WO2024036560A1 - 一种修饰MXene的方法及其应用 - Google Patents

一种修饰MXene的方法及其应用 Download PDF

Info

Publication number
WO2024036560A1
WO2024036560A1 PCT/CN2022/113309 CN2022113309W WO2024036560A1 WO 2024036560 A1 WO2024036560 A1 WO 2024036560A1 CN 2022113309 W CN2022113309 W CN 2022113309W WO 2024036560 A1 WO2024036560 A1 WO 2024036560A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxene
amino acid
solution
modified
nanosheets
Prior art date
Application number
PCT/CN2022/113309
Other languages
English (en)
French (fr)
Inventor
万艳君
王晓允
廖思远
朱朋莉
胡友根
孙蓉
Original Assignee
中国科学院深圳先进技术研究院
深圳先进电子材料国际创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院, 深圳先进电子材料国际创新研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2022/113309 priority Critical patent/WO2024036560A1/zh
Publication of WO2024036560A1 publication Critical patent/WO2024036560A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to the field of material technology, and in particular, to a method of modifying MXene and its application.
  • MXenes Two-dimensional (2D) transition metal carbides/nitrides
  • A is usually extracted selectively from the three-dimensional MAX phase by a mixture of hydrofluoric acid or hydrochloric acid and lithium fluoride. layer obtained. It is divided into two categories according to whether there are terminal groups at its surface end, one is M n+1 X n , the other is M n+1 X n T , Nb, Mo, etc.), X represents C, N, T x is the terminal group (such as -OH, -O or -F), n is usually an integer between 1 and 3, and x cannot be accurately quantified.
  • MXene As a member of the two-dimensional materials, MXene has a two-dimensional layered structure similar to graphene, high conductivity, and large surface area. However, unlike graphene, MXene nanomaterials have abundant hydrophilic surface functional groups. , which makes it easy to process and prepare into composite materials. Therefore, it shows good application prospects in energy storage, sensors, electromagnetic interference shielding, water purification, photo/electrocatalysis and other fields. Ti 3 C 2 T x has excellent intrinsic conductivity (4500S cm -1 ) and is one of the most studied members of the MXenes family. It has great application prospects in the field of electromagnetic shielding.
  • MXene is limited by its high susceptibility to oxidation and poor mechanical properties.
  • Existing mechanisms show that water and oxygen will accelerate its oxidation to generate titanium oxide, and this oxidation process will destroy the structure of MXene, thereby degrading its original excellent properties. Therefore, how to solve the problem of MXene being easily oxidized and how to improve its mechanical properties to maintain the performance stability of MXene during use is a bottleneck in the development of MXene.
  • researchers have covered the surface of MXene with different substances to reduce the chance of MXene coming into contact with oxygen and water and prevent MXene from being oxidized.
  • the purpose of the present invention is to provide a method of modifying MXene and its application, so as to simultaneously improve the oxidation resistance and mechanical properties of MXene materials.
  • the present invention provides a method for modifying MXene.
  • the modified MXene is to modify MXene with amino acids.
  • the method for modifying MXene includes the following steps:
  • the modification is completed by mixing MXene nanosheets and amino acid molecules in the solution.
  • the time for the MXene nanosheets and amino acid molecules to be mixed and reacted in the solution to complete the modification is ⁇ 24 hours.
  • amino acid molecules are in excess relative to the MXene nanosheets
  • the excess is 0.01 mol to 0.03 mol of amino acid for every 0.1 g of MXene nanosheets in the solution;
  • the concentration of the amino acid molecules in the solution is 0.01 mol/L to 0.3 mol/L.
  • the MXene nanosheets are selected from at least one of multi-layer MXene nanosheets and single-layer MXene nanosheets.
  • the MXene is Ti 3 C 2 T x .
  • the Ti 3 C 2 T x is prepared by a liquid phase exfoliation method or a molten salt method
  • the liquid phase exfoliation method is by etching MAX phase Ti 3 AlC 2 powder, specifically including the following steps:
  • the etchant solution is a solution obtained by dissolving LiF in hydrochloric acid.
  • the amino acid molecule is selected from at least one of alanine, glycine, lysine, glutamic acid, arginine, histidine and cysteine.
  • the solution is a conventional choice in this field.
  • the solvent of the solution is an organic solvent or water; wherein the organic solvent includes any one or more of polar solvents and non-polar solvents, and the polar solvents include polar protic solvents and polar aprotic solvents. Any one or several solvents; the solution is preferably an aqueous solution.
  • the specific steps of the method for modifying MXene include:
  • the present invention provides the amino acid molecule modified MXene obtained by the above method.
  • the present invention provides an MXene film modified with amino acid molecules, which is prepared from the above-mentioned MXene modified with amino acid molecules.
  • the MXene film modified with amino acid molecules is prepared by mixing and reacting MXene nanosheets and amino acid molecules in a solution and then vacuum filtration.
  • the present invention provides the use of the above-mentioned amino acid molecule-modified MXene film in the preparation of electromagnetic shielding materials.
  • the present invention starts from the fundamental cause of the MXene oxidation reaction, mixes MXene and amino acid molecules in an aqueous solution, realizes modification, and obtains MXene modified by amino acid molecules, and utilizes hydrogen bonds and coordination bonds between amino acid molecules and MXene to realize amino acid molecules in Due to the adsorption on the surface of MXene, amino acid molecules occupy the attack reaction sites of water and oxygen during the oxidation process, thereby preventing the oxidation and degradation of MXene in water, improving its antioxidant capacity, and further improving the stability of the structure and performance of MXene in aqueous solutions and air. property, the preparation method is simple, fast and effective.
