WO2024034203A1 - 樹脂材料供給機構、樹脂成形装置および樹脂成形品の製造方法 - Google Patents

樹脂材料供給機構、樹脂成形装置および樹脂成形品の製造方法 Download PDF

Info

Publication number
WO2024034203A1
WO2024034203A1 PCT/JP2023/017238 JP2023017238W WO2024034203A1 WO 2024034203 A1 WO2024034203 A1 WO 2024034203A1 JP 2023017238 W JP2023017238 W JP 2023017238W WO 2024034203 A1 WO2024034203 A1 WO 2024034203A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
section
resin material
upper mold
plunger
Prior art date
Application number
PCT/JP2023/017238
Other languages
English (en)
French (fr)
Inventor
周平 吉田
飛翔 安井
Original Assignee
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa株式会社 filed Critical Towa株式会社
Publication of WO2024034203A1 publication Critical patent/WO2024034203A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings

Definitions

  • the present invention relates to techniques for a resin material supply mechanism, a resin molding device, and a method for manufacturing a resin molded product.
  • Patent Document 1 discloses a technique for individually measuring the weight of a plurality of resin tablets required in a press unit. Specifically, Patent Document 1 describes a pot section that individually accommodates cylindrical resin tablets, a load cell that individually measures the weight of the resin tablets accommodated in the pot section, and a load cell that individually measures the weight of the resin tablets accommodated in the pot section.
  • a resin material supply mechanism is disclosed that includes a discharge shutter for discharging tablets.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a resin material supply mechanism, a resin molding device, and a resin molding device that can measure the total weight of resin tablets with high precision.
  • the objective is to provide a method for manufacturing products.
  • the resin material supply mechanism includes a feeding section that sequentially feeds out the resin material, and a plurality of resin materials fed out by the feeding section. a total weight measurement unit that measures the weight of the resin materials all at once; and a delivery unit that delivers the plurality of resin materials sent out by the delivery unit to a conveyance mechanism that conveys the resin materials to a mold. , a moving section that moves the resin material between the sending section, the total weight measuring section, and the delivery section.
  • the resin molding apparatus according to the present invention includes the resin material supply mechanism.
  • the method for manufacturing a resin molded product according to the present invention is a method for manufacturing a resin molded product using the resin molding apparatus, which includes a chip volume measuring step of measuring the volume of a chip placed on a substrate, and a step of measuring the volume of a chip placed on a substrate. a plunger position calculation step of calculating the relationship between the resin filling rate of the cavity and the position of the plunger based on the measured volume of the chip and the volume of the resin material; The method includes a filling rate corresponding control step of controlling operations related to resin molding when the plunger reaches a position corresponding to a predetermined resin filling rate.
  • the total weight of a resin tablet can be measured with high accuracy.
  • FIG. 1 is a schematic plan view showing the overall configuration of a resin molding apparatus according to an embodiment.
  • FIG. 1 is a front sectional view showing the configuration of a resin molded module according to an embodiment.
  • (a) A schematic plan view showing the configuration of a lower mold according to an embodiment viewed from the mold surface side (above).
  • (b) A schematic bottom view showing the configuration of the upper mold according to one embodiment viewed from the mold surface side (lower side).
  • FIG. 1 A front sectional view showing how the depth of the cavity increases when resin is supplied by the plunger.
  • the flowchart which showed an example of the manufacturing method of a resin molded article. The figure which showed the time change of the clamp load, plunger position, and plunger load based on a 1st control aspect. 5 is a flowchart showing a specific example of filling rate corresponding control.
  • (a) A front sectional view showing the lower mold and the upper mold in a clamped state.
  • FIG. 3 is a perspective view showing the configuration of a resin material supply mechanism.
  • FIG. 3 is a plan view showing the configuration of a resin material supply mechanism.
  • FIG. 3 is a front view showing a delivery section, an individual weight measurement section, a moving section, and a chuck.
  • (a) A side view showing a state in which the support part is inserted into the groove part.
  • (c) A side view showing a state in which the resin tablet is lifted up by the support part.
  • the resin molding apparatus 1 seals an electronic element such as a semiconductor chip (hereinafter simply referred to as a "chip 2a") with a resin, and manufactures a resin molded product.
  • this embodiment illustrates a resin molding apparatus 1 that performs resin molding using a transfer molding method.
  • the resin molding apparatus 1 includes a supply module 10, a resin molding module 20, and a carry-out module 30 as components. Each component is removable and replaceable with respect to other components.
  • the supply module 10 supplies a lead frame (hereinafter simply referred to as "substrate 2"), which is a type of substrate on which the chip 2a is mounted, and a resin tablet T to the resin molding module 20.
  • a lead frame is illustrated as the substrate 2, but in addition to the lead frame, various other substrates (glass epoxy substrate, ceramic substrate, resin substrate, metal substrate, etc.) may be used. is possible.
  • the supply module 10 mainly includes a frame delivery section 11, a frame measurement section 12, a frame supply section 13, a resin material supply mechanism 200, a loader 17, and a control section 18.
  • the frame sending unit 11 sends out the unsealed substrate 2 housed in an in-magazine unit (not shown) to the frame measuring unit 12.
  • the frame measuring section 12 measures the volume of the chip 2a mounted on the substrate 2. Note that the frame measuring section 12 is an embodiment of the chip volume measuring section of the present application. Details regarding the frame measuring section 12 will be described later.
  • the substrate 2 that has been completely measured in the frame measurement section 12 is sent to the frame supply section 13.
  • the frame supply section 13 receives the substrates 2 from the frame measurement section 12, appropriately aligns the received substrates 2, and delivers them to the loader 17.
  • the resin material supply mechanism 200 supplies the resin tablet T to the loader 17, which will be described later.
  • the resin material supply mechanism 200 can measure the weight of the resin tablet T. Note that details of the resin material supply mechanism 200 will be described later.
  • the loader 17 is an embodiment of the transport mechanism of the present application.
  • the loader 17 transports the substrate 2 and resin tablet T received from the frame supply section 13 and the resin material supply mechanism 200 to the resin molding module 20.
  • the control unit 18 controls the operation of each module of the resin molding apparatus 1. Note that the control unit 18 is an embodiment of the calculation unit of the present application. The control unit 18 controls the operations of the supply module 10, resin molding module 20, and unloading module 30. Further, using the control unit 18, the operation of each module can be arbitrarily changed (adjusted).
  • control section 18 is provided in the supply module 10
  • control section 18 in other modules.
  • control section 18 it is also possible to provide a plurality of control sections 18.
  • control section 18 for each module or for each device, and to control the operations of each module individually while interlocking with each other.
  • the resin molding module 20 seals the chip 2a mounted on the substrate 2 with resin.
  • two resin molded modules 20 are arranged side by side. By performing the resin sealing of the substrate 2 in parallel using the two resin molding modules 20, it is possible to improve the manufacturing efficiency of the resin molded product.
  • the resin molding module 20 mainly includes a mold (a lower mold 110 and an upper mold 140) and a mold clamping mechanism 190 (see FIG. 2).
  • the molds (lower mold 110 and upper mold 140) are used to resin-seal the chip 2a mounted on the substrate 2 using a molten resin material.
  • the mold includes a pair of upper and lower molds, that is, a lower mold 110 and an upper mold 140 (see FIG. 2, etc.).
  • the mold is provided with a heating section (not shown) such as a heater.
  • the mold clamping mechanism 190 clamps or opens the molds (lower mold 110 and upper mold 140) by moving the lower mold 110 up and down.
  • the carry-out module 30 receives the resin-sealed substrate 2 from the resin molding module 20 and carries it out.
  • the unloading module 30 mainly includes an unloader 31 and a substrate storage section 32.
  • the unloader 31 holds the resin-sealed substrate 2 and carries it out to the substrate storage section 32.
  • the substrate accommodating portion 32 accommodates the resin-sealed substrate 2.
  • the frame sending section 11 sends out the substrate 2 housed in an in-magazine unit (not shown) to the frame measuring section 12 .
  • the frame measuring section 12 measures the volume of the chip 2a of the received substrate 2, and then sends out the substrate 2 to the frame supply section 13.
  • the frame supply unit 13 appropriately aligns the received substrates 2 and delivers them to the loader 17.
  • the resin material supply mechanism 200 measures the total weight of the number of resin tablets T required for one resin molding in the resin molding module 20 and delivers the measured weight to the loader 17.
  • the loader 17 transports the received substrate 2 and resin tablet T to the mold of the resin molding module 20.
  • the mold clamping mechanism 190 clamps the mold. Then, the resin tablet T is heated and melted by a heating section (not shown) of the mold, and the substrate 2 is resin-sealed using the generated molten resin.
  • the mold clamping mechanism 190 opens the mold. Then, the resin-sealed substrate 2 is released from the mold. Thereafter, the unloader 31 unloads the substrate 2 from the mold and stores it in the substrate accommodating section 32 of the unloading module 30. At this time, unnecessary portions (unnecessary resin such as culls and runners) of the resin-molded substrate 2 are appropriately removed. In this way, a resin-sealed substrate 2 (resin molded product) is manufactured.
  • the resin molding module 20 mainly includes a lower mold installation section 100, a lower mold 110, a lower mold cavity adjustment mechanism 120, an upper mold installation section 130, an upper mold 140, a disc spring 150, and an upper mold cavity adjustment mechanism. 160, an air vent opening/closing mechanism 170, a transfer mechanism 180, and a mold clamping mechanism 190.
  • the lower mold installation part 100 shown in FIG. 2 is a part where the lower mold 110 is provided.
  • the lower mold installation section 100 mainly includes a lower mold movable base section 101 and a lower mold mounting section 102 .
  • the lower mold movable base part 101 forms the lower part of the lower mold installation part 100.
  • the lower mold attachment part 102 is a part to which the lower mold 110 is attached.
  • the lower mold attachment part 102 is provided on the upper part of the lower mold movable base part 101.
  • the lower mold 110 shown in FIGS. 2, 3(a), and 9 forms the lower part of the mold.
  • the lower mold 110 mainly includes a lower mold side block 111, a pot block 112, a lower mold cavity block 113, a lower mold pillar 114, and a lower mold elastic member 115.
  • a side block 111 is arranged in the lower mold 110 of this embodiment.
  • the lower mold side block 111 forms the outer peripheral portion of the lower mold 110.
  • the lower mold side block 111 is provided on the upper surface of the lower mold mounting portion 102.
  • the pot block 112 is a portion in which the resin tablets T supplied from the supply module 10 are accommodated. A plurality of through holes (pots) for accommodating resin tablets T are formed in the pot block 112. The pot block 112 is placed between the lower mold cavity blocks 113 on the left and right sides. The pot block 112 is provided on the upper surface of the lower mold attachment part 102.
  • FIG. 3A shows an example of the pot block 112 in which two through holes (pots) are formed for the sake of simplifying the explanation
  • the number of pots is not limited to this. Any number of pots can be formed depending on the number of resin tablets T required for resin molding. For example, it is also possible to form eight pots capable of accommodating eight resin tablets T supplied from a resin material supply mechanism 200 (see FIG. 12, etc.) to be described later.
  • the lower mold cavity block 113 is a portion on which the substrate 2 is placed.
  • the lower mold cavity block 113 is arranged between the lower mold side block 111 and the pot block 112.
  • the lower mold cavity block 113 is arranged so as to be movable relative to the lower mold side blocks 111 and the pot block 112 in the vertical direction.
  • the lower mold pillar 114 is a member arranged to extend downward from the lower mold cavity block 113.
  • the upper end of the lower mold pillar 114 is fixed to the lower part of the lower mold cavity block 113.
  • the lower mold elastic member 115 applies an upward force to the lower mold cavity block 113.
  • the lower mold elastic member 115 is formed of, for example, a compression coil spring.
  • the lower mold elastic member 115 is arranged between the lower mold cavity block 113 and the lower mold mounting portion 102. The biasing force of the lower mold elastic member 115 always applies an upward force to the lower mold cavity block 113.
  • the lower mold cavity adjustment mechanism 120 shown in FIG. 2 is for adjusting the position of the lower mold cavity block 113.
  • the lower mold cavity adjustment mechanism 120 mainly includes a lower mold first wedge-shaped member 121 , a lower mold second wedge-shaped member 122 , and a lower mold wedge-shaped member driving section 123 .
  • the lower mold first wedge-shaped member 121 and the lower mold second wedge-shaped member 122 are a pair of members in which tapered portions are formed on surfaces facing each other.
  • the lower mold second wedge-shaped member 122 is arranged above the lower mold first wedge-shaped member 121.
  • the lower mold second wedge-shaped member 122 is arranged below the lower mold pillar 114.
  • the lower end of the lower mold pillar 114 comes into contact with the lower mold second wedge-shaped member 122, thereby restricting the downward movement of the lower mold cavity block 113. This defines the position of the lower mold cavity block 113.
  • the lower mold wedge-shaped member driving section 123 moves the lower mold first wedge-shaped member 121 in the horizontal direction (left-right direction).
  • the lower wedge-shaped member driving section 123 is formed by, for example, a servo motor, an air cylinder, or the like.
  • the lower mold wedge-shaped member driving section 123 is connected to the lower mold first wedge-shaped member 121 via an appropriate power transmission member. By driving the lower mold wedge-shaped member driving section 123, the lower mold first wedge-shaped member 121 can be arbitrarily moved in the left-right direction.
  • the position of the lower mold cavity block 113 can be adjusted by the lower mold cavity adjustment mechanism 120 configured in this way. Specifically, when the lower mold wedge-shaped member driving section 123 is driven to move the lower mold first wedge-shaped member 121 in the left-right direction, the lower mold second wedge-shaped member 122 in contact with the lower mold first wedge-shaped member 121 moves. It will be displaced up and down along the tapered portion. By vertically displacing the lower mold second wedge-shaped member 122, the position where the downward movement of the lower mold pillar 114 is restricted is displaced, and as a result, the position of the lower mold cavity block 113 can be adjusted. .
  • the upper mold installation part 130 shown in FIGS. 2 and 9 is a part where the upper mold 140 is provided.
  • the upper mold installation section 130 mainly includes an upper mold fixing base section 131, an upper mold mounting section 132, and a heater plate 133.
  • the upper mold fixing base part 131 forms the upper part of the upper mold installation part 130.
  • the upper mold attachment part 132 is a part to which the upper mold 140 is attached.
  • the upper mold attachment part 132 is formed by combining a plurality of members.
  • the upper mold attachment part 132 is provided at the lower part of the upper mold fixed base part 131.
  • a support portion 132a that supports an upper mold 140 (upper mold base portion 141), which will be described later, from below is provided on the outer periphery of the upper mold mounting portion 132.
  • the heater plate 133 is for heating the upper mold 140.
  • the heater plate 133 is provided on the bottom surface of the upper die mounting portion 132.
  • the upper mold 140 shown in FIGS. 2, 3(b), and 9 forms the upper part of the mold.
  • the upper mold 140 mainly includes an upper mold base portion 141, an upper mold side block 142, an upper mold cavity block 143, an upper mold support 145, and an upper mold pillar 146.
  • upper mold cavity blocks 143 are arranged on the left and right sides of the cull block 144, and the outer periphery of the upper mold cavity block 143 (excluding the cull block side)
  • An upper mold side block 142 is arranged.
  • the upper die base portion 141 is a member that supports an upper die side block 142, which will be described later.
  • the upper die base portion 141 is formed into a plate shape having a predetermined thickness at the top and bottom.
  • the outer peripheral portion of the upper mold base portion 141 is supported from below by the support portion 132a of the upper mold mounting portion 132. Thereby, the upper mold base part 141 is supported so as to be movable in the vertical direction with respect to the upper mold installation part 130.
  • the upper mold side block 142 forms the side surface of the cavity C formed by the upper mold 140.
  • the upper die side block 142 is an embodiment of the side block of the present application.
  • the upper mold side block 142 is formed into a frame shape with an opening formed at a position corresponding to the resin molded product (cavity C).
  • the upper die side block 142 is provided on the lower surface of the upper die base portion 141.
  • An air vent groove 142a is formed in the upper mold side block 142.
  • the air vent groove 142a shown in FIG. 2 is for discharging the air inside the cavity C to the outside.
  • the air vent groove 142a is formed at an appropriate position on the lower surface of the upper die side block 142.
  • the upper mold cavity block 143 forms the upper surface of the cavity C formed by the upper mold 140.
  • the upper mold cavity block 143 is an embodiment of the cavity block of the present application.
  • the upper mold cavity block 143 is arranged inside the upper mold side block 142 (more specifically, inside the opening of the upper mold side block 142).
  • the upper mold cavity block 143 is arranged so as to be movable relative to the upper mold side block 142 in the vertical direction.
  • the cull block 144 is arranged at a position facing the pot block 112 of the lower mold 110, and forms the side surface of the cavity C formed by the upper mold 140.
  • a groove-shaped cull portion 144a and a runner portion 144b for guiding the resin material to the cavity C are formed on the lower surface of the cull block 144 (see FIG. 3(b)).
  • FIG. 2 schematically shows how the through hole (pot) of the pot block 112 communicates with the cavity C, which will be described later, via the cull part 144a and the runner part 144b. It shows.
  • the upper mold support 145 restricts the upward movement of the upper mold 140 by contacting the upper mold installation part 130 and defines the position of the upper mold 140.
  • the upper die support 145 is fixed to the upper surface of the upper die base portion 141.
  • a plurality of upper die supports 145 are provided at appropriate positions on the upper surface of the upper die base portion 141.
  • the upper mold pillar 146 is a member arranged to extend upward from the upper mold cavity block 143.
  • the lower end of the upper mold pillar 146 is fixed to the upper part of the upper mold cavity block 143.
  • the upper mold pillar 146 is arranged to penetrate the upper mold base portion 141.
  • FIG. 2 shows a state in which the release film RF is adsorbed to the lower surface of the upper mold 140 (the surface forming the cavity C).
  • the disc spring 150 applies a downward force to the upper die 140.
  • the disc spring 150 is arranged between the lower surface of the upper mold installation section 130 (heater plate 133) and the upper surface of the upper mold 140 (upper mold base section 141). Due to the biasing force of the disc spring 150, a force is always applied to the upper mold 140 in a direction away from the upper mold installation portion 130 (downward).
  • the upper mold cavity adjustment mechanism 160 adjusts the position of the upper mold cavity block 143.
  • the upper mold cavity adjustment mechanism 160 includes an upper mold cavity block holding member 161, an upper mold cavity block drive section 162, a regulating member 163, an upper mold elastic member 164, an upper mold first wedge-shaped member 165, an upper mold second wedge-shaped member 166, and An upper wedge-shaped member driving section 167 is provided.
  • the upper mold cavity block holding member 161 holds the upper mold cavity block 143.
  • the upper mold cavity block holding member 161 is formed into a hollow frame shape when viewed from the front.
  • the upper mold cavity block holding member 161 is formed by combining a plurality of members (upper and lower plate members and a plurality of cylindrical members connecting the upper and lower plate members, etc.).
  • the upper mold cavity block holding member 161 is arranged so as to vertically penetrate the upper mold fixing base portion 131.
  • the upper mold cavity block holding member 161 is provided so as to be movable up and down with respect to the upper mold fixed base portion 131.
  • the upper end of the upper mold pillar 146 is fixed to the lower surface of the upper mold cavity block holding member 161. Thereby, the upper mold cavity block holding member 161 can hold the upper mold cavity block 143 via the upper mold pillar 146.
  • the upper mold cavity block drive section 162 moves the upper mold cavity block holding member 161 in the vertical direction (up and down direction).
  • the upper mold cavity block drive section 162 is formed by, for example, a servo motor, an air cylinder, or the like.
  • the upper mold cavity block drive section 162 is provided above the upper mold cavity block holding member 161. By driving the upper mold cavity block drive section 162, the upper mold cavity block holding member 161 (and thus the upper mold cavity block 143) can be arbitrarily moved in the vertical direction with respect to the upper mold installation section 130.
  • the regulating member 163 restricts the movement of the upper mold cavity block holding member 161 by coming into contact with the upper mold cavity block holding member 161.
  • the regulating member 163 is formed by combining a plurality of members (plate-like members, etc.).
  • the regulating member 163 includes an upper part that straddles the upper mold cavity block holding member 161 from side to side, and a central part disposed inside the upper mold cavity block holding member 161.
  • the center portion of the regulating member 163 is arranged so as to be able to contact the lower portion (bottom portion) of the upper mold cavity block holding member 161 from above.
  • the regulating member 163 can restrict upward movement of the upper mold cavity block holding member 161 by contacting the lower part of the upper mold cavity block holding member 161 from above. This allows the depth of the cavity C to be defined.
  • the upper mold elastic member 164 applies an upward force to the regulating member 163.
  • the upper mold elastic member 164 is formed of, for example, a compression coil spring.
  • the upper mold elastic member 164 is arranged between the regulating member 163 and the upper mold mounting part 132. Due to the biasing force of the upper mold elastic member 164, an upward force is always applied to the regulating member 163.
  • the upper mold first wedge-shaped member 165 and the upper mold second wedge-shaped member 166 are a pair of members having tapered portions formed on surfaces facing each other.
  • the upper mold second wedge-shaped member 166 is arranged below the upper mold first wedge-shaped member 165.
  • the upper mold first wedge-shaped member 165 and the upper mold second wedge-shaped member 166 are arranged inside the upper mold cavity block holding member 161. More specifically, the upper mold first wedge-shaped member 165 and the upper mold second wedge-shaped member 166 are arranged between the upper mold fixed base part 131 and the regulating member 163.
  • the upper mold second wedge-shaped member 166 is fixed to the upper surface of the regulating member 163.
  • the upper mold wedge-shaped member driving section 167 moves the upper mold first wedge-shaped member 165 in the horizontal direction (left-right direction).
  • the upper wedge-shaped member driving section 167 is formed by, for example, a servo motor, an air cylinder, or the like.
  • the upper mold wedge-shaped member driving section 167 is connected to the upper mold first wedge-shaped member 165 via a suitable power transmission member. By driving the upper wedge-shaped member drive section 167, the upper wedge-shaped member drive section 167 can be arbitrarily moved in the left-right direction.
  • the position of the upper mold cavity block 143 can be adjusted by the upper mold cavity adjustment mechanism 160 configured in this way. Specifically, when the upper mold cavity block drive unit 162 is driven to move the upper mold cavity block holding member 161 downward, a gap is created between the regulating member 163 and the lower part of the upper mold cavity block holding member 161. . That is, the regulating member 163 can move up and down using this gap. In this state, when the upper mold wedge-shaped member driving section 167 is driven to move the upper mold first wedge-shaped member 165 in the left-right direction, the upper mold second wedge-shaped member 166 in contact with the upper mold first wedge-shaped member 165 tapers. It will be displaced up and down along the section.
  • the regulating member 163 is also vertically displaced together with the upper mold second wedge-shaped member 166.
  • the upper mold cavity block drive section 162 is driven again to move the upper mold cavity block holding member 161 upward until it comes into contact with the regulating member 163.
