CN103979532A - 一种氮掺杂石墨烯片及其制备方法和应用 - Google Patents
一种氮掺杂石墨烯片及其制备方法和应用 Download PDFInfo
- Publication number
- CN103979532A CN103979532A CN201410242206.5A CN201410242206A CN103979532A CN 103979532 A CN103979532 A CN 103979532A CN 201410242206 A CN201410242206 A CN 201410242206A CN 103979532 A CN103979532 A CN 103979532A
- Authority
- CN
- China
- Prior art keywords
- nitrogen
- doped graphene
- graphene sheet
- preparation
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 56
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 8
- 239000007772 electrode material Substances 0.000 claims abstract description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000000376 reactant Substances 0.000 abstract description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 abstract 3
- 239000004094 surface-active agent Substances 0.000 abstract 1
- 238000007039 two-step reaction Methods 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 description 3
- 238000013019 agitation Methods 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- -1 clearly after doping Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本发明提供了一种氮掺杂石墨烯片及其制备方法和应用,以氨水作为氮源,采用了两步反应法制得氮掺杂石墨烯片。反应过程中不使用任何表面活性剂,反应物成分简单,反应条件温和,解决了现有制备方法存在的反应条件苛刻、含氮量低、生产成本高等问题。制备过程中氨水的加入促进了氧化石墨烯还原成石墨烯,同时作为氮源制得氮掺杂石墨烯片。本发明可用于制备高质量纯净的氮掺杂石墨烯片,其具有优异的电化学性能,可用于制备超级电容器电极材料。
Description
技术领域
本发明属于超级电容器电极材料制备领域,具体涉及一种氮掺杂石墨烯片及其制备方法和应用。
背景技术
随着煤炭、石油、天然气等不可再生资源的不断枯竭以及环境污染的日益严重,研究和开发出新型环保的能量存储装置显得尤为迫切和重要。在此背景条件下,超级电容器应运而生,成为最有前途的能源存储设备之一。在大多数情况下,碳纳米材料如多孔碳材料,碳纳米管,石墨烯由于其大的表面积和高导电率,已被用来作为超级电容器的电极,但目前碳基材料仍处于发展阶段。石墨烯独特的原子结构和电子结构使得其表现出传统材料所不具有的多种非凡性能,超大的比表面积、可调节的带隙、高电子迁移率、优良的力学性能和光学性能等特点。目前,很多研究通过物理混合的方法制备石墨烯复合材料来提高其电化学性能,化学修饰的方法研究的比较少。其中最可行的化学修饰方法是通过掺杂,由于N原子具有与C原子近似的原子半径,可以作为电子供体对石墨烯进行掺杂,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,拓宽了应用领域,包括生物传感器,燃料电池,以及电子器件的器件性能。
传统的石墨烯氮掺杂的方法主要有化学气相沉积(CVD)法、等离子处理法、电弧放电法、高能电热法、模板法等,具有制备条件苛刻、掺杂量低(不高于8%)、生产成本高等问题。本发明的掺杂方法可以获得高品质和高含氮量的氮掺杂石墨烯,通过改变氮源的量可以调节制备不同掺杂量的氮掺杂石墨烯。
发明内容
本发明的目的在于提供一种氮掺杂石墨烯片及其制备方法和应用,反应过程中不使用任何表面活性剂,反应物成分简单,反应条件温和,制得高质量纯净的氮掺杂石墨烯片,其具有优异的电化学性能,可用于制备超级电容器电极材料。
为实现上述目的,本发明采用如下技术方案:
以氨水作为氮源,通过两步法制得高含氮量的氮掺杂石墨烯片。包括以下步骤:
(1)将氧化石墨加入到溶剂中超声分散,控制其浓度在1~10mg/mL;
(2)加入浓氨水,浓氨水与氧化石墨的质量比为0.1~100;
(3)40~150℃反应3~24h;
(4)80~200℃水热反应1~12h;
(5)所得产物用去离子水冲洗数次,80℃下干燥12h,即得氮掺杂石墨烯片。
所述的溶剂为水或乙醇。
所述的氮掺杂石墨烯的氮含量大于8%。
所述的氮掺杂石墨烯片用于制备超级电容器电极材料。
本发明的显著优点在于:以氨水为氮源,采用两步法制备氮掺杂石墨烯,实验操作简单,不使用任何分散剂,氨水的加入促进了氧化石墨转化为石墨烯,得到的氮掺杂石墨烯为石墨烯片,含氮量高、比表面积大。
附图说明
图1是实施例1所得的未掺杂石墨烯片和实施例2所得的氮掺杂石墨烯片的XRD图。
图2是实施例2所得氮掺杂石墨烯的拉曼图。
图3是实施例2所得氮掺杂石墨烯的SEM图。
图4是实施例1和实施例2所得氮掺杂石墨烯的XPS图。
图5是实施例2所得氮掺杂石墨烯的充放电图。
具体实施方式
以下是本发明的几个具体实施例,进一步说明本发明,但是本发明不仅限于此。
实施例1
首先将500mg经改进Hummers法制备的氧化石墨加入50mL的乙醇中,超声分散1h形成均匀的分散液后,在80℃的油浴锅中磁力搅拌反应10h,移至高压反应釜中,在150℃反应3h,所得产物用去离子水冲洗数次,然后在80℃下干燥12h,即得未掺杂产物。
实施例2
首先将500mg经改进Hummers法制备的氧化石墨加入50mL的乙醇中,超声分散1h形成均匀的分散液后,加入2.5g浓氨水,然后在80℃的油浴锅中磁力搅拌10h,再移至高压反应釜中,在150℃反应3h,所得产物用去离子水冲洗数次,80℃下干燥12h,即得氮掺杂石墨烯片。所制备的氮掺杂石墨烯片的氮含量为11.75%。
