WO2024036898A1 - 一种陶瓷材料残余应力检测方法及系统 - Google Patents

一种陶瓷材料残余应力检测方法及系统 Download PDF

Info

Publication number
WO2024036898A1
WO2024036898A1 PCT/CN2023/076520 CN2023076520W WO2024036898A1 WO 2024036898 A1 WO2024036898 A1 WO 2024036898A1 CN 2023076520 W CN2023076520 W CN 2023076520W WO 2024036898 A1 WO2024036898 A1 WO 2024036898A1
Authority
WO
WIPO (PCT)
Prior art keywords
residual stress
strain
ceramic material
engraving machine
laser engraving
Prior art date
Application number
PCT/CN2023/076520
Other languages
English (en)
French (fr)
Inventor
于海龙
黄家祺
饶德林
林克辉
侯晓东
张瑞尧
张书彦
李忠民
Original Assignee
东莞市唯美陶瓷工业园有限公司
东莞材料基因高等理工研究院
马可波罗控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市唯美陶瓷工业园有限公司, 东莞材料基因高等理工研究院, 马可波罗控股股份有限公司 filed Critical 东莞市唯美陶瓷工业园有限公司
Publication of WO2024036898A1 publication Critical patent/WO2024036898A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to the technical field of ceramic material performance detection, and in particular to a ceramic material residual stress detection method and system.
  • Residual stress detection methods mainly include non-destructive testing and destructive testing. These methods are relatively mature in the detection of metal components and materials, and have also formed corresponding standards. However, there are currently no relevant standards and mature detection methods for the detection of residual stress in ceramic materials. Especially with the rise of building ceramic materials such as rock slabs, rock slabs are prone to breakage during processing and use due to the existence of residual stress, which seriously restricts the development of these materials.
  • the blind hole method is very mature in use in metal materials.
  • the principle is to use a drill to make a small hole on the surface of the material to release the stress at the measured point, and then calculate the size of the released residual stress through the deformation sensed by the strain gauge.
  • ordinary drill bits cannot drill holes. Even if a diamond drill bit is used, the measurement results will be inaccurate due to the high heat generated.
  • the drill bits are expensive and costly, making the current blind hole method difficult. It is applied to the residual stress detection of ceramic materials. Therefore, there is no method suitable for residual stress detection of ceramic materials in the existing technology.
  • the technical problem to be solved by the present invention is to provide a ceramic material residual stress detection method and system in view of the above-mentioned defects of the prior art, aiming to solve the problem that the prior art does not have a suitable residual stress detection method for ceramic materials.
  • a method for detecting residual stress in ceramic materials is implemented based on a ceramic material residual stress system.
  • the ceramic material residual stress system includes: a laser engraving machine, a strain collector, and the strain collector. Connected residual stress analysis terminals;
  • the residual stress detection method of ceramic materials includes:
  • the strain collector inputs the collected strain data into the residual stress analysis terminal, and the residual stress analysis terminal calculates the residual stress result data.
  • the use of a laser engraving machine to polish the target position on the surface of the ceramic material to be tested where strain rosettes are to be affixed includes:
  • An ice box is placed on the workbench of the laser engraving machine, and the ice box contains ice cubes;
  • the laser wavelength during polishing is 355nm
  • the pulse width is 5-30ns
  • the frequency is 5-30HZ
  • the power is 3-30W
  • the number of polishing times is 1-5 times.
  • the strain rosette is pasted on the surface of the ceramic material to be measured corresponding to the target position, and the pasted strain rosette is connected to the strain collector, including:
  • the strain rosette includes three strain units, and the sensitive grid angles are 0°, 45° and 90° respectively.
  • the method before designing the drilling path according to the drilling position of the strain rosette in the laser engraving machine software terminal, the method further includes:
  • designing a target drilling path according to the drilling position of the strain rosette in the laser engraving machine software terminal includes:
  • the laser wavelength of the laser engraving machine is 355nm, and a 3D galvanometer scanning head is used.
  • the diameter of the target hole size is 0.5-3mm, and the depth of the target hole size is 1.2 times the diameter.
  • the design target drilling path specifically includes:
  • Formulate a second circular path, the diameter of the second circular path is smaller than the target hole size
  • the ceramic material residual stress system further includes: an exhaust device for removing powder generated by the laser engraving machine when drilling holes;
  • the use of a laser engraving machine to drill holes into the ceramic material to be tested according to the target drilling path includes:
  • the laser power of the laser engraving machine is 3-30W, the diameter of the focused pulse beam is 0.02-0.05mm, the pulse width is 5-30ns, and the frequency is 5-30HZ;
  • the suction force of the exhaust device is 1-10KPa, the air volume is 10-100m 3 /h, and the distance between the exhaust port of the exhaust device and the laser drilling position is 0.1-1m;
  • the laser engraving machine adopts a non-continuous working mode. It works continuously for 1-10 cycles according to the set parameters.
  • the depth of each action is 0.005-0.05mm. After each action, the next work is performed after an interval of 10-60 seconds. , until the depth of the target hole size is reached.
  • the strain collector inputs the collected strain data into the residual stress analysis terminal, and the residual stress analysis terminal calculates the residual stress result data, including:
  • the stabilized strain value is collected through the strain collector
  • the residual stress analysis terminal acquires the strain value
  • the residual stress analysis software in the residual stress analysis terminal calculates the residual stress result data based on the elastic modulus and Poisson's ratio.
  • the residual stress result data includes: maximum principal stress, minimum principal stress, 0-degree included angle and equivalent stress.
  • the invention also discloses a ceramic material residual stress detection system, which includes:
  • Laser engraving machine is used to polish the target position on the surface of the ceramic material to be tested to be affixed with strain rosettes, and to drill holes in the ceramic material to be tested according to the target drilling path;
  • a strain collector used to connect to the strain rosette attached to the surface of the ceramic material to be measured corresponding to the target position after the grinding is completed, and to input the collected strain data into the residual stress analysis terminal after the drilling is completed;
  • a residual stress analysis terminal which is connected to the strain collector and is used to collect released strains and calculate residual stress result data
  • the exhaust device is used to remove the powder produced by the laser engraving machine when drilling holes.
  • the invention provides a ceramic material residual stress detection method and system.
  • the ceramic material residual stress detection method is based on a ceramic material residual stress system.
  • the ceramic material residual stress system includes: a laser engraving machine, a strain collector, and a residual stress analysis terminal connected to the strain collector;