  • the modification method provided by the invention does not change the morphology and other inherent properties of MXene, and can not only greatly improve the oxidation resistance of the MXene material, but also the prepared film maintains its original good mechanical properties, and the electromagnetic shielding performance is basically unchanged or slightly down.
  • Figure 1A is a scanning electron microscope image of the newly prepared cysteine molecule-modified MXene in Example 1 of the present invention
  • Figure 1B is a scanning electron microscope image of the cysteine molecule-modified MXene aqueous solution prepared in Example 1 of the present invention after being placed at room temperature for 2 weeks;
  • Figure 2A is a scanning electron microscope image of newly prepared MXene without cysteine molecule modification in Example 1 of the present invention
  • Figure 2B is a scanning electron microscope image of MXene without cysteine molecule modification in Example 1 of the present invention after being left at room temperature for 2 weeks.
  • Figure 3 is a diagram showing the electromagnetic shielding performance of the newly prepared MXene film modified with cysteine molecules in Example 1 of the present invention and the MXene film modified with cysteine molecules prepared after being left for 2 weeks.
  • Figure 4 is a diagram of the electromagnetic shielding performance of the newly prepared MXene film in Example 1 of the present invention and the MXene film prepared after being left for 2 weeks.
  • Figure 5 is a mechanical property diagram of the cysteine molecule-modified MXene membrane prepared in Example 1 of the present invention.
  • MXene is modified with cysteine molecules.
  • the process is as follows:
  • the multi-layer and single-layer MXene nanosheets are peeled off using the liquid phase exfoliation method and transferred to a glass bottle to obtain the MXene sample to be processed; the steps of the liquid phase exfoliation method are: slowly add 2g of MAX phase Ti 3 AlC 2 powder into an etchant solution prepared by dissolving 2g LiF in 40mL 9M HCl solution, and stir at 35°C for 24 to 48 hours; after washing with deionized water, centrifuge at 3500rpm, discard the supernatant, and repeat washing and centrifugation until pH ⁇ 6 ; Then, the obtained precipitate is dispersed in deionized water under the protection of Ar gas, and shaken by a vortex mixer for 5 to 60 minutes, and centrifuged at 3500 rpm for 5 minutes to collect the Ti 3 C 2 T x MXene nanosheet sample;
  • Figure 1A and Figure 1B show the newly prepared cysteine molecule-modified MXene sample in this example and its scanning electron microscope image after being placed at room temperature for two weeks. It can be seen from the figure that the MXene sample prepared in this example After the obtained cysteine molecule-modified MXene was left at room temperature for 2 weeks, there was no sign of oxidation on the surface compared to when it was just prepared. Therefore, the preparation method provided in this embodiment can use the modification of cysteine molecules to improve the antioxidant capacity of MXene, and can maintain the stability of the structure and performance of MXene in aqueous solution.
  • FIG. 2A and Figure 2B show respectively the MXene sample without cysteine modification newly prepared by liquid phase exfoliation method and its scanning electron microscope image after being placed at room temperature for 2 weeks. It can be seen from the figure that the sample is the same as the one just prepared. In comparison, obvious signs of oxidation occurred on the surface of the MXene sample after two weeks.
  • the above mixed aqueous solution was vacuum filtered to form a film to obtain a cysteine molecule-modified MXene film, and the related properties of the film were tested.
  • the process is as follows:
  • This example also measured the electromagnetic shielding performance of a newly prepared MXene sample without cysteine modification by the liquid phase stripping method and the MXene film obtained by suction filtration after being placed at room temperature for 2 weeks.
  • the test method is the same as above. The results are shown in the figure. 4.
  • the electromagnetic shielding performance of the MXene film modified with cysteine molecules prepared in this example is not only better than that of the MXene film without cysteine molecule modification, but also has good performance in the air. After being placed for 2 weeks, its electromagnetic shielding performance can be well maintained without basically declining, while the electromagnetic shielding performance of the MXene film without cysteine molecule modification has significantly declined. Therefore, the present invention
  • the modification methods provided lay the foundation for the application of MXene materials in electromagnetic shielding.
  • the present invention also tested the mechanical properties of the MXene film modified with cysteine molecules.
  • the tensile test showed that the use of cysteine molecule modification can greatly improve the mechanical properties of the MXene material.
  • MXene is modified with histidine.
  • the process is as follows:
  • liquid phase exfoliation method uses the liquid phase exfoliation method to peel off the multi-layer and single-layer MXene nanosheets and transfer them to glass bottles to obtain the MXene samples to be processed; the steps of the liquid phase exfoliation method are the same as in Example 1;
  • alanine molecules are used to modify MXene.
  • the process is as follows:
  • liquid phase exfoliation method uses the liquid phase exfoliation method to peel off the multi-layer and single-layer MXene nanosheets and transfer them to glass bottles to obtain the MXene samples to be processed; the steps of the liquid phase exfoliation method are the same as in Example 1;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

