WO2015184816A1 - 一种氮掺杂石墨烯片及其制备方法和应用 - Google Patents
一种氮掺杂石墨烯片及其制备方法和应用 Download PDFInfo
- Publication number
- WO2015184816A1 WO2015184816A1 PCT/CN2015/071115 CN2015071115W WO2015184816A1 WO 2015184816 A1 WO2015184816 A1 WO 2015184816A1 CN 2015071115 W CN2015071115 W CN 2015071115W WO 2015184816 A1 WO2015184816 A1 WO 2015184816A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitrogen
- doped graphene
- graphene sheet
- doped
- preparation
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 17
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 12
- 239000010439 graphite Substances 0.000 claims abstract description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 239000007772 electrode material Substances 0.000 claims description 4
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 6
- 238000001035 drying Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- -1 nitrogen-containing compound Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the invention belongs to the field of preparation of supercapacitor electrode materials, and in particular relates to a nitrogen-doped graphene sheet and a preparation method and application thereof.
- Traditional graphene nitrogen doping methods include chemical vapor deposition (CVD), plasma treatment, arc discharge, high-energy electrothermal, and templating.
- CVD chemical vapor deposition
- plasma treatment plasma treatment
- arc discharge high-energy electrothermal
- templating The preparation conditions are harsh and the doping amount is low (not higher than 8%). ), high production costs and other issues.
- the doping method of the present invention can obtain high-quality and high-nitrogen nitrogen-doped graphene, and nitrogen-doped graphene can be prepared by changing the amount of nitrogen source.
- the object of the present invention is to provide a nitrogen-doped graphene sheet, a preparation method and application thereof, no surfactant is used in the reaction process, the reactant composition is simple, the reaction condition is mild, and high-quality pure nitrogen-doped graphite is obtained.
- An ene sheet, which has excellent electrochemical properties, can be used to prepare a supercapacitor electrode material.
- the present invention adopts the following technical solutions:
- Nitrogen-doped graphene sheets with high nitrogen content were prepared by a two-step process using ammonia as a nitrogen source. Includes the following steps:
- the solvent is water or ethanol.
- the nitrogen-doped graphene has a nitrogen content of greater than 8%.
- the nitrogen-doped graphene sheets are used to prepare supercapacitor electrode materials.
- the significant advantage of the invention is that the ammonia-doped graphene is prepared by a two-step method using ammonia as a nitrogen source, the experiment operation is simple, no dispersing agent is used, and the addition of ammonia water promotes the conversion of graphite oxide into graphene, and the obtained nitrogen blending.
- the heterographene is a graphene sheet having a high nitrogen content and a large specific surface area.
- Example 1 is an XRD chart of the undoped graphene sheets obtained in Example 1 and the nitrogen-doped graphene sheets obtained in Example 2.
- Example 2 is a Raman diagram of nitrogen-doped graphene obtained in Example 2.
- Example 3 is an SEM image of the nitrogen-doped graphene obtained in Example 2.
- Example 4 is an XPS chart of nitrogen-doped graphene obtained in Example 1 and Example 2.
- Fig. 5 is a charge and discharge diagram of the nitrogen-doped graphene obtained in Example 2.
- Example 1 is an XRD chart of the undoped graphene sheets obtained in Example 1 and the nitrogen-doped graphene sheets obtained in Example 2. It can be seen from the figure that the reaction of oxidized graphite is reduced to graphene, and the nitrogen-doped graphene obtained by adding ammonia water is offset by 2 ⁇ angle, and the interlayer spacing is smaller, which is closer to the layer spacing of flake graphite, indicating that after doping The structure of the graphite was repaired.
- 3 is an SEM image showing an 10,000-fold magnification of the nitrogen-doped graphene obtained in Example 2. From the figure, it can be seen that the nitrogen-doped graphene is a large graphene sheet.
- FIG. 4 is an XPS diagram of nitrogen-doped graphene obtained in Example 1 and Example 2, which is clearly after doping The oxygen content is greatly reduced, the nitrogen content is significantly increased, and the prepared nitrogen-doped graphene has a nitrogen content of 11.75%, and the nitrogen content in the product can be adjusted by changing the amount of the nitrogen-containing compound.