  • the ceramic material residual stress detection method includes: using a laser engraving machine to polish the target position on the surface of the ceramic material to be tested to be affixed with strain flowers; after polishing is completed, the strain The flower is pasted on the surface of the ceramic material to be measured corresponding to the target position, and the pasted strain flower is connected to the strain collector; in the laser engraving machine software terminal, the hole position of the strain flower is designed according to Target drilling path; use a laser engraving machine to drill the ceramic material to be tested according to the target drilling path; after the drilling is completed, the strain collector inputs the collected strain data into the residual stress analysis terminal, and the The residual stress analysis terminal calculates the residual stress result data.
  • the present invention uses a laser engraving machine to drill holes in ceramic materials, and uses a residual stress analysis terminal to automatically calculate residual stress result data, thereby realizing residual stress detection on ceramic materials, which can be used for production guidance of ceramic materials, thereby improving ceramic products. Improve production quality and solve risks and hidden dangers during later use.
  • Figure 1 is a flow chart of a preferred embodiment of the method for detecting residual stress of ceramic materials in the present invention.
  • Figure 2 is a specific flow chart of step S100 in a preferred embodiment of the ceramic material residual stress detection method of the present invention.
  • FIG. 3 is a specific flow chart of step S200 in the preferred embodiment of the ceramic material residual stress detection method of the present invention.
  • FIG. 4 is a specific flow chart of step S300 in the preferred embodiment of the ceramic material residual stress detection method of the present invention.
  • FIG. 5 is a specific flow chart of step S320 in the preferred embodiment of the ceramic material residual stress detection method of the present invention.
  • Figure 6 is a specific flow chart of step S500 in the preferred embodiment of the ceramic material residual stress detection method of the present invention.
  • the present invention introduces the method of laser engraving and uses the deformation released by the material to successfully detect the residual stress of ceramic materials, thus filling the gap. There is a gap in residual stress detection in the ceramic industry.
  • the ceramic material residual stress detection method is implemented based on a ceramic material residual stress system.
  • the ceramic material residual stress system includes: a laser engraving machine, a strain collector, and a residual stress analysis terminal connected to the strain collector.
  • the method for detecting residual stress in ceramic materials includes the following steps:
  • Step S100 Use a laser engraving machine to polish the target position on the surface of the ceramic material to be measured where the strain rosette is to be affixed.
  • step S100 includes:
  • Step S110 Place an ice box on the workbench of the laser engraving machine, and the ice box contains ice cubes;
  • Step S120 Place the ceramic material to be tested on the ice box, and the position to be drilled is located in the middle of the ice box;
  • Step S130 Turn on the laser engraving machine and polish the target position on the surface of the ceramic material to be tested where the strain rosette is to be affixed.
  • the invention can solve the application problem of residual stress testing in the field of ceramic materials.
  • the traditional blind hole method is difficult to drill holes on the surface of ceramic materials, and the thermal effect generated by drilling will also affect the accuracy of the test, and cannot meet the needs of residual stress testing of ceramic materials. Therefore, the present invention uses a laser engraving machine to drill holes and uses an ice box to cool down, thus preventing the heat during drilling from affecting the measurement results.
  • the laser engraving machine polishes the surface of the ceramic material where the strain patterns are required.
  • the laser wavelength during polishing is 355nm
  • the pulse width is 5-30ns
  • the frequency is 5-30HZ
  • the power is 3-30W
  • the number of polishing times is 1-5 times.
  • step S100 is followed by: step S200.
  • the strain rosette is pasted on the surface of the ceramic material to be measured corresponding to the target position, and the pasted strain rosette is connected to the strain collector.
  • Step S200 specifically includes:
  • Step S210 After the polishing is completed, stick the strain flower on the surface of the ceramic material to be measured corresponding to the target position through glue;
  • Step S220 Use a ring terminal to fix the position of the strain rosette, and connect the strain rosette to the strain collector.
  • the strain rosette is adhered to the surface of the polished ceramic material with glue, the position of the strain rosette is fixed with a ring terminal, and connected to the strain collector.
  • the strain rosette includes three strain units (sensitive grids) with sensitive grid angles of 0°, 45° and 90° respectively, used to record strain values in three directions.
  • Step S200 is followed by step S300: designing a target drilling path according to the drilling position of the strain rosette in the laser engraving machine software terminal.
  • the residual stress analysis terminal has residual stress analysis software, such as Sigma comprehensive testing software. Before drilling, the residual stress analysis terminal is connected to the strain collector.
  • the step further includes: inputting the elastic modulus and Poisson's ratio of the ceramic material to be measured into the residual stress analysis software on the residual stress analysis terminal.
  • the elastic modulus and Poisson's ratio are actual measured values.
  • the elastic modulus and Poisson's ratio of building ceramic rock slabs are 70 GPa and 0.23 respectively.
  • the elastic modulus and Poisson's ratio are used to calculate the residual stress result data.
  • step S300 specifically includes:
  • Step S310 Turn on the laser engraving machine and adjust the position of the laser head to align with the drilling position of the strain rosette;
  • Step S320 Design a target punching path and perform a focusing operation.
  • the laser engraving machine is turned on, the position of the laser head is adjusted so that it is aligned with the drilling position of the strain rosette, the drilling path is designed, and the focusing operation is performed.
  • the laser wavelength of the laser engraving machine is 355nm, and a 3D galvanometer scanning head is used.
  • the diameter D of the target hole size is 0.5-3mm, and the depth of the target hole size is 1.2 ⁇ D.
  • Design target drilling path in step S320 specifically includes:
  • Step S321 In the laser engraving machine software terminal, according to the target hole size, formulate a first circular path with the same diameter as the target hole size;
  • Step S322 Select internal filling, set the line angle to 45°, set the line spacing to 0.01mm, and select evenly distributed filling lines;
  • Step S323 Select the filled first circular path for overall calculation, and go around once along the first circular path;
  • Step S324 Formulate a second circular path, the diameter of which is smaller than the target hole size
  • Step S325 Select internal filling, set the line angle to 135°, perpendicular to the laser line of the first circular path, set the line spacing to 0.01mm, and select evenly distributed filling lines;
  • Step S326 Select the filled second circular path for overall calculation, and go around once along the second circular path;
  • Step S327 Overlap the centers of the first circular path and the second circular path to complete the design of the punching path.
