローチャートである。ここでは、初期段階として、空気調和機1が冷房運転をしているものとする。
 ステップS101において、判定手段32は、冷媒検知センサ20によって検出される冷媒濃度を示す電圧値Crvを冷媒検知センサ20から受信すると、電圧値Crvが第1の判定値Th1を超えるか否かを判定する。判定手段32による判定の結果、電圧値Crvが第1の判定値Th1以下である場合、冷凍サイクル制御手段31は、通常モードを継続する(ステップS105)。ここでは、冷凍サイクル制御手段31は冷房運転を継続する。
 一方、ステップS101の判定の結果、電圧値Crvが第1の判定値Th1を超える場合、前段手段33は、室内ファン12が回転しているか否かを判定する(ステップS102)。判定の結果、室内ファン12が回転している場合、前段手段33は室内ファン12の回転を停止する(ステップS103)。室内機3において冷媒が漏洩していると仮定すると、室内ファン12の回転が停止している状態において、漏洩した冷媒が室内に拡散されにくくなり、冷媒検知センサ20によって冷媒が検出されやすくなる。室内ファン12の回転しているときよりも、冷媒漏洩が早く検出される。
 一方、ステップS102の判定の結果、室内ファン12が回転していない場合、前段手段33は室内ファン12が回転していない状態を維持し、ステップS104の処理に進む。ステップS104において、判定手段32は、電圧値Crvが第2の判定値Th2を超えるか否かを判定する。
 ステップS104における判定手段32による判定の結果、電圧値Crvが第2の判定値Th2以下である場合、冷媒検知センサ20によって検出された冷媒濃度の上昇は誤検知と考えられる。そのため、冷凍サイクル制御手段31は、通常モードを継続する(ステップS105)。例えば、ユーザが殺虫剤を室内で噴射させたとき、冷媒検知センサ20の電圧値Crvが一時的に第1の判定値Th1を超えてしまうことがある。このような誤検知があっても、空気調和機1はポンプダウン運転を開始しないので、空気調和機1の運転が停止してしまうことを回避できる。
 一方、ステップS104の判定の結果、電圧値Crvが第2の判定値Th2を超える場合、冷媒回収制御手段34は、液側遮断弁15を開状態から閉状態に切り替える(ステップS106)。そして、冷媒回収制御手段34は、ポンプダウン運転を開始する(ステップS107)。ここでは、空気調和機1が冷房運転を行っているので、冷媒回収制御手段34は、四方弁5の流路を切り替える必要がなく、圧縮機4の運転を維持すればよい。
 ステップS108において、判定手段32は、報知装置43を動作させて、冷媒が漏洩していることをユーザに報知する。具体的には、報知装置43は、冷媒の漏洩をユーザに報知するために、スピーカ(図示せず)から警報音を出力し、光源(図示せず)を点滅させる。冷媒漏洩が誤検知でなく、冷媒漏洩が発生していることが判定手段32によって判定されてから、部屋にいる人に冷媒の漏洩を報知することで、冷媒漏洩の報知の信頼度を高めることができる。なお、判定手段32は、冷媒の漏洩をユーザに報知する際、報知装置43を動作させるとともに、予め登録されたユーザのスマートフォン等の端末装置(図示せず)へ冷媒の漏洩の情報を通知するように構成されていてもよい。
 ステップS109において、冷媒回収制御手段34は、冷媒の回収が終了したか否かを判定する。例えば、冷媒回収制御手段34は、低圧圧力Lpが閾値圧力以下であるか否かを判定する。冷媒回収制御手段34は、低圧圧力Lpが閾値圧力より大きい場合、冷媒の回収が終了していないと判定し、低圧圧力Lpが閾値圧力以下である場合、冷媒の回収が終了したと判定する。
 ステップS109の判定において、冷媒回収制御手段34は、冷媒の回収が終了したと判定すると、圧縮機4を停止してポンプダウン運転を終了する(ステップS110)。続いて、冷媒回収制御手段34は、ガス側遮断弁16を開状態から閉状態に切り替える(ステップS111)。これにより、室外機2側に回収された冷媒が、冷媒配管9aからガス冷媒配管14を経由して室内機3側に漏れ出てしまうことを防げる。