  • the position where the upward movement of the upper die cavity block holding member 161 is regulated is displaced, so the position of the upper die cavity block 143 can be adjusted. Can be done.
  • Air vent opening/closing mechanism 170 The air vent opening/closing mechanism 170 shown in FIG. 2 opens and closes the air vent groove 142a that communicates the cavity C with the outside.
  • the air vent opening/closing mechanism 170 mainly includes an air vent pin 171 and an air vent drive section 172.
  • the air vent pin 171 is for closing the air vent groove 142a.
  • the air vent pin 171 is vertically movably provided in a through hole in the upper die side block 142 that communicates with the air vent groove 142a.
  • the air vent drive unit 172 moves the air vent pin 171 in the vertical direction.
  • the air vent drive section 172 is formed by, for example, a servo motor, an air cylinder, or the like. Air vent drive section 172 is connected to air vent pin 171 via a suitable power transmission member. By driving the air vent drive section 172, the air vent pin 171 can be arbitrarily moved in the vertical direction. For example, by moving the air vent pin 171 downward, the air vent groove 142a can be closed.
  • the transfer mechanism 180 supplies resin material to the cavity C.
  • the transfer mechanism 180 mainly includes a transfer drive section 181, a plunger 182, and a plunger load measurement section 183.
  • the transfer drive unit 181 is a drive source that moves a plunger 182, which will be described later, in the vertical direction (up and down direction).
  • the transfer drive unit 181 is formed by, for example, a servo motor, an air cylinder, or the like.
  • the transfer drive section 181 is provided on the lower mold movable base section 101 below the pot block 112.
  • the plunger 182 injects the resin tablet T (resin material) housed in the pot block 112 and supplies it to the cavity C.
  • the plunger 182 is arranged within the pot block 112 so that it can move up and down (raise and lower).
  • the plunger load measurement unit 183 measures the force (plunger load) applied to the plunger 182.
  • the force applied to the plunger 182 is the force by which the transfer drive unit 181 pushes the plunger 182.
  • the plunger load measuring section 183 is formed by, for example, a load cell or the like. Plunger load measuring section 183 is provided between transfer drive section 181 and plunger 182.
  • an elastic layer is provided between the transfer drive unit 181 and the plunger 182 in order to equalize the force applied to the resin material by each plunger 182 (as a result, the resin pressure in the cavity C).
  • No members, etc. are arranged. Therefore, the plunger 182 moves by an amount proportional to the output of the transfer drive section 181. For example, when pushing up the plunger 182 from below using an air cylinder having an extendable rod as the transfer drive unit 181, the plunger 182 also moves by the same amount as the movement of the rod of the transfer drive unit 181. Further, for example, when the transfer drive unit 181 moves the plunger 182 via a suitable speed reduction mechanism, the plunger 182 moves by an amount equal to the output of the transfer drive unit 181 multiplied by the reduction ratio of the speed reduction mechanism.
  • the plunger 182 is configured to move by an amount proportional to the output of the transfer drive unit 181, when a plurality of plungers 182 are used to supply resin material to the cavity C, the resin pressure in the cavity C is It is desirable that the configuration is such that the values are uniform.
  • the resin material is supplied from a plurality of plungers 182 (pots) to a common cavity C, so that the resin pressure is made uniform through the cavity C.
  • Other methods of making the resin pressure in the cavity C uniform are, for example, as shown in FIG. 4(a), a method of forming connecting grooves 144c connecting the cull portions 144a, and as shown in FIG. 4(b).
  • the mold clamping mechanism 190 shown in FIG. 2 raises the lower mold 110 and clamps the lower mold 110 and the upper mold 140 together.
  • the mold clamping mechanism 190 is an embodiment of the clamping mechanism of the present application.
  • the mold clamping mechanism 190 mainly includes a fixed platen 191, a support column 192, a drive mechanism 193, and a clamp load measuring section 194.
  • the fixed platen 191 is a part that is installed on the ground and supports other members.
  • a lower mold 110 (lower mold installation section 100) is provided on the upper part of the fixed platen 191 via a drive mechanism 193, which will be described later.
  • the support column 192 supports the upper mold 140 (upper mold installation part 130).
  • the support column 192 is provided to extend upward from the fixed platen 191.
  • An upper mold fixing base part 131 of the upper mold installation part 130 is fixed to the upper part of the support column 192 .
  • the upper mold 140 upper mold installation section 130
  • the lower mold 110 lower mold installation section 100
  • the drive mechanism 193 moves the lower mold 110 (lower mold installation section 100) in the vertical direction (up and down direction).
  • the drive mechanism 193 is formed by, for example, a drive source such as a servo motor, and an appropriate power transmission mechanism.
  • the drive mechanism 193 is arranged between the fixed platen 191 and the lower mold installation section 100.
  • the lower die installation section 100 can be arbitrarily moved (elevated) in the vertical direction. For example, by raising the lower mold 110 toward the upper mold 140 using the drive mechanism 193, the mold can be clamped. Furthermore, by lowering the lower mold 110 in a direction away from the upper mold 140 using the drive mechanism 193, the mold can be opened.
  • the clamp load measurement unit 194 measures the force (clamp load) when the mold clamping mechanism 190 clamps the lower mold 110 and the upper mold 140.
  • the clamp load measuring section 194 is formed by, for example, a load cell, a strain gauge, or the like.
  • the clamp load measuring section 194 is provided on the support column 192.
  • the clamp load measurement unit 194 can measure the clamp load based on the load applied to the support column 192.
  • FIG. 2 shows a state in which the lower mold 110 and the upper mold 140 are clamped after the substrate 2 and the resin tablet T are transferred to the mold.
  • the upper mold side block 142 of the upper mold 140 is attached to the lower mold 110. You will come into contact with Therefore, the clamping load by the mold clamping mechanism 190 is mainly applied to the upper mold side block 142.
  • the upper die side block 142 is vertically compressed and slightly deformed, so that the depth (vertical thickness) of the cavity C may become shallow.
  • the depth of the cavity C may change depending on the operation of each part, so by suppressing this change, the dimensions of the resin molded product can be adjusted. Accuracy can be improved.
  • a method for manufacturing a resin molded product control mode of clamp load and plunger load that can improve such dimensional accuracy will be described.
  • step S10 of FIG. 6 the volumes of the resin tablet T and the chip 2a on the substrate 2 are measured. This will be explained in detail below.
  • the volume of the resin tablet T is calculated based on the total weight of the resin tablet T measured in the resin material supply mechanism 200 of the supply module 10 as described above. Specifically, the total weight measuring section 250 of the resin material supply mechanism 200, which will be described later, measures the total weight of the number of resin tablets T required for one resin molding in the resin molding module 20. The volume of the resin tablet T is calculated from the weight of the resin tablet T measured by the total weight measuring section 250 and the specific gravity of the resin tablet T.
  • the volume of the chip 2a on the substrate 2 is measured by the frame measuring section 12 of the supply module 10 as described above.
  • the frame measuring section 12 can measure the volume of the chip 2a on the substrate 2 using any measuring device.
  • An example of the frame measurement unit 12 is a volume meter that measures the volume of the chip 2a on the substrate 2.
  • the volume meter is a laser volume meter that measures the shape (and thus the volume) of the chip 2a by detecting the distance to the chip 2a on the substrate 2 using laser light.
  • the method for measuring the volume of the chip 2a is not particularly limited, and measurement can be performed using various other devices. For example, it is possible to use various types of three-dimensional scanners.
  • step S20 of FIG. 6 the position of the plunger 182 at a predetermined resin filling rate of the cavity C is calculated. This will be explained in detail below.
  • the control unit 18 controls the cavity C based on the dimensions of each part (upper mold side block 142, upper mold cavity block 143, pot block 112, cull block 144, etc.) stored in advance and the vertical position of the upper mold cavity block 143. Calculate the capacity of Note that the vertical position of the upper mold cavity block 143 can be determined based on the amount of drive of the upper mold wedge-shaped member driving section 167, etc.
  • the control unit 18 determines, based on the calculated capacity of the cavity C and the volumes of the resin tablet T and the chip 2a measured in step S10, how much of the capacity of the cavity C should the plunger 182 rise to? % filled with molten resin material (resin filling rate) can be calculated.
  • control unit 18 controls the positions of the plunger 182 at which the resin filling rate of the cavity C is 0%, 25%, 50%, 75%, and 100% (hereinafter, each position P0 , P25, P50, P75 and P100) are calculated.
  • the resin filling rate of the cavity C is 0% regardless of the position of the plunger 182, but in this embodiment, the resin filling rate is 0% when the plunger 182 is raised.
  • the position where the resin material starts to be supplied into the cavity C is defined as a position P0 where the resin filling rate is 0%.
  • step S30 of FIG. 6 the substrate 2 and the resin tablet T are each transported to the mold of the resin molding module 20. Specifically, the substrate 2 is placed on the lower die 110, and the resin tablet T is housed in the pot of the pot block 112.
  • step S40 in FIG. 6 the lower mold 110 and the upper mold 140 are clamped by the mold clamping mechanism 190. Specifically, the lower mold 110 is raised by the mold clamping mechanism 190, and the lower mold 110 contacts the upper mold 140 from below. This closes cavity C. At this time, as shown in FIG. 9(a), the upper mold 140 rises to a position where the upper mold support 145 contacts the upper mold installation part 130 (heater plate 133).
  • the clamp load (unit: tonf, N, etc.) accompanying the operation of the resin molding device 1
  • the plunger position the vertical position of the plunger 182 with the initial position as 0, the unit: mm, for example
  • an example of the time change of the plunger load (unit: tonf, N, etc.)
  • the clamp load increases to CL1 at time t1 in FIG.
  • step S50 in FIG. 6 the plunger 182 starts rising (time t2 in FIG. 7).
  • step S60 of FIG. 6 filling rate corresponding control is executed.
  • the filling rate corresponding control is to control the operation of the resin molding apparatus 1 based on the resin filling rate of the cavity C.
  • FIG. 8 shows an example of controlling the clamp load and the moving speed of the plunger 182 based on the resin filling rate.
  • step S61 when the position of the plunger 182 reaches position P50 (position where the resin filling rate is 50%) (YES in step S61), the clamp load is increased from CL1 to CL2 (step S62).
  • the plunger 182 reaches position P50 at time t3, and the clamp load is increased from CL1 to CL2 from time t3 to time t4.
  • step S61 when the position of the plunger 182 reaches position P50 (position where the resin filling rate is 50%) (YES in step S61), the moving speed of the plunger 182 is adjusted (step S62).
  • the change in the plunger 182 over time becomes gentle at time t3. That is, the moving speed of plunger 182 is adjusted to be slow.
  • step S63 when the position of the plunger 182 reaches position P100 (the position where the resin filling rate is 100%) (YES in step S63), the plunger 182 is stopped (step S64). In FIG. 7, the plunger 182 reaches the position P100 at time t5, and the movement (rise) of the plunger 182 is stopped.
  • FIG. 8 shows an example in which the clamp load and the moving speed of the plunger 182 are adjusted only once when the resin filling rate reaches 50%
  • the number of adjustments is not limited to this, and may be adjusted multiple times. It is also possible to make adjustments. For example, it is also possible to adjust the clamp load, etc. each time the resin filling rate reaches 25%, 50%, and 75% (positions P25, P50, and P75 of the plunger 182). Further, the resin filling rate that triggers this adjustment is not limited to the above example, and can be set arbitrarily.
  • the moving speed of the plunger 182 according to the resin filling rate it is possible to suppress the occurrence of unfilled resin material, etc.
  • the resin material flowing inside the cavity C is divided into a relatively easy-to-flow portion (for example, a portion of the substrate 2 where the chip 2a is not provided) and a relatively difficult-to-flow portion (for example, a portion of the substrate 2 where the chip 2a is not provided). It may be desirable to adjust the flow rate in order to improve the circulation of the resin. Therefore, by adjusting the moving speed of the plunger 182 according to the resin filling rate as described above, it is possible to improve the circulation of the resin.
  • the resin filling rate (the position of the plunger 182 corresponding to the resin filling rate) is calculated based on the actually measured values of the volumes of the resin tablet T and the chip 2a of the substrate 2. Regardless of variations in the volume of each tablet T, the resin filling rate of the cavity C can be determined with high accuracy. Thereby, changes in the depth of the cavity C can be suppressed with higher accuracy.
  • an appropriate clamp load value and an appropriate moving speed of the plunger 182 for the resin filling rate can be determined in advance through experiments, numerical analysis, etc.
  • step S70 of FIG. 6 cavity control is performed.
  • Cavity control is to adjust the position of the upper mold cavity block 143 before pressure adjustment control, which will be described later.
  • the clamping load is reduced as shown in FIG. 9(b).
  • the clamp load is reduced while the upper mold cavity block holding member 161 is pressed downward by the upper mold cavity block drive section 162.
  • the clamp load is decreased from CL2 to CLdown at time t6.
  • the upper mold cavity block drive unit 162 presses the upper mold cavity block holding member 161 downward, can be suppressed from deepening.
  • the range of motion of the upper mold second wedge-shaped member 166 is ensured. That is, the upper die second wedge-shaped member 166 can move up and down.
  • the position of the upper mold cavity block 143 can be adjusted as desired.
  • the upper mold cavity block 143 is lowered slightly.
  • the depth of the cavity C can be made slightly shallower, and in the pressure adjustment control (step S80), the first final adjustment control (step S90), and the second final adjustment control (step S100), which will be described later, the depth of the cavity C can be made slightly shallower. It becomes easier to apply high pressure to the resin material.
  • step S80 of FIG. 6 pressure adjustment control is executed.
  • the pressure adjustment control is to adjust the clamp load to increase the pressure applied to the resin material in the cavity C.
  • the clamp load is increased from CLdown to CLM (preset clamp load) (time t7).
  • the plunger 182 is stopped. Therefore, the resin material filled in the cavity C supports the tendency of the cavity C to become shallower due to an increase in the clamp load, so that changes in the depth of the cavity C are suppressed. Moreover, this increases the pressure applied to the resin material in the cavity C, suppresses the occurrence of unfilled resin, etc., and improves the accuracy of the resin molded product.
  • FIG. 7 shows that the plunger load increases as the pressure inside the cavity C increases.
  • step S90 of FIG. 6 first final adjustment control is executed.
  • the first final adjustment control is to adjust the clamp load to a preset final clamp load.
  • the clamp load is increased from CLM to CLf (final clamp load) (time t8).
  • the plunger 182 is stopped. Therefore, the resin material filled in the cavity C supports the tendency of the cavity C to become shallower due to an increase in the clamp load, so that changes in the depth of the cavity C are suppressed. Moreover, this increases the pressure applied to the resin material in the cavity C, suppresses the occurrence of unfilled resin, etc., and improves the accuracy of the resin molded product.
  • step S100 of FIG. 6 second final adjustment control is executed.
  • the second final adjustment control is to adjust the plunger load to a preset final plunger load.
  • the plunger 182 is moved so that the plunger load becomes Trf (time t9).
  • the plunger 182 is raised to increase the plunger load to Trf.
  • the plunger 182 is lowered in step S100 to reduce the plunger load to Trf. Further, if the plunger load at the time when the first final adjustment control is completed (time t8) is Trf, the plunger load is maintained at Trf without moving the plunger 182 in step S100. In this way, by adjusting the final plunger load to a preset value, it is possible to improve the accuracy of the resin molded product.
  • the clamping force is increased in advance to the final clamping force in the first final adjustment control, and the plunger load is accordingly increased to a value close to the final plunger load.
  • the amount of movement of the plunger 182 in the second final adjustment control can be kept small, so that changes in the depth of the cavity C can be suppressed.
  • step S110 of FIG. 6 the clamp load and plunger load are held while waiting until the curing time (hardening time) has elapsed.
  • step S120 in FIG. 6 the plunger 182 is lowered to reduce the plunger load, and the lower mold 110 and the upper mold 140 are opened by the mold clamping mechanism 190.
  • step S130 of FIG. 6 the substrate 2 that has been resin molded (resin sealed) is carried out from the mold.
  • the unloaded substrate 2 is transported to the unload module 30.
  • control mode ⁇ Another example of control mode> Below, another example of the method for manufacturing a resin molded product (control mode of clamp load and plunger load) will be described.
  • the example shown in FIG. 10 shows another example of the control mode of the clamp load, etc. shown in FIG. 7.
  • the control mode shown in FIG. 7 is hereinafter referred to as a first control mode
  • the control mode shown in FIG. 10 is referred to as a second control mode.
  • the second control mode shown in FIG. 10 differs from the first control mode shown in FIG. 7 mainly in the control contents from time t6 to time t7 (steps S70 and S80 in FIG. 6). This difference will be explained below.
  • the position of the upper die cavity block 143 was adjusted so that the depth of the cavity C becomes shallow in the cavity control in step S70 in FIG.
  • the position of the upper mold cavity block 143 is adjusted so that it becomes deeper.
  • the upper mold wedge-shaped member driving section 167 is driven with the clamp load reduced to CLdown in step S70, and the upper mold cavity block 143 is slightly raised. As a result, the depth of the cavity C becomes slightly deeper.
  • step S80 of FIG. 6 pressure adjustment control is executed.
  • the depth of the cavity C is adjusted to become deeper in step S70.
  • the capacity of the cavity C also changes (increases), so the resin filling rate, which was 100%, decreases and becomes less than 100%.
  • control unit 18 recalculates the relationship between the resin filling rate of the cavity C and the position of the plunger 182 at this point. Note that this calculation method is the same as step S20.
  • the clamp load is increased from CLdown to CLM2 (time t7).
  • the clamp load CL is increased stepwise while the plunger 182 is raised to supply the resin material into the cavity C. That is, similar to the above-described filling rate corresponding control (step S60), the clamp load is increased in stages when the plunger 182 reaches a position corresponding to a predetermined resin filling rate. Further, at this time, it is also possible to adjust the moving speed of the plunger 182.
  • the example shown in FIG. 10 shows an example in which the clamp load is increased by two steps, CLM1 and CLM2.
  • step S80 the clamp load is increased in stages according to the resin filling rate, similarly to the filling rate corresponding control (step S60) described above, so that the depth of the cavity C can be changed. can be suppressed.
  • the pressure adjustment control it is also possible to adopt a configuration in which the above-mentioned filling rate corresponding control is not performed.
  • step S60 an example was shown in which the clamp load and the moving speed of the plunger 182 were adjusted according to the resin filling rate. It is also possible to control the operation of mechanism 170 (see FIG. 2). For example, when the resin filling rate reaches a predetermined value (when the plunger 182 reaches a position corresponding to the predetermined resin filling rate), the air vent pin 171 can be lowered to close the air vent groove 142a. Thereby, opening and closing of the air vent groove 142a can be precisely controlled according to the resin filling rate.
  • step S60 in which each part is controlled using the position of the plunger 182 corresponding to each resin filling rate (0%, 25%, 50%, 75%, and 100%).
  • the control method is not limited to this, and for example, it is also possible to perform control using other positions as a trigger based on these positions.
  • the plunger 182 when raising the plunger 182 (when supplying resin material to the cavity C), the plunger 182 moves a predetermined distance (for example, 5 mm etc.), it is possible to perform controls such as adjusting the moving speed of the plunger 182 and closing the air vent groove 142a.
  • a predetermined distance for example, 5 mm etc.
  • each part can be controlled, for example, just before the resin material starts to be supplied to the cavity C, or at the same time as the resin material starts to be supplied (timing that does not depend on the resin filling rate).
  • the resin material supply mechanism 200 of this embodiment can measure the total weight of the resin tablet T used for calculating the volume of the resin tablet T with high accuracy.
  • the resin material supply mechanism 200 mainly includes a delivery section 210, an individual weight measurement section 220, a moving section 230, a chuck 240, a total weight measurement section 250, a delivery section 260, and an extrusion mechanism 270. do.
  • the delivery unit 210 sequentially delivers the cylindrical resin tablets T to an individual weight measurement unit 220, which will be described later.
  • the delivery unit 210 can send out the plurality of resin tablets T housed inside to the right while arranging them in a line.
  • the individual weight measuring section 220 shown in FIG. 11 measures the weight of each resin tablet T individually.
  • the individual weight measurement section 220 is arranged to the right of the delivery section 210.
  • the individual weight measurement section 220 mainly includes a main body section 221 and a weight detection section 222.
  • the main body portion 221 is a portion on which the resin tablet T is placed.
  • the main body portion 221 is formed into a substantially rectangular parallelepiped shape.
  • the main body section 221 mainly includes a placing section 221a.
  • the mounting portion 221a is formed in the shape of a groove in which the upper surface of the main body portion 221 is depressed downward.
  • the mounting portion 221a is formed to extend in the left-right direction.
  • the mounting portion 221a is formed in a V-shape in a side cross-sectional view.
  • a cylindrical resin tablet T whose axis is oriented left and right can be placed on the placement portion 221a.
  • the placing portion 221a formed in a V-shape in a side cross-sectional view can prevent the resin tablet T placed on the placing portion 221a from rolling.
  • the weight detection section 222 measures the weight of the resin tablet T placed on the main body section 221.
  • Weight detection section 222 is arranged to support main body section 221 from below.
  • the weight detection section 222 can measure the load applied to the main body section 221.
  • a load cell can be used as the weight detection section 222.
  • the weight detection unit 222 is not limited to a load cell, and various devices capable of measuring weight can be used, such as a weight sensor using a piezoelectric element, a capacitive weight sensor, and the like.
  • the individual weight measurement unit 220 transfers the resin tablet T whose weight has been measured to the resin material supply mechanism 200, as shown in FIG. It is configured so that it can be discharged to the outside.
  • the case where the measurement result of the weight of the resin tablet T exceeds the preset range is, for example, when the weight of the resin tablet T is larger than the target value beyond the allowable error range, or when it is small. In this case, it can be determined that this resin tablet T is a defective product. In this way, by discharging resin tablets T that are considered to be defective products, resin molding can be performed using resin tablets T of appropriate weight, and the accuracy of the resin molded product can be improved.
  • a mechanism for discharging the resin tablet T various mechanisms can be adopted. For example, there is a mechanism in which a shutter that can be opened and closed is provided on the bottom of the main body part 221 and the resin tablet T is ejected downward through the shutter, or a mechanism in which the main body part 221 is rotated to drop and eject the resin tablet T. can be adopted.
  • the moving section 230 shown in FIGS. 11 to 14 moves the resin tablet T between the sending section 210, a total weight measuring section 250 described later, and a delivery section 260 described later.
  • the moving part 230 is formed in the shape of a rectangular parallelepiped that is long from front to back.
  • the moving section 230 is arranged to the right of the sending section 210 and the individual weight measuring section 220.
  • the moving part 230 mainly includes a first mounting part 231, a groove part 232, and a first rolling prevention part 233.
  • the first mounting section 231 shown in FIG. 14 is formed in the shape of a groove in which the upper surface of the moving section 230 is depressed downward.
  • the first mounting section 231 is formed to extend from the left end to the right end of the moving section 230.
  • the first mounting portion 231 is formed in a V-shape when viewed in side cross section.