  • the required hole size that is, the target hole size
  • formulate the first circular path with the same size as the target hole size select internal filling, set the line angle to 45°, and set the line spacing to 0.01mm, select the evenly distributed filling line, calculate the entire selected object (i.e. the first circular path after filling), and walk around the first circular path once.
  • a second ring path with a size 0.05-0.2mm smaller than the required hole size, select internal filling, set the line angle to 135°, perpendicular to the laser line of the first ring path, and set the line spacing is 0.01mm, select evenly distributed filling lines, select the object (that is, the second ring path after filling is 0.05-0.2mm smaller than the required hole size) and calculate it as a whole, and go around the edge once. Overlap the centers of the two ring paths and place the two objects at the same position to complete the design of the punch path.
  • the path designed using this method can produce an aperture with good verticality that can meet the testing requirements.
  • step S300 is followed by: step S400, using a laser engraving machine to drill the ceramic material to be tested according to the target drilling path. Specifically, after the focusing is completed, the laser engraving machine is turned on and the drilling operation is performed.
  • the ceramic material residual stress system further includes: an exhaust device for removing powder generated by the laser engraving machine when drilling holes.
  • the step S400 specifically includes: using a laser engraving machine to drill holes in the ceramic material to be tested according to the target drilling path, and at the same time turning on the exhaust device.
  • the laser power of the laser engraving machine is 3-30W
  • the diameter of the focused pulse beam is 0.02-0.05mm
  • the pulse width is 5-30ns
  • the frequency is 5-30HZ.
  • the suction force of the exhaust device is 1-10KPa
  • the air volume is 10-100m 3 /h
  • the distance between the exhaust port of the exhaust device and the laser drilling position is 0.1-1m.
  • the laser engraving machine adopts a non-continuous working mode.
  • the depth of each action is 0.005-0.05mm. After each action, the next work is performed after an interval of 10-60 seconds. , until the depth of the target hole size is reached. That is to say, the laser working mode is step-by-step. According to the set parameters, the laser adopts a non-continuous processing mode. The depth of each action is 0.005-0.05mm. After each action, the next work is performed at an interval of 10-60 seconds, so Work back and forth until the depth of the hole is 1.2 ⁇ D to complete the drilling operation.
  • the strain collector records the strain values in different directions after final stabilization.
  • step S400 is followed by: step S500.
  • the strain collector inputs the collected strain data into the residual stress analysis terminal, and the residual stress analysis terminal calculates the residual stress result data.
  • Step S500 specifically includes:
  • Step S510 After the drilling is completed, the stabilized strain value is collected by the strain collector;
  • Step S520 The residual stress analysis terminal obtains the strain value
  • Step S530 The residual stress analysis software in the residual stress analysis terminal calculates residual stress result data based on the elastic modulus and Poisson's ratio.
  • the strain values of 0°, 45° and 90° in the single directions of the stabilized strain rosette are collected through the strain collector.
  • Sigma comprehensive test The software automatically calculates the residual stress result data to complete the detection of residual stress at the punched hole.
  • the residual stress result data includes: maximum principal stress, minimum principal stress, 0-degree included angle and equivalent stress.
  • the present invention uses a laser engraving machine for drilling, which is fast and accurate.
  • the laser is a cold light source and has little thermal impact on drilling. Combined with the process settings, the thermal impact is reduced and the drilling accuracy is improved, making it easier to detect residual stress in ceramics.
  • the accuracy is improved;
  • the detection method of the present invention is used to detect the residual stress of ceramic materials and used for production guidance of ceramic materials, which can improve the production quality of ceramic products and solve risks and hidden dangers in later use; the ceramic materials formed by the present invention
  • the residual stress detection method can accurately test the residual stress of ceramic materials, filling the gap in residual stress detection of ceramic materials at home and abroad.
  • the invention also discloses a ceramic material residual stress detection system, which is characterized in that it includes:
  • Laser engraving machine is used to polish the target position on the surface of the ceramic material to be tested to be affixed with strain rosettes, and to drill holes in the ceramic material to be tested according to the target drilling path;
  • a strain collector used to connect to the strain rosette attached to the surface of the ceramic material to be measured corresponding to the target position after the grinding is completed, and to input the collected strain data into the residual stress analysis terminal after the drilling is completed;
  • a residual stress analysis terminal which is connected to the strain collector and is used to collect released strains and calculate residual stress result data
  • the exhaust device is used to remove the powder produced by the laser engraving machine when drilling holes; the details are as described above.
  • the present invention discloses a ceramic material residual stress detection method and system.
  • the ceramic material residual stress detection method is implemented based on a ceramic material residual stress system.
  • the ceramic material residual stress system includes: a laser engraving machine, A strain collector, and a residual stress analysis terminal connected to the strain collector;
  • the ceramic material residual stress detection method includes: using a laser engraving machine to polish the target position on the surface of the ceramic material to be measured to be affixed with strain flowers; polishing is completed
  • the strain rosette is pasted on the surface of the ceramic material to be measured corresponding to the target position, and the pasted strain rosette is connected to the strain collector; in the laser engraving machine software terminal, according to the strain rosette
  • the target drilling path is designed at the drilling position; a laser engraving machine is used to drill the ceramic material to be tested according to the target drilling path; after the drilling is completed, the strain collector inputs the collected strain data into the residual stress analysis Terminal, the residual stress analysis terminal calculates the residual stress result data.
  • the present invention uses a laser engraving machine to drill holes in ceramic materials, and uses a residual stress analysis terminal to automatically calculate residual stress result data, thereby realizing residual stress detection on ceramic materials, which can be used for production guidance of ceramic materials, thereby improving ceramic products. Improve production quality and solve risks and hidden dangers during later use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种陶瓷材料残余应力检测方法及系统,包括:利用激光镭雕机对目标位置进行打磨(S100);打磨完成后,将应变花粘贴在目标位置,并将粘贴好的应变花与应变采集器连接(S200);在激光镭雕机软件终端中根据应变花的打孔位置设计目标打孔路径(S300);利用激光镭雕机,按照目标打孔路径对待测陶瓷材料进行打孔(S400);打孔完成后,应变采集器将采集到的应变数据输入残余应力分析终端,残余应力分析终端计算得到残余应力结果数据(S500)。通过利用激光镭雕机对陶瓷材料进行打孔,并利用残余应力分析终端自动计算残余应力结果数据,实现了对陶瓷材料进行残余应力检测,可用于陶瓷材料的生产指导,进而提高陶瓷产品的生产质量,解决后期使用过程中存在的风险及隐患。