提供一种修饰MXene的方法及其应用。其中,修饰MXene为用氨基酸对MXene进行修饰,包括如下步骤:将MXene纳米片与氨基酸分子于溶液中混合即完成修饰。从MXene氧化反应的根本原因入手,利用氨基酸分子与MXene间的氢键和配位键作用,实现氨基酸分子在MXene表面的吸附,占据氧化过程中水和氧的进攻反应位点,进而阻止MXene在水中的氧化和降解,提高其抗氧化能力,进一步提高结构和性能的稳定性。该修饰方法不改变MXene的形貌等固有属性,不仅能够大幅度提高MXene材料的抗氧化性,且制备的薄膜保持了原有的良好机械性能,且电磁屏蔽性能基本无改变或略微下降。

Description

一种修饰MXene的方法及其应用 技术领域
本发明涉及材料技术领域,尤其涉及一种修饰MXene的方法及其应用。
背景技术
二维(2D)过渡金属碳化物/氮化物(MXenes)因其卓越的性能受到越来越广泛的关注,通常由氢氟酸或盐酸和氟化锂的混合物从三维MAX相中选择性提取A层而获得。根据其表面末端是否有末端基团分为两类,一类是M n+1X n,另一类是M n+1X nT x,其中,M代表过渡金属(如Ti、V、Cr、Nb、Mo等),X代表C、N,T x是末端基团(如-OH、-O或-F),n通常是1~3之间的整数,而x尚无法进行准确定量。作为二维材料中的一员,MXene具有和石墨烯类似的二维层状结构,高电导率以及大表面积的特点,但与石墨烯不同的是,MXene纳米材料具有丰富的亲水性表面官能团,这使其易于加工和制备成复合材料。因此,在储能、传感器、电磁干扰屏蔽、水净化、光/电催化等多个领域展现出良好的应用前景。Ti 3C 2T x具有出色的本征电导率(4500S cm -1),是MXenes家族中被研究较多的一种,在电磁屏蔽领域有着巨大的应用前景。
然而,MXene实际应用受到其极易氧化的和机械性能差的限制。已有的机理表明,水和氧气会加速其氧化,生成钛的氧化物,且该氧化过程会破坏MXene的结构,进而使其原有的优良性质退化。因此,如何解决MXene易被氧化的问题以及如何提高其机械性能,从而维持MXene在使用时的性能稳定性,是MXene发展的瓶颈问题。为了解决上述MXene易被氧化的问题,研究者们通过在MXene表面覆盖不同的物质,以降低MXene与氧气和水的接触机会,阻止MXene被氧化。但这类方法只是解决了MXene的氧化问题,并没有同时解决MXene的机械性能差的问题。因此,寻找新的解决方案,同时提高MXene的稳定性和机械性能,是MXene发展的当务之急。
发明内容
针对上述技术问题,本发明的目的在于提供一种修饰MXene的方法及其应用,以同时提升MXene材料的抗氧化性和机械性能。
为实现上述目的,本发明采取的技术方案为:
一方面,本发明提供一种修饰MXene的方法,所述修饰MXene为用氨基酸对MXene进行修饰,所述修饰MXene的方法包括如下步骤:
将MXene纳米片与氨基酸分子于溶液中混合反应即完成修饰。
作为优选地实施方式,所述MXene纳米片与氨基酸分子于溶液中混合反应完成修饰的时间≥24h。
作为优选地实施方式,所述氨基酸分子相对于所述MXene纳米片是过量的;
在某些具体的实施方式中,所述过量为溶液中每0.1g MXene纳米片对应0.01mol~0.03mol氨基酸;
优选地,所述氨基酸分子在溶液中的浓度为0.01mol/L~0.3mol/L。
作为优选地实施方式,所述MXene纳米片选自多层MXene纳米片和单层MXene纳米片中的至少一种。
作为优选地实施方式,所述MXene为Ti 3C 2T x
作为优选地实施方式,所述Ti 3C 2T x由液相剥离法或熔融盐法制备得到;
优选地,所述液相剥离法为通过蚀刻MAX相Ti 3AlC 2粉末,具体包括以下步骤:
将MAX相Ti 3AlC 2粉末加入蚀刻剂溶液中,搅拌24~48h后,离心洗涤至pH≥6;
优选地,所述蚀刻剂溶液为LiF溶于盐酸后得到的溶液。