  • a cylindrical resin tablet T whose axis is oriented left and right can be placed on the first placement portion 231 .
  • the first mounting portion 231 formed in a V-shape in side cross-sectional view can prevent the resin tablet T placed on the first mounting portion 231 from rolling. Further, the resin tablet T can be positioned by the first placement part 231.
  • a plurality of first mounting parts 231 are formed along the longitudinal direction of the moving part 230 at regular intervals.
  • the moving part 230 is illustrated in which eight first placing parts 231 are formed, but the present invention is not limited to this, and the first placing part 231 is The number of 231 can be changed arbitrarily.
  • the groove portion 232 shown in FIG. 14 is formed in a groove shape by recessing the bottom of the first mounting portion 231 further downward.
  • the groove portion 232 is formed to extend from the left end to the right end of the moving portion 230.
  • the first rolling prevention part 233 is for preventing the resin tablet T placed on the first placing part 231 from rolling.
  • the first rolling prevention portion 233 is formed into a rectangular flat plate shape.
  • the first rolling prevention part 233 is fixed to the upper surface of the moving part 230.
  • the first rolling prevention portions 233 are arranged on both front and rear sides of the first mounting portion 231, respectively. By arranging the first rolling prevention portion 233, the resin tablet T placed on the first placement portion 231 can be prevented from rolling back and forth over the first placement portion 231. .
  • the moving unit 230 can be moved back and forth by an appropriate moving mechanism (for example, a rail that guides the moving unit 230 so that it can move in the front-back direction, a servo motor that moves the moving unit 230 to an arbitrary position along the rail, etc.). It can move back and forth in a straight line.
  • the moving section 230 can move in the front-rear direction from the right side of the delivery section 210 (individual weight measurement section 220) to the left side of the delivery section 260, which will be described later. That is, the moving unit 230 can move on a moving path along a direction (front-back direction) perpendicular to the moving direction (left-right direction) of the resin tablet T sent out from the sending unit 210.
  • the chuck 240 shown in FIGS. 11 and 13 is for transferring the resin tablet T.
  • a pair of left and right chucks 240 are provided.
  • One chuck 240 can sandwich and hold the resin tablet T sent out from the delivery section 210 and place it on the placement section 221a of the individual weight measurement section 220.
  • the other chuck 240 can sandwich and hold the resin tablet T placed on the individual weight measurement section 220 and place it on the first placement section 231 of the moving section 230 .
  • the total weight measuring section 250 shown in FIGS. 11, 12, and 14 measures the weight of a plurality of resin tablets T placed on the moving section 230 all at once.
  • the total weight measuring section 250 is arranged on the right side of the moving section 230 (on the opposite side of the individual weight measuring section 220 with the moving section 230 in between).
  • the total weight measuring section 250 mainly includes a supporting section 251 , a second rolling prevention section 252 , a connecting section 253 , a weight detecting section 254 , and a moving section 255 .
  • the support part 251 supports the resin tablet T from below.
  • the support portion 251 is formed into a quadrangular prism shape with its longitudinal direction oriented in the left-right direction.
  • the support portion 251 is provided so as to protrude leftward from the left side surface of a connecting portion 253, which will be described later.
  • the support section 251 mainly includes a second mounting section 251a.
  • the second mounting portion 251a is formed in the shape of a groove in which the upper surface of the support portion 251 is depressed downward.
  • the second mounting portion 251a is formed to extend along the longitudinal direction of the support portion 251.
  • the second mounting portion 251a is formed in a V-shape when viewed in side cross section.
  • a plurality of support parts 251 are arranged so as to correspond to the first mounting part 231 of the moving part 230 in a row in front and behind.
  • eight supporting parts 251 are arranged to correspond to the eight first mounting parts 231.
  • the spacing between the plurality of supporting parts 251 is arranged to be the same as the spacing between the plurality of first mounting parts 231.
  • the second rolling prevention part 252 is for preventing the resin tablet T supported by the support part 251 from rolling.
  • the second rolling prevention portion 252 is formed in a cylindrical shape with its longitudinal direction oriented in the left-right direction.
  • the second rolling prevention part 252 is provided so as to protrude leftward from the left side surface of a connecting part 253, which will be described later.
  • the second rolling prevention portions 252 are arranged to correspond to the plurality of support portions 251, respectively.
  • a pair of second rolling prevention parts 252 are arranged above the support part 251 in front and rear.
  • the connecting part 253 connects the plurality of supporting parts 251 and the second rolling prevention part 252.
  • the connecting portion 253 is formed in the shape of a rectangular parallelepiped that is long from front to back.
  • a support portion 251 and a second anti-rolling portion 252 are fixed to the left side surface of the connecting portion 253 .
  • the weight detection section 254 shown in FIGS. 11, 12, and 15 measures the weight of the resin tablet T supported by the support section 251.
  • the weight detection section 254 is fixed to the right side surface of the connection section 253.
  • the weight detection section 254 can measure the load applied to the connection section 253.
  • a load cell can be used as the weight detection section 254.
  • the weight detection unit 254 is not limited to a load cell, and various devices capable of measuring weight can be used, such as a weight sensor using a piezoelectric element, a capacitive weight sensor, and the like.
  • the moving section 255 moves the connecting section 253 in the vertical and horizontal directions.
  • the moving section 255 is an embodiment of the elevating section of the present application.
  • the moving section 255 is connected to the connecting section 253 via the weight detecting section 254.
  • the moving unit 255 includes an appropriate moving mechanism (for example, a rail that guides the moving unit 255 so that it can move vertically and horizontally, a servo motor that moves the moving unit 255 to an arbitrary position along the rail, etc.) This allows it to move vertically and horizontally.
  • the delivery section 260 shown in FIGS. 11 and 12 delivers the resin tablet T sent out by the delivery section 210 to the loader 17.
  • the delivery section 260 is formed in the shape of a rectangular parallelepiped that is long from front to back.
  • the delivery section 260 and the total weight measuring section 250 are arranged so as to be lined up one after the other along the moving path of the moving section 230.
  • the delivery section 260 is arranged to the right of the moving section 230 and behind the total weight measuring section 250.
  • the total weight measurement section 250 and the delivery section 260 are arranged so as to be lined up along the movement path of the moving section 230 that moves back and forth.
  • the delivery section 260 mainly includes a storage section 261 and a rotating shaft 262.
  • the accommodating portion 261 is a portion that accommodates the resin tablet T.
  • the housing portion 261 is formed in a concave shape that opens on the left side of the delivery portion 260 .
  • a plurality of accommodating parts 261 are arranged so as to correspond to the first placing part 231 of the moving part 230 in a row.
  • eight accommodating parts 261 are formed to correspond to the eight first mounting parts 231.
  • the intervals between the plurality of accommodating parts 261 are formed to be the same as the intervals between the plurality of first mounting parts 231.
  • the rotating shaft 262 rotatably supports the delivery section 260.
  • the rotation shaft 262 is provided at both front and rear ends of the delivery section 260.
  • the delivery section 260 can be rotated about a rotating shaft 262 by power from a drive source (such as an air cylinder) not shown.
  • the delivery section 260 can be moved up and down by an appropriate moving mechanism (for example, a rail that guides the delivery section 260 so that it can be moved vertically, a servo motor that moves the delivery section 260 to an arbitrary position along the rail, etc.). It can move back and forth in a straight line.
  • the delivery section 260 can deliver the resin tablet T accommodated in the storage section 261 to the loader 17 when moving upward.
  • the extrusion mechanism 270 extrudes the resin tablet T placed on the moving section 230 and delivers it to the delivery section 260.
  • the extrusion mechanism 270 is arranged on the left side of the moving section 230 (on the opposite side of the delivery section 260 with the moving section 230 in between).
  • the extrusion mechanism 270 mainly includes an extrusion section 271 and a support section 272.
  • the extrusion part 271 is a part that extrudes the resin tablet T.
  • the extrusion portion 271 is formed into a rectangular flat plate shape.
  • the extrusion part 271 is arranged so that the plate surface is generally horizontal.
  • the front-rear width of the extrusion part 271 is formed so as to span the entirety of a plurality of (eight in this embodiment) first mounting parts 231 formed in the moving part 230.
  • the extrusion mechanism 270 of this embodiment is illustrated as having a configuration in which the resin tablet T is extruded by an extrusion portion 271 formed in a flat plate shape, the present invention is not limited to this, and various configurations may be adopted. Is possible.
  • the extrusion part 271 it is also possible to use a cylindrical member whose longitudinal direction is oriented in the left-right direction. By arranging a plurality of these cylindrical members so as to correspond to the plurality of first placement sections 231, one behind the other, the resin tablets T placed on the first placement sections 231 can be collected together. It can be pushed out.
  • the support part 272 is a part that supports the extrusion part 271.
  • the support portion 272 is formed into a rectangular plate shape with its longitudinal direction facing in the front-rear direction.
  • the left end portion of the extrusion portion 271 is fixed to the right side surface of the support portion 272 .
  • the extrusion mechanism 270 is moved in the left-right direction by an appropriate movement mechanism (for example, a rail that guides the support section 272 so that it can move in the left-right direction, an air cylinder that moves the support section 272 along the rail, etc.). be able to.
  • an appropriate movement mechanism for example, a rail that guides the support section 272 so that it can move in the left-right direction, an air cylinder that moves the support section 272 along the rail, etc.
  • the plurality of resin tablets T accommodated in the delivery section 210 move to the right end of the delivery section 210 while being aligned in a line.
  • the resin tablet T that has reached the right end of the delivery section 210 is placed on the individual weight measurement section 220 by the chuck 240.
  • the weight of the resin tablet T placed on the individual weight measuring section 220 is measured by the weight detecting section 222 .
  • the weight detection section 222 can measure the weight of a single resin tablet T sent out from the delivery section 210.
  • this resin tablet T is considered to be a defective product and is discharged from the individual weight measurement section 220.
  • the resin tablet T whose weight does not exceed a preset range is placed on the first placement section 231 of the moving section 230 by the chuck 240.
  • each first placing section A resin tablet T can be placed on 231.
  • a number of resin tablets T required for one resin molding in the resin molding module 20 are placed on the moving part 230 . At this time, as shown in FIG. The placed resin tablet T is prevented from rolling.
  • the total weight measuring section 250 moves to the left, as shown in FIGS. 15(a) and 15(b). .
  • the plurality of support parts 251 provided in the total weight measuring part 250 are inserted into each groove part 232 of the moving part 230 from the right side.
  • the support portion 251 is positioned below each resin tablet T.
  • the second anti-rolling portions 252 of the total weight measuring portion 250 are positioned above the left and right sides of each resin tablet T, respectively.
  • each support section 251 of the total weight measurement section 250 collectively lifts the plurality of resin tablets T upward.
  • the resin tablet T is prevented from rolling by the inclined surface of the second placing part 251a formed on the support part 251 and the second rolling prevention parts 252 arranged on the left and right sides of the resin tablet T. .
  • the weight of the plurality of resin tablets T is measured at once by the weight detection section 254. Thereby, the total weight of the plurality of resin tablets T used for one resin molding in the resin molding module 20 can be measured.
  • the total weight of a plurality of resin tablets T used for one resin molding can be measured at once in the resin material supply mechanism 200.
  • measurement errors can be kept small compared to the case where the weights of the resin tablets T are measured individually and added up, and the total weight of the resin tablets T can be measured with high precision.
  • the total weight measurement section 250 After the total weight measurement section 250 finishes measuring the weight of the resin tablet T, the total weight measurement section 250 moves downward, and the resin tablet T is placed on the first placement section 231 of the moving section 230 again. Thereafter, the total weight measurement section 250 moves to the right, and the support section 251 retreats from the groove section 232 of the moving section 230.
  • each resin tablet T is extruded to the right by the extrusion section 271 and is accommodated in each accommodation section 261 of the delivery section 260.
  • the delivery unit 260 that accommodates the resin tablets T rotates so that the storage unit 261 faces upward, moves upward, and delivers each resin tablet T to the loader 17.
  • the resin material supply mechanism 200 of this embodiment can measure the individual weights of the resin tablets T and the total weight of the plurality of resin tablets T, respectively. Information regarding the weight of the resin tablet T is stored in the control unit 18 and can be managed.
  • the resin material supply mechanism 200 it is also possible to configure it so that the resin tablets T can be discharged from the total weight measuring section 250 to the outside of the resin material supply mechanism 200 all at once.
  • the total weight measuring section 250 discharges the plurality of resin tablets T whose weights have been measured to the outside at once.
  • Various mechanisms can be adopted as the mechanism for discharging the plurality of resin tablets T. For example, a mechanism similar to the mechanism by which the individual weight measuring section 220 discharges the resin tablet T can be adopted.
  • the components (supply module 10, etc.) used in the resin molding apparatus 1 of the above embodiment are just one example, and can be removed or replaced as appropriate.
  • the configuration and operation of the components (supply module 10, etc.) used in the resin molding apparatus 1 of this embodiment are merely examples, and can be changed as appropriate.
  • the cull portion 144a and the runner portion 144b are formed in the cull block 144, but for example, a portion of the cull portion 144a and the runner portion 144b may be formed in the pot block 112. It's okay.
  • the pot block 112 is provided with a plurality of through holes (pots), but the number of through holes may be one.
  • control mode illustrated in the above embodiment is an example, and detailed control contents (for example, target values of clamp load and plunger load, control timing, etc.) can be changed arbitrarily.
  • control contents for example, target values of clamp load and plunger load, control timing, etc.
  • step S100 the second final adjustment control
  • step S100 the second final adjustment control
  • step S100 is executed before the first final adjustment control is completed. It is also possible to start a second final adjustment control.
  • the disc spring 150 is illustrated as the applying part that applies force to the upper die 140, but the present invention is not limited to this, and various other configurations can be adopted.
  • various elastic members or actuators such as air cylinders as the applying section.
  • the resin molding apparatus 1 can perform resin molding using a substrate 2 whose volume has been measured externally. In this case, the resin molding apparatus 1 does not need to include the frame measuring section 12.
  • examples of the filling rate corresponding control include clamp force adjustment control that adjusts the clamp load, plunger speed adjustment control that adjusts the moving speed of the plunger 182, and air vent switching that switches between opening and closing the air vent groove 142a.
  • clamp force adjustment control that adjusts the clamp load
  • plunger speed adjustment control that adjusts the moving speed of the plunger 182
  • air vent switching that switches between opening and closing the air vent groove 142a.
  • the moving unit 230 illustrated in the above embodiment is an example, and the specific shape etc. can be changed arbitrarily.
  • the first mounting portion 231 in a curved shape corresponding to the side surface (curved surface) of the resin tablet T.
  • the first placing part 231 can sufficiently prevent the resin tablet T from rolling, the first rolling The installation of the prevention part 233 may be omitted.
  • the shape of the groove portion 232 is not particularly limited, and the shape, size, etc. can be arbitrarily changed as long as the support portion 251 for lifting the resin tablet T can be inserted therein.
  • the total weight measuring section 250 illustrated in the above embodiment is just an example, and the specific shape etc. can be changed arbitrarily.
  • the shape, number, arrangement, etc. of the second rolling prevention portion 252 for preventing the resin tablet T from rolling can be changed arbitrarily.
  • the shape, size, etc. of the support part 251 for supporting the resin tablet T can be changed arbitrarily.
  • each part of the resin material supply mechanism 200 exemplified in the above embodiment are not particularly limited, and can be arbitrarily changed depending on the shape, size, etc. of the resin molding apparatus 1. .
  • the resin material supply mechanism 200 includes: A delivery unit 210 that sequentially delivers the resin material (resin tablet T); a total weight measurement unit 250 that collectively measures the weight of the plurality of resin materials sent out by the delivery unit 210; a delivery unit 260 that delivers the plurality of resin materials sent out by the delivery unit 210 to a loader 17 (transport mechanism) that transports the resin materials to molds (lower mold 110 and upper mold 140); a moving unit 230 that moves the resin material between the delivery unit 210, the total weight measurement unit 250, and the delivery unit 260; Equipped with.
  • the total weight of the resin tablet T can be measured with high accuracy.
  • the volume of the resin tablet can be calculated with high precision based on the total weight of the resin tablet T, and the resin molded product can be made with high precision.
  • the total weight measurement unit 250 discharges the plurality of resin materials whose weights have been measured when the measurement results of the weights of the plurality of resin materials exceed a preset range.
  • resin tablets T having a weight significantly different from a desired weight can be discharged all at once, and resin molding can be performed using resin tablets T having a weight close to the desired weight. Can be done. This makes it possible to improve the precision of the resin molded product.
  • the third side resin material supply mechanism 200 is The weight of the resin material sent out by the delivery unit 210 is individually measured, and if the measurement result of the weight of the resin material exceeds a preset range, the resin material whose weight has been measured is discharged. A weight measuring section 220 is further included. According to the resin material supply mechanism 200 of the third aspect of the present disclosure, it is possible to discharge the resin tablet T whose weight is significantly different from the desired weight and perform resin molding using the resin tablet T whose weight is close to the desired weight. This makes it possible to improve the precision of the resin molded product.
  • the total weight measurement section 250 and the delivery section 260 are arranged along the moving path of the moving section 230. According to the resin material supply mechanism 200 of the fourth aspect of the present disclosure, the total weight measuring section 250 can be arranged at an appropriate position, and the space of the entire resin material supply mechanism 200 can be saved.
  • the moving unit 230 is a plurality of first mounting portions 231 formed to correspond to the plurality of resin materials and on which the resin materials can be placed; a plurality of groove portions 232 formed below the plurality of resin materials placed on the first placement portion 231; Equipped with
  • the total weight measuring section 250 includes: a plurality of support parts 251 formed to correspond to the plurality of grooves 232, insertable into the grooves 232, and capable of supporting the resin material from below; a moving part 255 (elevating part) that can raise and lower the plurality of support parts 251 all at once; Equipped with.
  • the weights of a plurality of resin materials can be measured at once with a simple configuration.
  • the moving section 230 includes a first rolling prevention section 233 that prevents the resin material placed on the first mounting section 231 from rolling
  • the total weight measurement section 250 includes a second rolling prevention section 252 that prevents the resin material supported by the support section 251 from rolling
  • a second mounting portion 251 a having a V-shape in cross section is formed on the upper surface of the support portion 251 . According to the resin material supply mechanism 200 of the sixth aspect of the present disclosure, rolling of the resin material can be effectively prevented.
  • the depth of the first mounting part 231 on which the resin tablet T is mounted is shallow, and the resin tablet It is assumed that the T is likely to roll. Therefore, by providing the first rolling prevention part 233 on the upper surface of the moving part 230, rolling of the resin tablet T can be effectively prevented.
  • the resin molding device 1 according to the seventh aspect of the present disclosure includes: A resin material supply mechanism 200 according to any one of the first to sixth aspects is provided.
  • the total weight of the resin tablet T can be measured with high precision.
  • the volume of the resin tablet can be calculated with high precision based on the total weight of the resin tablet T, and the resin molded product can be made with high precision.
  • the resin molding device 1 of the eighth aspect according to the seventh aspect includes: a lower mold 110 on which the substrate 2 is placed; An upper mold 140 forming a cavity C by an upper mold side block 142 (side block) and an upper mold cavity block 143 (cavity block) provided so as to be able to move up and down with respect to the upper mold side block 142.
  • a mold clamping mechanism 190 clamp mechanism that clamps the lower mold 110 and the upper mold 140
  • a transfer mechanism 180 that supplies resin material to the cavity C by a plunger 182
  • a control unit 18 that performs filling rate corresponding control (step S60, step S80 in the second control mode) that controls operations related to resin molding when the resin filling rate 182 reaches a position corresponding to a predetermined resin filling rate; Equipped with The volume of the resin material is calculated based on the weight of the plurality of resin materials measured by the total weight measuring section 250 of the resin material supply mechanism 200.
  • the resin molding apparatus 1 of the eighth aspect of the present disclosure highly accurate resin molded products can be manufactured. That is, since the resin filling rate can be accurately grasped based on the volume of the resin tablet T and the chip 2a of the substrate 2 actually used, each part can be controlled based on this resin filling rate. This makes it possible to improve the precision of the resin molded product.
  • the resin molding device 1 of the ninth aspect according to the eighth aspect is a frame measurement unit 12 (chip volume measurement unit) that measures the volume of the chip 2a placed on the substrate 2;
  • the apparatus further includes a calculation section (control section 18) that calculates the relationship between the resin filling rate and the position of the plunger 182 based on the measurement results of the frame measurement section 12 and the total weight measurement section 250.
  • a calculation section control section 18
  • the method for manufacturing a resin molded product according to the tenth aspect of the present disclosure includes: A method for manufacturing a resin molded product using the resin molding apparatus 1 according to any one of the seventh to ninth aspects, a chip volume measuring step (step S10) of measuring the volume of the chip 2a placed on the substrate 2; a resin volume measuring step (step S10) of measuring the volume of the resin material; a plunger position calculation step (step S20) of calculating the relationship between the resin filling rate of the cavity C and the position of the plunger 182 based on the measured volume of the chip 2a and the volume of the resin material;
  • the process includes a filling rate corresponding control step (step S60, step S80 in the second control mode) of controlling operations related to resin molding when the plunger 182 reaches a position corresponding to a predetermined resin filling rate.
  • the method for manufacturing a resin molded product according to the tenth aspect of the present disclosure can manufacture a highly accurate resin molded product. That is, since the resin filling rate can be accurately grasped based on the volume of the resin tablet T and the chip 2a of the substrate 2 actually used, each part can be controlled based on this resin filling rate. This makes it possible to improve the precision of the resin molded product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