 ここで、空気調和機1について図13および図14を参照して説明した動作に基づいて、本実施の形態1の効果を説明する。図15は、図1に示した負荷側熱交換器において冷媒漏洩が発生したときの冷媒濃度と時間との関係の一例を示すグラフである。図15の縦軸は、冷媒検知センサ20における冷媒濃度[%]である。図15の横軸は、負荷側熱交換器8において冷媒の漏洩が発生してからどのくらい経過したかを示す時間[sec]である。
 図15に示すグラフGr1は、室内ファン12が回転していない場合の冷媒濃度の変化を示すグラフである。グラフGr2は、室内ファン12が回転している場合の冷媒濃度の変化を示すグラフである。グラフGr2aは、時間t2において室内ファン12の回転が停止したときからの冷媒濃度の変化を示すグラフである。グラフGr2bは、時間t2になっても室内ファン12の回転を停止せず、室内ファン12の回転を継続した場合の冷媒濃度の変化を示すグラフである。
 グラフGr1の傾きをSLαとし、グラフGr2の傾きをSLβとする。傾きSLαおよびSLβは、SLα>SLβの関係である。なぜなら、室内ファン12が回転していると、負荷側熱交換器8から漏洩した冷媒が室内ファン12の回転によって室内に拡散され、冷媒検知センサ20で検出される冷媒濃度が低くなるからである。
 はじめに、図13に示したステップS102の判定において、室内ファン12が回転していない場合を考える。この場合、時間t1において冷媒濃度がCth1に達し、時間t3において冷媒濃度がCth2に達する。そのため、時間t3において、図14に示したステップS107のポンプダウン運転が開始される。
 続いて、図13に示したステップS102の判定において、室内ファン12が回転しており、ステップS103の処理が行われない場合を考える。この場合、室内ファン12の回転が維持されるため、冷媒検知センサ20による冷媒濃度の変化は、時間t2まではグラフGr2で表され、時間t2以降はグラフGr2bで表される。傾きSLβは傾きSLαよりも小さいため、冷媒濃度がCth1に到達する時間t2は時間t1よりも遅くなる。
 また、時間t2以降のグラフGr2bの傾きは傾きSLβと同等になるため、冷媒濃度がCth2に到達する時間t6は時間t3よりも遅くなる。図15に示すグラフでは、時間t6は時間t3の2倍以上である。つまり、室内ファン12が回転を継続すると、ポンプダウン運転の開始まで時間がかかってしまうことになる。
 続いて、図13に示したステップS102の判定において、室内ファン12が回転しているが、ステップS103の処理が行われる場合を考える。この場合、室内ファン12の回転が時間t2で停止するため、冷媒検知センサ20による冷媒濃度の変化は、時間t2まではグラフGr2で表され、時間t2以降はグラフGr2aで表される。グラフGr2aの傾きは傾きSLαと同等になるため、冷媒濃度がCth2に到達する時間t4は、時間t6よりも早くなる。つまり、ステップS103において室内ファン12が回転を停止することで、冷媒漏洩が発生してからポンプダウン運転開始までの時間を、室内ファン12の回転が継続する場合に比べて、短縮することができる。
 なお、図14に示すステップS108の処理は、ステップS107の後に行われる場合に限らない。ステップS108の処理は、ステップS106の前に行われてもよく、ステップS106とステップS107との間に行われてもよい。また、本実施の形態1において、空気調和機1の動作は図13および図14に示したフローチャートの処理に限らない。以下に、空気調和機1の動作の変形例を説明する。
(変形例1)
 変形例1は、冷媒濃度を示す電圧値Crvが第1の判定値Th1を超える場合、吹出口18を開状態にするものである。図16は、実施の形態1に係る空気調和機の動作について、図13に示した手順の変形例1を示すフローチャートである。変形例1においては、図13を参照して説明したステップS101~S105の処理についての詳細な説明を省略する。