作为优选地实施方式,所述氨基酸分子选自丙氨酸、甘氨酸、赖氨酸、谷氨酸、精氨酸、组氨酸和半胱氨酸中的至少一种。
在本发明的技术方案中,所述溶液为本领域常规选择。所述溶液的溶剂为有机溶剂或水;其中,所述有机溶剂包括极性溶剂和非极性溶剂中的任意一种或几种,所述极性溶剂包括极性质子溶剂和极性非质子溶剂中的任意一种或几种;所述溶液优选为水溶液。
在某些具体的实施方式中,所述修饰MXene的方法的具体步骤包括:
将剥离的多层MXene纳米片和/或单层MXene纳米片分散于溶剂中,然后加入氨基酸溶液,混合均匀静置后,即得到所述氨基酸分子修饰的MXene。
又一方面,本发明提供上述方法得到的氨基酸分子修饰的MXene。
又一方面,本发明提供一种氨基酸分子修饰的MXene薄膜,所述氨基酸分子修饰的MXene薄膜由上述氨基酸分子修饰的MXene制备得到。
在某些具体的实施方式中,所述氨基酸分子修饰的MXene薄膜由MXene纳米片与氨基酸分子于溶液中混合反应后真空抽滤制备得到。
又一方面,本发明提供上述氨基酸分子修饰的MXene薄膜在制备电磁屏蔽材料中的应用。
上述技术方案具有如下优点或者有益效果:
本发明从MXene氧化反应的根本原因入手,将MXene与氨基酸分子在水溶液中混合,实现修饰,得到氨基酸分子修饰的MXene,利用氨基酸分子与MXene间的氢键和配位键作用,实现氨基酸分子在MXene表面的吸附,氨基酸分子占据氧化过程中水和氧的进攻反应位点,进而阻止MXene在水中的氧化和降解,提高其抗氧化能力,进一步提高MXene在水溶液和空气中的结构和性能的稳定性,该制备方法简单、快捷且有效。
本发明提供的修饰方法,不改变MXene的形貌等固有属性,不仅能够大幅度提高MXene材料的抗氧化性,且制备的薄膜保持了原有的良好机械性能,且电磁屏蔽性能基本无改变或略微下降。
附图说明
图1A是本发明实施例1中新制的半胱氨酸分子修饰的MXene的扫描电镜图;
图1B是本发明实施例1中制得的半胱氨酸分子修饰的MXene水溶液在室温下放置2周后的扫描电镜图;
图2A是本发明实施例1中新制的未经半胱氨酸分子修饰的MXene的扫描电镜图;
图2B是本发明实施例1中未经半胱氨酸分子修饰的MXene在室温下放置2周后的扫描电镜图。
图3是本发明实施例1中新制的半胱氨酸分子修饰的MXene膜和放置2周后制得的半胱氨酸分子修饰得MXene膜的电磁屏蔽性能图。
图4是本发明实施例1中新制的MXene膜和放置2周后制得MXene膜的电磁屏蔽性能图。
图5是本发明实施例1中制得的半胱氨酸分子修饰的MXene膜的机械性能图。
具体实施方式
下述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。因此,以下提供的本发明实施例中的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
在本发明中,若非特指,所有的设备和原料等均可从市场购得或是本行业常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
实施例1:
本实施例中以半胱氨酸分子对MXene进行修饰,过程如下:
配制240毫升浓度为0.1摩尔每升的半胱氨酸水溶液作为样品处理液;
利用液相剥离法剥离出多层和单层MXene纳米片并转移到玻璃瓶中,得到待处理的MXene样品;其中,液相剥离法的步骤为:将2g MAX相Ti 3AlC 2粉末缓慢加至由2g LiF溶于40mL 9M的HCl溶液中制备的蚀刻剂溶液中,35℃下搅拌24~48h;用去离子水洗涤后,3500rpm离心,弃上清液后重复洗涤、离心直至pH≥6;然后,将得到的沉淀在Ar气体保护下分散在去离子水中,并通过涡旋混合器振荡5~60分钟,3500rpm离心5分钟收集得到Ti 3C 2T x MXene纳米片样品;
