WO2024032733A1 - 检测扫地机状态的方法、装置、扫地机及存储介质 - Google Patents

检测扫地机状态的方法、装置、扫地机及存储介质 Download PDF

Info

Publication number
WO2024032733A1
WO2024032733A1 PCT/CN2023/112343 CN2023112343W WO2024032733A1 WO 2024032733 A1 WO2024032733 A1 WO 2024032733A1 CN 2023112343 W CN2023112343 W CN 2023112343W WO 2024032733 A1 WO2024032733 A1 WO 2024032733A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
sweeper
angle
magnetic
state
Prior art date
Application number
PCT/CN2023/112343
Other languages
English (en)
French (fr)
Inventor
李文
Original Assignee
联洲集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联洲集团有限公司 filed Critical 联洲集团有限公司
Publication of WO2024032733A1 publication Critical patent/WO2024032733A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like

Definitions

  • This application belongs to the technical field of intelligent cleaners, and in particular relates to a method, device, sweeper and storage medium for detecting the status of a sweeper.
  • the present application aims to solve, at least to a certain extent, one of the technical problems in the related art.
  • one purpose of this application is to provide a method, device, sweeper and storage medium for detecting the status of a sweeper.
  • a method for detecting the status of a sweeper including:
  • the magnetic force value is obtained based on the magnetic force detection structure, and the dust suction angle between the surface of the dust suction port of the dust box of the sweeper and the fixed end of the one-way valve is determined according to the magnetic force value; wherein, in the one-way A magnetic structure is provided on the outside of the valve, and a magnetic detection structure is provided on the outside of the working surface of the dust box.
  • the magnetic detection structure is used to detect the magnetic value of the magnetic structure;
  • the dust collection state of the dust box is determined based on the body attitude information of the sweeper and the dust suction included angle.
  • obtaining the body posture information of the sweeper based on the posture detection structure includes:
  • the attitude of the sweeper is determined according to the angle between the fuselage; wherein the attitude includes a first attitude, a second attitude, a third attitude and a fourth attitude;
  • the sweeper When the fuselage angle is in a state of oscillation change, the sweeper is in the second attitude; wherein, during the oscillation change process, the fuselage angle oscillates up and down on both sides of zero or is at zero;
  • the magnetic force value is obtained based on the magnetic force detection structure, and the dust suction angle between the surface of the dust suction port of the dust box of the sweeper and the fixed end of the one-way valve is determined based on the magnetic force value, including :
  • a dust suction area is formed between the free end of the one-way valve and the dust suction port, and the dust suction clip The angle is greater than zero, and the garbage enters the inside of the dust box from the dust suction port through the dust suction area.
  • determining the dust collection status of the dust box based on the body attitude information of the sweeper and the dust suction angle includes:
  • the dust suction angle is compared with a first threshold; wherein the first threshold is determined based on the real-time suction value of the fan;
  • the dust collection angle ⁇ the first threshold the dust collecting state of the dust box is full; or if the dust collection angle ⁇ the first threshold, the dust collection state of the dust box The dust collection state is not full of dust.
  • determining the dust collection status of the dust box based on the body attitude information of the sweeper and the dust suction angle also includes:
  • the first difference value is in a state of oscillating change; wherein, during the oscillating change process, the first difference value oscillates up and down on both sides of zero or is at zero, then the dust collecting state of the dust box is Not full of dust;
  • the dust collecting state of the dust box is full of dust.
  • determining the dust collection status of the dust box based on the body attitude information of the sweeper and the dust suction angle also includes:
  • the magnetic force detection structure stops detecting magnetic force until the sweeping machine is no longer in the third posture.
  • determining the dust collection status of the dust box based on the body attitude information of the sweeper and the dust suction angle also includes:
  • the dust collecting state of the dust box is full of dust.
  • the sweeper's fan after determining the status of the sweeper's fan, it also includes:
  • the sweeper If the sweeper is in the first posture, obtain the magnetic force value detected by the magnetic force detection structure, and determine the dust suction angle according to the magnetic force value;
  • Embodiments of the present application also provide a device for detecting the status of a sweeper, including:
  • a judgment module configured to judge the status of the fan of the sweeper
  • the first acquisition module is configured to acquire the body attitude information of the sweeper based on the attitude detection structure if the fan is on;
  • the second acquisition module is configured to acquire the magnetic force value based on the magnetic force detection structure, and according to the magnetic force value Determine the dust suction angle between the surface of the dust suction port of the dust box of the sweeper and the fixed end of the one-way valve; wherein, a magnetic structure is provided outside the one-way valve, and a magnetic structure is provided on the outside of the dust box. A magnetic detection structure is provided on the outside of the working surface.