樹脂タブレットの総重量を高精度に測定することが可能な樹脂材料供給機構を提供する。 樹脂材料を順次送り出す送出部と、前記送出部により送り出された複数の前記樹脂材料の重量を一括して測定する総重量測定部と、前記送出部により送り出された複数の前記樹脂材料を、前記樹脂材料を成形型へと搬送する搬送機構へと受け渡す受渡部と、前記送出部と、前記総重量測定部と、前記受渡部と、の間で前記樹脂材料を移動させる移動部と、を具備する。

Description

樹脂材料供給機構、樹脂成形装置および樹脂成形品の製造方法
 本発明は、樹脂材料供給機構、樹脂成形装置および樹脂成形品の製造方法の技術に関する。
 特許文献1には、プレスユニットで必要とされる複数の樹脂タブレットの重量を、個別に測定する技術が開示されている。具体的には、特許文献1には、円柱状の樹脂タブレットを個別に収容するポット部と、ポット部に収容された樹脂タブレットの重量を個別に測定するロードセルと、ポット部に収容された樹脂タブレットを排出するための排出シャッターと、を具備する樹脂材料供給機構が開示されている。
 特許文献1に記載の樹脂材料供給機構では、ポット部に収容された樹脂タブレットの重量が基準となる重量の条件を満たさない場合、樹脂タブレットは不良品であると判断される。不良品であると判断された樹脂タブレットは、排出シャッターによって外部へと排出される。このようにして、基準となる重量の条件を満たす樹脂タブレットが選別され、プレスユニットへと供給される。
特開2019-202436号公報
 しかしながら特許文献1に記載の技術では、樹脂タブレットを複数用いて樹脂成形が行われるため、個別に重量が測定された樹脂タブレットの測定誤差が累積し、複数の樹脂タブレットの総重量の誤差が大きくなるおそれがある。
 特に、樹脂成形品の高精度化のために、樹脂成形に用いられる樹脂タブレットの総重量に基づいてプランジャの位置等を制御する樹脂成形装置では、使用する樹脂タブレットの総重量を高精度に調整する必要がある。しかし、特許文献1に記載の樹脂材料供給機構は樹脂タブレットの総重量の誤差が大きくなるおそれがあるため、上述のような樹脂成形装置に適用することが困難である。
 本発明は以上の如き状況に鑑みてなされたものであり、その解決しようとする課題は、樹脂タブレットの総重量を高精度に測定することが可能な樹脂材料供給機構、樹脂成形装置および樹脂成形品の製造方法を提供することである。
 本発明の解決しようとする課題は以上の如くであり、この課題を解決するため、本発明に係る樹脂材料供給機構は、樹脂材料を順次送り出す送出部と、前記送出部により送り出された複数の前記樹脂材料の重量を一括して測定する総重量測定部と、前記送出部により送り出された複数の前記樹脂材料を、前記樹脂材料を成形型へと搬送する搬送機構へと受け渡す受渡部と、前記送出部と、前記総重量測定部と、前記受渡部と、の間で前記樹脂材料を移動させる移動部と、を具備するものである。
 また、本発明に係る樹脂成形装置は、前記樹脂材料供給機構を具備するものである。
 また、本発明に係る樹脂成形品の製造方法は、前記樹脂成形装置を用いた樹脂成形品の製造方法であって、基板に配置されたチップの体積を測定するチップ体積測定工程と、樹脂材料の体積を測定する樹脂体積測定工程と、測定された前記チップの体積及び前記樹脂材料の体積に基づいて、キャビティの樹脂充填率とプランジャの位置との関係を算出するプランジャ位置算出工程と、前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御工程と、を含むものである。
 本発明によれば、樹脂タブレットの総重量を高精度に測定することができる。
一実施形態に係る樹脂成形装置の全体的な構成を示した平面模式図。 一実施形態に係る樹脂成形モジュールの構成を示した正面断面図。 (a)一実施形態に係る下型を型面側(上方)から見た構成を示した平面模式図。(b)一実施形態に係る上型を型面側(下方)から見た構成を示した底面模式図。 (a)カル部同士を連結する連結溝を示した平面模式図。(b)カル部同士がキャビティを介して連結された例を示した平面模式図。 (a)型締め機構によりクランプされた際にキャビティの深さが浅くなる様子を示した正面断面図。(b)プランジャにより樹脂が供給された際にキャビティの深さが深くなる様子を示した正面断面図。 樹脂成形品の製造方法の一例を示したフローチャート。 第一制御態様に係るクランプ荷重、プランジャ位置及びプランジャ荷重の時間変化を示した図。 充填率対応制御の具体例を示したフローチャート。 (a)型締めされた状態の下型及び上型を示した正面断面図。(b)クランプ荷重が低下された状態の下型及び上型を示した正面断面図。 第二制御態様に係るクランプ荷重、プランジャ位置及びプランジャ荷重の時間変化を示した図。 樹脂材料供給機構の構成を示した斜視図。 樹脂材料供給機構の構成を示した平面図。 送出部、個別重量測定部、移動部及びチャックを示した正面図。 移動部及び総重量測定部を示した拡大斜視図、並びに、一部拡大側面図。 (a)支持部が溝部に挿入された状態を示した側面図。(b)支持部が溝部に挿入された状態を示した正面一部断面図。(c)支持部によって樹脂タブレットが持ち上げられた状態を示した側面図。(d)支持部によって樹脂タブレットが持ち上げられた状態を示した正面一部断面図。
 以下では、図中に示した矢印U、矢印D、矢印L、矢印R、矢印F及び矢印Bで示した方向を、それぞれ上方向、下方向、左方向、右方向、前方向及び後方向と定義して説明を行う。
<樹脂成形装置1の全体構成>
 まず、図1を用いて、樹脂成形装置1の構成について説明する。樹脂成形装置1は、半導体チップなどの電子素子(以下、単に「チップ2a」と称する)を樹脂封止し、樹脂成形品を製造するものである。特に本実施形態では、トランスファーモールド法を利用して樹脂成形を行う樹脂成形装置1を例示している。
 樹脂成形装置1は、構成要素として、供給モジュール10、樹脂成形モジュール20及び搬出モジュール30を具備する。各構成要素は、他の構成要素に対して着脱可能かつ交換可能である。
<供給モジュール10>
 供給モジュール10は、チップ2aを装着した基板の一種であるリードフレーム(以下、単に「基板2」と称する)、及び樹脂タブレットTを樹脂成形モジュール20へと供給するものである。なお、本実施形態では基板2としてリードフレームを例示しているが、リードフレーム以外にも、その他種々の基板(ガラスエポキシ製基板、セラミック製基板、樹脂製基板、金属製基板等)を用いることが可能である。供給モジュール10は、主としてフレーム送出部11、フレーム測定部12、フレーム供給部13、樹脂材料供給機構200、ローダ17及び制御部18を具備する。
 フレーム送出部11は、インマガジンユニット(不図示)に収容された樹脂封止されていない基板2を、フレーム測定部12に送り出すものである。フレーム測定部12は、基板2に装着されたチップ2aの体積を測定するものである。なお、フレーム測定部12は、本願のチップ体積測定部の実施の一形態である。フレーム測定部12についての詳細は後述する。フレーム測定部12における測定が完了した基板2は、フレーム供給部13に送り出される。フレーム供給部13は、フレーム測定部12から基板2を受け取り、受け取った基板2を適宜整列させてローダ17に受け渡すものである。
 樹脂材料供給機構200は、樹脂タブレットTを後述するローダ17へと供給するものである。樹脂材料供給機構200は、樹脂タブレットTの重量を測定することができる。なお、樹脂材料供給機構200についての詳細は後述する。なお、ローダ17は、本願の搬送機構の実施の一形態である。
 ローダ17は、フレーム供給部13及び樹脂材料供給機構200から受け取った基板2及び樹脂タブレットTを、樹脂成形モジュール20に搬送するものである。
 制御部18は、樹脂成形装置1の各モジュールの動作を制御するものである。なお、制御部18は、本願の算出部の実施の一形態である。制御部18によって、供給モジュール10、樹脂成形モジュール20及び搬出モジュール30の動作が制御される。また、制御部18を用いて、各モジュールの動作を任意に変更(調整)することができる。
 なお本実施形態においては、制御部18を供給モジュール10に設けた例を示しているが、制御部18をその他のモジュールに設けることも可能である。また、制御部18を複数設けることも可能である。例えば、制御部18をモジュールごとや装置ごとに設け、各モジュール等の動作を互いに連動させながら個別に制御することも可能である。
<樹脂成形モジュール20>
 樹脂成形モジュール20は、基板2に装着されたチップ2aを樹脂封止するものである。本実施形態においては、樹脂成形モジュール20は2つ並べて配置される。2つの樹脂成形モジュール20によって基板2の樹脂封止を並行して行うことで、樹脂成形品の製造効率を向上させることができる。樹脂成形モジュール20は、主として成形型(下型110及び上型140)及び型締め機構190(図2参照)を具備する。
 成形型(下型110及び上型140)は、溶融した樹脂材料を用いて、基板2に装着されたチップ2aを樹脂封止するものである。成形型は、上下一対の型、すなわち、下型110及び上型140(図2等参照)を具備する。成形型には、ヒータ等の加熱部(不図示)が設けられる。
 型締め機構190(図2参照)は、下型110を上下に移動させることによって、成形型(下型110及び上型140)を型締め又は型開きするものである。
<搬出モジュール30>
 搬出モジュール30は、樹脂封止された基板2を樹脂成形モジュール20から受け取って搬出するものである。搬出モジュール30は、主としてアンローダ31及び基板収容部32を具備する。
 アンローダ31は、樹脂封止された基板2を保持して基板収容部32へと搬出するものである。基板収容部32は、樹脂封止された基板2を収容するものである。
<樹脂成形装置1の動作の概要>
 次に、図1及び図2を用いて、上述の如く構成された樹脂成形装置1の動作(樹脂成形装置1を用いた樹脂成形品の製造方法)の概要について説明する。
 供給モジュール10において、フレーム送出部11は、インマガジンユニット(不図示)に収容された基板2を、フレーム測定部12に送り出す。フレーム測定部12は、受け取った基板2のチップ2aの体積を測定した後、基板2をフレーム供給部13に送り出す。フレーム供給部13は、受け取った基板2を適宜整列させて、ローダ17に受け渡す。
 また、樹脂材料供給機構200は、樹脂成形モジュール20における一回の樹脂成形に必要な個数の樹脂タブレットTの総重量を測定し、ローダ17に受け渡す。ローダ17は、受け取った基板2と樹脂タブレットTを樹脂成形モジュール20の成形型に搬送する。
 樹脂成形モジュール20において、型締め機構190は、成形型を型締めする。そして、成形型の加熱部(不図示)によって樹脂タブレットTを加熱して溶融させ、生成された溶融樹脂を用いて基板2を樹脂封止する。
 樹脂封止が完了した後、型締め機構190は成形型を型開きする。そして、樹脂封止された基板2を離型させる。その後、アンローダ31は、基板2を成形型から搬出し、搬出モジュール30の基板収容部32に収容する。この際、樹脂成形された基板2の不要部分(カル、ランナ等の不要樹脂)は適宜除去される。このようにして、樹脂封止された基板2(樹脂成形品)が製造される。
<樹脂成形モジュール20の詳細な構成>
 次に、樹脂成形モジュール20の構成について、より詳細に説明する。図2に示すように、樹脂成形モジュール20は、主として下型設置部100、下型110、下型キャビティ調整機構120、上型設置部130、上型140、皿バネ150、上型キャビティ調整機構160、エアベント開閉機構170、トランスファ機構180及び型締め機構190を具備する。
<下型設置部100>
 図2に示す下型設置部100は、下型110が設けられる部分である。下型設置部100は、主として下型可動ベース部101及び下型取付部102を具備する。
 下型可動ベース部101は、下型設置部100の下部を形成するものである。下型取付部102は、下型110が取り付けられる部分である。下型取付部102は、下型可動ベース部101の上部に設けられる。
<下型110>
 図2、図3(a)及び図9に示す下型110は、成形型の下部を形成するものである。下型110は、主として下型サイドブロック111、ポットブロック112、下型キャビティブロック113、下型ピラー114及び下型弾性部材115を具備する。本実施形態の下型110では、図3(a)に示すように、中央にポットブロック112があり、その左右に下型キャビティブロック113が配置され、下型キャビティブロック113のさらに外側に下型サイドブロック111が配置されている。
 下型サイドブロック111は、下型110の外周部分を形成するものである。下型サイドブロック111は、下型取付部102の上面に設けられる。
 ポットブロック112は、供給モジュール10から供給された樹脂タブレットTが収容される部分である。ポットブロック112には、樹脂タブレットTを収容するための貫通孔(ポット)が複数形成される。ポットブロック112は、左右を下型キャビティブロック113に挟まれて配置される。ポットブロック112は、下型取付部102の上面に設けられる。
 なお、図3(a)には、説明の簡略化のため、2つの貫通孔(ポット)が形成されたポットブロック112を例示しているが、ポットの個数はこれに限るものではない。ポットは、樹脂成形に必要な樹脂タブレットTの個数に応じて任意の個数だけ形成することが可能である。例えば、後述する樹脂材料供給機構200(図12等参照)から供給される8個の樹脂タブレットTを収容可能な8個のポットを形成することも可能である。
 下型キャビティブロック113は、基板2が載置される部分である。下型キャビティブロック113は、下型サイドブロック111とポットブロック112の間に配置される。下型キャビティブロック113は、下型サイドブロック111及びポットブロック112に対して上下方向に相対的に移動可能となるように配置されている。
 下型ピラー114は、下型キャビティブロック113から下方に向かって延びるように配置される部材である。下型ピラー114の上端は、下型キャビティブロック113の下部に固定される。
 下型弾性部材115は、下型キャビティブロック113に対して上方に向かって力を付与するものである。下型弾性部材115は、例えば圧縮コイルばね等により形成される。下型弾性部材115は、下型キャビティブロック113と下型取付部102との間に配置される。下型弾性部材115の付勢力によって、下型キャビティブロック113には、常に上向きの力が付与される。
<下型キャビティ調整機構120>
 図2に示す下型キャビティ調整機構120は、下型キャビティブロック113の位置を調整するものである。下型キャビティ調整機構120は、主として下型第一楔形部材121、下型第二楔形部材122及び下型楔形部材駆動部123を具備する。
 下型第一楔形部材121及び下型第二楔形部材122は、互いに向き合う面にテーパ部が形成された一対の部材である。下型第二楔形部材122は、下型第一楔形部材121の上側に配置される。下型第二楔形部材122は、下型ピラー114の下方に配置される。下型ピラー114の下端が下型第二楔形部材122に当接することによって、下型キャビティブロック113の下方への移動が規制される。これによって、下型キャビティブロック113の位置が規定される。
 下型楔形部材駆動部123は、下型第一楔形部材121を水平方向(左右方向)に移動させるものである。下型楔形部材駆動部123は、例えばサーボモータやエアシリンダ等により形成される。下型楔形部材駆動部123は、適宜の動力伝達部材を介して下型第一楔形部材121に連結される。下型楔形部材駆動部123を駆動させることにより、下型第一楔形部材121を左右方向に任意に移動させることができる。
 このように構成された下型キャビティ調整機構120によって、下型キャビティブロック113の位置を調整することができる。具体的には、下型楔形部材駆動部123を駆動させて下型第一楔形部材121を左右方向に移動させると、下型第一楔形部材121と接している下型第二楔形部材122がテーパ部に沿って上下に変位することになる。下型第二楔形部材122が上下に変位することで、下型ピラー114の下方への移動が規制される位置が変位することになり、ひいては下型キャビティブロック113の位置を調整することができる。
<上型設置部130>
 図2及び図9に示す上型設置部130は、上型140が設けられる部分である。上型設置部130は、主として上型固定ベース部131、上型取付部132及びヒータプレート133を具備する。
 上型固定ベース部131は、上型設置部130の上部を形成するものである。上型取付部132は、上型140が取り付けられる部分である。上型取付部132は、複数の部材を組み合わせて形成される。上型取付部132は、上型固定ベース部131の下部に設けられる。上型取付部132の外周部には、後述する上型140(上型ベース部141)を下方から支持する支持部132aが設けられる。ヒータプレート133は、上型140を加熱するためのものである。ヒータプレート133は、上型取付部132の底面に設けられる。
<上型140>
 図2、図3(b)及び図9に示す上型140は、成形型の上部を形成するものである。上型140は、主として上型ベース部141、上型サイドブロック142、上型キャビティブロック143、上型サポート145及び上型ピラー146を具備する。本実施形態では、図3(b)に示すように、中央にカルブロック144があり、その左右に上型キャビティブロック143が配置され、上型キャビティブロック143の外周(カルブロック側を除く)に上型サイドブロック142が配置されている。
 上型ベース部141は、後述する上型サイドブロック142を支持する部材である。上型ベース部141は、上下に所定の厚さを有する板状に形成される。上型ベース部141の外周部分は、上型取付部132の支持部132aによって下方から支持される。これによって上型ベース部141は、上型設置部130に対して上下方向に移動可能となるように支持されている。
 上型サイドブロック142は、上型140が形成するキャビティCの側面を形成するものである。なお、上型サイドブロック142は、本願のサイドブロックの実施の一形態である。上型サイドブロック142は、樹脂成形品(キャビティC)に対応する位置に開口部が形成された枠状に形成される。上型サイドブロック142は、上型ベース部141の下面に設けられる。上型サイドブロック142には、エアベント溝142aが形成される。
 図2に示すエアベント溝142aは、キャビティC内の空気を外部に排出するためのものである。エアベント溝142aは、上型サイドブロック142の下面の適宜の位置に形成される。
 上型キャビティブロック143は、上型140が形成するキャビティCの上面を形成するものである。なお、上型キャビティブロック143は、本願のキャビティブロックの実施の一形態である。上型キャビティブロック143は、上型サイドブロック142の内側(より詳細には、上型サイドブロック142の開口部の内側)に配置される。上型キャビティブロック143は、上型サイドブロック142に対して上下方向に相対的に移動可能となるように配置されている。
 カルブロック144は、下型110のポットブロック112に対向する位置に配置され、上型140が形成するキャビティCの側面を形成するものである。カルブロック144の下面には、樹脂材料をキャビティCへと案内するための溝状のカル部144a及びランナ部144bが形成される(図3(b)参照)。なお、図2では、樹脂の流れを容易に理解できるように、ポットブロック112の貫通孔(ポット)がカル部144a、ランナ部144bを経て後述するキャビティCへ連通している様子を模式的に示している。
 上型サポート145は、上型設置部130と接することで上型140の上方への移動を規制し、上型140の位置を規定するものである。上型サポート145は、上型ベース部141の上面に固定される。上型サポート145は、上型ベース部141の上面の適宜の位置に複数設けられる。
 上型ピラー146は、上型キャビティブロック143から上方に向かって延びるように配置される部材である。上型ピラー146の下端は、上型キャビティブロック143の上部に固定される。上型ピラー146は、上型ベース部141を貫通するように配置される。
 なお、図2には、上型140の下面(キャビティCを形成する面)に離型フィルムRFを吸着させた状態を示している。
<皿バネ150>