取Ti 3C 2T x MXene纳米片样品分散于去离子水中,然后加入上述样品处理液,最终的混合液中,Ti 3C 2T x MXene纳米片的浓度为0.1mg/mL,半胱氨酸的浓度为0.1mol/L,混匀后静置1天,即得到含有半胱氨酸分子修饰的MXene的水溶液。
将该半胱氨酸分子修饰的MXene样品于室温下保存,观察其2周内的氧化迹象,并将其与未经半胱氨酸分子修饰的MXene样品进行比较:
图1A和图1B所示为别为本实施例中新制的半胱氨酸分子修饰的MXene样品及其在室温下放置两周后的扫描电镜图,从图中可以看出,本实施例制得的半胱氨酸分子修饰的MXene室温下放置2周后,与其刚制备出来相比,表面没有发生任何氧化的迹象。因此,本实施例提供的制备方法能够利用半胱氨酸分子的修饰提高MXene的抗氧化能力,在水溶液中能够保持MXene结构和性能的稳定。
图2A和图2B所示分别为由液相剥离法新制的未经半胱氨酸修饰的MXene样品及其在室温下放置2周后的扫描电镜图,从图中可以看出,与刚制备出相比,两周后MXene样品的表面发生了明显的氧化迹象。
本实施例还将上述混匀后静置的水溶液真空抽滤成膜得到了半胱氨酸分子修饰的MXene薄膜,并测试了该薄膜的相关性能,过程如下:
将新制的半胱氨酸修饰的MXene水溶液以及放置2周后的水溶液抽滤成膜,分别测试其电磁屏蔽性能,使用Keysight PNA-E5227B矢量网络分析仪对 薄膜的电磁屏蔽性能进行测试,S参数(S11和S21)由Keysight&N5227B矢量网络分析仪在X波段频率范围(8.2-12.4GHz)中采集得到,EMI SE、A、R和T是使用以下公式从S参数计算得出的,测试结果见图3。
R=|S 11| 2 T=|S 21| 2电磁波吸收系数A:A=1﹣R﹣T
反射效率SE R:SE R=﹣10lg(1-R)
吸收效率SE A
Figure PCTCN2022113309-appb-000001
屏蔽效能EMI SE:SE T=SE R+SE A
本实施例还测定了由液相剥离法新制的未经半胱氨酸修饰的MXene样品及其在室温下放置2周后抽滤得到的MXene膜的电磁屏蔽性能,测试方法同上,结果见图4。
从图3和图4中可以看出,本实施例制得的半胱氨酸分子修饰的MXene膜电磁屏蔽性能不仅优于未经半胱氨酸分子修饰的MXene膜,并且在空气中具有良好的稳定性,放置2周后,其电磁屏蔽性能能够进行良好的保持,基本没有下降,而未经半胱氨酸分子修饰的MXene膜的电磁屏蔽性能则发生了明显的下降,因此,本发明提供的修饰方法为MXene材料在电磁屏蔽中的应用奠定了基础。
本发明还测试了半胱氨酸分子修饰的MXene膜的机械性能,通过拉伸测试表明,利用半胱氨酸分子修饰能够大幅提高MXene材料的机械性能。
实施例2
本实施例中以组氨酸对MXene进行修饰,过程如下:
配制240毫升浓度为0.1摩尔每升的组氨酸水溶液作为样品处理液;
利用液相剥离法剥离出多层和单层MXene纳米片并转移到玻璃瓶中,得到待处理的MXene样品;液相剥离法步骤同实施例1;
取Ti 3C 2T x MXene纳米片样品分散于去离子水中,然后加入上述样品处理液,最终的混合液中,Ti 3C 2T x MXene纳米片的浓度为0.1mg/mL,组氨酸的浓度为0.1mol/L,混匀后静置24h,得到组氨酸分子修饰的MXene。
实施例3
本实施例中以丙氨酸分子对MXene进行修饰,过程如下:
配制240毫升浓度为0.1摩尔每升的丙氨酸水溶液作为样品处理液;
利用液相剥离法剥离出多层和单层MXene纳米片并转移到玻璃瓶中,得到待处理的MXene样品;液相剥离法步骤同实施例1;
取Ti 3C 2T x MXene纳米片样品分散于去离子水中,然后加入上述样品处理液,最终的混合液中,Ti 3C 2T x MXene纳米片的浓度为0.1mg/mL,丙氨酸的浓度为0.1mol/L,混匀后静置24h,得到丙氨酸分子修饰的MXene。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (13)

