CN108615617A - 一种石墨烯/pedot:pss复合纳米自支撑薄膜的制备方法及其产品和应用 - Google Patents

一种石墨烯/pedot:pss复合纳米自支撑薄膜的制备方法及其产品和应用 Download PDF

Info

Publication number
CN108615617A
CN108615617A CN201810401715.6A CN201810401715A CN108615617A CN 108615617 A CN108615617 A CN 108615617A CN 201810401715 A CN201810401715 A CN 201810401715A CN 108615617 A CN108615617 A CN 108615617A
Authority
CN
China
Prior art keywords
graphene
pedot
composite nano
pss
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810401715.6A
Other languages
English (en)
Inventor
李猛
王佳程
邹婧
孙宽
张立阳
周永利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201810401715.6A priority Critical patent/CN108615617A/zh
Publication of CN108615617A publication Critical patent/CN108615617A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法及其产品和应用,具体方法是先将氧化石墨烯溶于水中,搅拌均匀,制得氧化石墨烯溶液,然后将PEDOT:PSS溶液滴入所得氧化石墨烯溶液中,搅拌均匀,然后将混合液缓慢滴加在滤膜上,真空抽滤;最后将石墨烯/PEDOT:PSS复合纳米自支撑薄膜烘干后从滤膜剥离下来,放入管式加热炉进行热处理;该方法简单,制得的复合膜石墨烯有序排列,呈层状结构,具有优异的化学性能,在柔性固态超级电容器,柔性锂离子电池等方面有着广泛的应用。