 皿バネ150は、上型140に対して下方に向かって力を付与するものである。皿バネ150は、上型設置部130(ヒータプレート133)の下面と、上型140(上型ベース部141)の上面と、の間に配置される。皿バネ150の付勢力によって、上型140には、常に上型設置部130から離れる方向(下方)に向かう力が付与される。
<上型キャビティ調整機構160>
 上型キャビティ調整機構160は、上型キャビティブロック143の位置を調整するものである。上型キャビティ調整機構160は、上型キャビティブロック保持部材161、上型キャビティブロック駆動部162、規制部材163、上型弾性部材164、上型第一楔形部材165、上型第二楔形部材166及び上型楔形部材駆動部167を具備する。
 上型キャビティブロック保持部材161は、上型キャビティブロック143を保持するものである。上型キャビティブロック保持部材161は、正面視において中空の枠状に形成される。上型キャビティブロック保持部材161は、複数の部材(上下の板状部材とその上下の板状部材を繋ぐ複数の円柱状部材等)を組み合わせて形成される。上型キャビティブロック保持部材161は、上型固定ベース部131を上下に貫通するように配置される。上型キャビティブロック保持部材161は、上型固定ベース部131に対して上下に移動可能となるように設けられる。上型キャビティブロック保持部材161の下面には、上型ピラー146の上端が固定される。これによって、上型キャビティブロック保持部材161は、上型ピラー146を介して上型キャビティブロック143を保持することができる。
 上型キャビティブロック駆動部162は、上型キャビティブロック保持部材161を垂直方向(上下方向)に移動させるものである。上型キャビティブロック駆動部162は、例えばサーボモータやエアシリンダ等により形成される。上型キャビティブロック駆動部162は、上型キャビティブロック保持部材161の上部に設けられる。上型キャビティブロック駆動部162を駆動させることにより、上型キャビティブロック保持部材161(ひいては上型キャビティブロック143)を上型設置部130に対して上下方向に任意に移動させることができる。
 規制部材163は、上型キャビティブロック保持部材161と接することで、上型キャビティブロック保持部材161の移動を規制するものである。規制部材163は、複数の部材(板状部材等)を組み合わせて形成される。規制部材163は、上型キャビティブロック保持部材161を左右に跨ぐ上方部と、上型キャビティブロック保持部材161の内側に配置される中央部とを含む。規制部材163の中央部は、上型キャビティブロック保持部材161の下部(底部)に対して上方から接することができるように配置されている。規制部材163は、上型キャビティブロック保持部材161の下部に対して上方から接することで、上型キャビティブロック保持部材161の上方への移動を規制することができる。これによって、キャビティCの深さを規定することができる。
 上型弾性部材164は、規制部材163に対して上方に向かって力を付与するものである。上型弾性部材164は、例えば圧縮コイルばね等により形成される。上型弾性部材164は、規制部材163と上型取付部132との間に配置される。上型弾性部材164の付勢力によって、規制部材163には、常に上向きの力が付与される。
 上型第一楔形部材165及び上型第二楔形部材166は、互いに向き合う面にテーパ部が形成された一対の部材である。上型第二楔形部材166は、上型第一楔形部材165の下側に配置される。上型第一楔形部材165及び上型第二楔形部材166は、上型キャビティブロック保持部材161の内側に配置される。より具体的には、上型第一楔形部材165及び上型第二楔形部材166は、上型固定ベース部131と規制部材163との間に配置される。上型第二楔形部材166は、規制部材163の上面に固定される。
 上型楔形部材駆動部167は、上型第一楔形部材165を水平方向(左右方向)に移動させるものである。上型楔形部材駆動部167は、例えばサーボモータやエアシリンダ等により形成される。上型楔形部材駆動部167は、適宜の動力伝達部材を介して上型第一楔形部材165に連結される。上型楔形部材駆動部167を駆動させることにより、上型楔形部材駆動部167を左右方向に任意に移動させることができる。
 このように構成された上型キャビティ調整機構160によって、上型キャビティブロック143の位置を調整することができる。具体的には、上型キャビティブロック駆動部162を駆動させて上型キャビティブロック保持部材161を下方に移動させると、規制部材163と上型キャビティブロック保持部材161の下部との間に隙間ができる。すなわち、この隙間を利用して規制部材163が上下に移動することができるようになる。この状態で、上型楔形部材駆動部167を駆動させて上型第一楔形部材165を左右方向に移動させると、上型第一楔形部材165と接している上型第二楔形部材166がテーパ部に沿って上下に変位することになる。また上型第二楔形部材166と共に、規制部材163も上下に変位する。規制部材163を所定の位置に調整した後、再び上型キャビティブロック駆動部162を駆動させて、上型キャビティブロック保持部材161が規制部材163と接するまで上方に移動させる。このように規制部材163を上下に変位させることで、上型キャビティブロック保持部材161の上方への移動が規制される位置が変位することになるため、上型キャビティブロック143の位置を調整することができる。
<エアベント開閉機構170>
 図2に示すエアベント開閉機構170は、キャビティCと外部とを連通するエアベント溝142aを開閉するものである。エアベント開閉機構170は、主としてエアベントピン171及びエアベント駆動部172を具備する。
 エアベントピン171は、エアベント溝142aを閉塞するためのものである。エアベントピン171は、エアベント溝142aと連通された上型サイドブロック142内の貫通孔に、上下に移動可能に設けられる。
 エアベント駆動部172は、エアベントピン171を上下方向に移動させるものである。エアベント駆動部172は、例えばサーボモータやエアシリンダ等により形成される。エアベント駆動部172は、適宜の動力伝達部材を介してエアベントピン171に連結される。エアベント駆動部172を駆動させることにより、エアベントピン171を上下方向に任意に移動させることができる。例えば、エアベントピン171を下方に移動させることで、エアベント溝142aを閉塞することができる。
 <トランスファ機構180>
 トランスファ機構180は、キャビティCへと樹脂材料を供給するものである。トランスファ機構180は、主としてトランスファ駆動部181、プランジャ182及びプランジャ荷重測定部183を具備する。
 トランスファ駆動部181は、後述するプランジャ182を垂直方向(上下方向)に移動させるもの(駆動源)である。トランスファ駆動部181は、例えばサーボモータやエアシリンダ等により形成される。トランスファ駆動部181は、ポットブロック112の下方において、下型可動ベース部101に設けられる。
 プランジャ182は、ポットブロック112に収容された樹脂タブレットT(樹脂材料)を射出してキャビティCへと供給するものである。プランジャ182は、ポットブロック112内に上下に移動(昇降)可能となるように配置される。
 プランジャ荷重測定部183は、プランジャ182に加わる力(プランジャ荷重)を測定するものである。プランジャ182に加わる力とは、具体的には、トランスファ駆動部181がプランジャ182を押す力である。プランジャ荷重測定部183は、例えばロードセル等により形成される。プランジャ荷重測定部183は、トランスファ駆動部181とプランジャ182との間に設けられる。
 なお、本実施形態においては、トランスファ駆動部181とプランジャ182との間には、各プランジャ182によって樹脂材料に付与される力(ひいては、キャビティC内の樹脂圧力)の均一化を図るための弾性部材等(等圧機構)が配置されていない。このためプランジャ182は、トランスファ駆動部181の出力に比例した移動量だけ移動することになる。例えばトランスファ駆動部181として伸縮可能なロッドを有するエアシリンダを用いて、プランジャ182を下方から押し上げる場合には、トランスファ駆動部181のロッドの移動量と同じ量だけプランジャ182も移動する。また例えばトランスファ駆動部181が適宜の減速機構を介してプランジャ182を移動させる場合には、トランスファ駆動部181の出力に対して減速機構の減速比を乗じた移動量だけプランジャ182が移動する。
<カル部144aの形状>
 このように、プランジャ182がトランスファ駆動部181の出力に比例した移動量だけ移動する構成であるため、複数のプランジャ182でキャビティCへと樹脂材料を供給する場合には、キャビティC内の樹脂圧力が均一となるような構成であることが望ましい。本実施形態では、複数のプランジャ182(ポット)から共通のキャビティCへと樹脂材料を供給する構成となっており、キャビティCを介して樹脂圧力が均一となるようになっている。その他のキャビティC内の樹脂圧力を均一とする方法としては、例えば図4(a)に示すように、カル部144a同士を連結する連結溝144cを形成する方法や、図4(b)に示すように、キャビティCが複数ある場合、さらに、キャビティC同士を連結する連結溝144dを形成する(複数のカル部144aから共通のキャビティCへと樹脂材料を供給する)方法等がある。このようにカル部144a同士を連結する等することで、各プランジャ182のプランジャ荷重のばらつきによって樹脂材料に加わる圧力がばらつくのを抑制することができる。
 <型締め機構190>
 図2に示す型締め機構190は、下型110を上昇させて、下型110と上型140とを型締め(クランプ)するものである。なお、型締め機構190は、本願のクランプ機構の実施の一形態である。型締め機構190は、主として固定盤191、支柱192、駆動機構193及びクランプ荷重測定部194を具備する。
 固定盤191は、地面に設置され、他の部材を支持する部分である。固定盤191の上部には、後述する駆動機構193を介して下型110(下型設置部100)が設けられる。
 支柱192は、上型140(上型設置部130)を支持するものである。支柱192は、固定盤191から上方に延びるように設けられる。支柱192の上部には、上型設置部130の上型固定ベース部131が固定される。これによって上型140(上型設置部130)は、下型110(下型設置部100)の上方に配置される。
 駆動機構193は、下型110(下型設置部100)を垂直方向(上下方向)に移動させるものである。駆動機構193は、例えばサーボモータ等の駆動源と、適宜の動力伝達機構等により形成される。駆動機構193は、固定盤191と下型設置部100との間に配置される。駆動機構193を駆動させることにより、下型設置部100を上下方向に任意に移動(昇降)させることができる。例えば駆動機構193により下型110を上型140に向かって上昇させることで、型締めすることができる。また駆動機構193により下型110を上型140から離れる方向に下降させることで、型開きすることができる。
 クランプ荷重測定部194は、型締め機構190によって下型110と上型140とを型締めする際の力(クランプ荷重)を測定するものである。クランプ荷重測定部194は、例えばロードセルや歪ゲージ等により形成される。クランプ荷重測定部194は、支柱192に設けられる。クランプ荷重測定部194は、支柱192に加わる荷重に基づいて、クランプ荷重を測定することができる。
 なお、図2では、成形型に基板2と樹脂タブレットTが搬送された後で、下型110と上型140とが型締め(クランプ)された状態を示している。
<樹脂成形品の製造方法の概要>
 以下では、上述の如く構成された樹脂成形装置1を用いた樹脂成形品の製造方法について説明する。
 本実施形態では、樹脂成形モジュール20において樹脂成形を行う際に、製品の寸法精度(具体的には、成形された樹脂の厚みの寸法精度)の向上を図るための制御が行われる。この制御の理解を助けるため、まずは、樹脂成形装置1において製品の寸法がばらつく要因について、図5を用いて説明する。
 図5(a)に示すように、型締め機構190によって下型110を上昇させて、下型110と上型140をクランプした場合、上型140のうち、上型サイドブロック142が下型110と接することになる。従って、型締め機構190によるクランプ荷重は、主に上型サイドブロック142に加わることになる。上型サイドブロック142にクランプ荷重が加わると、上型サイドブロック142が上下に圧縮されて微小ながら変形するため、キャビティCの深さ(上下方向の厚さ)が浅くなるおそれがある。
 また図5(b)に示すように、トランスファ機構180のプランジャ182によってキャビティC内へと樹脂材料が供給された場合、キャビティC内の樹脂材料からの圧力が上型キャビティブロック143に上向きに作用する。このため、上型キャビティブロック143が上方へと押し上げられて微小ながら移動又は変形するため、キャビティCの深さが深くなるおそれがある。
 このように、樹脂成形装置1を用いた樹脂成形を行う場合、各部の動作に応じてキャビティCの深さが変化する可能性があるため、この変化を抑制することで、樹脂成形品の寸法精度の向上を図ることができる。以下では、このような寸法精度の向上を図ることが可能な樹脂成形品の製造方法(クランプ荷重とプランジャ荷重の制御態様)について説明する。
 図6のステップS10において、樹脂タブレットT及び基板2上のチップ2aの体積が測定される。以下、具体的に説明する。
 樹脂タブレットTの体積は、上述のように供給モジュール10の樹脂材料供給機構200において測定される樹脂タブレットTの総重量に基づいて算出される。具体的には、後述する樹脂材料供給機構200の総重量測定部250では、樹脂成形モジュール20における一回の樹脂成形に必要な個数の樹脂タブレットTの総重量が測定される。総重量測定部250により測定された樹脂タブレットTの重量と、樹脂タブレットTの比重から、樹脂タブレットTの体積が算出される。
 また基板2上のチップ2aの体積は、上述のように供給モジュール10のフレーム測定部12において測定される。フレーム測定部12では、任意の測定機器を用いて基板2上のチップ2aの体積を測定することができる。フレーム測定部12の一例として、基板2上のチップ2aの体積を測定する体積計が挙げられる。体積計は、レーザ光を用いて基板2上のチップ2aまでの距離を検出することで、チップ2aの形状(ひいては、体積)を測定するレーザ体積計である。なお、チップ2aの体積の測定方法は特に限定するものではなく、その他種々の機器を用いて測定することが可能である。例えば、各種方式の三次元スキャナー等を用いることが可能である。
 次に、図6のステップS20において、キャビティCの所定の樹脂充填率におけるプランジャ182の位置を算出する。以下、具体的に説明する。
 制御部18は、予め記憶されている各部(上型サイドブロック142、上型キャビティブロック143、ポットブロック112、カルブロック144等)の寸法と、上型キャビティブロック143の上下位置に基づいてキャビティCの容量を算出する。なお、上型キャビティブロック143の上下位置は、上型楔形部材駆動部167の駆動量等に基づいて把握することができる。制御部18は、算出されたキャビティCの容量、並びにステップS10において測定された樹脂タブレットTとチップ2aの体積に基づいて、プランジャ182がどの位置まで上昇した時点で、キャビティCの容量のうち何%が溶融した樹脂材料で充填されたか(樹脂充填率)を算出することができる。
 本実施形態では、図5に示すように、制御部18はキャビティCの樹脂充填率が0%、25%、50%、75%及び100%となるプランジャ182の位置(以下では、それぞれ位置P0、P25、P50、P75及びP100と称する)を算出する。
 なお、厳密には、プランジャ182が位置P0よりも低い位置にある状態では、キャビティCの樹脂充填率はプランジャ182の位置にかかわらず0%となるが、本実施形態ではプランジャ182が上昇してキャビティC内へ樹脂材料の供給され始める位置を、樹脂充填率が0%の位置P0と定義している。
 次に、図6のステップS30において、基板2と樹脂タブレットTがそれぞれ樹脂成形モジュール20の成形型に搬送される。具体的には、基板2が下型110に載置されると共に、樹脂タブレットTがポットブロック112のポット内に収容される。
 次に、図6のステップS40において、型締め機構190によって下型110と上型140とが型締めされる。具体的には、型締め機構190によって下型110が上昇し、下型110が上型140に下方から接触する。これによって、キャビティCが閉塞される。この際、図9(a)に示すように、上型サポート145が上型設置部130(ヒータプレート133)に接する位置まで上型140が上昇する。
 以降、図7に示すグラフを用いて、樹脂成形装置1の動作に伴うクランプ荷重(単位は例えばtonf、N等)、プランジャ位置(初期位置を0としたプランジャ182の上下位置、単位は例えばmm等)、プランジャ荷重(単位は例えばtonf、N等)の時間変化の一例についても併せて説明する。
 ステップS40において下型110と上型140とが型締めされることによって、図7では時間t1においてクランプ荷重がCL1まで上昇している。
 次に、図6のステップS50において、プランジャ182の上昇が開始される(図7の時間t2)。
 次に、図6のステップS60において、充填率対応制御が実行される。充填率対応制御とは、キャビティCの樹脂充填率に基づいて樹脂成形装置1の動作を制御するものである。
 充填率対応制御の一例を図8に示している。図8は、樹脂充填率に基づいてクランプ荷重及びプランジャ182の移動速度を制御する例を示したものである。
 具体的には、プランジャ182の位置が位置P50(樹脂充填率が50%となる位置)に到達した場合(ステップS61でYES)、クランプ荷重がCL1からCL2に上昇される(ステップS62)。図7では、時間t3においてプランジャ182が位置P50に到達し、時間t3から時間t4にかけてクランプ荷重がCL1からCL2へと増加されている。
 また、プランジャ182の位置が位置P50(樹脂充填率が50%となる位置)に到達した場合(ステップS61でYES)、プランジャ182の移動速度が調整される(ステップS62)。図7では、時間t3においてプランジャ182の時間変化(プランジャ位置のグラフの傾斜)が緩やかになっている。すなわち、プランジャ182の移動速度が遅くなるように調整されている。
 次に、プランジャ182の位置が位置P100(樹脂充填率が100%となる位置)に到達した場合(ステップS63でYES)、プランジャ182が停止される(ステップS64)。図7では、時間t5においてプランジャ182が位置P100に到達し、プランジャ182の移動(上昇)が停止されている。
 なお、図8では樹脂充填率が50%に到達したことを契機としてクランプ荷重及びプランジャ182の移動速度を1回だけ調整する例を示したが、調整回数はこれに限るものではなく、複数回の調整を行うことも可能である。例えば、樹脂充填率が25%、50%、75%(プランジャ182が位置P25、P50及びP75)に到達するごとにクランプ荷重等を調整することも可能である。またこの調整の契機となる樹脂充填率は上記の例に限るものではなく、任意に設定することが可能である。
 このように樹脂充填率に応じてクランプ荷重を段階的に増加させることで、キャビティCの深さの変化を抑制することができる。具体的には、樹脂充填率の増加に伴って、樹脂材料が上型キャビティブロック143を上方へと押し上げる力が増加するため、キャビティCの深さが深くなる(図5(b)参照)。そこで、上述のように樹脂充填率に応じてクランプ荷重を増加させることで、キャビティCの深さを浅くすることで(図5(a)参照)、キャビティCの深さの変化の傾向(深さの増加と減少)を相殺し、キャビティCの深さの変化を抑制することができる。
 また樹脂充填率に応じてプランジャ182の移動速度を調整することで、樹脂材料の未充填等の発生を抑制することができる。具体的には、キャビティC内を流動する樹脂材料は、比較的流動し易い部分(例えば、基板2のチップ2aが設けられていない部分等)と比較的流動し難い部分(例えば、基板2のチップ2a部分等)を流動するため、樹脂の回りを良くするため、流動速度を調整することが望ましい場合がある。そこで、上述のように樹脂充填率に応じてプランジャ182の移動速度を調整することで、樹脂の回りの向上を図ることができる。