Description

一种陶瓷材料残余应力检测方法及系统 技术领域
本发明涉及陶瓷材料性能检测技术领域,尤其涉及的是一种陶瓷材料残余应力检测方法及系统。
背景技术
由于制造工艺产生的不均匀的机械形变、温度变化和相变等,往往使材料产生不均匀的塑性变形。去除外部作用后,由于残留的塑性变形对材料的作用,会在材料内部存在相应的弹性变形,以保持构件的平衡状态,并使材料内部产生应力,称为内应力。内应力在材料的较大区域存在并且被认为是均匀的,与之相关的内力和内力矩在物体的各个截面上保持平衡,称这种内应力残余应力。残余应力的存在使得材料在使用过程中容易出现变形、开裂等现象,影响材料的使用寿命。
残余应力的检测方法主要有无损检测和有损检测两类方法,这些方法在金属构件及材料中的检测使用比较成熟,而且也形成了相应的标准。但对于陶瓷材料残余应力的检测目前并没有相关的标准及成熟的检测方法。尤其随着建筑陶瓷材料如岩板等材料的兴起,由于残余应力的存在使得岩板在加工、使用过程中容易导致破损的问题,严重制约了这些材料的发展。
盲孔法作为一种有效的残余应力检测方法,在金属材料中的使用非常成熟。其原理为使用钻头在材料表面打一小孔,使被测点的应力得到释放,然后通过应变片感应到的变形计算得到释放的残余应力的大小。但由于陶瓷材料硬度高,耐磨性好,普通钻头无法进行打孔,就算用金刚石钻头也会因为发热量大导致测量结果不准确,同时钻头价格高,成本大,导致目前盲孔法一直难以应用在陶瓷材料的残余应力检测方面,因此,现有技术没有可适用于陶瓷材料残余应力检测的方法。
因此,现有技术存在缺陷,有待改进与发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种陶瓷材料残余应力检测方法及系统,旨在解决现有技术没有可适用于陶瓷材料残余应力检测方法的问题。
本发明解决技术问题所采用的技术方案如下:
一种陶瓷材料残余应力检测方法,所述陶瓷材料残余应力检测方法基于陶瓷材料残余应力系统实现,所述陶瓷材料残余应力系统包括:激光镭雕机,应变采集器,以及与所述应变采集器连接的残余应力分析终端;
所述陶瓷材料残余应力检测方法包括:
利用激光镭雕机对待测陶瓷材料表面待贴应变花的目标位置进行打磨;
打磨完成后,将应变花粘贴在所述目标位置对应的待测陶瓷材料表面,并将粘贴好的所述应变花与所述应变采集器连接;
在激光镭雕机软件终端中根据所述应变花的打孔位置设计目标打孔路径;
利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔;
打孔完成后,所述应变采集器将采集到的应变数据输入残余应力分析终端,所述残余应力分析终端计算得到残余应力结果数据。
在一种实现方式中,所述利用激光镭雕机对待测陶瓷材料表面待贴应变花的目标位置进行打磨,包括:
在激光镭雕机的工作台上放置冰盒,所述冰盒中盛装有冰块;
将待测陶瓷材料放置在所述冰盒上,且待打孔位置位于所述冰盒的中间位置;
打开激光镭雕机,对待测陶瓷材料表面待贴应变花的目标位置进行打磨;
其中,打磨时的激光波长为355nm,脉冲宽度为5-30ns,频率为5-30HZ,功率为3-30W,打磨次数为1-5次。
在一种实现方式中,所述打磨完成后,将应变花粘贴在所述目标位置对应的待测陶瓷材料表面,并将粘贴好的所述应变花与所述应变采集器连接,包括:
打磨完成后,将应变花通过胶水粘贴在所述目标位置对应的待测陶瓷材料表面;
利用环形端子固定住所述应变花的位置,并将所述应变花与所述应变采集器连接;
其中,所述应变花包括三个应变单元,敏感栅角度分别为0°、45°和90°。
在一种实现方式中,所述在激光镭雕机软件终端中根据所述应变花的打孔位置设计打孔路径之前,还包括:
在所述残余应力分析终端上的残余应力分析软件中输入待测陶瓷材料的弹性模量和泊松比。
在一种实现方式中,所述在激光镭雕机软件终端中根据所述应变花的打孔位置设计目标打孔路径,包括:
打开激光镭雕机,将激光头位置调整至对准所述应变花的打孔位置;
设计目标打孔路径,并进行对焦操作;
其中,所述激光镭雕机的激光波长为355nm,且采用3D振镜扫描头,目标打孔尺寸的直径为0.5-3mm,目标打孔尺寸的深度为直径的1.2倍。
在一种实现方式中,所述设计目标打孔路径具体包括:
在激光镭雕机软件终端中根据目标打孔尺寸,制定与所述目标打孔尺寸的直径大小相同的第一圆环路径;
选择内部填充,设定线角度为45°,设定线间距为0.01mm,选择平均分布填充线;
选定填充后的第一圆环路径进行整体计算,沿所述第一圆环路径绕一次;
制定第二圆环路径,所述第二圆环路径的直径小于所述目标打孔尺寸;
选择内部填充,设定线角度为135°,与所述第一圆环路径的激光线互相垂直,设定线间距为0.01mm,选择平均分布填充线;
选定填充后的第二圆环路径进行整体计算,沿所述第二圆环路径绕一次;
将所述第一圆环路径和所述第二圆环路径的圆心重叠,完成打孔路径的设计。
在一种实现方式中,所述陶瓷材料残余应力系统还包括:抽风装置,用于清除所述激光镭雕机在打孔时产生的粉末;
所述利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔,包括:
利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔,同时开启抽风装置;
所述激光镭雕机的激光功率为3-30W,聚焦后的脉冲光束直径为0.02-0.05mm,脉冲宽度为5-30ns,频率为5-30HZ;
所述抽风装置吸力为1-10KPa,风量为10-100m3/h,所述抽风装置的抽风口与激光打孔位置之间的距离为0.1-1m;
所述激光镭雕机采用非连续工作方式,按设定参数每次连续工作1-10个循环,每次作用深度为0.005-0.05mm,每次作用后间隔10-60秒再进行下一次工作,直至达到所述目标打孔尺寸的深度。
在一种实现方式中,打孔完成后,所述应变采集器将采集到的应变数据输入残余应力分析终端,所述残余应力分析终端计算得到残余应力结果数据,包括:
打孔完成后,通过所述应变采集器采集到稳定后的应变值;
所述残余应力分析终端获取所述应变值;