  • the magnetic detection structure and the magnetic structure are in a relative state; when the one-way valve If the free end of the one-way valve does not fit with the outside of the working surface, a dust suction area is formed between the free end of the one-way valve and the dust suction port, and the garbage passes through the dust suction area and is ejected from the suction port.
  • the dust port enters the inside of the dust box;
  • the determination module is configured to determine the dust collection state of the dust box based on the body attitude information of the sweeper and the dust suction included angle.
  • Embodiments of the present application also provide a sweeping machine, including: a dust box, a dust suction port is provided on the working surface of the dust box; a one-way valve, the fixed end of the one-way valve is in contact with the outside of the working surface Rotatingly connected and covered on the outside of the dust suction port; also includes:
  • attitude detection structure is arranged outside the sweeper, the attitude structure is used to detect the body attitude information of the sweeper, and send the body attitude information to the controller;
  • Magnetic structure the magnetic structure is arranged outside the one-way valve
  • the magnetic detection structure is arranged on the outside of the working surface; when the free end of the one-way valve is attached to the outside of the working surface, the magnetic detection structure and the magnetic structure are in an opposite position. state; when the free end of the one-way valve does not fit with the outside of the working surface, a dust suction area is formed between the free end of the one-way valve and the dust suction port, and garbage passes through the The dust suction area enters the interior of the dust box from the dust suction port; the magnetic detection structure is used to detect the received magnetic force and send the detected magnetic force value to the controller of the sweeper;
  • the controller is used to determine the dust collection state of the dust box based on the body posture information and the magnetic force value.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium includes a stored computer program, wherein when the computer program is running, the device where the computer-readable storage medium is located is controlled to execute as described above. method described.
  • Figure 1 is a schematic structural diagram of a dust box provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another dust box provided by an embodiment of the present application.
  • Figure 3 is a schematic flowchart of a method for detecting the status of a sweeper provided by an embodiment of the present application
  • Figure 4 is a schematic diagram of the change of the fuselage angle provided by the embodiment of the present application when the sweeper is in a posture of climbing over obstacles;
  • Figure 5 shows the change of the first difference provided by the embodiment of the present application when the sweeper is in the attitude of climbing over obstacles.
  • Figure 6 is an example of a schematic flowchart of a method for detecting the status of a sweeper provided by an embodiment of the present application
  • Figure 7 is a schematic structural diagram of a device for detecting the status of a sweeper provided by an embodiment of the present application.
  • 100-dust box 101-magnetic structure; 102-magnetic detection structure; 103-one-way valve; 104-dust suction port; 105-working surface.
  • an embodiment of the present application provides a sweeping machine, including: a dust box 100, a dust suction port 104 is provided on the working surface 105 of the dust box 100; a one-way valve 103.
  • the fixed end of the one-way valve 103 is rotatably connected to the outside of the working surface 105 and is covered outside the dust suction port 104; it also includes:
  • attitude detection structure is arranged outside the sweeper, the attitude structure is used to detect the body attitude information of the sweeper, and send the body attitude information to the controller;
  • connection structure is provided on the outside of the working surface 105 of the dust box 100.
  • the connection structure is arranged above the dust suction port 104 and is rotatably connected to the fixed end of the one-way valve 103; wherein, the connection structure can be based on The connection shaft is realized.
  • the attitude detection structure can be implemented based on a six-axis sensor, where the attitude detection structure
  • the detection structure can be arranged at the bottom or side of the sweeper, and is used to detect the angle between the sweeper's body and the horizontal plane, and send the detected body angle to the controller.
  • Magnetic structure 101 the magnetic structure 101 is arranged outside the one-way valve 103;
  • Magnetic detection structure 102 the magnetic detection structure 102 is arranged on the outside of the working surface 105; when the free end of the one-way valve 103 is in contact with the outside of the working surface 105, the magnetic detection structure 102 and The magnetic structure 101 is in a relative state; when the free end of the one-way valve 103 does not fit with the outside of the working surface 105, then the free end of the one-way valve 103 and the dust suction port A dust suction area is formed between 104, and garbage enters the inside of the dust box 100 from the dust suction port 104 through the dust suction area; the magnetic detection structure 102 is used to detect the received magnetic force and detect the magnetic force.