Description

一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法及其 产品和应用
技术领域
本发明属于纳米储能材料领域,涉及一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制 备方法,还涉及由该方法制得的产品和应用。
背景技术
石墨烯独特的二维结构和出色的理化特性,使其在超级电容器中的应用具有极大的潜力。 与传统的多孔碳材料相比,石墨烯具有非常高的导电性,大的比表面积及大量的层间构造, 从而成为双电层电容器有前景的电极材料选择和制备赝电容电极活性成分的载体材料。但由 于π-π堆积和范德华力的存在,导致石墨烯易团聚,从而降低了石墨烯的比表面积和比容量。 因此,急需一种解决石墨烯易团聚的方法,来提高石墨烯基电极材料的比表面积和比容量。 此外本方法制备的薄膜相较于纯石墨烯薄膜,导电性和机械性能有明显增强。
发明内容
有鉴于此,本发明的目的之一在于提供一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的 制备方法;本发明的目的之二在于提供由上述方法制得的石墨烯/PEDOT:PSS复合纳米自支 撑薄膜;本发明的目的之三在于提供石墨烯/PEDOT:PSS复合纳米自支撑薄膜的应用。
为达到上述目的,本发明提供如下技术方案:
1、一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,具体步骤如下:
(1)将氧化石墨烯溶于水中,搅拌均匀,制得氧化石墨烯溶液,记为样品1;
(2)将PEDOT:PSS溶液滴入步骤(1)所得氧化石墨烯溶液中,搅拌均匀,记为样品2;
(3)将步骤(2)制得的样品2缓慢滴加在滤膜上,真空抽滤;
(4)将抽滤后的材料烘干后从滤膜剥离下来,放入管式加热炉进行热处理,得石墨烯 /PEDOT:PSS复合纳米自支撑薄膜。
优选的,步骤(1)中,所述氧化石墨烯溶液中氧化石墨烯的浓度为1~5mg/ml;搅拌时 间为12~24小时。
优选的,所述氧化石墨烯溶液中氧化石墨烯的浓度为2mgl/ml,搅拌时间为24小时。
优选的,步骤(2)中,所述PEDOT:PSS溶液加入量按PEDOT:PSS溶液与所述氧化 石墨烯溶液的体积比为1~4:20加入。
优选的,步骤(2)中,所述搅拌为搅拌30~180min。
6.根据权利要求1所述石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,其特征在 于:步骤(4)中,所述热处理条件为50~150℃处理30min。
7.由所述的制备方法制得的石墨烯/PEDOT:PSS复合纳米自支撑薄膜。
8.所述石墨烯/PEDOT:PSS复合纳米自支撑薄膜在制备电极材料或超级电容器中的应用。
本发明的有益效果在于:一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,该 制备方法简单,可在常温下进行,并且本发明使用真空抽滤自组装法可实现氧化石墨烯片的 有序排列,易于得到层状结构比较好的纳米复合膜;本发明在制备过程中PEDOT:PSS与氧 化石墨烯复合,由于PEDOT具有较高的电导率、较宽的电压窗口、高容量、较高的电荷移 动性、良好的热稳定性以及良好的化学稳定性,因此制得的产品具有优良的电化学性能,可 以作为储能材料在柔性固态超级电容器,柔性锂离子电池等方面广泛应用。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为石墨烯/PEDOT:PSS复合纳米自支撑薄膜实物图。
图2为石墨烯/PEDOT:PSS复合纳米自支撑薄膜横截面的SEM图。
图3为石墨烯/PEDOT:PSS复合纳米自支撑薄膜拉伸试验结果。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
实施例1
一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,具体步骤如下:
(1)将40mg氧化石墨烯溶于20mL去离子水中,常温磁力搅拌24h,得氧化石墨烯 溶液,记为样品1;
(2)将4μL PEDOT:PSS溶液滴入步骤(1)所得氧化石墨烯溶液中,搅拌60min, 记为样品2;
(3)将步骤(2)制得的样品2缓慢滴加在滤膜上,利用真空抽滤自组装法抽制薄膜;
(4)将抽制的薄膜待烘干后从滤膜剥离下来,放入管式加热炉50~150℃热处理30min。
实施例2
一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,具体步骤如下:
(1)将20mg氧化石墨烯溶于20mL去离子水中,常温磁力搅拌24h,得氧化石墨烯 溶液,记为样品1;
(2)将2μL PEDOT:PSS溶液滴入步骤(1)所得氧化石墨烯溶液中,搅拌60min,记 为样品2。
(3)将步骤(2)制得的样品2缓慢滴加在滤膜上,利用真空抽滤自组装法抽制薄膜;
(4)将抽制的薄膜待烘干后从滤膜剥离下来,放入管式加热炉50~150℃热处理30min。
实施例3
一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,具体步骤如下:
(1)将100mg氧化石墨烯溶于20mL去离子水中,常温磁力搅拌24h,得氧化石墨烯溶液,记为样品1;
(2)将4μL PEDOT:PSS溶液滴入步骤(1)所得氧化石墨烯溶液中,搅拌60min,记 为样品2;
(3)将步骤(2)制得的样品2缓慢滴加在滤膜上,利用真空抽滤自组装法抽制薄膜;
(4)将抽制的薄膜待烘干后从滤膜剥离下来,放入管式加热炉50~150℃热处理30min。
实施例4
一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,具体步骤如下:
(1)将40mg氧化石墨烯溶于20mL去离子水中,常温磁力搅拌24h,得氧化石墨烯 溶液,记为样品1;
(2)将1μL PEDOT:PSS溶液滴入步骤(1)所得氧化石墨烯溶液中,搅拌60min,记 为样品2;
(3)将样品2缓慢滴加在滤膜上,利用真空抽滤自组装法抽制薄膜;
(4)将抽制的薄膜待烘干后从滤膜剥离下来,放入管式加热炉50~150℃热处理30min。
检测薄膜的电化学性能,结果如表1所示,结果显示制得薄膜相较于氧化石墨烯薄膜, 电导率有极大的提高,表明电化学性能优良,可在柔性固态超级电容器,柔性锂离子电池等 方面广泛的应用。
表1、薄膜的电化学性能
制得的石墨烯/PEDOT:PSS复合纳米自支撑薄膜如图1所示,薄膜截面在扫描电子显微 镜下观察到的图像如图2所示。结果显示,制得的石墨烯/PEDOT:PSS复合纳米自支撑薄膜 石墨烯有序排列,层状结构好。制得的石墨烯/PEDOT:PSS复合纳米自支撑薄膜拉伸试验结 果如上图3所示,实验证明在相同应变下石墨烯/PEDOT:PSS复合纳米自支撑薄膜拉伸强度 为44.2MPa,氧化石墨烯薄膜拉伸强度仅为23.6MPa,证实我们所制备的石墨烯/PEDOT:PSS 复合纳米自支撑薄膜机械性能有显著提升。
制得的石墨烯/PEDOT:PSS复合纳米自支撑薄膜机械性能展示。结果显示,制得的石墨 烯/PEDOT:PSS复合纳米自支撑薄膜有比较好的机械性能。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优 选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细 节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (8)