- Figure 5 is a charge and discharge diagram of nitrogen-doped graphene at 1 A/g with a specific capacitance of up to 110 F/g.
Landscapes
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
提供一种氮掺杂石墨烯片的制备方法,以氨水作为氮源,将氧化石墨加入到溶剂中超声分散,再加入浓氨水,在40-150℃反应3-24h,再在80-200℃水热反应1-12h洗涤,干燥,得到氮掺杂石墨烯片。还提供了由该方法制得的氮掺杂石墨烯片及其应用。
Description
本发明属于超级电容器电极材料制备领域,具体涉及一种氮掺杂石墨烯片及其制备方法和应用。
随着煤炭、石油、天然气等不可再生资源的不断枯竭以及环境污染的日益严重,研究和开发出新型环保的能量存储装置显得尤为迫切和重要。在此背景条件下,超级电容器应运而生,成为最有前途的能源存储设备之一。在大多数情况下,碳纳米材料如多孔碳材料,碳纳米管,石墨烯由于其大的表面积和高导电率,已被用来作为超级电容器的电极,但目前碳基材料仍处于发展阶段。石墨烯独特的原子结构和电子结构使得其表现出传统材料所不具有的多种非凡性能,超大的比表面积、可调节的带隙、高电子迁移率、优良的力学性能和光学性能等特点。目前,很多研究通过物理混合的方法制备石墨烯复合材料来提高其电化学性能,化学修饰的方法研究的比较少。其中最可行的化学修饰方法是通过掺杂,由于N原子具有与C原子近似的原子半径,可以作为电子供体对石墨烯进行掺杂,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,拓宽了应用领域,包括生物传感器,燃料电池,以及电子器件的器件性能。
传统的石墨烯氮掺杂的方法主要有化学气相沉积(CVD)法、等离子处理法、电弧放电法、高能电热法、模板法等,具有制备条件苛刻、掺杂量低(不高于8%)、生产成本高等问题。本发明的掺杂方法可以获得高品质和高含氮量的氮掺杂石墨烯,通过改变氮源的量可以调节制备不同掺杂量的氮掺杂石墨烯。
发明内容
本发明的目的在于提供一种氮掺杂石墨烯片及其制备方法和应用,反应过程中不使用任何表面活性剂,反应物成分简单,反应条件温和,制得高质量纯净的氮掺杂石墨烯片,其具有优异的电化学性能,可用于制备超级电容器电极材料。
为实现上述目的,本发明采用如下技术方案:
以氨水作为氮源,通过两步法制得高含氮量的氮掺杂石墨烯片。包括以下步骤:
(1)将氧化石墨加入到溶剂中超声分散,控制其浓度在1~10mg/mL;
(2)加入浓氨水,浓氨水与氧化石墨的质量比为0.1~100;
(3)40~150℃反应3~24h;
(4)80~200℃水热反应1~12h;
(5)所得产物用去离子水冲洗数次,80℃下干燥12h,即得氮掺杂石墨烯片。
所述的溶剂为水或乙醇。
所述的氮掺杂石墨烯的氮含量大于8%。
所述的氮掺杂石墨烯片用于制备超级电容器电极材料。
本发明的显著优点在于:以氨水为氮源,采用两步法制备氮掺杂石墨烯,实验操作简单,不使用任何分散剂,氨水的加入促进了氧化石墨转化为石墨烯,得到的氮掺杂石墨烯为石墨烯片,含氮量高、比表面积大。
图1是实施例1所得的未掺杂石墨烯片和实施例2所得的氮掺杂石墨烯片的XRD图。
图2是实施例2所得氮掺杂石墨烯的拉曼图。
图3是实施例2所得氮掺杂石墨烯的SEM图。
图4是实施例1和实施例2所得氮掺杂石墨烯的XPS图。
图5是实施例2所得氮掺杂石墨烯的充放电图。
以下是本发明的几个具体实施例,进一步说明本发明,但是本发明不仅限于此。
实施例1
首先将500mg经改进Hummers法制备的氧化石墨加入50mL的乙醇中,超声分散1h形成均匀的分散液后,在80℃的油浴锅中磁力搅拌反应10h,移至高压反应釜中,在150℃反应3h,所得产物用去离子水冲洗数次,然后在80℃下干燥12h,即得未掺杂产物。
实施例2
首先将500mg经改进Hummers法制备的氧化石墨加入50mL的乙醇中,超声分散1h形成均匀的分散液后,加入2.5g浓氨水,然后在80℃的油浴锅中磁力搅拌10h,再移至高压反应釜中,在150℃反应3h,所得产物用去离子水冲洗数次,80℃下干燥12h,即得氮掺杂石墨烯片。所制备的氮掺杂石墨烯片的氮含量为11.75%。
图1是实施例1所得的未掺杂石墨烯片和实施例2所得的氮掺杂石墨烯片的XRD图。从图中可以看出,经反应氧化石墨还原成石墨烯,加入氨水后得到的氮掺杂石墨烯2θ角发生偏移,层间距较小,更接近于鳞片石墨的层间距,说明掺杂后石墨的结构得到修复。图3是实施例2所得氮掺杂石墨烯的放大一万倍的SEM图,从图中可看出氮掺杂石墨烯为较大的石墨烯片状。图4是实施例1和实施例2所得氮掺杂石墨烯的XPS图,很明显掺杂之后
氧含量降低了很多,氮含量显著提高,所制备的氮掺杂石墨烯的氮含量为11.75%,通过改变含氮化合物的用量可以调节产品中的氮含量。图5是1A/g时氮掺杂石墨烯的充放电图,比电容高达110F/g。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (5)
- 一种氮掺杂石墨烯片的制备方法,其特征在于:以氨水作为氮源,通过两步法制得高含氮量的氮掺杂石墨烯片。
- 根据权利要求1所述的氮掺杂石墨烯片的制备方法,其特征在于:包括以下步骤:(1)将氧化石墨加入到溶剂中超声分散,控制其浓度在1~10mg/mL;(2)加入浓氨水,浓氨水与氧化石墨的质量比为0.1~100;(3)40~150℃反应3~24h;(4)80~200℃水热反应1~12h;(5)所得产物用去离子水冲洗数次,80℃下干燥12h,即得氮掺杂石墨烯片。
- 根据权利要求2所述的氮掺杂石墨烯片的制备方法,其特征在于:所述的溶剂为水或乙醇。
- 一种如权利要求1所述的方法制得的氮掺杂石墨烯片,其特征在于:所述的氮掺杂石墨烯的氮含量大于8%。