  • the obtained magnetic force value is sent to the controller of the sweeper;
  • the magnetic detection structure 102 can be implemented based on a Hall sensor. The farther the distance between the magnetic structure 101 and the magnetic detection structure 102 is, the smaller the magnetic value detected by the magnetic detection structure 102 will be. Therefore, the magnetic value There is a negative correlation with the vacuum angle.
  • the controller is used to determine the dust collecting state of the dust box 100 according to the body attitude information and the magnetic force value.
  • the controller is arranged inside the sweeper, and the controller, the magnetic detection structure 102 and the attitude detection structure can be connected based on communication means such as the network.
  • the controller converts the obtained magnetic force value into a dust suction angle based on a preset algorithm, where the preset algorithm is an existing algorithm, and the embodiments of the present application do not specifically limit this.
  • the embodiment of the present application also includes a fan.
  • the fan is installed inside the sweeper.
  • the air outlet of the fan is connected to the dust box 100 to provide the dust box 100 with suction for collecting garbage or dust.
  • the real-time working gear of the fan is The higher it is, that is, the greater the real-time output power of the fan is, the greater the real-time suction value provided to the dust box 100 for collecting garbage.
  • the magnetic structure 101 can be implemented based on lighter weight and smaller magnets.
  • the specific installation location of the magnetic structure 101 can be selected according to actual needs.
  • the magnetic structure 101 can be installed on As shown in Figures 1 and 2, it can also be installed on another edge outside the one-way valve 103, or on the bottom edge of the one-way valve 103, etc.;
  • the magnetic detection structure 102 is installed to the outside of the working surface 105 at a position opposite to the magnetic structure 101, that is, when the free end of the one-way valve 103 is in contact with the dust suction
  • the magnetic detection structure 102 is opposite to the magnetic structure 101, which is used to realize the magnetic detection structure 102 to accurately detect the magnetic force, and after sending the magnetic force value to the controller, the controller can obtain the magnetic force value according to the , accurately calculate the vacuum angle.
  • the controller can accurately detect the dust collection status of the dust box 100 based on the acquired current posture of the sweeper and the corresponding dust collection angle.
  • an embodiment of the present application also provides a method for detecting the status of a sweeper, which is applied to the sweeper shown in Figures 1 and 2, including:
  • Step S301 Determine the status of the fan of the sweeping machine
  • the fan when the sweeper is in working state, the fan is in the on state; when the sweeper is in the non-working state, the fan is in the off state.
  • the air outlet of the fan provides suction for collecting garbage to the dust box 100, forming a negative pressure, causing the free end of the one-way valve 103 to leave the dust suction port 104, and the fixed end of the one-way valve 103
  • a dust suction angle is formed with the surface of the dust suction port 104; therefore, in the embodiment of the present application, when the dust box 100 is not full of dust, the size of the dust suction angle is positively correlated with the suction force provided by the fan.
  • Step S302 If the fan is on, obtain the body attitude information of the sweeper based on the attitude detection structure;
  • obtaining the body posture information of the sweeper based on the posture detection structure includes:
  • the attitude of the sweeper is determined according to the angle between the fuselage; wherein the attitude includes a first attitude, a second attitude, a third attitude and a fourth attitude;
  • the sweeper When the fuselage angle is in a state of oscillation change, the sweeper is in the second attitude; wherein, during the oscillation change process, the fuselage angle oscillates up and down on both sides of zero or is at zero;
  • the first posture may be a horizontal posture
  • the second posture may be a posture of climbing over an obstacle
  • the third posture may be an uphill posture
  • the fourth posture may be a downhill posture
  • the angle between the body and the horizontal plane is also in a state of oscillation.
  • the angle between the body and the horizontal plane is in a state of oscillation.
  • the angle may be positive, negative, or 0, and as the position of the sweeper's body continues to change, the angle of the body also changes constantly.
  • the included angle of the sweeper is also in a stable state of change, and during the process of the sweeper going uphill, the included angle of the sweeper is constantly changing. becomes larger, that is, the rate of change of the fuselage angle is >0.
  • the included angle of the sweeper is also in a stable state of change, and during the process of the sweeper going downhill, the included angle of the sweeper does not change steadily. continuously decreases, that is, the rate of change of the fuselage angle is ⁇ 0.