1.一种石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,其特征在于:具体步骤如下:
(1)将氧化石墨烯溶于水中,搅拌均匀,制得氧化石墨烯溶液,记为样品1;
(2)将PEDOT:PSS溶液滴入步骤(1)所得氧化石墨烯溶液中,搅拌均匀,记为样品2;
(3)将步骤(2)制得的样品2缓慢滴加在滤膜上,真空抽滤;
(4)将抽滤后的材料烘干后从滤膜剥离下来,放入管式加热炉进行热处理,得石墨烯/PEDOT:PSS复合纳米自支撑薄膜。
2.根据权利要求1所述石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,其特征在于:步骤(1)中,所述氧化石墨烯溶液中氧化石墨烯的浓度为1~5mg/ml;搅拌时间为12~24小时。
3.根据权利要求2所述石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,其特征在于:所述氧化石墨烯溶液中氧化石墨烯的浓度为2mg/ml,搅拌时间为24小时。
4.根据权利要求1所述石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,其特征在于:步骤(2)中,所述PEDOT:PSS溶液加入量按PEDOT:PSS溶液与所述氧化石墨烯溶液的体积比为1~4:200加入。
5.根据权利要求1所述石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,其特征在于:步骤(2)中,所述搅拌为搅拌30~180min。
6.根据权利要求1所述石墨烯/PEDOT:PSS复合纳米自支撑薄膜的制备方法,其特征在于:所述热处理条件为50~300℃处理30min。
7.由权利要求1~6任一项所述的制备方法制得的石墨烯/PEDOT:PSS复合纳米自支撑薄膜。
8.权利要求7所述石墨烯/PEDOT:PSS复合纳米自支撑薄膜在制备电极材料或超级电容器中的应用。
CN201810401715.6A 2018-04-28 2018-04-28 一种石墨烯/pedot:pss复合纳米自支撑薄膜的制备方法及其产品和应用 Pending CN108615617A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810401715.6A CN108615617A (zh) 2018-04-28 2018-04-28 一种石墨烯/pedot:pss复合纳米自支撑薄膜的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810401715.6A CN108615617A (zh) 2018-04-28 2018-04-28 一种石墨烯/pedot:pss复合纳米自支撑薄膜的制备方法及其产品和应用

Publications (1)

Publication Number Publication Date
CN108615617A true CN108615617A (zh) 2018-10-02