所述残余应力分析终端中的残余应力分析软件根据所述弹性模量和泊松比计算得到残余应力结果数据。
在一种实现方式中,所述残余应力结果数据包括:最大主应力、最小主应力、0度夹角和等效应力。
本发明还公开了一种陶瓷材料残余应力检测系统,包括:
激光镭雕机,用于对待测陶瓷材料表面待贴应变花的目标位置进行打磨,以及按照目标打孔路径对待测陶瓷材料进行打孔;
应变采集器,用于在打磨完成后,与粘贴在所述目标位置对应的待测陶瓷材料表面的应变花连接,以及在打孔完成后,将采集到的应变数据输入残余应力分析终端;
残余应力分析终端,所述残余应力分析终端与所述应变采集器连接,用于采集释放的应变并计算得到残余应力结果数据;
抽风装置,用于清除所述激光镭雕机在打孔时产生的粉末。
本发明所提供的一种陶瓷材料残余应力检测方法及系统,所述陶瓷材料残余应力检测方法基于陶瓷材料残余应力系统实现,所述陶瓷材料残余应力系统包括:激光镭雕机,应变采集器,以及与所述应变采集器连接的残余应力分析终端;所述陶瓷材料残余应力检测方法包括:利用激光镭雕机对待测陶瓷材料表面待贴应变花的目标位置进行打磨;打磨完成后,将应变花粘贴在所述目标位置对应的待测陶瓷材料表面,并将粘贴好的所述应变花与所述应变采集器连接;在激光镭雕机软件终端中根据所述应变花的打孔位置设计目标打孔路径;利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔;打孔完成后,所述应变采集器将采集到的应变数据输入残余应力分析终端,所述残余应力分析终端计算得到残余应力结果数据。本发明通过利用激光镭雕机对陶瓷材料进行打孔,并利用残余应力分析终端自动计算残余应力结果数据,实现了对陶瓷材料进行残余应力检测,可用于陶瓷材料的生产指导,进而提高陶瓷产品的生产质量,解决后期使用过程中存在的风险及隐患。
附图说明
图1是本发明中陶瓷材料残余应力检测方法较佳实施例的流程图。
图2是本发明中陶瓷材料残余应力检测方法较佳实施例中步骤S100的具体流程图。
图3是本发明中陶瓷材料残余应力检测方法较佳实施例中步骤S200的具体流程图。
图4是本发明中陶瓷材料残余应力检测方法较佳实施例中步骤S300的具体流程图。
图5是本发明中陶瓷材料残余应力检测方法较佳实施例中步骤S320的具体流程图。
图6是本发明中陶瓷材料残余应力检测方法较佳实施例中步骤S500的具体流程图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
目前市场上并没有一套比较完善的技术对陶瓷材料的残余应力进行检测,本发明则通过引进激光镭雕的方法,利用材料释放出的变形量成功地检测出陶瓷材料的残余应力,从而填补陶瓷行业残余应力检测的空白。
请参见图1,图1是本发明中陶瓷材料残余应力检测方法的流程图。所述陶瓷材料残余应力检测方法基于陶瓷材料残余应力系统实现,所述陶瓷材料残余应力系统包括:激光镭雕机,应变采集器,以及与所述应变采集器连接的残余应力分析终端。
如图1所示,本发明实施例所述的陶瓷材料残余应力检测方法包括以下步骤:
步骤S100、利用激光镭雕机对待测陶瓷材料表面待贴应变花的目标位置进行打磨。
在一种实现方式中,请参阅图2,所述步骤S100包括:
步骤S110、在激光镭雕机的工作台上放置冰盒,所述冰盒中盛装有冰块;
步骤S120、将待测陶瓷材料放置在所述冰盒上,且待打孔位置位于所述冰盒的中间位置;
步骤S130、打开激光镭雕机,对待测陶瓷材料表面待贴应变花的目标位置进行打磨。
本发明可以解决残余应力测试在陶瓷材料领域的应用问题。传统的盲孔法难以在陶瓷材料表面打孔,而且打孔产生的热效应也会影响测试的精度,不能满足陶瓷材料残余应力测试的需求。因此,本发明使用激光镭雕机打孔,并且利用冰盒进行降温,避免了打孔时的热量影响测量结果。
具体地,在激光镭雕机工作台面上放置一个填满冰块的冰盒,将陶瓷材料放置在冰盒上,所需打孔处位于冰盒中间位置,打开激光镭雕机,利用激光镭雕机对陶瓷材料表面所需贴应变花的位置进行打磨。其中,打磨时的激光波长为355nm,脉冲宽度为5-30ns,频率为5-30HZ,功率为3-30W,打磨次数为1-5次。
所述步骤S100之后为:步骤S200、打磨完成后,将应变花粘贴在所述目标位置对应的待测陶瓷材料表面,并将粘贴好的所述应变花与所述应变采集器连接。
在一种实现方式中,请参阅图3,所述步骤S200具体包括:
步骤S210、打磨完成后,将应变花通过胶水粘贴在所述目标位置对应的待测陶瓷材料表面;
步骤S220、利用环形端子固定住所述应变花的位置,并将所述应变花与所述应变采集器连接。
具体地,将应变花用胶水黏贴在打磨后的陶瓷材料表面,并用环形端子固定住应变花的位置,并与应变采集器进行连接。所述应变花包括三个应变单元(敏感栅),敏感栅角度分别为0°、45°和90°,用于记录3个方向的应变值。
所述步骤S200之后为:步骤S300、在激光镭雕机软件终端中根据所述应变花的打孔位置设计目标打孔路径。
具体地,所述残余应力分析终端中具有残余应力分析软件,例如西格玛综合测试软件,在打孔之前,将残余应力分析终端与应变采集器连接。
在一种实现方式中,所述步骤S300之前还包括:在所述残余应力分析终端上的残余应力分析软件中输入待测陶瓷材料的弹性模量和泊松比。所述弹性模量及泊松比为实际测量的值,例如建筑陶瓷岩板的弹性模量及泊松比分别为70GPa和0.23。所述弹性模量及泊松比用于计算残余应力结果数据。
在一种实施例中,请参阅图4,所述步骤S300具体包括:
步骤S310、打开激光镭雕机,将激光头位置调整至对准所述应变花的打孔位置;
步骤S320、设计目标打孔路径,并进行对焦操作。
具体地,打开激光镭雕机,对激光头位置进行调整,使其对准应变花的打孔位置,设计打孔路径,并进行对焦操作。所述激光镭雕机的激光波长为355nm,且采用3D振镜扫描头,目标打孔尺寸的直径D为0.5-3mm,目标打孔尺寸的深度为1.2×D。
在一种实施例中,请参阅图5,步骤S320中的“设计目标打孔路径”具体包括:
步骤S321、在激光镭雕机软件终端中根据目标打孔尺寸,制定与所述目标打孔尺寸的直径大小相同的第一圆环路径;