图1是实施例1所得的未掺杂石墨烯片和实施例2所得的氮掺杂石墨烯片的XRD图。从图中可以看出,经反应氧化石墨还原成石墨烯,加入氨水后得到的氮掺杂石墨烯2θ角发生偏移,层间距较小,更接近于鳞片石墨的层间距,说明掺杂后石墨的结构得到修复。图3是实施例2所得氮掺杂石墨烯的放大一万倍的SEM图,从图中可看出氮掺杂石墨烯为较大的石墨烯片状。图4是实施例1和实施例2所得氮掺杂石墨烯的XPS图,很明显掺杂之后氧含量降低了很多,氮含量显著提高,所制备的氮掺杂石墨烯的氮含量为11.75%,通过改变含氮化合物的用量可以调节产品中的氮含量。图5是1A/g时氮掺杂石墨烯的充放电图,比电容高达110F/g。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (5)
1.一种氮掺杂石墨烯片的制备方法,其特征在于:以氨水作为氮源,通过两步法制得高含氮量的氮掺杂石墨烯片。
2.根据权利要求1所述的氮掺杂石墨烯片的制备方法,其特征在于:包括以下步骤:
(1)将氧化石墨加入到溶剂中超声分散,控制其浓度在1~10mg/mL;
(2)加入浓氨水,浓氨水与氧化石墨的质量比为0.1~100;
(3)40~150℃反应3~24h;
(4)80~200℃水热反应1~12h;
(5)所得产物用去离子水冲洗数次,80℃下干燥12h,即得氮掺杂石墨烯片。
3.根据权利要求2所述的氮掺杂石墨烯片的制备方法,其特征在于:所述的溶剂为水或乙醇。
4.一种如权利要求1所述的方法制得的氮掺杂石墨烯片,其特征在于:所述的氮掺杂石墨烯的氮含量大于8%。
5.一种如权利要求1所述的方法制得的氮掺杂石墨烯片的应用,其特征在于:所述的氮掺杂石墨烯片用于制备超级电容器电极材料。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410242206.5A CN103979532B (zh) | 2014-06-04 | 2014-06-04 | 一种氮掺杂石墨烯片及其制备方法和应用 |
PCT/CN2015/071115 WO2015184816A1 (zh) | 2014-06-04 | 2015-01-20 | 一种氮掺杂石墨烯片及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410242206.5A CN103979532B (zh) | 2014-06-04 | 2014-06-04 | 一种氮掺杂石墨烯片及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103979532A true CN103979532A (zh) | 2014-08-13 |
CN103979532B CN103979532B (zh) | 2015-12-02 |
Family
ID=51271740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410242206.5A Active CN103979532B (zh) | 2014-06-04 | 2014-06-04 | 一种氮掺杂石墨烯片及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103979532B (zh) |
WO (1) | WO2015184816A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104466133A (zh) * | 2014-12-02 | 2015-03-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种氮掺杂的石墨烯碳复合材料及其制备方法 |
CN104787740A (zh) * | 2015-04-30 | 2015-07-22 | 青岛大学 | 一种三维掺氮石墨烯的制备方法 |
CN104882608A (zh) * | 2015-05-06 | 2015-09-02 | 江南大学 | 一种n掺杂3d石墨烯/石墨锂离子电池负极材料的制备 |
WO2015184816A1 (zh) * | 2014-06-04 | 2015-12-10 | 福州大学 | 一种氮掺杂石墨烯片及其制备方法和应用 |
CN105217613A (zh) * | 2015-10-15 | 2016-01-06 | 田野 | 一种石墨烯掺杂材料的制备方法与应用 |
CN105502355A (zh) * | 2015-12-18 | 2016-04-20 | 上海理工大学 | 高电化学性能氮掺杂褶皱石墨烯及其制备方法 |
CN106395801A (zh) * | 2016-08-30 | 2017-02-15 | 北京化工大学 | 一种低温制备氮掺杂石墨烯以及氮掺杂石墨烯/金属氧化物纳米复合材料的方法 |
CN106744838A (zh) * | 2016-12-06 | 2017-05-31 | 武汉工程大学 | 一步水热法制备氮掺杂多孔石墨烯的方法 |
CN107857253A (zh) * | 2017-12-04 | 2018-03-30 | 内蒙古科技大学 | 一种氮掺杂三维多孔石墨烯及其制备方法 |
CN108963270A (zh) * | 2018-07-12 | 2018-12-07 | 山东联星能源集团有限公司 | 一种氮掺杂石墨烯/三氧化二铁复合电极材料的制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10464044B1 (en) | 2016-05-27 | 2019-11-05 | Precision Combustion, Inc. | High capacity regenerable graphene-based sorbent |
US10994241B1 (en) | 2017-07-10 | 2021-05-04 | Precision Combustion, Inc. | Sorbent system for removing ammonia and organic compounds from a gaseous environment |
CN112108169B (zh) * | 2020-10-16 | 2022-11-29 | 西安工程大学 | 一种碳布负载氮掺杂石墨烯材料及其制备方法和应用 |