 ステップS101において、判定手段32によって冷媒濃度を示す電圧値Crvが第1の判定値Th1を超えると判定されると、前段手段33は、吹出口18が閉状態であるか否かを判定する(ステップS121)。ステップS121の判定の結果、吹出口18が開状態である場合、前段手段33は、風向ベーン23を制御して吹出口18を開状態から閉状態に切り替える(ステップS122)。一方、ステップS121の判定の結果、吹出口18が閉状態である場合、前段手段33は、吹出口18の閉状態を維持し、ステップS104に進む。
 変形例1によれば、冷媒濃度を示す電圧値Crvが第1の判定値Th1を超える場合、吹出口18が開状態から閉状態に切り替えられる。この場合、冷媒濃度の変化の傾きが図15に示した傾きSLαよりも大きくなる。そのため、室内機3において冷媒の漏洩が発生していると、室内機3内の冷媒濃度がより早くCth2を超えるため、冷媒検知センサ20によって冷媒漏洩がより早く検出される。
 なお、図16に示すステップS121~S122の処理は、ステップS103の後に行われる場合に限らない。ステップS121~S122の処理は、ステップS102~S103と並行して行われてもよく、ステップS102の前に行われてもよい。
(変形例2)
 変形例2は、冷媒濃度を示す電圧値Crvが第3の判定値Th3を超えるか否かを判定するものである。図17は、実施の形態1に係る空気調和機の動作について、図13に示した手順の変形例2を示すフローチャートである。変形例2においては、図13を参照して説明したステップS101~S105の処理についての詳細な説明を省略する。
 ステップS104において、判定手段32は、電圧値Crvが第2の判定値Th2を超えると判定した場合、電圧値Crvが第3の判定値Th3を超えるか否かを判定する(ステップS131)。ステップS131の判定の結果、電圧値Crvが第3の判定値Th3以下である場合、判定手段32は、冷媒検知センサ20を再起動する(ステップS133)。具体的には、判定手段32は、冷媒検知センサ20への電力の供給を一時的に停止した後、再度、冷媒検知センサ20への電力供給を開始する。冷媒検知センサ20は、半導体(図示せず)が接触した冷媒の濃度がCth3以下であれば、冷媒検知センサ20に供給される電力がオフになることで、半導体の電気抵抗が冷媒に接触する前の状態に戻り、再利用できるからである。
 一方、ステップS131の判定の結果、電圧値Crvが第3の判定値Th3を超える場合、判定手段32は、冷媒検知センサ20の交換を促すメッセージを表示装置45に表示させる(ステップS132)。冷媒検知センサ20は、冷媒濃度Cth3の冷媒に半導体(図示せず)が接触してしまうと、その後、正常に冷媒濃度を検出できなくなるからである。また、図14に示したステップS111の後、判定手段32は、空気調和機1の運転を停止する旨の情報を冷凍サイクル制御手段31に送信する。
 変形例2によれば、冷媒検知センサ20が検出した冷媒濃度がCth3以下である場合、冷媒検知センサ20を再起動することで、冷媒検知センサ20の利用を継続することができる。一方、冷媒検知センサ20が検出した冷媒濃度がCth3を超える場合、表示装置45がユーザに冷媒検知センサ20の交換を促すメッセージを表示する。冷媒検知センサ20は、高濃度の冷媒に曝露された場合、故障してしまうおそれがある。検出された冷媒濃度がCth3を超える場合、冷媒検知センサ20が高濃度の冷媒に曝露された状態である。この場合、冷媒検知センサ20の電気抵抗の特性が著しく変化している可能性がある。そのため、冷媒検知センサ20を交換するようにユーザに促す。これにより、冷媒検知センサ20が不良の状態で、冷媒漏洩対処後の空気調和機1を運転させることを回避できる。