  • the current attitude of the sweeper is first determined based on the attitude detection structure, and the current attitude is applied to the determination of the dust collection state of the dust box 100, which can solve the problem of the attitude of the sweeper. changes, resulting in the problem of misjudgment of the dust collection status of the dust box 100.
  • Step S303 Obtain the magnetic force value based on the magnetic force detection structure 102, and determine the dust suction angle between the surface of the dust suction port 104 of the dust box 100 of the sweeper and the fixed end of the one-way valve 103 based on the magnetic force value; Among them, a magnetic structure 101 is provided outside the one-way valve 103, and a magnetic detection structure 102 is provided outside the working surface 105 of the dust box 100. The magnetic detection structure 102 is used to detect the magnetic structure 101. The magnetic force value is detected;
  • the magnetic force detection structure 102 obtains a magnetic force value, and determines the dust suction clamp between the surface of the dust suction port 104 of the dust box 100 of the sweeper and the fixed end of the one-way valve 103 based on the magnetic force value.
  • angles including:
  • a dust suction area is formed between the free end of the one-way valve 103 and the dust suction port 104, so The dust suction included angle is greater than zero, and garbage enters the interior of the dust box 100 from the dust suction port 104 through the dust suction area.
  • the magnetic detection structure 102 since the magnetic structure 101 is arranged outside the one-way valve 103, and when the free end of the one-way valve 103 is in contact with the outside of the working surface 105, the positions of the magnetic structure 101 and the magnetic detection structure 102 are relative to each other. , however, at this time, the fan is in the off state, and there is no dust suction area, so garbage cannot be collected. Therefore, the magnetic detection structure 102 is in the off state and does not detect the magnetic force; after the fan is in the on state, it is subject to the suction force of the fan. The influence of negative pressure formed, one-way The free end of the valve 103 leaves the outside of the working surface 105. At this time, the magnetic detection structure 102 is in an open state and starts to detect the acquired magnetic force and sends the detected magnetic force value to the controller in the form of a signal.
  • Step S304 Determine the dust collection state of the dust box 100 according to the body posture information of the sweeper and the dust suction angle.
  • determining the dust collection state of the dust box 100 based on the body posture information of the sweeper and the dust suction angle includes:
  • the dust suction angle is compared with a first threshold; wherein the first threshold is determined based on the real-time suction value of the fan;
  • the dust collection state of the dust box 100 is full of dust
  • the dust collection state of the dust box 100 is not full of dust.
  • first the first threshold is determined based on the real-time suction value of the fan
  • the real-time suction value of the fan has the following correspondence relationship with the first threshold:
  • the first threshold is A
  • the first threshold is B
  • the first threshold is C
  • the first threshold is D
  • the dust box 100 when the sweeper is in the first attitude, that is, the horizontal attitude, and the dust suction angle ⁇ the first threshold, the dust box 100 is already in a full dust state, and the dust box 100 needs to be cleaned, and the fan is turned off. Afterwards, the one-way valve 103 still cannot be reset because the dust box 100 is full of dust, causing garbage and dust to overflow.
  • the dust box 100 When the dust collection angle is ⁇ the first threshold, the dust box 100 is not full of dust, and there is no need to clean the dust box 100. After the fan is turned off, since the dust box 100 is not full of dust, the one-way valve 103 can Implement reset.
  • determining the dust collection state of the dust box 100 based on the body attitude information of the sweeper and the dust suction angle also includes: :
  • the first difference value is in an oscillating change state; wherein, during the oscillating change process, the first difference value oscillates up and down on both sides of zero or is at zero, then the dust collection state of the dust box 100 Not yet full of dust;
  • the dust collecting state of the dust box 100 is full of dust.
  • the body of the sweeping machine when the sweeping machine is in a posture of overcoming obstacles, the body of the sweeping machine is in a state of oscillating change. Therefore, the angle between the body of the sweeping machine and the horizontal plane is also in a state of oscillating changing state; therefore, The size of the dust collection angle is also in a state of oscillating change, in order to facilitate the determination of whether the dust box 100 is full of dust;
  • the controller compares the vacuum angle obtained in real time with a first threshold, and the first threshold is determined based on the size or level of the suction force of the fan at that time;
  • the controller obtains the first difference after comparing the dust suction angle with the first threshold
  • the first difference value when the first difference value is in a state of oscillating change, that is, the first difference value may be a positive value, a negative value, or 0, and the first difference value continuously jumps between positive values, negative values, or 0, then at this time Indicates the dust box set of 100
  • the dust state is not full of dust;
  • the dust suction angle will not be less than the first threshold, that is, at this time, the dust box The dust collection status of 100 is full of dust.