- 一种如权利要求1所述的方法制得的氮掺杂石墨烯片的应用,其特征在于:所述的氮掺杂石墨烯片用于制备超级电容器电极材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410242206.5 | 2014-06-04 | ||
CN201410242206.5A CN103979532B (zh) | 2014-06-04 | 2014-06-04 | 一种氮掺杂石墨烯片及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015184816A1 true WO2015184816A1 (zh) | 2015-12-10 |
Family
ID=51271740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/071115 WO2015184816A1 (zh) | 2014-06-04 | 2015-01-20 | 一种氮掺杂石墨烯片及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103979532B (zh) |
WO (1) | WO2015184816A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10464044B1 (en) | 2016-05-27 | 2019-11-05 | Precision Combustion, Inc. | High capacity regenerable graphene-based sorbent |
CN112108169A (zh) * | 2020-10-16 | 2020-12-22 | 西安工程大学 | 一种碳布负载氮掺杂石墨烯材料及其制备方法和应用 |
US10994241B1 (en) | 2017-07-10 | 2021-05-04 | Precision Combustion, Inc. | Sorbent system for removing ammonia and organic compounds from a gaseous environment |
CN113479872A (zh) * | 2021-07-19 | 2021-10-08 | 常州大学 | 氮掺杂三维多孔石墨烯水凝胶电极材料的制备方法及其电极和应用 |
CN114899406A (zh) * | 2022-07-13 | 2022-08-12 | 中博龙辉装备集团股份有限公司 | 一种氮掺杂石墨烯氧化锰纳米线复合材料及其制备方法和应用 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103979532B (zh) * | 2014-06-04 | 2015-12-02 | 福州大学 | 一种氮掺杂石墨烯片及其制备方法和应用 |
CN104466133B (zh) * | 2014-12-02 | 2017-01-04 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种氮掺杂的石墨烯碳复合材料及其制备方法 |
CN104787740B (zh) * | 2015-04-30 | 2016-01-20 | 青岛大学 | 一种三维掺氮石墨烯的制备方法 |
CN104882608A (zh) * | 2015-05-06 | 2015-09-02 | 江南大学 | 一种n掺杂3d石墨烯/石墨锂离子电池负极材料的制备 |
CN105217613B (zh) * | 2015-10-15 | 2017-04-26 | 田野 | 一种石墨烯掺杂材料的制备方法与应用 |
CN105502355B (zh) * | 2015-12-18 | 2018-01-09 | 上海理工大学 | 高电化学性能氮掺杂褶皱石墨烯及其制备方法 |
CN106395801B (zh) * | 2016-08-30 | 2018-07-24 | 北京化工大学 | 一种低温制备氮掺杂石墨烯以及氮掺杂石墨烯/金属氧化物纳米复合材料的方法 |
CN106744838A (zh) * | 2016-12-06 | 2017-05-31 | 武汉工程大学 | 一步水热法制备氮掺杂多孔石墨烯的方法 |
CN107857253A (zh) * | 2017-12-04 | 2018-03-30 | 内蒙古科技大学 | 一种氮掺杂三维多孔石墨烯及其制备方法 |
CN108963270A (zh) * | 2018-07-12 | 2018-12-07 | 山东联星能源集团有限公司 | 一种氮掺杂石墨烯/三氧化二铁复合电极材料的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102689896A (zh) * | 2012-03-15 | 2012-09-26 | 中国科学院山西煤炭化学研究所 | 一种同时还原并氮掺杂功能化氧化石墨烯的制备方法 |
CN102849726A (zh) * | 2011-06-27 | 2013-01-02 | 海洋王照明科技股份有限公司 | 一种氮取代石墨烯及其制备方法和应用 |
CN103570011A (zh) * | 2013-10-28 | 2014-02-12 | 复旦大学 | 一种氮磷共掺杂的多孔石墨烯材料的制备方法 |
CN103601175A (zh) * | 2013-11-06 | 2014-02-26 | 华侨大学 | 一种氮掺杂石墨烯的制备方法 |
CN103979532A (zh) * | 2014-06-04 | 2014-08-13 | 福州大学 | 一种氮掺杂石墨烯片及其制备方法和应用 |
CN104108705A (zh) * | 2014-07-11 | 2014-10-22 | 同济大学 | 一种氮掺杂定向石墨烯的制备方法 |