 本実施の形態1の空気調和機1は、室内機3と、室外機2と、室内機3および室外機2を接続する液冷媒配管13およびガス冷媒配管14を介して、室内機3と室外機2との間で冷媒が循環する冷媒回路10と、液冷媒配管13に設けられ、液冷媒配管13の冷媒の流通を遮断する液側遮断弁15と、室内ファン12、圧縮機4および液側遮断弁15を制御するコントローラ30とを有する。室内機3は、負荷側熱交換器8、室内ファン12および冷媒検知センサ20を有する。室外機2は圧縮機4および熱源側熱交換器6を有する。コントローラ30は、冷媒検知センサ20によって検出される冷媒濃度が予め決められた第1の判定値Th1を超えるか否かを判定し、冷媒濃度が第1の判定値Th1を超える場合、室内ファン12が回転しているか否かを判定し、室内ファン12が回転しているとき、室内ファン12の回転を停止し、室内ファン12が回転していないとき、室内ファン12が回転していない状態を維持する。そして、コントローラ30は、冷媒濃度が第1の判定値Th1を超えると判定した後、冷媒濃度が第2の判定値Th2を超える場合、液側遮断弁15を開状態から閉状態に切り替え、冷房運転で圧縮機4を動作させて冷媒を冷媒回路10の室内機3以外の場所に回収するポンプダウン運転を実行する。
 本実施の形態1によれば、冷媒検知センサ20によって検出される冷媒濃度が第1の判定値を超える場合、室内ファン12は回転が停止した状態にされる。室内ファン12の回転が停止した状態において冷媒漏洩が発生していると、漏れ出た冷媒は室内機内に滞留し室内機外への拡散が防止され、冷媒検知センサ20で検出される冷媒濃度が上昇する。室内ファン12の回転が停止した状態で冷媒濃度が第2の判定値を超える場合、実際に冷媒漏洩が発生していると判定され、ポンプダウン運転が行われる。一方、室内ファン12の回転が停止した状態で冷媒濃度が第2の判定値以下である場合、冷媒検知センサ20の誤検知と判定され、空気調和機1は運転を継続する。そのため、冷媒検知センサ20の誤検知に起因するポンプダウン運転の発生頻度が低下し、ユーザの利便性を向上させることができる。さらに、冷媒検知センサ20の誤検知の頻度を低下させることで、空気調和機1の信頼性を高めることができる。
 空気調和機の安全性の規格として、冷媒漏洩が発生したとき予め決められた時間内に検知することが定められている。この規格を満足するためには、冷媒検知センサの冷媒漏洩の判定値を低くすることが考えられるが、冷媒漏洩の判定値を低くし過ぎると、誤検知の頻度が高くなるという問題がある。
 これに対して、本実施の形態1の空気調和機1は、冷媒漏洩の判定値が複数の段階に設定され、圧縮機4および室内ファン12等の機器に対して段階毎に異なる制御を行う。以下に具体的に説明する。冷媒検知の前提条件として、室内ファン12が回転していると、冷媒漏洩を精度よく検知することは難しい。そこで、本実施の形態1においては、第1の判定値は、室内ファン12の回転中でも冷媒濃度を検知しやすいように低い値に設定されている。そして、冷媒検知センサ20によって検出された冷媒濃度が第1の判定値を超える場合、空気調和機1が室内ファン12の回転を停止する。これにより、室内に含まれる雑ガスを室内ファン12によって室内機3内に吸い込まれることが無くなる。
 例えば、部屋でユーザが殺虫剤を使用したことで冷媒濃度が第1の判定値を超えた場合、室内ファン12の回転が停止することで、殺虫剤の成分が室内機3に取り込まれることがなくなる。室内機3から冷媒が漏れていなかった場合、冷媒濃度は上昇しないため、空気調和機1は、冷媒漏洩が誤検知と判定し、通常モードの制御に戻ることができる。一方、実際に負荷側熱交換器8から冷媒が漏れていた場合、室内ファン12が回転を停止した後、冷媒検知センサ20が検出する冷媒濃度が上昇する。そして、検出される冷媒濃度が第2の判定値を超えた場合、空気調和機1は、冷媒漏洩と判定し、ポンプダウン運転を実行することで、室内機3を除く室外機2などに冷媒を追いやることができる。このようにして、より早く、より正しく冷媒漏洩の有無を判定することができる。
 なお、本実施の形態1においては、冷媒検知センサ20について、判定手段32が、再起動の必要性を判定し、再起動が必要と判定すると、再起動を実行する場合で説明したが、この場合に限らない。例えば、空気調和機1のメンテナンス業者の作業員が冷媒検知センサ20の再起動が必要か否かを判断し、冷媒検知センサ20の再起動が必要と判断すると、手動によって冷媒検知センサ20の再起動を実行してもよい。
実施の形態2.