  • determining the dust collection state of the dust box 100 based on the body posture information of the sweeper and the dust suction angle further includes:
  • the magnetic force detection structure 102 stops detecting magnetic force until the sweeping machine is no longer in the third posture.
  • the difference between the dust suction angle and the first threshold value when the sweeper is in an uphill attitude, is the difference between the dust suction angle and the first threshold.
  • the difference between the first threshold and the first threshold is greater than 0.
  • the difference between the vacuum angle and the first threshold on the sweeper is also positive when the sweeper is in an uphill attitude and the dust box 100 is full of dust. Therefore, when the sweeper is in an uphill attitude, it is impossible to determine whether the dust box 100 is full of dust based on the difference between the dust suction angle and the first threshold;
  • the controller determines that the sweeper is in an uphill posture, it does not detect the dust collection status of the dust box 100.
  • the sweeper cannot always be in a stable uphill posture, and will only be in a stable state briefly. Uphill posture, for example, after 10 seconds, 20 seconds or 30 seconds, the sweeper will end the uphill posture and assume other postures. Therefore, after the controller determines that the sweeper is in the uphill posture, although it does not determine whether the dust box 100 If the dust is full, the dust box 100 will not be cleaned in a timely manner.
  • determining the dust collection state of the dust box 100 based on the body posture information of the sweeper and the dust suction angle further includes:
  • the dust collecting state of the dust box 100 is not full of dust
  • the dust collecting state of the dust box 100 is full of dust.
  • the controller determines that the sweeper is in a downhill attitude
  • the vacuum angle will become smaller.
  • the first difference is ⁇ 0, it can be determined that the dust box 100 is not full;
  • the determination is made based on the current posture of the sweeper and the real-time size of the dust suction angle between the fixed end of the one-way valve 103 and the surface of the dust suction port 104 or the real-time change rate of the dust suction angle.
  • the dust collection status of the dust box 100 improves the accuracy of judging the dust collection status of the dust box 100; at the same time, the user does not need to constantly check whether the dust box 100 is full of dust, nor does the user need to deliberately remember the use of the dust box 100 time, the user can also be notified in time to clean the dust box 100 to prevent the growth of germs and the like, thereby improving user satisfaction.
  • An optional embodiment of the present application after determining the status of the fan of the sweeper, further includes:
  • the magnetic force value detected by the magnetic force detection structure 102 is obtained, and the dust suction included angle is determined based on the magnetic force value;
  • the dust collecting state of the dust box 100 is not full of dust.
  • the fan every time the sweeper stops cleaning or returns to the base station, the fan will be in a closed state. At this time, the attitude detection structure detects whether the sweeper is in a horizontal attitude. If the sweeper is in a horizontal attitude, it will continue to suction.
  • the dust included angle is detected; if the dust suction included angle is equal to 0, it indicates that the dust box is 100 If the dust is not full and there is no dust or garbage spilling out, due to the gravity of the one-way valve 103, the free end of the one-way valve 103 will automatically reset, fit with the outside of the working surface 105, and cover the outside of the dust suction port 104; if If the dust collection angle ⁇ 0, it means that the dust box 100 is full of dust, and the dust or garbage overflows, causing resistance to the reset of the free end of the one-way valve 103, so that the free end of the one-way valve 103 cannot be used due to the gravity of the one-way valve 103 itself. Automatic reset, so you can be sure that the dust box is 100% full.
  • An optional embodiment of the present application if it is detected that the fan is in the off state, but the sweeper is not in a horizontal attitude, it indicates that the sweeper is in the working process at this time, and continues to detect whether the fan is in the on state.
  • the fan may briefly malfunction, causing the fan to be detected as being in the ON state in a short period of time.
  • the sweeper is still running; for example, the fan is in an uphill or downhill attitude, etc.
  • the controller can An alarm is issued to notify the staff to repair the fan, or the controller automatically controls the sweeper to stop running and waits for the staff to repair the fan.