 また本実施形態においては、樹脂タブレットT及び基板2のチップ2aの体積を実際に測定した値に基づいて樹脂充填率(樹脂充填率に対応するプランジャ182の位置)を算出しているため、樹脂タブレットTごとの体積のばらつき等にかかわらず、キャビティCの樹脂充填率を精度良く把握することができる。これによって、キャビティCの深さの変化をより精度よく抑制することができる。
 なお、樹脂充填率に対する適切なクランプ荷重の値や適切なプランジャ182の移動速度は、予め実験や数値解析等で決定することができる。
 次に、図6のステップS70において、キャビティ制御が実行される。キャビティ制御とは、後述する圧力調整制御の前に、上型キャビティブロック143の位置を調整するものである。
 具体的には、図9(a)に示すように下型110と上型140とがクランプされた状態において、図9(b)に示すようにクランプ荷重が低下される。この際、上型キャビティブロック駆動部162で上型キャビティブロック保持部材161を下方に向かって押さえながら、クランプ荷重が低下される。図7では、時間t6においてクランプ荷重がCL2からCLdownへと低下されている。この際、クランプ荷重が低下することでキャビティCの深さが深くなるおそれがあるが、上型キャビティブロック駆動部162で上型キャビティブロック保持部材161を下方に向かって押さえているため、キャビティCが深くなるのを抑制することができる。
 クランプ荷重が低下すると、図9(b)に示すように、皿バネ150によって上型140が上型設置部130から離れる方向に相対的に移動するため、規制部材163と上型キャビティブロック保持部材161との間に若干の隙間(図9(b)のA部分参照)が形成される。
 このような隙間が形成されることで、上型第二楔形部材166の可動域が確保される。すなわち、上型第二楔形部材166が上下に移動できるようになる。この状態で上型楔形部材駆動部167を駆動させることで、上型キャビティブロック143の位置を任意に調整することができる。
 例えば図7に示した例では、上型キャビティブロック143を若干下降させている。これによって、キャビティCの深さを若干浅くすることができ、後述する圧力調整制御(ステップS80)、第一最終調整制御(ステップS90)及び第二最終調整制御(ステップS100)において、キャビティC内の樹脂材料に高い圧力を付与し易くなる。
 次に、図6のステップS80において、圧力調整制御が実行される。圧力調整制御とは、クランプ荷重を調整して、キャビティC内の樹脂材料に加わる圧力を上昇させるものである。
 具体的には、図7に示すように、クランプ荷重をCLdownから、CLM(予め設定されたクランプ荷重)まで増加させる(時間t7)。この際、プランジャ182は停止されている。このため、クランプ荷重が増加してキャビティCが浅くなろうとするのを、キャビティCに充填された樹脂材料が支えることになるため、キャビティCの深さの変化が抑制される。また、これによってキャビティC内の樹脂材料に加わる圧力が上昇し、樹脂の未充填等の発生が抑制され、樹脂成形品の精度を向上させることができる。なお図7には、キャビティC内の圧力の増加に伴ってプランジャ荷重が増加している様子が現れている。
 次に、図6のステップS90において、第一最終調整制御が実行される。第一最終調整制御とは、クランプ荷重を予め設定された最終クランプ荷重となるように調整するものである。
 具体的には、図7に示すように、クランプ荷重をCLMからCLf(最終クランプ荷重)まで増加させる(時間t8)。この際、プランジャ182は停止されている。このため、クランプ荷重が増加してキャビティCが浅くなろうとするのを、キャビティCに充填された樹脂材料が支えることになるため、キャビティCの深さの変化が抑制される。また、これによってキャビティC内の樹脂材料に加わる圧力が上昇し、樹脂の未充填等の発生が抑制され、樹脂成形品の精度を向上させることができる。
 次に、図6のステップS100において、第二最終調整制御が実行される。第二最終調整制御とは、プランジャ荷重を予め設定された最終プランジャ荷重となるように調整するものである。
 具体的には、図7に示すように、プランジャ荷重がTrfとなるように、プランジャ182を移動させる(時間t9)。図7に示した例では、第一最終調整制御が完了した時点(時間t8)におけるプランジャ荷重がTrfに満たないため、プランジャ182を上昇させてプランジャ荷重をTrfまで増加させている。
 なお、例えば第一最終調整制御が完了した時点(時間t8)におけるプランジャ荷重がTrfよりも大きい場合には、ステップS100においてプランジャ182を下降させてプランジャ荷重をTrfまで低下させる。また、第一最終調整制御が完了した時点(時間t8)におけるプランジャ荷重がTrfである場合には、ステップS100においてプランジャ182を移動させることなく、プランジャ荷重をTrfに保持する。このように、最終的なプランジャ荷重を予め設定された値となるように調整することで、樹脂成形品の精度の向上を図ることができる。
 なお、第二最終調整制御のようにプランジャ182を移動させると、キャビティC内の樹脂材料に加わる圧力を効率的に調整できる反面、キャビティC内の樹脂材料の量が変化してキャビティCの深さが変化し易い。そこで本実施形態においては、第一最終調整制御において予めクランプ力を最終クランプ力まで増加させ、これに伴ってプランジャ荷重を最終プランジャ荷重に近い値まで増加させている。これによって、第二最終調整制御におけるプランジャ182の移動量を小さく抑えることができるため、キャビティCの深さの変化を抑制することができる。
 次に、図6のステップS110において、クランプ荷重及びプランジャ荷重を保持しながら、キュア時間(硬化時間)が経過するまで待機する。
 次に、図6のステップS120において、プランジャ182を下降させてプランジャ荷重を低下させると共に、型締め機構190によって下型110と上型140とが型開きされる。
 次に、図6のステップS130において、樹脂成形(樹脂封止)が完了した基板2が成形型から搬出される。搬出された基板2は搬出モジュール30へ搬送される。
 以上のように、クランプ荷重とプランジャ荷重を適宜制御することで、キャビティCの深さの変化を抑制し、樹脂成形品の寸法精度の向上を図ることができる。
<制御態様の別例>
 以下では、樹脂成形品の製造方法(クランプ荷重とプランジャ荷重の制御態様)の別例について説明する。
 図10に示す例は、図7に示すクランプ荷重等の制御態様の別例を示したものである。なお、以下では便宜上、図7に示した制御態様を第一制御態様、図10に示した制御態様を第二制御態様とそれぞれ称する。図10に示す第二制御態様は、主に時間t6から時間t7にかけての制御内容(図6のステップS70及びステップS80)が図7の第一制御態様と異なっている。以下ではこの相違点について説明する。
 第一制御態様では、図6のステップS70におけるキャビティ制御において、キャビティCの深さが浅くなるように上型キャビティブロック143の位置を調整したが、第二制御態様では、キャビティCの深さが深くなるように上型キャビティブロック143の位置を調整している。
 すなわち第二制御態様では、ステップS70においてクランプ荷重をCLdownへと低下させた状態で上型楔形部材駆動部167を駆動させ、上型キャビティブロック143を若干上昇させる。これによって、キャビティCの深さが若干深くなる。
 次に、図6のステップS80において、圧力調整制御が実行される。ここで、上述のように第二制御態様では、ステップS70においてキャビティCの深さが深くなるように調整されている。このようにキャビティCの深さが深くなると、キャビティCの容量も変化(増加)するため、100%であった樹脂充填率が低下し、100%を下回ることになる。
 そこで制御部18は、この時点で再びキャビティCの樹脂充填率とプランジャ182の位置との関係を算出し直す。なお、この算出方法は、ステップS20と同様である。
 次に、クランプ荷重をCLdownからCLM2まで増加させる(時間t7)。この際、樹脂充填率が100%を下回っているため、プランジャ182を上昇させて樹脂材料をキャビティC内へと供給しながら、クランプ荷重CLを段階的に上昇させる。すなわち、前述の充填率対応制御(ステップS60)と同様に、プランジャ182が所定の樹脂充填率に相当する位置に到達したことを契機として、クランプ荷重を段階的に増加させる。またこの際、プランジャ182の移動速度を調整することも可能である。図10に示す例では、クランプ荷重をCLM1、CLM2の2段階増加させた例を示している。
 このように圧力調整制御(ステップS80)においても、前述の充填率対応制御(ステップS60)と同様に樹脂充填率に応じてクランプ荷重を段階的に増加させることで、キャビティCの深さの変化を抑制することができる。但し、圧力調整制御において、前述の充填率対応制御を行わない構成とすることも可能である。
 また、上述の充填率対応制御(ステップS60)では、樹脂充填率に応じてクランプ荷重やプランジャ182の移動速度を調整する例を示したが、さらに別例として、樹脂充填率に応じてエアベント開閉機構170(図2参照)の動作を制御することも可能である。例えば、樹脂充填率が所定の値となった場合(プランジャ182が所定の樹脂充填率に相当する位置に到達した場合)に、エアベントピン171を下降させてエアベント溝142aを閉塞することもできる。これによって、エアベント溝142aの開閉を、樹脂充填率に応じて精度よく制御することができる。
 また、上述の充填率対応制御(ステップS60)では、各樹脂充填率(0%、25%、50%、75%及び100%)に対応するプランジャ182の位置を契機として各部を制御する例を示したが、制御方法はこれに限るものではなく、例えばこれらの位置を基準とした他の位置を契機とする制御を行うことも可能である。
 例えば、プランジャ182を上昇させる際(樹脂材料をキャビティCに供給する際)に、樹脂充填率が0%のプランジャ182の位置P0を基準として、プランジャ182が位置P0から所定の距離(たとえば、5mm等)だけ下の位置に到達したことを契機として、プランジャ182の移動速度を調整する、エアベント溝142aを閉塞する等の制御が可能である。
 このように、位置P0を基準として、それ以下の位置にプランジャ182が到達したことを契機とした制御を行うことで、キャビティCに樹脂材料が供給される前のプランジャ182の位置に基づく制御を実行することができる。これによって、例えば樹脂材料がキャビティCへと供給され始める直前や、供給され始めるのと同時といったタイミング(樹脂充填率に依らないタイミング)でも、各部の制御を行うことができる。
<樹脂材料供給機構200>
 以下では、樹脂材料供給機構200の構成について説明する。本実施形態の樹脂材料供給機構200は、樹脂タブレットTの体積の算出に用いられる樹脂タブレットTの総重量の測定を高精度に行うことができる。図11及び図12に示すように、樹脂材料供給機構200は、主として送出部210、個別重量測定部220、移動部230、チャック240、総重量測定部250、受渡部260及び押出機構270を具備する。
<送出部210>
 送出部210は、円柱状の樹脂タブレットTを後述する個別重量測定部220へと順次送り出すものである。送出部210は、内側に収容された複数の樹脂タブレットTを一列に整列させながら、右方へと送り出すことができる。
<個別重量測定部220>
 図11に示す個別重量測定部220は、樹脂タブレットTの重量を個別に測定するものである。個別重量測定部220は、送出部210の右方に配置される。個別重量測定部220は、主として本体部221及び重量検出部222を具備する。
 本体部221は、樹脂タブレットTが載置される部分である。本体部221は、略直方体状に形成される。本体部221は、主として載置部221aを具備する。
 載置部221aは、本体部221の上面を下方に凹ませた溝状に形成される。載置部221aは、左右方向に延びるように形成される。載置部221aは、側面断面視V字状に形成される。載置部221aには、軸線を左右に向けた円柱状の樹脂タブレットTを載置することができる。側面断面視V字状に形成された載置部221aによって、載置部221aに載置された樹脂タブレットTの転動を防止することができる。
 重量検出部222は、本体部221に載置された樹脂タブレットTの重量を測定するものである。重量検出部222は、本体部221を下方から支持するように配置される。重量検出部222は、本体部221に加わる荷重を測定することができる。重量検出部222としては、例えばロードセルを用いることができる。なお、重量検出部222としては、ロードセルに限らず、圧電素子を用いた重量センサ、静電容量式の重量センサ等、重量を測定可能な種々の機器を使用することが可能である。
 また、個別重量測定部220は、樹脂タブレットTの重量の測定結果が予め設定された範囲を超過する場合、図13に示すように、重量が測定された樹脂タブレットTを樹脂材料供給機構200の外部へと排出することができるように構成される。樹脂タブレットTの重量の測定結果が予め設定された範囲を超過する場合とは、例えば樹脂タブレットTの重量が目標値と比較して許容誤差範囲を超えて大きい場合、又は、小さい場合である。この場合、この樹脂タブレットTは不良品であると判断することができる。このように、不良品と思われる樹脂タブレットTを排出することで、適切な重量の樹脂タブレットTを用いて樹脂成形を行うことができ、樹脂成形品の精度の向上を図ることができる。
 樹脂タブレットTを排出するための機構としては、種々の機構を採用することができる。例えば、本体部221の底面に開閉可能なシャッターを設けて、シャッターを介して樹脂タブレットTを下方へと排出する機構や、本体部221を回転させて樹脂タブレットTを落下させて排出する機構等を採用することができる。
<移動部230>
 図11から図14に示す移動部230は、送出部210と、後述する総重量測定部250と、後述する受渡部260と、の間で樹脂タブレットTを移動させるものである。移動部230は、前後に長い直方体状に形成される。移動部230は、送出部210及び個別重量測定部220の右方に配置される。移動部230は、主として第一載置部231、溝部232及び第一転動防止部233を具備する。
 図14に示す第一載置部231は、移動部230の上面を下方に凹ませた溝状に形成される。第一載置部231は、移動部230の左端から右端に亘って延びるように形成される。第一載置部231は、側面断面視V字状に形成される。第一載置部231には、軸線を左右に向けた円柱状の樹脂タブレットTを載置することができる。側面断面視V字状に形成された第一載置部231によって、第一載置部231に載置された樹脂タブレットTの転動を防止することができる。また、第一載置部231によって樹脂タブレットTの位置決めを行うことができる。これによって樹脂タブレットTの芯の位置を一意に決めることができ、後述する押出機構270によって樹脂タブレットTを受渡部260へと受け渡す際の不具合(例えば、樹脂タブレットTと収容部261の側面との衝突など)の発生を防止することができる。第一載置部231は、移動部230の長手方向に沿って一定の間隔を空けて複数形成される。本実施形態では、図11等に示すように、8つの第一載置部231が形成された移動部230を図示しているが、本発明はこれに限るものではなく、第一載置部231の個数は任意に変更することができる。
 図14に示す溝部232は、第一載置部231の底部をさらに下方に凹ませた溝状に形成される。溝部232は、移動部230の左端から右端に亘って延びるように形成される。
 第一転動防止部233は、第一載置部231に載置された樹脂タブレットTの転動を防止するためのものである。第一転動防止部233は、矩形平板状に形成される。第一転動防止部233は、移動部230の上面に固定される。第一転動防止部233は、第一載置部231の前後両側にそれぞれ配置される。第一転動防止部233を配置することで、第一載置部231に載置された樹脂タブレットTが、第一載置部231を乗り越えて前後に転動するのを防止することができる。
 移動部230は、適宜の移動機構(例えば、移動部230を前後方向に移動可能となるように案内するレール、移動部230をレールに沿って任意の位置まで移動させるサーボモータ等)により、前後方向に直線的に往復移動することができる。移動部230は、送出部210(個別重量測定部220)の右方から、後述する受渡部260の左方に亘って前後方向に移動することができる。すなわち移動部230は、送出部210から送り出される樹脂タブレットTの移動方向(左右方向)とは垂直な方向(前後方向)に沿う移動経路上を移動することができる。
<チャック240>
 図11及び図13に示すチャック240は、樹脂タブレットTを受け渡すためのものである。チャック240は左右一対設けられる。一方のチャック240は、送出部210から送り出される樹脂タブレットTを挟んで保持し、個別重量測定部220の載置部221aに載置することができる。もう一方のチャック240は、個別重量測定部220に載置された樹脂タブレットTを挟んで保持し、移動部230の第一載置部231に載置することができる。
<総重量測定部250>
 図11、図12及び図14に示す総重量測定部250は、移動部230に載置された複数の樹脂タブレットTの重量を一括して測定するものである。総重量測定部250は、移動部230の右方(移動部230を挟んで個別重量測定部220の反対側)に配置される。総重量測定部250は、主として支持部251、第二転動防止部252、連結部253、重量検出部254及び移動部255を具備する。
 支持部251は、樹脂タブレットTを下方から支持するものである。支持部251は、長手方向を左右方向に向けた四角柱状に形成される。支持部251は、後述する連結部253の左側面から左方へと突出するように設けられる。支持部251は、主として第二載置部251aを具備する。
 第二載置部251aは、支持部251の上面を下方に凹ませた溝状に形成される。第二載置部251aは、支持部251の長手方向に沿って延びるように形成される。第二載置部251aは、側面断面視V字状に形成される。
 支持部251は、移動部230の第一載置部231に対応するように前後に複数並ぶように配置される。本実施形態では、8つの第一載置部231に対応するように、8つの支持部251が配置される。複数の支持部251同士の間隔は、複数の第一載置部231同士の間隔と同一となるように配置される。
 第二転動防止部252は、支持部251が支持する樹脂タブレットTの転動を防止するためのものである。第二転動防止部252は、長手方向を左右方向に向けた円柱状に形成される。第二転動防止部252は、後述する連結部253の左側面から左方へと突出するように設けられる。第二転動防止部252は、複数の支持部251にそれぞれ対応するように配置される。第二転動防止部252は、支持部251の上方に、前後一対配置される。
 連結部253は、複数の支持部251及び第二転動防止部252を連結するものである。連結部253は、前後に長い直方体状に形成される。連結部253の左側面には、支持部251及び第二転動防止部252が固定される。
 図11、図12及び図15に示す重量検出部254は、支持部251に支持された樹脂タブレットTの重量を測定するものである。重量検出部254は、連結部253の右側面に固定される。重量検出部254は、連結部253に加わる荷重を測定することができる。重量検出部254としては、例えばロードセルを用いることができる。なお、重量検出部254としては、ロードセルに限らず、圧電素子を用いた重量センサ、静電容量式の重量センサ等、重量を測定可能な種々の機器を使用することが可能である。
 移動部255は、連結部253を上下方向及び左右方向に移動させるものである。なお、移動部255は、本願の昇降部の実施の一形態である。移動部255は、重量検出部254を介して連結部253と連結される。移動部255は、適宜の移動機構(例えば、移動部255を上下方向及び左右方向に移動可能となるように案内するレール、移動部255をレールに沿って任意の位置まで移動させるサーボモータ等)により、上下方向及び左右方向に移動することができる。
<受渡部260>