 本実施の形態2は、空気調和機が複数の室内機3を有するものである。本実施の形態2においては、実施の形態1で説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。実施の形態1の空気調和機1と同様な構成および動作の説明を省略する。
 実施の形態2の空気調和機の構成を説明する。図18は、実施の形態2に係る空気調和機の一構成例を示す冷媒回路図である。図18に示すように、空気調和機1aは、室外機2と、複数の室内機3-1~3-nとを有する。nは2以上の整数である。
 室外機2は、圧縮機4と、四方弁5と、熱源側熱交換器6と、膨張弁7aと、室外ファン11と、コントローラ30とを有する。kを1~nの任意の整数とすると、室内機3-kは、負荷側熱交換器8、室内ファン12、膨張弁7b、冷媒検知センサ20および吸い込み温度センサ21を有する。室内機3-kによる空気調和の対象となる部屋にリモートコントローラ40-kが設けられている。
 空気調和機1aが、例えば、病院または介護施設などの施設に設置されることが考えられる。この場合、施設の複数の部屋のそれぞれに室内機3-kが設置される。なお、本実施の形態2の空気調和機1aの動作は、実施の形態1と比べて、室内機3-kの数が異なるだけで実施の形態1と同様になるため、その詳細な説明を省略する。
 従来、複数の室内機および1つの室外機を有する空気調和機が病院等の施設に設置されている場合、例えば、1つの部屋で殺虫剤が使用されたことにより、その部屋の室内機の冷媒検知センサが誤検知してしまうことがある。この場合、冷媒が漏洩していないにも関わらず、空気調和機がポンプダウン運転を行い、複数の室内機全てが停止してしまう。空気調和機の運転を再開するには、メンテナンス会社の作業員が施設を訪れ、冷媒漏洩がないことを確認した上で空気調和機を再起動しなければならない。そのため、冷媒漏洩の誤検知によって空気調和機が運転を停止してから作業者によって空気調和機が運転を再開するまでの間、施設内の全ての部屋において、空気調和が行われなくなってしまう。
 これに対して、本実施の形態2によれば、複数の室内機3-1~3-nの冷媒検知センサ20の誤検知に起因するポンプダウン運転を防止し、複数の室内機3-1~3-n全体に影響を及ぼしてしまうことを防ぐことができる。
 なお、実施の形態1および2において、室外機2の圧縮機4の冷媒吸入口側に、冷媒液溜め用のアキュームレータ(図示せず)が設けられていてもよい。この場合、ポンプダウン運転の際、冷媒回路10に封入された冷媒の一部をアキュームレータに回収することができる。実施の形態2は、液側遮断弁15およびガス側遮断弁16が室外機2側に設けられる場合で説明したが、図12に示したように、各室内機3-k側に液側遮断弁15およびガス側遮断弁16が設けられていてもよい。実施の形態1において、実施の形態2と同様に、室内機3に膨張弁7bが設けられていてもよい。この場合、膨張弁7bが液側遮断弁15の役目を果たしてもよい。
 1、1a 空気調和機、2 室外機、3、3-1~3-n 室内機、4 圧縮機、5 四方弁、6 熱源側熱交換器、7、7a、7b 膨張弁、8 負荷側熱交換器、9a、9b 冷媒配管、10 冷媒回路、11 室外ファン、12 室内ファン、13 液冷媒配管、14 ガス冷媒配管、15 液側遮断弁、16 ガス側遮断弁、17 吸込口、18 吹出口、19 筐体、20 冷媒検知センサ、21 吸い込み温度センサ、22 低圧センサ、23 風向ベーン、24 フィルタ、25a 化粧パネル、25b 内側パネル、26 制御基板、27 ベルマウス、28 仕切り板、29 ドレンパン、30 コントローラ、31 冷凍サイクル制御手段、32 判定手段、33 前段手段、34 冷媒回収制御手段、35 タイマー、40、40-1~40-n リモートコントローラ、43 報知装置、45 表示装置、51 空間、90 処理回路、91 プロセッサ、92 メモリ、93 バス。

Claims (6)

  1.  負荷側熱交換器、室内ファンおよび冷媒検知センサを有し、空調対象空間の空気を調和する室内機と、
     圧縮機および熱源側熱交換器を有する室外機と、