  1. 一种修饰MXene的方法,其特征在于,所述修饰MXene为用氨基酸对MXene进行修饰;所述修饰MXene的方法包括如下步骤:
    将MXene纳米片与氨基酸分子于溶液中混合反应即完成修饰。
  2. 根据权利要求1所述的方法,其特征在于,所述MXene纳米片与氨基酸分子于溶液中混合反应完成修饰的时间≥24h。
  3. 根据权利要求1所述的方法,其特征在于,所述溶液中每0.1g MXene纳米片对应0.01mol~0.03mol氨基酸。
  4. 根据权利要求3所述的方法,其特征在于,所述氨基酸分子在溶液中的浓度为0.01mol/L~0.3mol/L。
  5. 根据权利要求1所述的方法,其特征在于,所述MXene纳米片选自多层MXene纳米片和单层MXene纳米片中的至少一种。
  6. 根据权利要求1所述的方法,其特征在于,所述MXene为Ti 3C 2T x
  7. 根据权利要求6所述的方法,其特征在于,所述Ti 3C 2T x由液相剥离法或熔融盐法制备得到。
  8. 根据权利要求7所述的方法,其特征在于,所述液相剥离法为通过蚀刻MAX相Ti 3AlC 2粉末,具体包括以下步骤:
    将MAX相Ti 3AlC 2粉末加入蚀刻剂溶液中,搅拌24~48h后,离心洗涤至pH≥6。
  9. 根据权利要求8所述的方法,其特征在于,所述蚀刻剂溶液为LiF溶于盐酸后得到的溶液。
  10. 根据权利要求1所述的方法,其特征在于,所述氨基酸分子选自丙氨酸、甘氨酸、赖氨酸、谷氨酸、精氨酸、组氨酸和半胱氨酸中的至少一种。
  11. 权利要求1-10任一所述的方法得到的氨基酸分子修饰的MXene。
  12. 一种氨基酸分子修饰的MXene薄膜,其特征在于,所述氨基酸分子修饰的MXene薄膜由权利要求11所述的氨基酸分子修饰的MXene制备得到。
  13. 权利要求12所述的氨基酸分子修饰的MXene薄膜在制备电磁屏蔽材料中的应用。
PCT/CN2022/113309 2022-08-18 2022-08-18 一种修饰MXene的方法及其应用 WO2024036560A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113309 WO2024036560A1 (zh) 2022-08-18 2022-08-18 一种修饰MXene的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113309 WO2024036560A1 (zh) 2022-08-18 2022-08-18 一种修饰MXene的方法及其应用