  • the controller monitors the working status of the fan in real time
  • the included angle of the fuselage is not always equal to 0, then determine whether the included angle of the fuselage is in a state of oscillation change; if so, it can be determined that the sweeper is in a posture of overcoming obstacles, and the magnetic force value is obtained based on the magnetic detection structure 102, and then according to The magnetic force value determines the dust suction angle;
  • an embodiment of the present application also provides a device 700 for detecting the status of a sweeper, including:
  • the judgment module 701 is configured to judge the status of the fan of the sweeper
  • the first acquisition module 702 is configured to acquire the body attitude information of the sweeper based on the attitude detection structure if the fan is on;
  • the second acquisition module 703 is configured to acquire a magnetic force value based on the magnetic force detection structure 102, and determine the magnetic force value between the surface of the dust suction port 104 of the dust box 100 of the sweeper and the fixed end of the one-way valve 103 based on the magnetic force value. Dust suction angle; wherein, a magnetic structure 101 is provided outside the one-way valve 103, and a magnetic detection structure 102 is provided outside the working surface 105 of the dust box 100, and the magnetic detection structure 102 is used to detect The magnetic value of the magnetic structure 101 is detected;
  • the determination module 704 is configured to determine the dust collection state of the dust box 100 based on the body posture information of the sweeper and the dust suction angle.
  • obtaining the body posture information of the sweeper based on the posture detection structure includes:
  • the attitude of the sweeper is determined according to the angle between the fuselage; wherein the attitude includes a first attitude, a second attitude, a third attitude and a fourth attitude;
  • the sweeper When the fuselage angle is in a state of oscillation change, the sweeper is in the second attitude; wherein, during the oscillation change process, the fuselage angle oscillates up and down on both sides of zero or is at zero;
  • the magnetic detection structure 102 obtains a magnetic value, and determines the dust suction between the surface of the dust suction port 104 of the dust box 100 of the sweeper and the fixed end of the one-way valve 103 based on the magnetic value. Included angles include:
  • a dust suction area is formed between the free end of the one-way valve 103 and the dust suction port 104, so The dust suction included angle is greater than zero, and garbage enters the interior of the dust box 100 from the dust suction port 104 through the dust suction area.
  • determining the dust collection status of the dust box 100 based on the body posture information of the sweeper and the dust suction angle includes:
  • the dust suction angle is compared with a first threshold; wherein the first threshold is determined based on the real-time suction value of the fan;
  • the dust collecting state of the dust box 100 is dust
  • the dust collection state of the dust box 100 is not full of dust.
  • determining the dust collection state of the dust box 100 based on the body attitude information of the sweeper and the dust suction angle also includes:
  • the first difference value is in an oscillating change state; wherein, during the oscillating change process, the first difference value oscillates up and down on both sides of zero or is at zero, then the dust collection state of the dust box 100 Not yet full of dust;
  • the dust collecting state of the dust box 100 is full of dust.
  • determining the dust collection state of the dust box 100 based on the body attitude information of the sweeper and the dust suction angle also includes:
  • the magnetic force detection structure 102 stops detecting magnetic force until the sweeping machine is no longer in the third posture.
  • determining the dust collection state of the dust box 100 based on the body attitude information of the sweeper and the dust suction angle also includes:
  • the dust collecting state of the dust box 100 is not full of dust
  • the dust collecting state of the dust box 100 is full of dust.
  • the sweeper's fan after determining the status of the sweeper's fan, it also includes:
  • the magnetic force value detected by the magnetic force detection structure 102 is obtained, and the dust suction included angle is determined based on the magnetic force value;
  • the dust collecting state of the dust box 100 is not full of dust.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium includes a stored computer program, wherein when the computer program is running, the device where the computer-readable storage medium is located is controlled to execute as described above. method described.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Non-exhaustive list of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
  • various parts of the present application can be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit with a logic gate circuit for implementing a logic function on a data signal.
  • Discrete logic circuits application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limitations. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature "on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features may be in direct contact through an intermediate medium. indirect contact.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.