     前記室内機および前記室外機を接続する液冷媒配管およびガス冷媒配管を介して、前記室内機と前記室外機との間で冷媒が循環する冷媒回路と、
     前記液冷媒配管に設けられ、前記液冷媒配管の前記冷媒の流通を遮断する液側遮断弁と、
     前記室内ファン、前記圧縮機および前記液側遮断弁を制御するコントローラと、を有し、
     前記コントローラは、
     前記冷媒検知センサによって検出される冷媒濃度が予め決められた第1の判定値を超えるか否かを判定し、前記冷媒濃度が前記第1の判定値を超えている場合、前記室内ファンが回転しているか否かを判定し、前記室内ファンが回転しているとき、前記室内ファンの回転を停止し、前記室内ファンが回転していないとき、前記室内ファンが回転していない状態を維持し、
     前記冷媒濃度が前記第1の判定値を超えると判定した後、前記冷媒濃度が前記第1の判定値よりも大きい第2の判定値を超えるか否かを判定し、前記冷媒濃度が前記第2の判定値を超える場合、前記液側遮断弁を開状態から閉状態に切り替え、前記熱源側熱交換器が凝縮器として機能するように前記圧縮機を動作させて前記冷媒を前記冷媒回路の前記室内機以外の場所に回収するポンプダウン運転を実行する、
     空気調和機。
  2.  前記室内機は、
     前記室内ファンの回転により生じる空気流を吹き出す吹出口と、
     前記吹出口に設けられ、前記吹出口を開状態または閉状態に切り替える風向ベーンと、を有し、
     前記コントローラは、
     前記冷媒濃度が前記第1の判定値を超えると、前記吹出口が前記開状態か否かを判定し、前記吹出口が前記開状態である場合、前記風向ベーンを制御して前記吹出口を前記開状態から前記閉状態に切り替え、前記吹出口が前記閉状態である場合、前記吹出口を前記閉状態に維持する、
     請求項1に記載の空気調和機。
  3.  前記空調対象空間にいる人に前記冷媒の漏洩を報知する報知装置を有し、
     前記コントローラは、
     前記冷媒濃度が前記第2の判定値を超えたとき、前記報知装置を動作させる、
     請求項1または2に記載の空気調和機。
  4.  メッセージを表示する表示装置を有し、
     前記コントローラは、
     前記冷媒濃度が前記第2の判定値よりも大きい第3の判定値を超える場合、前記ポンプダウン運転の終了後に前記空気調和機の運転を停止するとともに、前記冷媒検知センサの交換を促すメッセージを前記表示装置に表示させる、
     請求項1~3のいずれか1項に記載の空気調和機。
  5.  前記冷媒検知センサは電力が供給されることによって動作し、
     前記コントローラは、
     前記冷媒検知センサによって検出される前記冷媒濃度が前記第2の判定値よりも大きく前記第3の判定値以下である場合、前記冷媒検知センサへの電力供給を停止した後、再度、前記冷媒検知センサへの電力供給を開始する、
     請求項4に記載の空気調和機。
  6.  前記負荷側熱交換器が前記室内機の筐体内において矩形状に設けられ、
     前記負荷側熱交換器によって囲まれた空間に面する仕切り板が前記筐体内に設けられ、
     前記冷媒検知センサは、前記仕切り板の前記負荷側熱交換器によって囲まれた空間に面する位置に設けられている、
     請求項1~5のいずれか1項に記載の空気調和機。
PCT/JP2022/031144 2022-08-18 2022-08-18 空気調和機 WO2024038532A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031144 WO2024038532A1 (ja) 2022-08-18 2022-08-18 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031144 WO2024038532A1 (ja) 2022-08-18 2022-08-18 空気調和機

Publications (1)

Publication Number Publication Date