 図11及び図12に示す受渡部260は、送出部210により送り出された樹脂タブレットTをローダ17へと受け渡すものである。受渡部260は、前後に長い直方体状に形成される。受渡部260は、総重量測定部250と共に、移動部230の移動経路に沿って前後に並ぶように配置される。具体的には、受渡部260は、移動部230の右方、かつ、総重量測定部250の後方に配置される。これによって総重量測定部250及び受渡部260は、前後に移動する移動部230の移動経路に沿って並ぶように配置される。受渡部260は、主として収容部261及び回転軸262を具備する。
 収容部261は、樹脂タブレットTを収容する部分である。収容部261は、受渡部260の左側面に開口する凹状に形成される。収容部261は、移動部230の第一載置部231に対応するように前後に複数並ぶように配置される。本実施形態では、8つの第一載置部231に対応するように、8つの収容部261が形成される。複数の収容部261同士の間隔は、複数の第一載置部231同士の間隔と同一となるように形成される。
 回転軸262は、受渡部260を回転可能に支持するものである。回転軸262は、受渡部260の前後両端部に設けられる。受渡部260は、図示せぬ駆動源(エアシリンダ等)の動力によって、回転軸262を中心として回転することができる。
 受渡部260は、適宜の移動機構(例えば、受渡部260を上下方向に移動可能となるように案内するレール、受渡部260をレールに沿って任意の位置まで移動させるサーボモータ等)により、上下方向に直線的に往復移動することができる。受渡部260は、上方に移動した際に、収容部261に収容された樹脂タブレットTを、ローダ17に受け渡すことができる。
<押出機構270>
 押出機構270は、移動部230に載置された樹脂タブレットTを押し出して、受渡部260へと受け渡すものである。押出機構270は、移動部230の左方(移動部230を挟んで受渡部260の反対側)に配置される。押出機構270は、主として押出部271及び支持部272を具備する。
 押出部271は、樹脂タブレットTを押し出す部分である。押出部271は、矩形平板状に形成される。押出部271は、板面が概ね水平となるように配置される。押出部271の前後幅は、移動部230に形成された複数(本実施形態では、8つ)の第一載置部231全体に亘るように形成される。
 なお、本実施形態の押出機構270として、平板状に形成された押出部271によって樹脂タブレットTを押し出す構成を例示しているが、本発明はこれに限るものではなく、種々の構成を採用することが可能である。例えば押出部271として、長手方向を左右方向に向けた円柱状の部材を用いることも可能である。この円柱状の部材を、複数の第一載置部231にそれぞれ対応するように、前後に複数並ぶように配置することで、第一載置部231に載置された樹脂タブレットTをまとめて押し出すことができる。
 支持部272は、押出部271を支持する部分である。支持部272は、長手方向を前後方向に向けた矩形板状に形成される。支持部272の右側面に、押出部271の左端部が固定される。
 押出機構270は、適宜の移動機構(例えば、支持部272を左右方向に移動可能となるように案内するレール、支持部272をレールに沿って移動させるエアシリンダ等)により、左右方向に移動することができる。
<樹脂タブレットTの供給態様>
 以下では、上述のように構成された樹脂材料供給機構200を用いてローダ17へと樹脂タブレットTを供給する様子について説明する。
 図12に示すように、送出部210に収容された複数の樹脂タブレットTは、一列に整列されながら送出部210の右端部へと移動する。送出部210の右端部へと到達した樹脂タブレットTは、チャック240によって個別重量測定部220に載置される。個別重量測定部220に載置された樹脂タブレットTは、重量検出部222によって重量が測定される。このように、重量検出部222によって、送出部210から送り出された単一の樹脂タブレットTの重量を測定することができる。
 重量検出部222によって測定された樹脂タブレットTの重量が予め設定された範囲を超過する場合、この樹脂タブレットTは不良品と考えられるため、個別重量測定部220から排出される。予め設定された範囲を超過しない重量の樹脂タブレットTは、チャック240によって移動部230の第一載置部231に載置される。
 移動部230を前後に適宜移動させながら、個別重量測定部220において重量が測定された樹脂タブレットTを移動部230へと載置することで、図12に示すように、各第一載置部231に樹脂タブレットTを載置することができる。移動部230には、樹脂成形モジュール20における一回の樹脂成形に必要な個数の樹脂タブレットTが載置される。この際、図13に示すように、第一載置部231の傾斜面、及び、第一載置部231の前後に設けられた第一転動防止部233によって、第一載置部231に載置された樹脂タブレットTの転動が防止される。
 移動部230の各第一載置部231に樹脂タブレットTが載置された後、図15(a)及び図15(b)に示すように、総重量測定部250が左方へと移動する。これによって、総重量測定部250に設けられた複数の支持部251が、移動部230の各溝部232に右方から挿入される。これによって、支持部251が各樹脂タブレットTの下方に位置する。またこれと同時に、総重量測定部250の第二転動防止部252が、各樹脂タブレットTの左右上方にそれぞれ位置する。
 この状態で、図15(c)及び図15(d)に示すように、総重量測定部250が上方へと移動する。これによって、総重量測定部250の各支持部251が複数の樹脂タブレットTを一括して上方へと持ち上げる。この際、支持部251に形成された第二載置部251aの傾斜面、及び、樹脂タブレットTの左右に配置された第二転動防止部252によって、樹脂タブレットTの転動が防止される。
 総重量測定部250によって複数の樹脂タブレットTが持ち上げられた状態で、重量検出部254によって、複数の樹脂タブレットTの重量が一括して測定される。これによって、樹脂成形モジュール20における一回の樹脂成形に用いられる複数の樹脂タブレットTの総重量を測定することができる。
 このように本実施形態では、樹脂材料供給機構200において、一回の樹脂成形に用いられる複数の樹脂タブレットTの総重量を一括して測定することができる。これによって、樹脂タブレットTの重量を個別に測定して合算する場合に比べて、測定誤差を小さく抑えることができ、樹脂タブレットTの総重量を高精度に測定することができる。
 総重量測定部250による樹脂タブレットTの重量の測定が終了した後、総重量測定部250は下方に移動し、樹脂タブレットTは再び移動部230の第一載置部231に載置される。その後、総重量測定部250は右方へと移動し、支持部251は移動部230の溝部232から退避する。
 その後、図11及び図12に示すように、移動部230は後方へと移動し、受渡部260と押出機構270の間で停止する。この状態で、押出機構270が右方へと移動することによって、押出部271によって各樹脂タブレットTが右方へと押し出され、受渡部260の各収容部261に収容される。
 樹脂タブレットTを収容した受渡部260は、収容部261が上方を向くように回転すると共に、上方へと移動し、各樹脂タブレットTをローダ17へと受け渡す。
 このように本実施形態の樹脂材料供給機構200は、樹脂タブレットTの個別の重量と、複数の樹脂タブレットTの総重量をそれぞれ測定することができる。樹脂タブレットTの重量に関する情報は制御部18に記憶され、管理することができる。
 また、樹脂材料供給機構200の変形例として、総重量測定部250から樹脂タブレットTを一括して樹脂材料供給機構200の外部へと排出することができるように構成することも可能である。例えば、総重量測定部250は、複数の樹脂タブレットTの重量の測定結果が予め設定された範囲を超過する場合、重量が測定された複数の樹脂タブレットTを一括して外部へと排出する。複数の樹脂タブレットTを排出するための機構としては、種々の機構を採用することができる。例えば、個別重量測定部220が樹脂タブレットTを排出する機構と同様の機構を採用することができる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された発明の技術的思想の範囲内で適宜の変更が可能である。
 例えば、上記実施形態の樹脂成形装置1に用いた構成要素(供給モジュール10等)は一例であり、適宜着脱や交換することが可能である。例えば、樹脂成形モジュール20の個数を変更することが可能である。また、本実施形態の樹脂成形装置1に用いた構成要素(供給モジュール10等)の構成や動作は一例であり、適宜変更することが可能である。
 また、上記実施形態においては、カル部144a及びランナ部144bがカルブロック144に形成されている例を示したが、例えば、ポットブロック112にカル部144a、ランナ部144bの一部が形成されていてもよい。また、上記実施形態においては、ポットブロック112には複数の貫通孔(ポット)が備えられている例を示したが、貫通孔は1つであってもよい。
 また、上記実施形態において例示した制御態様は一例であり、詳細な制御内容(例えば、クランプ荷重やプランジャ荷重の目標値や、制御タイミング等)は任意に変更することができる。例えば、上記実施形態では、第一最終調整制御(ステップS90)が完了した後で第二最終調整制御(ステップS100)を実行する例を示しているが、第一最終調整制御が完了する前に第二最終調整制御を開始することも可能である。
 また、上記実施形態においては、上型140に力を付与する付与部として皿バネ150を例示したが、本発明はこれに限るものではなく、その他種々の構成を採用することが可能である。例えば、付与部として各種の弾性部材や、エアシリンダ等のアクチュエータを用いることも可能である。
 また、上記実施形態においては、樹脂成形装置1が具備するフレーム測定部12において基板2のチップ2aの体積を測定する例を示したが、本発明はこれに限るものではない。例えば、樹脂成形装置1は、外部で体積が測定された基板2を用いて樹脂成形を行うことも可能である。この場合、樹脂成形装置1はフレーム測定部12を備える必要はない。
 また、上記実施形態においては、充填率対応制御の一例として、クランプ荷重を調整するクランプ力調整制御、プランジャ182の移動速度を調整するプランジャ速度調整制御、エアベント溝142aの開閉の切り替えを行うエアベント切替制御を例示したが、本発明はこれに限るものではなく、樹脂成形に関する任意の動作を制御することが可能である。
 また、上記実施形態において例示した移動部230は一例であり、具体的な形状等は任意に変更することが可能である。例えば、第一載置部231を、樹脂タブレットTの側面(曲面)に対応する曲面状に形成することも可能である。また、移動部230に第一転動防止部233を必ずしも設ける必要はなく、例えば第一載置部231によって樹脂タブレットTの転動を十分に防止することができる場合には、第一転動防止部233の設置を省略してもよい。また、溝部232の形状も特に限定するものではなく、樹脂タブレットTを持ち上げるための支持部251が挿入できれば、形状や大きさ等を任意に変更することが可能である。
 また、上記実施形態において例示した総重量測定部250は一例であり、具体的な形状等は任意に変更することが可能である。例えば、樹脂タブレットTの転動を防止するための第二転動防止部252の形状、個数、配置等は任意に変更することが可能である。また、樹脂タブレットTを支持するための支持部251の形状や大きさ等は任意に変更することが可能である。例えば、支持部251に形成される第二載置部251aを、樹脂タブレットTの側面(曲面)に対応する曲面状に形成することも可能である。また、支持部251を複数の部材で構成することも可能である。
 また、上記実施形態において例示した樹脂材料供給機構200の各部の配置や向き等は特に限定するものではなく、樹脂成形装置1の形状や大きさ等に応じて任意に変更することが可能である。
<付記>
 本開示の第一側面の樹脂材料供給機構200は、
 樹脂材料(樹脂タブレットT)を順次送り出す送出部210と、
 前記送出部210により送り出された複数の前記樹脂材料の重量を一括して測定する総重量測定部250と、
 前記送出部210により送り出された複数の前記樹脂材料を、前記樹脂材料を成形型(下型110及び上型140)へと搬送するローダ17(搬送機構)へと受け渡す受渡部260と、
 前記送出部210と、前記総重量測定部250と、前記受渡部260と、の間で前記樹脂材料を移動させる移動部230と、
 を具備する。
 本開示の第一側面の樹脂材料供給機構200によれば、樹脂タブレットTの総重量を高精度に測定することができる。すなわち、複数の樹脂材料の重量を一括して測定することによって、樹脂材料の重量を個別に測定して合算する場合に比べて誤差が累積し難くなり、樹脂タブレットTの総重量を高精度に測定することができる。これによって、樹脂タブレットTの総重量に基づいて樹脂タブレットの体積を高精度に算出することができ、ひいては樹脂成形品の高精度化を図ることができる。
 第一側面に従う第二側面の樹脂材料供給機構200において、
 前記総重量測定部250は、複数の前記樹脂材料の重量の測定結果が予め設定された範囲を超過する場合、重量が測定された複数の前記樹脂材料を排出する。
 本開示の第二側面の樹脂材料供給機構200によれば、所望の重量と大きく異なる重量の樹脂タブレットTを一括して排出し、所望の重量に近い樹脂タブレットTを用いて樹脂成形を行うことができる。これによって、樹脂成形品の高精度化を図ることができる。
 第一又は第二側面に従う第三側面の樹脂材料供給機構200は、
 前記送出部210により送り出された前記樹脂材料の重量を個別に測定し、前記樹脂材料の重量の測定結果が予め設定された範囲を超過する場合、重量が測定された前記樹脂材料を排出する個別重量測定部220をさらに具備する。
 本開示の第三側面の樹脂材料供給機構200によれば、所望の重量と大きく異なる重量の樹脂タブレットTを排出し、所望の重量に近い樹脂タブレットTを用いて樹脂成形を行うことができる。これによって、樹脂成形品の高精度化を図ることができる。
 第一から第三側面のいずれか1つに従う第四側面の樹脂材料供給機構200において、
 前記総重量測定部250及び前記受渡部260は、前記移動部230の移動経路に沿って並ぶように配置されている。
 本開示の第四側面の樹脂材料供給機構200によれば、総重量測定部250を適切な位置に配置し、樹脂材料供給機構200全体の省スペース化を図ることができる。
 第一から第四側面のいずれか1つに従う第五側面の樹脂材料供給機構200において、
 前記移動部230は、
 複数の前記樹脂材料に対応するように形成され、前記樹脂材料を載置可能な複数の第一載置部231と、
 前記第一載置部231に載置される複数の前記樹脂材料の下方にそれぞれ形成される複数の溝部232と、
 を具備し、
 前記総重量測定部250は、
 複数の前記溝部232に対応するように形成され、前記溝部232に挿入可能であり、前記樹脂材料を下方から支持可能な複数の支持部251と、
 複数の前記支持部251を一括して昇降可能な移動部255(昇降部)と、
 を具備する。
 本開示の第五側面の樹脂材料供給機構200によれば、簡素な構成で、複数の樹脂材料の重量を一括して測定することができる。
 第五側面に従う第六側面の樹脂材料供給機構200において、
 前記移動部230は、前記第一載置部231に載置された前記樹脂材料の転動を防止する第一転動防止部233を具備し、
 前記総重量測定部250は、前記支持部251に支持された前記樹脂材料の転動を防止する第二転動防止部252を具備し、
 前記支持部251の上面には、断面視V字状の第二載置部251aが形成される。
 本開示の第六側面の樹脂材料供給機構200によれば、樹脂材料の転動を効果的に防止することができる。特に本実施形態では、樹脂タブレットTの下方に支持部251を挿入するためのスペースを確保するために、樹脂タブレットTが載置される第一載置部231の深さが浅くなり、樹脂タブレットTが転動し易くなることが想定される。そこで、移動部230の上面に第一転動防止部233を設けることで、樹脂タブレットTの転動を効果的に防止することができる。
 本開示の第七側面の樹脂成形装置1は、
 第一から第六側面のいずれか1つに従う樹脂材料供給機構200を具備する。
 本開示の第七側面の樹脂成形装置1によれば、樹脂タブレットTの総重量を高精度に測定することができる。これによって、樹脂タブレットTの総重量に基づいて樹脂タブレットの体積を高精度に算出することができ、ひいては樹脂成形品の高精度化を図ることができる。
 第七側面に従う第八側面の樹脂成形装置1は、
 基板2を載置する下型110と、
 上型サイドブロック142(サイドブロック)、及び前記上型サイドブロック142に対して上下に昇降可能となるように設けられた上型キャビティブロック143(キャビティブロック)によって、キャビティCを形成する上型140と、
 前記下型110と前記上型140とをクランプする型締め機構190(クランプ機構)と、
 プランジャ182によって前記キャビティCへと樹脂材料を供給するトランスファ機構180と、
 前記基板2に配置されたチップ2aの体積及び前記樹脂材料(樹脂タブレットT)の体積に基づいて算出された前記キャビティCの樹脂充填率と前記プランジャ182の位置との関係を用いて、前記プランジャ182が所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御(ステップS60、第二制御態様におけるステップS80)を行う制御部18と、
 を具備し、
 前記樹脂材料の体積は、前記樹脂材料供給機構200の前記総重量測定部250によって測定された複数の前記樹脂材料の重量に基づいて算出される。
 本開示の第八側面の樹脂成形装置1によれば、精度の高い樹脂成形品を製造することができる。すなわち、実際に用いられる樹脂タブレットT及び基板2のチップ2aの体積に基づいて樹脂充填率を精度良く把握することができるため、この樹脂充填率に基づく各部の制御を行うことができる。これによって樹脂成形品の精度の向上を図ることができる。
 第八側面に従う第九側面の樹脂成形装置1は、
 前記基板2に配置されたチップ2aの体積を測定するフレーム測定部12(チップ体積測定部)と、
 前記フレーム測定部12及び前記総重量測定部250の測定結果に基づいて、前記樹脂充填率と前記プランジャ182の位置との関係を算出する算出部(制御部18)と、をさらに具備する。
 本開示の第九側面の樹脂成形装置1によれば、実際に測定したチップ2aと樹脂材料の体積に基づいてプランジャ182の位置(樹脂充填率)を把握することができるため、例えば樹脂材料(樹脂タブレットT)やチップ2aの体積がばらついていたとしても、精度の高い制御を行うことができる。
 本開示の第十側面の樹脂成形品の製造方法は、
 第七から第九側面のいずれか1つに従う樹脂成形装置1を用いた樹脂成形品の製造方法であって、
 基板2に配置されたチップ2aの体積を測定するチップ体積測定工程(ステップS10)と、
 樹脂材料の体積を測定する樹脂体積測定工程(ステップS10)と、
 測定された前記チップ2aの体積及び前記樹脂材料の体積に基づいて、前記キャビティCの樹脂充填率と前記プランジャ182の位置との関係を算出するプランジャ位置算出工程(ステップS20)と、
 前記プランジャ182が所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御工程(ステップS60、第二制御態様におけるステップS80)と、を含む。
 本開示の第十側面の樹脂成形品の製造方法は、精度の高い樹脂成形品を製造することができる。すなわち、実際に用いられる樹脂タブレットT及び基板2のチップ2aの体積に基づいて樹脂充填率を精度良く把握することができるため、この樹脂充填率に基づく各部の制御を行うことができる。これによって樹脂成形品の精度の向上を図ることができる。
 1   樹脂成形装置
 17  ローダ
 18  制御部
 110 下型
 140 上型
 142 上型サイドブロック
 180 トランスファ機構
 182 プランジャ
 190 型締め機構
 200 樹脂材料供給機構
 210 送出部
 220 個別重量測定部
 230 移動部
 231 第一載置部
 232 溝部
 233 第一転動防止部
 250 総重量測定部
 251 支持部
 252 第二転動防止部
 255 移動部
 260 受渡部