Landscapes

  • Electric Vacuum Cleaner (AREA)

Abstract

本申请公开了一种检测扫地机状态的方法、装置、扫地机及存储介质,方法包括:判断扫地机的风机的状态;若风机处于开启状态,则基于姿态检测结构获取扫地机的机身姿态信息;基于磁力检测结构获取磁力值,并根据磁力值确定扫地机的尘盒的吸尘口的表面与单向阀的固定端之间的吸尘夹角;其中,在单向阀的外侧设有磁力结构,在尘盒的工作面的外侧设有磁力检测结构,磁力检测结构用于对磁力结构的磁力值进行检测;根据扫地机的机身姿态信息以及吸尘夹角,确定尘盒的集尘状态。本申请的技术方案,结合扫地机的机身姿态以及吸尘角的变化,确定尘盒的集尘状态,提高了尘盒的集尘状态的确定的准确度。

Description

检测扫地机状态的方法、装置、扫地机及存储介质
本申请要求于2022年08月10日提交中国专利局、申请号为202210954054.6、申请名称“检测扫地机状态的方法、装置、扫地机及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于智能清洁器技术领域,尤其涉及一种检测扫地机状态的方法、装置、扫地机及存储介质。
背景技术
目前,越来越多人已经开始使用扫地机进行家庭打扫,虽然,扫地机能给我们的生活带来很多的便利,但是,如果扫地机没有搭配集尘桶而用户又忘记清理尘盒的话,尘盒就可能会堆满垃圾和灰尘,这样一是会降低扫地机的除尘率,二是垃圾堆久了会滋生细菌,不利于健康。
为了解决上述问题,目前有如下方法对尘盒是否尘满进行检测:
(1)根据扫地机的工作时间,判断尘盒是否尘满;
(2)根据光电对管结合红外信号,对尘盒是否尘满进行检测。
(3)通过感应电压值的变化,对尘盒是否尘满进行检测。
但是,上述方法仍然存在如下问题:
(1)需要用户经常清理红外对管,否则污渍或者灰尘就会粘在红外对管上导致误触发,体验效果不好。
(2)未考虑扫地机本身的姿态变化等,进而导致尘满检测结果的准确度。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种检测扫地机状态的方法、装置、扫地机及存储介质。
为了解决上述技术问题,本申请的实施例提供如下技术方案:
一种检测扫地机状态的方法,包括:
判断扫地机的风机的状态;
若所述风机处于开启状态,则基于姿态检测结构获取所述扫地机的机身姿态信息;
基于磁力检测结构获取磁力值,并根据所述磁力值确定所述扫地机的尘盒的吸尘口的表面与单向阀的固定端之间的吸尘夹角;其中,在所述单向阀的外侧设有磁力结构,在所述尘盒的工作面的外侧设有磁力检测结构,所述磁力检测结构用于对所述磁力结构的所述磁力值进行检测;
根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态。
可选的,所述基于姿态检测结构获取所述扫地机的机身姿态信息,包括:
获取所述扫地机的机身与水平面之间的机身夹角;
根据所述机身夹角,确定所述扫地机的姿态;其中,所述姿态包括第一姿态、第二姿态、第三姿态以及第四姿态;
当所述机身夹角=零,则所述扫地机处于所述第一姿态;
当所述机身夹角处于震荡变化状态,则所述扫地机处于所述第二姿态;其中,在震荡变化过程中,所述机身夹角在零的两侧上下震荡或在零处;
当所述机身夹角>零,则所述扫地机处于所述第三姿态;
当所述机身夹角<零,则所述扫地机处于所述第四姿态。
可选的,所述基于磁力检测结构获取磁力值,并根据所述磁力值确定所述扫地机的尘盒的吸尘口的表面与单向阀的固定端之间的吸尘夹角,包括:
当所述单向阀的自由端与所述工作面的外侧贴合,则所述磁力检测结构与所述磁力结构处于相对状态,所述吸尘夹角等于零;或
当所述单向阀的所述自由端与所述工作面的外侧不贴合,则在所述单向阀的自由端与所述吸尘口之间形成吸尘区,所述吸尘夹角大于零,垃圾通过所述吸尘区从所述吸尘口进入所述尘盒的内部。
可选的,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态,包括:
当所述扫地机处于所述第一姿态,则将所述吸尘夹角与第一阈值进行比较;其中,所述第一阈值基于所述风机的实时吸力值确定;
若所述吸尘夹角≥所述第一阈值,则所述尘盒的所述集尘状态为尘满;或若所述吸尘夹角<所述第一阈值,则所述尘盒的所述集尘状态为尘未满。
可选的,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态,还包括:
当所述扫地机处于所述第二姿态,则获得所述吸尘夹角与所述第一阈值的第一差值;