WO2024038532A1 true WO2024038532A1 (ja) 2024-02-22

Family

ID=89941569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031144 WO2024038532A1 (ja) 2022-08-18 2022-08-18 空気調和機

Country Status (1)

Country Link
WO (1) WO2024038532A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053771A1 (ja) * 2017-09-12 2019-03-21 三菱電機株式会社 空気調和装置
WO2019077696A1 (ja) * 2017-10-18 2019-04-25 三菱電機株式会社 空気調和機
JP2019074222A (ja) * 2017-10-12 2019-05-16 ダイキン工業株式会社 冷凍装置
WO2019215877A1 (ja) * 2018-05-10 2019-11-14 三菱電機株式会社 冷媒漏洩判定装置、空気調和機、及び冷媒漏洩判定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053771A1 (ja) * 2017-09-12 2019-03-21 三菱電機株式会社 空気調和装置
JP2019074222A (ja) * 2017-10-12 2019-05-16 ダイキン工業株式会社 冷凍装置
WO2019077696A1 (ja) * 2017-10-18 2019-04-25 三菱電機株式会社 空気調和機
WO2019215877A1 (ja) * 2018-05-10 2019-11-14 三菱電機株式会社 冷媒漏洩判定装置、空気調和機、及び冷媒漏洩判定方法

Similar Documents

Publication Publication Date Title
EP3333509B1 (en) Refrigeration cycle apparatus
CN108474604B (zh) 空调装置
CN112105876B (zh) 制冷剂泄漏判定装置、空调机以及制冷剂泄漏判定方法
US20180283719A1 (en) Air conditioning indoor unit
EP3150943A1 (en) Indoor unit for air conditioner and air conditioner provided with indoor unit
CN110402360B (zh) 冷冻装置的室内单元
JP6929747B2 (ja) 空気調和機
CN114270104B (zh) 空调机
CN114521223B (zh) 空调机
JP6656490B2 (ja) 空気調和機
WO2018078685A1 (ja) 空気調和機
KR20110001667A (ko) 공기조화기 및 그 동작방법
JP2011137597A (ja) 空気調和装置
WO2024038532A1 (ja) 空気調和機
JP2021081100A (ja) 空気調和装置
JPH0821668A (ja) 空気調和装置
CN113899059B (zh) 空气处理系统的控制方法和空气处理系统
WO2020070890A1 (ja) 空気調和機
JP2000320876A (ja) 空気調和機
JP7395056B2 (ja) 空気調和機、及び制御方法
WO2021176975A1 (ja) 空気調和機
JP6815377B2 (ja) 空気調和機用ユニット及び空気調和機
JP6914794B2 (ja) 空気調和機
WO2021095423A1 (ja) 空気調和装置
JP5577692B2 (ja) 空気調和装置及び当該空気調和装置における湿度センサの故障判断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955706

Country of ref document: EP

Kind code of ref document: A1