Publications (1)

Publication Number Publication Date
WO2024036560A1 true WO2024036560A1 (zh) 2024-02-22

Family

ID=89940314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113309 WO2024036560A1 (zh) 2022-08-18 2022-08-18 一种修饰MXene的方法及其应用

Country Status (1)

Country Link
WO (1) WO2024036560A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490284A (zh) * 2018-12-03 2019-03-19 青岛大学 一种基于金纳米颗粒和二碳化钛MXenes的双重催化鲁米诺电化学发光生物传感器
CN115188928A (zh) * 2022-07-26 2022-10-14 西安电子科技大学 一种氮掺杂的MXene硫正极的制备方法
CN115394923A (zh) * 2022-07-11 2022-11-25 华南理工大学 一种基于氨基酸修饰MXene为电子传输层的有机太阳能电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490284A (zh) * 2018-12-03 2019-03-19 青岛大学 一种基于金纳米颗粒和二碳化钛MXenes的双重催化鲁米诺电化学发光生物传感器
CN115394923A (zh) * 2022-07-11 2022-11-25 华南理工大学 一种基于氨基酸修饰MXene为电子传输层的有机太阳能电池及其制备方法
CN115188928A (zh) * 2022-07-26 2022-10-14 西安电子科技大学 一种氮掺杂的MXene硫正极的制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 October 2017, HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, CN, article CHEN, CHI: "Surface and Interface Engineering of Transition-metal Compounds for Electrochemical Energy Storage", pages: 1 - 126, XP009552842 *
"Master's Thesis", 1 June 2021, HARBIN INSTITUTE OF TECHNOLOGY, CN, article XU, WENBIN: "Preparation of Surface Modified MXene and Its Application in Lithium Sulfur Batteries", pages: 1 - 80, XP009552706, DOI: 10.27061/d.cnki.ghgdu.2021.002862 *
CHEN CHI, BOOTA MUHAMMAD, URBANKOWSKI PATRICK, ANASORI BABAK, MIAO LING, JIANG JIANJUN, GOGOTSI YURY: "Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 6, no. 11, 1 January 2018 (2018-01-01), GB , pages 4617 - 4622, XP093140708, ISSN: 2050-7488, DOI: 10.1039/C7TA11347A *
GAN DEFU, HUANG QIANG, DOU JIBO, HUANG HONGYE, CHEN JUNYU, LIU MEIYING, WEN YUANQING, YANG ZHENYU, ZHANG XIAOYONG, WEI YEN: "Bioinspired functionalization of MXenes (Ti3C2TX) with amino acids for efficient removal of heavy metal ions", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM , NL, vol. 504, 1 February 2020 (2020-02-01), Amsterdam , NL , pages 144603, XP093140724, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2019.144603 *
LI SIHAO, HUANG HAOWEI, CHEN FAN, HE XIAOLING, MA YANQI, ZHANG LI, SHENG XINXIN, CHEN YING, SHCHUKINA ELENA, SHCHUKIN DMITRY: "Reinforced anticorrosion performance of waterborne epoxy coating with eco-friendly L-cysteine modified Ti3C2Tx MXene nanosheets", PROCESS IN ORGANIC COATINGS, ELSEVIER BV, NL, vol. 161, 1 December 2021 (2021-12-01), NL , pages 106478, XP093140726, ISSN: 0300-9440, DOI: 10.1016/j.porgcoat.2021.106478 *
LIU, ZHENHUI ET AL.: "L-lysine functionalized Ti3C2Tx coated polyurethane sponge for high-throughput oil–water separation", COLLOIDS AND SURFACES A:PHYSICOCHEMICAL AND ENGINEERING ASPECTS, vol. 640, 22 January 2022 (2022-01-22), pages 2 - 3, XP086970724, ISSN: 0927-7757, DOI: 10.1016/j.colsurfa.2022.128396 *
WEN-FENG QIN, FU JIA-WEI;WANG XIN-YUAN;LI YA-YUN;FAN YU-HANG: "Preparation and electromagnetic shielding performance of transition metal carbide Ti3C2Tx", SCIENCE TECHNOLOGY AND ENGINEERING, vol. 21, no. 2, 18 January 2021 (2021-01-18), pages 486 - 489, XP093140714 *
YONGZHU CAI, HE PENG; SHU JINCHENG; CAO MAOSHENG: "Structure, electromagnetic properties and microwave absorption performance of two-dimensional transition metal carbides", JOURNAL OF NATURAL SCIENCE OF HEILONGJIANG UNIVERSITY, vol. 36, no. 1, 25 February 2019 (2019-02-25), pages 47 - 60, XP093140722 *