步骤S322、选择内部填充,设定线角度为45°,设定线间距为0.01mm,选择平均分布填充线;
步骤S323、选定填充后的第一圆环路径进行整体计算,沿所述第一圆环路径绕一次;
步骤S324、制定第二圆环路径,所述第二圆环路径的直径小于所述目标打孔尺寸;
步骤S325、选择内部填充,设定线角度为135°,与所述第一圆环路径的激光线互相垂直,设定线间距为0.01mm,选择平均分布填充线;
步骤S326、选定填充后的第二圆环路径进行整体计算,沿所述第二圆环路径绕一次;
步骤S327、将所述第一圆环路径和所述第二圆环路径的圆心重叠,完成打孔路径的设计。
也就是说,根据所需打孔尺寸(即目标打孔尺寸),制定与目标打孔尺寸同样大小的第一圆环路径,选择内部填充,设定线角度为45°,线间距设定为0.01mm,选择平均分布填充线,选定对象(即填充后的第一圆环路径)整体计算,绕第一圆环路径走一次。再制定一个尺寸比所需打孔尺寸小0.05-0.2mm的第二圆环路径,选择内部填充,设定线角度为135°,与第一圆环路径的激光线互相垂直,线间距设定为0.01mm,选择平均分布填充线,选定对象(即填充后的第二圆环路径比所需打孔尺寸小0.05-0.2mm)整体计算,绕边走一次。将两个圆环路径圆心重叠,两个对象放在同一位置,从而完成打孔路径的设计。采用这种方法设计的路径可以制作出垂直度较好的可以满足测试需求的孔径。
所述步骤S300之后为:步骤S400、利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔。具体地,对焦完成后,开启激光镭雕机,进行打孔操作。
在一种实现方式中,所述陶瓷材料残余应力系统还包括:抽风装置,用于清除所述激光镭雕机在打孔时产生的粉末。所述步骤S400具体为:利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔,同时开启抽风装置。其中,所述激光镭雕机的激光功率为3-30W,聚焦后的脉冲光束直径为0.02-0.05mm,脉冲宽度为5-30ns,频率为5-30HZ。所述抽风装置吸力为1-10KPa,风量为10-100m3/h,所述抽风装置的抽风口与激光打孔位置之间的距离为0.1-1m。所述激光镭雕机采用非连续工作方式,按设定参数每次连续工作1-10个循环,每次作用深度为0.005-0.05mm,每次作用后间隔10-60秒再进行下一次工作,直至达到所述目标打孔尺寸的深度。也就是说,所述激光工作方式为分步作用,根据设定参数激光器采用非连续加工方式,每次作用深度0.005-0.05mm,每次作用后间隔10-60秒再进行下一次工作,如此往复工作直至孔的深度为1.2×D为止,完成打孔操作。应变采集器则记录最终稳定后的不同方向的应变值。
所述步骤S400之后为:步骤S500、打孔完成后,所述应变采集器将采集到的应变数据输入残余应力分析终端,所述残余应力分析终端计算得到残余应力结果数据。
在一种实施例中,请参阅图6,所述步骤S500具体包括:
步骤S510、打孔完成后,通过所述应变采集器采集到稳定后的应变值;
步骤S520、所述残余应力分析终端获取所述应变值;
步骤S530、所述残余应力分析终端中的残余应力分析软件根据所述弹性模量和泊松比计算得到残余应力结果数据。
具体地,打孔完成后,通过应变采集器采集到稳定后应变花的0°、45°和90°单个方向的应变值,结合输入的弹性模量和泊松比,通过计算公式,西格玛综合测试软件自动计算出残余应力结果数据,从而完成打孔处残余应力的检测。
在一种实现方式中,所述残余应力结果数据包括:最大主应力、最小主应力、0度夹角和等效应力。通过残余应力结果数据,解决了陶瓷材料残余应力的表征问题,用于指导生产,从而解决陶瓷材料后期使用过程中变形开裂等问题。
这样,本发明采用激光镭雕机进行打孔,速度快,打孔精准,激光为冷光源,打孔热影响小,结合工艺设置减小热影响并提升打孔精度,使得陶瓷残余应力检测的精度得到提高;采用本发明的检测方法检测陶瓷材料残余应力大小并用于陶瓷材料的生产指导,可以提高陶瓷产品的生产质量,解决后期使用过程中存在的风险及隐患;本发明所形成的陶瓷材料残余应力检测方法,可以准确的测试出陶瓷材料的残余应力大小,填补国内外陶瓷材料残余应力检测的空白。
本发明还公开了一种陶瓷材料残余应力检测系统,其特征在于,包括:
激光镭雕机,用于对待测陶瓷材料表面待贴应变花的目标位置进行打磨,以及按照目标打孔路径对待测陶瓷材料进行打孔;
应变采集器,用于在打磨完成后,与粘贴在所述目标位置对应的待测陶瓷材料表面的应变花连接,以及在打孔完成后,将采集到的应变数据输入残余应力分析终端;
残余应力分析终端,所述残余应力分析终端与所述应变采集器连接,用于采集释放的应变并计算得到残余应力结果数据;
抽风装置,用于清除所述激光镭雕机在打孔时产生的粉末;具体如上所述。
综上所述,本发明公开的一种陶瓷材料残余应力检测方法及系统,所述陶瓷材料残余应力检测方法基于陶瓷材料残余应力系统实现,所述陶瓷材料残余应力系统包括:激光镭雕机,应变采集器,以及与所述应变采集器连接的残余应力分析终端;所述陶瓷材料残余应力检测方法包括:利用激光镭雕机对待测陶瓷材料表面待贴应变花的目标位置进行打磨;打磨完成后,将应变花粘贴在所述目标位置对应的待测陶瓷材料表面,并将粘贴好的所述应变花与所述应变采集器连接;在激光镭雕机软件终端中根据所述应变花的打孔位置设计目标打孔路径;利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔;打孔完成后,所述应变采集器将采集到的应变数据输入残余应力分析终端,所述残余应力分析终端计算得到残余应力结果数据。本发明通过利用激光镭雕机对陶瓷材料进行打孔,并利用残余应力分析终端自动计算残余应力结果数据,实现了对陶瓷材料进行残余应力检测,可用于陶瓷材料的生产指导,进而提高陶瓷产品的生产质量,解决后期使用过程中存在的风险及隐患。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种陶瓷材料残余应力检测方法,所述陶瓷材料残余应力检测方法基于陶瓷材料残余应力系统实现,其特征在于,所述陶瓷材料残余应力系统包括:激光镭雕机,应变采集器,以及与所述应变采集器连接的残余应力分析终端;