-
2014
- 2014-06-04 CN CN201410242206.5A patent/CN103979532B/zh active Active
-
2015
- 2015-01-20 WO PCT/CN2015/071115 patent/WO2015184816A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102849726A (zh) * | 2011-06-27 | 2013-01-02 | 海洋王照明科技股份有限公司 | 一种氮取代石墨烯及其制备方法和应用 |
CN102689896A (zh) * | 2012-03-15 | 2012-09-26 | 中国科学院山西煤炭化学研究所 | 一种同时还原并氮掺杂功能化氧化石墨烯的制备方法 |
CN103570011A (zh) * | 2013-10-28 | 2014-02-12 | 复旦大学 | 一种氮磷共掺杂的多孔石墨烯材料的制备方法 |
CN103601175A (zh) * | 2013-11-06 | 2014-02-26 | 华侨大学 | 一种氮掺杂石墨烯的制备方法 |
CN103979532A (zh) * | 2014-06-04 | 2014-08-13 | 福州大学 | 一种氮掺杂石墨烯片及其制备方法和应用 |
CN104108705A (zh) * | 2014-07-11 | 2014-10-22 | 同济大学 | 一种氮掺杂定向石墨烯的制备方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10464044B1 (en) | 2016-05-27 | 2019-11-05 | Precision Combustion, Inc. | High capacity regenerable graphene-based sorbent |
US10668447B2 (en) | 2016-05-27 | 2020-06-02 | Precision Combustion, Inc. | High capacity regenerable graphene-based sorbent |
US10994241B1 (en) | 2017-07-10 | 2021-05-04 | Precision Combustion, Inc. | Sorbent system for removing ammonia and organic compounds from a gaseous environment |
US11691103B2 (en) | 2017-07-10 | 2023-07-04 | Precision Combustion, Inc. | Sorbent system for removing ammonia and organic compounds from a gaseous environment |
CN112108169A (zh) * | 2020-10-16 | 2020-12-22 | 西安工程大学 | 一种碳布负载氮掺杂石墨烯材料及其制备方法和应用 |
CN113479872A (zh) * | 2021-07-19 | 2021-10-08 | 常州大学 | 氮掺杂三维多孔石墨烯水凝胶电极材料的制备方法及其电极和应用 |
CN114899406A (zh) * | 2022-07-13 | 2022-08-12 | 中博龙辉装备集团股份有限公司 | 一种氮掺杂石墨烯氧化锰纳米线复合材料及其制备方法和应用 |
CN114899406B (zh) * | 2022-07-13 | 2022-11-22 | 中博龙辉装备集团股份有限公司 | 一种氮掺杂石墨烯氧化锰纳米线复合材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN103979532A (zh) | 2014-08-13 |
CN103979532B (zh) | 2015-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015184816A1 (zh) | 一种氮掺杂石墨烯片及其制备方法和应用 | |
Miao et al. | Plasma-assisted simultaneous reduction and nitrogen/sulfur codoping of graphene oxide for high-performance supercapacitors | |
Yue et al. | Ni/Co-MOF@ aminated MXene hierarchical electrodes for high-stability supercapacitors | |
Wang et al. | MoS2/graphene composites as promising materials for energy storage and conversion applications | |
Jiang et al. | Synthesis of 1T-MoSe 2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction | |
Hou et al. | Intrinsic defect-rich porous carbon nanosheets synthesized from potassium citrate toward advanced supercapacitors and microwave absorption | |
Shan et al. | Sulfur/nitrogen dual-doped porous graphene aerogels enhancing anode performance of lithium ion batteries | |