Similar Documents

Publication Publication Date Title
CN110783536B (zh) 普鲁士蓝类似物/MXene复合电极材料及其原位制备方法、应用
CN103523773B (zh) 一种高导电石墨烯和石墨烯导电膜及其制备方法
KR20120070973A (ko) 질소가 도핑된 투명 그래핀 필름 및 이의 제조방법
CN107934965B (zh) 一种Ti3C2-Co(OH)(CO3)0.5纳米复合材料的制备方法
CN108511633A (zh) 一种无机钙钛矿发光二极管及其制备方法
CN112047386A (zh) 一种加热改性MXene/四氧化三铁复合吸波材料及制备方法
CN105883906A (zh) 一种纳米二氧化锡与石墨烯复合材料及其制备方法与应用
CN113173598B (zh) 一种钒基MXene原位衍生硫化物的方法
CN108707997A (zh) 还原氧化石墨烯包覆铜纳米线导电复合材料的制备方法
CN104387446A (zh) 一种石墨烯分散剂及石墨烯分散液的制备方法
CN110752353B (zh) 一种柔性自支撑二硒化锡/碳纳米管复合薄膜电极材料及其制备方法和应用
WO2024036560A1 (zh) 一种修饰MXene的方法及其应用
CN115385337A (zh) 一种修饰MXene的方法及其应用
CN108615617A (zh) 一种石墨烯/pedot:pss复合纳米自支撑薄膜的制备方法及其产品和应用
CN110407183B (zh) 一种碲纳米棒,储能器件及其制备方法,制备碲纳米材料的方法
CN109286018B (zh) 一种超薄二维碳片的制备方法
CN115161027B (zh) 钙钛矿埋底界面材料、制备方法及应用
WO2024040433A1 (zh) 钙钛矿太阳能电池及其制备方法,以及用电装置
CN106830072B (zh) 一种二氧化钛纳米线阵列的制备方法
CN106847951B (zh) 一种碳量子点负载硫氰酸亚铜光电薄膜及其制备方法
CN109133039A (zh) 一种自组装石墨烯纳米薄膜及其制备方法和应用
CN105777788A (zh) 一种铕基金属有机框架六棱片及其制备方法与应用
CN109193013B (zh) 基于喷雾技术制备磷酸掺杂的凯夫拉纤维与碲化镉纳米晶复合的高温质子交换膜的方法
TWI449672B (zh) 具有花狀結構的氧化鋅奈米材料及其製備方法以及染料敏化太陽能電池用之電極
CN1804149A (zh) 四方型结构SnO2单分散纳米单晶及合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955340

Country of ref document: EP

Kind code of ref document: A1