CN113479872A (zh) * | 2021-07-19 | 2021-10-08 | 常州大学 | 氮掺杂三维多孔石墨烯水凝胶电极材料的制备方法及其电极和应用 |
CN114899406B (zh) * | 2022-07-13 | 2022-11-22 | 中博龙辉装备集团股份有限公司 | 一种氮掺杂石墨烯氧化锰纳米线复合材料及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102849726A (zh) * | 2011-06-27 | 2013-01-02 | 海洋王照明科技股份有限公司 | 一种氮取代石墨烯及其制备方法和应用 |
CN103570011A (zh) * | 2013-10-28 | 2014-02-12 | 复旦大学 | 一种氮磷共掺杂的多孔石墨烯材料的制备方法 |
CN103601175A (zh) * | 2013-11-06 | 2014-02-26 | 华侨大学 | 一种氮掺杂石墨烯的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102689896B (zh) * | 2012-03-15 | 2014-02-19 | 中国科学院山西煤炭化学研究所 | 一种同时还原并氮掺杂功能化氧化石墨烯的制备方法 |
CN103979532B (zh) * | 2014-06-04 | 2015-12-02 | 福州大学 | 一种氮掺杂石墨烯片及其制备方法和应用 |
CN104108705B (zh) * | 2014-07-11 | 2016-05-18 | 同济大学 | 一种氮掺杂定向石墨烯的制备方法 |
-
2014
- 2014-06-04 CN CN201410242206.5A patent/CN103979532B/zh active Active
-
2015
- 2015-01-20 WO PCT/CN2015/071115 patent/WO2015184816A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102849726A (zh) * | 2011-06-27 | 2013-01-02 | 海洋王照明科技股份有限公司 | 一种氮取代石墨烯及其制备方法和应用 |
CN103570011A (zh) * | 2013-10-28 | 2014-02-12 | 复旦大学 | 一种氮磷共掺杂的多孔石墨烯材料的制备方法 |
CN103601175A (zh) * | 2013-11-06 | 2014-02-26 | 华侨大学 | 一种氮掺杂石墨烯的制备方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015184816A1 (zh) * | 2014-06-04 | 2015-12-10 | 福州大学 | 一种氮掺杂石墨烯片及其制备方法和应用 |
CN104466133A (zh) * | 2014-12-02 | 2015-03-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种氮掺杂的石墨烯碳复合材料及其制备方法 |
CN104787740A (zh) * | 2015-04-30 | 2015-07-22 | 青岛大学 | 一种三维掺氮石墨烯的制备方法 |
CN104787740B (zh) * | 2015-04-30 | 2016-01-20 | 青岛大学 | 一种三维掺氮石墨烯的制备方法 |
CN104882608A (zh) * | 2015-05-06 | 2015-09-02 | 江南大学 | 一种n掺杂3d石墨烯/石墨锂离子电池负极材料的制备 |
CN105217613A (zh) * | 2015-10-15 | 2016-01-06 | 田野 | 一种石墨烯掺杂材料的制备方法与应用 |
CN105502355A (zh) * | 2015-12-18 | 2016-04-20 | 上海理工大学 | 高电化学性能氮掺杂褶皱石墨烯及其制备方法 |
CN106395801A (zh) * | 2016-08-30 | 2017-02-15 | 北京化工大学 | 一种低温制备氮掺杂石墨烯以及氮掺杂石墨烯/金属氧化物纳米复合材料的方法 |
CN106395801B (zh) * | 2016-08-30 | 2018-07-24 | 北京化工大学 | 一种低温制备氮掺杂石墨烯以及氮掺杂石墨烯/金属氧化物纳米复合材料的方法 |
CN106744838A (zh) * | 2016-12-06 | 2017-05-31 | 武汉工程大学 | 一步水热法制备氮掺杂多孔石墨烯的方法 |
CN107857253A (zh) * | 2017-12-04 | 2018-03-30 | 内蒙古科技大学 | 一种氮掺杂三维多孔石墨烯及其制备方法 |
CN108963270A (zh) * | 2018-07-12 | 2018-12-07 | 山东联星能源集团有限公司 | 一种氮掺杂石墨烯/三氧化二铁复合电极材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103979532B (zh) | 2015-12-02 |
WO2015184816A1 (zh) | 2015-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103979532B (zh) | 一种氮掺杂石墨烯片及其制备方法和应用 | |
Yang et al. | Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors | |
Yu et al. | Self-template and self-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors | |
Zhang et al. | Preparation and electrochemical properties of cobalt aluminum layered double hydroxide/carbon-based integrated composite electrode materials for supercapacitors | |
Wei et al. | A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage | |
Chen et al. | Controllable Fabrication of Amorphous Co Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors | |
Li et al. | N/P codoped porous carbon/one-dimensional hollow tubular carbon heterojunction from biomass inherent structure for supercapacitors | |
Yan et al. | Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density | |
Feng et al. | Nitrogen-doped lignin-derived porous carbons for supercapacitors: Effect of nanoporous structure | |
Wang et al. | Room-temperature fast assembly of 3D macroscopically porous graphene frameworks for binder-free compact supercapacitors with high gravimetric and volumetric capacitances | |
Shan et al. | Nitrogen-and sulfur-doped carbon obtained from direct hydrothermal carbonization of cellulose and ammonium sulfate for supercapacitor applications | |
Zhao et al. | Preparation and application of porous nitrogen-doped graphene obtained by co-pyrolysis of lignosulfonate and graphene oxide | |
Ma et al. | The toughening design of pseudocapacitive materials via graphene quantum dots: Towards enhanced cycling stability for supercapacitors | |
Chen et al. | Construction of nanoporous gold/g-C3N4 heterostructure for electrochemical supercapacitor | |
Zhang et al. | Synthesis of honeycomb-like NiS2/NiO nano-multiple materials for high performance supercapacitors | |
CN104108708A (zh) | 一种氮掺杂石墨烯及其制备方法 | |
Zhang et al. | N, O self-codoped hierarchical porous carbon from chitosan for supercapacitor electrode active materials | |
Zhang et al. | Mineral‐Templated 3D Graphene Architectures for Energy‐Efficient Electrodes | |
El-Khodary et al. | Sonochemical assisted fabrication of 3D hierarchical porous carbon for high-performance symmetric supercapacitor | |
Chen et al. | Nitrogen-doped double-layer graphite supported CuCo2S4 electrode for high-performance asymmetric supercapacitors | |
Sun et al. | Template synthesis of 2D carbon nanosheets: improving energy density of supercapacitors by dual redox additives anthraquinone-2-sulfonic acid sodium and KI | |
Hong et al. | Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors | |
Chen et al. | Facile fabrication of nanoporous BCN with excellent charge/discharge cycle stability for high-performance supercapacitors | |
CN105217616A (zh) | 多孔石墨烯负载碳纳米洋葱三维复合材料制备方法 | |
Yang et al. | In-situ growth carbon nanotubes deriving from a new metal-organic framework for high-performance all-solid-state supercapacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200805 Address after: No. 3001, south section of Century Avenue, Luoshan street, Jinjiang City, Quanzhou City, Fujian Province Patentee after: FUJIAN CHENQI NEW MATERIAL TECHNOLOGY Co.,Ltd. Address before: Minhou County of Fuzhou City, Fujian province 350108 Street Town Road No. 2 University City School District of Fuzhou University Patentee before: FUZHOU University |
|
TR01 | Transfer of patent right |