Du et al. | Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor | |
Liu et al. | Facile synthesis of Fe2O3 nano-dots@ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte | |
Zhao et al. | MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy | |
Rao et al. | Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements | |
Wang et al. | Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors | |
He et al. | Hydrothermal preparation of Co3O4@ graphene nanocomposite for supercapacitor with enhanced capacitive performance | |
Dong et al. | Efficient approach to iron/nitrogen co-doped graphene materials as efficient electrochemical catalysts for the oxygen reduction reaction | |
Cho et al. | Ternary composite based on homogeneous Ni (OH) 2 on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor | |
Zhao et al. | Preparation and application of porous nitrogen-doped graphene obtained by co-pyrolysis of lignosulfonate and graphene oxide | |
Du et al. | One-step synthesis and graphene-modification to achieve nickel phosphide nanoparticles with electrochemical properties suitable for supercapacitors | |
Chen et al. | One-step synthesis of low defect density carbon nanotube-doped Ni (OH) 2 nanosheets with improved electrochemical performances | |
Shan et al. | Facile synthesis of carbon-doped graphitic C 3 N 4@ MnO 2 with enhanced electrochemical performance | |
Ma et al. | The toughening design of pseudocapacitive materials via graphene quantum dots: Towards enhanced cycling stability for supercapacitors | |
Ding et al. | Ultrathin and highly crystalline Co3O4 nanosheets in situ grown on graphene toward enhanced supercapacitor performance | |
Sun et al. | Template synthesis of 2D carbon nanosheets: improving energy density of supercapacitors by dual redox additives anthraquinone-2-sulfonic acid sodium and KI | |
Wang et al. | Nitrogen-doped graphene prepared by pyrolysis of graphene oxide/polyaniline composites as supercapacitor electrodes | |
Yadav et al. | Utilization of waste coir fibre architecture to synthesize porous graphene oxide and their derivatives: An efficient energy storage material | |
Panicker et al. | Confined growth of NiCo2S4 on 2D/2D porous carbon self-repairing g-C3N4/rGO heterostructure for enhanced performance of asymmetric supercapacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803738 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15803738 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10-02-2017 ) |