    所述陶瓷材料残余应力检测方法包括:
    利用激光镭雕机对待测陶瓷材料表面待贴应变花的目标位置进行打磨;
    打磨完成后,将应变花粘贴在所述目标位置对应的待测陶瓷材料表面,并将粘贴好的所述应变花与所述应变采集器连接;
    在激光镭雕机软件终端中根据所述应变花的打孔位置设计目标打孔路径;
    利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔;
    打孔完成后,所述应变采集器将采集到的应变数据输入残余应力分析终端,所述残余应力分析终端计算得到残余应力结果数据。
  2. 根据权利要求1所述的陶瓷材料残余应力检测方法,其特征在于,所述利用激光镭雕机对待测陶瓷材料表面待贴应变花的目标位置进行打磨,包括:
    在激光镭雕机的工作台上放置冰盒,所述冰盒中盛装有冰块;
    将待测陶瓷材料放置在所述冰盒上,且待打孔位置位于所述冰盒的中间位置;
    打开激光镭雕机,对待测陶瓷材料表面待贴应变花的目标位置进行打磨;
    其中,打磨时的激光波长为355nm,脉冲宽度为5-30ns,频率为5-30HZ,功率为3-30W,打磨次数为1-5次。
  3. 根据权利要求1所述的陶瓷材料残余应力检测方法,其特征在于,所述打磨完成后,将应变花粘贴在所述目标位置对应的待测陶瓷材料表面,并将粘贴好的所述应变花与所述应变采集器连接,包括:
    打磨完成后,将应变花通过胶水粘贴在所述目标位置对应的待测陶瓷材料表面;
    利用环形端子固定住所述应变花的位置,并将所述应变花与所述应变采集器连接;
    其中,所述应变花包括三个应变单元,敏感栅角度分别为0°、45°和90°。
  4. 根据权利要求3所述的陶瓷材料残余应力检测方法,其特征在于,所述在激光镭雕机软件终端中根据所述应变花的打孔位置设计打孔路径之前,还包括:
    在所述残余应力分析终端上的残余应力分析软件中输入待测陶瓷材料的弹性模量和泊松比。
  5. 根据权利要求1所述的陶瓷材料残余应力检测方法,其特征在于,所述在激光镭雕机软件终端中根据所述应变花的打孔位置设计目标打孔路径,包括:
    打开激光镭雕机,将激光头位置调整至对准所述应变花的打孔位置;
    设计目标打孔路径,并进行对焦操作;
    其中,所述激光镭雕机的激光波长为355nm,且采用3D振镜扫描头,目标打孔尺寸的直径为0.5-3mm,目标打孔尺寸的深度为直径的1.2倍。
  6. 根据权利要求5所述的陶瓷材料残余应力检测方法,其特征在于,所述设计目标打孔路径具体包括:
    在激光镭雕机软件终端中根据目标打孔尺寸,制定与所述目标打孔尺寸的直径大小相同的第一圆环路径;
    选择内部填充,设定线角度为45°,设定线间距为0.01mm,选择平均分布填充线;
    选定填充后的第一圆环路径进行整体计算,沿所述第一圆环路径绕一次;
    制定第二圆环路径,所述第二圆环路径的直径小于所述目标打孔尺寸;
    选择内部填充,设定线角度为135°,与所述第一圆环路径的激光线互相垂直,设定线间距为0.01mm,选择平均分布填充线;
    选定填充后的第二圆环路径进行整体计算,沿所述第二圆环路径绕一次;
    将所述第一圆环路径和所述第二圆环路径的圆心重叠,完成打孔路径的设计。
  7. 根据权利要求6所述的陶瓷材料残余应力检测方法,其特征在于,所述陶瓷材料残余应力系统还包括:抽风装置,用于清除所述激光镭雕机在打孔时产生的粉末;
    所述利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔,包括:
    利用激光镭雕机,按照所述目标打孔路径对待测陶瓷材料进行打孔,同时开启抽风装置;
    所述激光镭雕机的激光功率为3-30W,聚焦后的脉冲光束直径为0.02-0.05mm,脉冲宽度为5-30ns,频率为5-30HZ;
    所述抽风装置吸力为1-10KPa,风量为10-100m3/h,所述抽风装置的抽风口与激光打孔位置之间的距离为0.1-1m;
    所述激光镭雕机采用非连续工作方式,按设定参数每次连续工作1-10个循环,每次作用深度为0.005-0.05mm,每次作用后间隔10-60秒再进行下一次工作,直至达到所述目标打孔尺寸的深度。
  8. 根据权利要求4所述的陶瓷材料残余应力检测方法,其特征在于,打孔完成后,所述应变采集器将采集到的应变数据输入残余应力分析终端,所述残余应力分析终端计算得到残余应力结果数据,包括:
    打孔完成后,通过所述应变采集器采集到稳定后的应变值;
    所述残余应力分析终端获取所述应变值;
    所述残余应力分析终端中的残余应力分析软件根据所述弹性模量和泊松比计算得到残余应力结果数据。
  9. 根据权利要求1所述的陶瓷材料残余应力检测方法,其特征在于,所述残余应力结果数据包括:最大主应力、最小主应力、0度夹角和等效应力。
  10. 一种陶瓷材料残余应力检测系统,其特征在于,包括:
    激光镭雕机,用于对待测陶瓷材料表面待贴应变花的目标位置进行打磨,以及按照目标打孔路径对待测陶瓷材料进行打孔;
    应变采集器,用于在打磨完成后,与粘贴在所述目标位置对应的待测陶瓷材料表面的应变花连接,以及在打孔完成后,将采集到的应变数据输入残余应力分析终端;
    残余应力分析终端,所述残余应力分析终端与所述应变采集器连接,用于采集释放的应变并计算得到残余应力结果数据;
    抽风装置,用于清除所述激光镭雕机在打孔时产生的粉末。
PCT/CN2023/076520 2022-08-16 2023-02-16 一种陶瓷材料残余应力检测方法及系统 WO2024036898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210979980.9A CN115389074A (zh) 2022-08-16 2022-08-16 一种陶瓷材料残余应力检测方法及系统
CN202210979980.9 2022-08-16