Family

ID=63661308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810401715.6A Pending CN108615617A (zh) 2018-04-28 2018-04-28 一种石墨烯/pedot:pss复合纳米自支撑薄膜的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN108615617A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085436A (zh) * 2019-04-21 2019-08-02 北京工业大学 一种石墨烯/聚乙撑二氧噻吩复合纤维组装体的制备方法
CN112151768A (zh) * 2020-09-11 2020-12-29 成都新柯力化工科技有限公司 一种挤出压延制备硅碳负极电极片的方法及电极片
CN114724774A (zh) * 2022-05-06 2022-07-08 嘉兴学院 一种自支撑导电薄膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881463A (zh) * 2012-08-14 2013-01-16 北京大学 一种纤维状超级电容器及其制备方法
CN107731562A (zh) * 2017-09-30 2018-02-23 中南大学 改性石墨烯pedot:pss复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881463A (zh) * 2012-08-14 2013-01-16 北京大学 一种纤维状超级电容器及其制备方法
CN107731562A (zh) * 2017-09-30 2018-02-23 中南大学 改性石墨烯pedot:pss复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENG LI ET AL: "Designed construction of Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy Storage Performance", 《ACS APPLIED MATERIALS & INTERFACES》 *
YUQING LIU ET AL: "High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films", 《SCIENTIFIC REPORTS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085436A (zh) * 2019-04-21 2019-08-02 北京工业大学 一种石墨烯/聚乙撑二氧噻吩复合纤维组装体的制备方法
CN110085436B (zh) * 2019-04-21 2021-08-06 北京工业大学 一种石墨烯/聚乙撑二氧噻吩复合纤维组装体的制备方法
CN112151768A (zh) * 2020-09-11 2020-12-29 成都新柯力化工科技有限公司 一种挤出压延制备硅碳负极电极片的方法及电极片
CN114724774A (zh) * 2022-05-06 2022-07-08 嘉兴学院 一种自支撑导电薄膜及其制备方法
CN114724774B (zh) * 2022-05-06 2023-11-28 嘉兴学院 一种自支撑导电薄膜及其制备方法

Similar Documents

Publication Publication Date Title
Yan et al. Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte
Zhang et al. Graphene papers: smart architecture and specific functionalization for biomimetics, electrocatalytic sensing and energy storage
JP5764494B2 (ja) 炭素系エアロゲルを含んで成る組成物および炭素系エアロゲルの製造方法
WO2016008290A1 (zh) 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
Tang et al. Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application
Shen et al. All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide
CN103466603B (zh) 石墨烯分散液以及石墨烯薄膜的制备方法
CN104916826B (zh) 一种石墨烯包覆硅负极材料及其制备方法
Dong et al. Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite
Palsaniya et al. Hierarchical Nylon-6/reduced graphene oxide/polyaniline nanocomposites with enhanced dielectric properties for energy storage applications
CN108615617A (zh) 一种石墨烯/pedot:pss复合纳米自支撑薄膜的制备方法及其产品和应用
WO2015184816A1 (zh) 一种氮掺杂石墨烯片及其制备方法和应用
WO2014032399A1 (zh) 一种石墨烯和石墨烯基复合材料的低温制备方法
CN105439133B (zh) 一种负电性单层石墨烯的制备方法
Pholauyphon et al. Ultrahigh-performance titanium dioxide-based supercapacitors using sodium polyacrylate-derived carbon dots as simultaneous and synergistic electrode/electrolyte additives
Du et al. Synthesis of holey graphene networks functionalized with p-phenylene diamine monomers for superior performance flexible solid-state supercapacitors
Chai et al. Ultrahigh photothermal temperature in a graphene/conducting polymer system enables contact thermochemical reaction
CN106350997A (zh) 一种二氧化锰/石墨烯复合碳化棉织物的制备方法
CN109809396A (zh) 一种还原氧化石墨烯气凝胶及其水蒸气水热还原制备方法
CN107275114B (zh) 一种石墨烯复合薄膜的制备方法
CN106504907A (zh) 一种硫化钼/四氧化三钴复合材料及其制备方法和应用
Chen et al. Three-dimensional ordered macroporous carbon as counter electrodes in dye-sensitized solar cells
CN103762356B (zh) Ni纳米线、NiO/Ni自支撑膜及其制备方法和应用
CN105789628B (zh) 一种氮杂石墨烯和二氧化锰杂化气凝胶及其制备方法和用途
Chang et al. In situ grown ultrafine RuO2 nanoparticles on GeP5 nanosheets as the electrode material for flexible planar micro-supercapacitors with high specific capacitance and cyclability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181002