Claims (10)

  1.  樹脂材料を順次送り出す送出部と、
     前記送出部により送り出された複数の前記樹脂材料の重量を一括して測定する総重量測定部と、
     前記送出部により送り出された複数の前記樹脂材料を、前記樹脂材料を成形型へと搬送する搬送機構へと受け渡す受渡部と、
     前記送出部と、前記総重量測定部と、前記受渡部と、の間で前記樹脂材料を移動させる移動部と、
     を具備する樹脂材料供給機構。
  2.  前記総重量測定部は、複数の前記樹脂材料の重量の測定結果が予め設定された範囲を超過する場合、重量が測定された複数の前記樹脂材料を排出する、
     請求項1に記載の樹脂材料供給機構。
  3.  前記送出部により送り出された前記樹脂材料の重量を個別に測定し、前記樹脂材料の重量の測定結果が予め設定された範囲を超過する場合、重量が測定された前記樹脂材料を排出する個別重量測定部をさらに具備する、
     請求項1又は請求項2に記載の樹脂材料供給機構。
  4.  前記総重量測定部及び前記受渡部は、前記移動部の移動経路に沿って並ぶように配置されている、
     請求項1から請求項3までのいずれか一項に記載の樹脂材料供給機構。
  5.  前記移動部は、
     複数の前記樹脂材料に対応するように形成され、前記樹脂材料を載置可能な複数の第一載置部と、
     前記第一載置部に載置される複数の前記樹脂材料の下方にそれぞれ形成される複数の溝部と、
     を具備し、
     前記総重量測定部は、
     複数の前記溝部に対応するように形成され、前記溝部に挿入可能であり、前記樹脂材料を下方から支持可能な複数の支持部と、
     複数の前記支持部を一括して昇降可能な昇降部と、
     を具備する、
     請求項1から請求項4までのいずれか一項に記載の樹脂材料供給機構。
  6.  前記移動部は、前記第一載置部に載置された前記樹脂材料の転動を防止する第一転動防止部を具備し、
     前記総重量測定部は、前記支持部に支持された前記樹脂材料の転動を防止する第二転動防止部を具備し、
     前記支持部の上面には、断面視V字状の第二載置部が形成される、
     請求項5に記載の樹脂材料供給機構。
  7.  請求項1から請求項6までのいずれか一項に記載の樹脂材料供給機構を具備する樹脂成形装置。
  8.  基板を載置する下型と、
     サイドブロック、及び前記サイドブロックに対して上下に昇降可能となるように設けられたキャビティブロックによって、キャビティを形成する上型と、
     前記下型と前記上型とをクランプするクランプ機構と、
     プランジャによって前記キャビティへと前記樹脂材料を供給するトランスファ機構と、
     前記基板に配置されたチップの体積及び前記樹脂材料の体積に基づいて算出された前記キャビティの樹脂充填率と前記プランジャの位置との関係を用いて、前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御を行う制御部と、
     を具備し、
     前記樹脂材料の体積は、前記樹脂材料供給機構の前記総重量測定部によって測定された複数の前記樹脂材料の重量に基づいて算出される、
     請求項7に記載の樹脂成形装置。
  9.  前記基板に配置されたチップの体積を測定するチップ体積測定部と、
     前記チップ体積測定部及び前記総重量測定部の測定結果に基づいて、前記樹脂充填率と前記プランジャの位置との関係を算出する算出部と、
     をさらに具備する、
     請求項8に記載の樹脂成形装置。
  10.  請求項7から請求項9までのいずれか一項に記載の樹脂成形装置を用いた樹脂成形品の製造方法であって、
     基板に配置されたチップの体積を測定するチップ体積測定工程と、
     前記樹脂材料の体積を測定する樹脂体積測定工程と、
     測定された前記チップの体積及び前記樹脂材料の体積に基づいて、キャビティの樹脂充填率とプランジャの位置との関係を算出するプランジャ位置算出工程と、
     前記プランジャが所定の樹脂充填率に対応する位置に達したことを契機として樹脂成形に関する動作を制御する充填率対応制御工程と、
     を含む樹脂成形品の製造方法。
PCT/JP2023/017238 2022-08-11 2023-05-08 樹脂材料供給機構、樹脂成形装置および樹脂成形品の製造方法 WO2024034203A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-128559 2022-08-11
JP2022128559A JP2024025255A (ja) 2022-08-11 2022-08-11 樹脂材料供給機構、樹脂成形装置および樹脂成形品の製造方法

Publications (1)

Publication Number Publication Date
WO2024034203A1 true WO2024034203A1 (ja) 2024-02-15

Family

ID=89851514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017238 WO2024034203A1 (ja) 2022-08-11 2023-05-08 樹脂材料供給機構、樹脂成形装置および樹脂成形品の製造方法

Country Status (2)

Country Link
JP (1) JP2024025255A (ja)
WO (1) WO2024034203A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278918A (ja) * 1990-03-29 1991-12-10 Mitsubishi Materials Corp トランスファ成形方法およびトランスファ成形機
JPH0488036U (ja) * 1990-12-13 1992-07-30
JP2003231145A (ja) * 2001-12-04 2003-08-19 Sainekkusu:Kk 樹脂封止装置及びその方法
JP2012513324A (ja) * 2008-12-23 2012-06-14 ハンミ セミコンダクター カンパニー リミテッド モールド用タブレット選別及び供給装置
JP2018086739A (ja) * 2016-11-28 2018-06-07 Towa株式会社 成形型、樹脂成形装置及び樹脂成形方法
JP2019067990A (ja) * 2017-10-04 2019-04-25 第一精工株式会社 樹脂材料搬送機構及び樹脂材料搬送方法
JP2020179604A (ja) * 2019-04-25 2020-11-05 Towa株式会社 樹脂成形装置及び樹脂成形品の製造方法
JP2022083534A (ja) * 2020-11-25 2022-06-06 アピックヤマダ株式会社 樹脂封止装置及び樹脂封止方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278918A (ja) * 1990-03-29 1991-12-10 Mitsubishi Materials Corp トランスファ成形方法およびトランスファ成形機
JPH0488036U (ja) * 1990-12-13 1992-07-30
JP2003231145A (ja) * 2001-12-04 2003-08-19 Sainekkusu:Kk 樹脂封止装置及びその方法
JP2012513324A (ja) * 2008-12-23 2012-06-14 ハンミ セミコンダクター カンパニー リミテッド モールド用タブレット選別及び供給装置
JP2018086739A (ja) * 2016-11-28 2018-06-07 Towa株式会社 成形型、樹脂成形装置及び樹脂成形方法
JP2019067990A (ja) * 2017-10-04 2019-04-25 第一精工株式会社 樹脂材料搬送機構及び樹脂材料搬送方法
JP2020179604A (ja) * 2019-04-25 2020-11-05 Towa株式会社 樹脂成形装置及び樹脂成形品の製造方法
JP2022083534A (ja) * 2020-11-25 2022-06-06 アピックヤマダ株式会社 樹脂封止装置及び樹脂封止方法

Also Published As

Publication number Publication date
TW202406718A (zh) 2024-02-16
JP2024025255A (ja) 2024-02-26

Similar Documents

Publication Publication Date Title
US7413425B2 (en) Resin sealing mold and resin sealing method
TWI673155B (zh) 吐出裝置、吐出方法、樹脂成形裝置和樹脂成形品的製造方法
EP1657043B1 (en) Machine for controlling encapsulating semiconductors with plastics
TWI253724B (en) Resin sealing apparatus and resin sealing method
WO2024034203A1 (ja) 樹脂材料供給機構、樹脂成形装置および樹脂成形品の製造方法
TWI852540B (zh) 樹脂材料供給機構、樹脂成形裝置及樹脂成形品的製造方法
JP7447047B2 (ja) 樹脂成形装置、及び樹脂成形品の製造方法
JP7430152B2 (ja) 樹脂成形装置、及び樹脂成形品の製造方法
CN112976475B (zh) 树脂密封装置
TWI851938B (zh) 樹脂成形裝置以及樹脂成形品的製造方法
TWI851937B (zh) 樹脂成形裝置以及樹脂成形品的製造方法
KR20230054717A (ko) 수지 성형 장치 및 수지 성형품의 제조 방법
JP7564797B2 (ja) 樹脂成形装置、及び樹脂成形品の製造方法
WO2024157545A1 (ja) 樹脂成形装置及び樹脂成形品の製造方法
WO2024014060A1 (ja) 成形型、樹脂成形装置及び樹脂成形品の製造方法
TWI802220B (zh) 成型模、樹脂成型裝置及樹脂成型品之製造方法
TWI854661B (zh) 成形模、樹脂成形裝置及樹脂成形品之製造方法
JP7465843B2 (ja) 樹脂成形装置、及び樹脂成形品の製造方法
JP2004014936A (ja) 封止成形装置
JP2013089668A (ja) 樹脂封止装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852189

Country of ref document: EP

Kind code of ref document: A1