Publications (1)

Publication Number Publication Date
WO2024036898A1 true WO2024036898A1 (zh) 2024-02-22

Family

ID=84120524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076520 WO2024036898A1 (zh) 2022-08-16 2023-02-16 一种陶瓷材料残余应力检测方法及系统

Country Status (2)

Country Link
CN (1) CN115389074A (zh)
WO (1) WO2024036898A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389074A (zh) * 2022-08-16 2022-11-25 东莞市唯美陶瓷工业园有限公司 一种陶瓷材料残余应力检测方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008554A1 (en) * 2004-07-23 2006-01-26 Isis Innovation Limited Method of determining residual stress within an object
CN105067167A (zh) * 2015-09-24 2015-11-18 桂林电子科技大学 一种采用盲孔法测试大型机床用滑枕铸件残余应力分布的方法
JP2017111122A (ja) * 2015-12-15 2017-06-22 ポリプラスチックス株式会社 残留応力算出方法
CN107036744A (zh) * 2016-12-30 2017-08-11 西北工业大学 一种残余应力盲孔测试法
CN110095213A (zh) * 2019-05-31 2019-08-06 南京工程学院 一种薄板工件残余应力测试计算方法
CN111521312A (zh) * 2020-05-08 2020-08-11 中国工程物理研究院化工材料研究所 一种基于盲孔法标定光纤测量材料残余应力的方法
CN115389074A (zh) * 2022-08-16 2022-11-25 东莞市唯美陶瓷工业园有限公司 一种陶瓷材料残余应力检测方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008554A1 (en) * 2004-07-23 2006-01-26 Isis Innovation Limited Method of determining residual stress within an object
CN105067167A (zh) * 2015-09-24 2015-11-18 桂林电子科技大学 一种采用盲孔法测试大型机床用滑枕铸件残余应力分布的方法
JP2017111122A (ja) * 2015-12-15 2017-06-22 ポリプラスチックス株式会社 残留応力算出方法
CN107036744A (zh) * 2016-12-30 2017-08-11 西北工业大学 一种残余应力盲孔测试法
CN110095213A (zh) * 2019-05-31 2019-08-06 南京工程学院 一种薄板工件残余应力测试计算方法
CN111521312A (zh) * 2020-05-08 2020-08-11 中国工程物理研究院化工材料研究所 一种基于盲孔法标定光纤测量材料残余应力的方法
CN115389074A (zh) * 2022-08-16 2022-11-25 东莞市唯美陶瓷工业园有限公司 一种陶瓷材料残余应力检测方法及系统

Also Published As

Publication number Publication date
CN115389074A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN105067167B (zh) 一种采用盲孔法测试大型机床用滑枕铸件残余应力分布的方法
WO2024036898A1 (zh) 一种陶瓷材料残余应力检测方法及系统
CN105973177B (zh) 一种背钻残桩的无损检测方法及pcb无损检测方法
CN107389244A (zh) 一种激光盲孔残余应力检测装置及开发软件
JP2013015445A (ja) 非破壊検査方法
WO2013099433A1 (ja) シリカガラスルツボの製造条件の設定を支援する装置、シリカガラスルツボの製造用のモールドの製造条件の設定を支援する装置、シリカガラスルツボを用いたシリコン単結晶引上げの条件設定を支援する装置
CN106500564A (zh) 一种大直径小弧段薄壁钣金零件检测方法
CN102398220A (zh) 平面磨削的磨削区温度测量装置
CN205209415U (zh) 一种精密锥孔精度测量装置
CN102658422B (zh) 用在焊接过程中的测试块
CN204085362U (zh) 飞轮总成跳动综合检具
CN101398283A (zh) 一种大型工件的内外径量具
CN102155931A (zh) 基于温度场有限元分析仿真的亚表面损伤检测方法
CN113203467A (zh) 一种超声辅助加工负载振幅测量装置及方法
CN205561699U (zh) 一种盲孔位置度检具
CN113281148B (zh) 一种岩石蠕变破坏微裂纹贯通阶段起始时间辨识方法
TWI580939B (zh) Residual stress detection method for hard and brittle materials
CN108917620B (zh) 公路工程混凝土构件厚度的微破损检测装置
CN204240912U (zh) 一种连接器芯件检测装置
CN104949889A (zh) 一种超薄砂轮整体抗折测试方法及装置
CN202994041U (zh) 主传动印迹垫片选装测量工具
CN106052535A (zh) 一种用于锥度检测的工具及其实现方法
CN115752864A (zh) 一种单缝双应变材料工作应力的测试方法
CN202317994U (zh) 平面磨削的磨削区温度测量装置
CN111650283B (zh) 一种基于声发射技术的残余应力峰值位置定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853817

Country of ref document: EP

Kind code of ref document: A1