若所述第一差值处于震荡变化状态;其中,在震荡变化过程中,所述第一差值在零的两侧上下震荡或在零处,则所述尘盒的所述集尘状态为尘未满;
或若所述第一差值不处于震荡变化状态,且所述第一差值≥零,则所述尘盒的所述集尘状态为尘满。
可选的,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态,还包括:
当所述扫地机处于所述第三姿态,则所述磁力检测结构停止对磁力进行检测,直至所述扫地机不再处于所述第三姿态。
可选的,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态,还包括:
当所述扫地机处于所述第四姿态,则获得所述吸尘夹角与所述第一阈值的第一差值;
若所述第一差值<零,则所述尘盒的所述集尘状态为尘未满;
或若所述第一差值≥零,则所述尘盒的所述集尘状态为尘满。
可选的,在判断扫地机的风机的状态之后,还包括:
若所述风机处于关闭状态,则基于所述姿态检测结构获取所述扫地机的所述机身姿态信息;
若所述扫地机处于所述第一姿态,则获取所述磁力检测结构检测到的磁力值,并根据所述磁力值确定所述吸尘夹角;
将所述吸尘夹角与零进行比较;
若所述吸尘夹角>零,则所述尘盒的所述集尘状态为尘满;
若所述吸尘夹角=零,则所述尘盒所述集尘状态为尘未满。
本申请的实施例还提供一种检测扫地机状态的装置,包括:
判断模块,配置为判断扫地机的风机的状态;
第一获取模块,配置为若所述风机处于开启状态,则基于姿态检测结构获取所述扫地机的机身姿态信息;
第二获取模块,配置为基于磁力检测结构获取磁力值,并根据所述磁力值 确定所述扫地机的尘盒的吸尘口的表面与单向阀的固定端之间的吸尘夹角;其中,在所述单向阀的外侧设有磁力结构,在所述尘盒的工作面的外侧设有磁力检测结构,当所述单向阀的自由端与所述工作面的外侧贴合,则所述磁力检测结构与所述磁力结构处于相对状态;当所述单向阀的所述自由端与所述工作面的外侧不贴合,则在所述单向阀的自由端与所述吸尘口之间形成吸尘区,垃圾通过所述吸尘区从所述吸尘口进入所述尘盒的内部;
确定模块,配置为根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态。
本申请的实施例还提供一种扫地机,包括:尘盒,在所述尘盒的工作面设有吸尘口;单向阀,所述单向阀的固定端与所述工作面的外侧旋转连接,并罩设在所述吸尘口的外部;还包括:
姿态检测结构,所述姿态检测结构设置在所述扫地机的外侧,所述姿态结构用于检测所述扫地机的机身姿态信息,并将所述机身姿态信息发送至控制器;
磁力结构,所述磁力结构设置在所述单向阀的外侧;
磁力检测结构,所述磁力检测结构设置在所述工作面的外侧;当所述单向阀的自由端与所述工作面的外侧贴合,则所述磁力检测结构与所述磁力结构处于相对状态;当所述单向阀的所述自由端与所述工作面的外侧不贴合,则在所述单向阀的自由端与所述吸尘口之间形成吸尘区,垃圾通过所述吸尘区从所述吸尘口进入所述尘盒的内部;所述磁力检测结构用于对接收到的磁力进行检测,并将检测到的磁力值发送至所述扫地机的控制器;
所述控制器用于根据所述机身姿态信息以及所述磁力值,确定所述尘盒的集尘状态。
本申请的实施例还提供一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如上所述的方法。
本申请的实施例,具有如下技术效果:
本申请的上述技术方案,1)在确定风机处于开启状态以后,首先基于姿态检测结构判断扫地机当前的姿态,并将当前的姿态应用至尘盒的集尘状态的确定,可解决因扫地机的姿态的变化,而导致的对尘盒的集尘状态产生误判的问题。
2)结合扫地机当前的姿态以及单向阀的固定端与吸尘口的表面之间的吸尘夹角的实时大小或吸尘夹角的实时变化率的大小,确定尘盒的集尘状态,提高了尘盒的集尘状态的判断的准确性;同时,不需要用户自己时常检测尘盒是否尘满,也不需要用户刻意记住尘盒的使用时间,还可以及时告知用户对尘盒进行清理,防止病菌等滋生,提高了用户的满意度。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请实施例提供的一种尘盒的结构示意图;
图2是本申请实施例提供的另一种尘盒的结构示意图;
图3是本申请实施例提供的一种检测扫地机状态的方法的流程示意图;
图4是本申请实施例提供的机身夹角在扫地机处于翻越障碍物姿态的变化示意图;
图5是本申请实施例提供的第一差值在扫地机处于翻越障碍物姿态的变 化示意图;
图6是本申请实施例提供的一种检测扫地机状态的方法的流程示意图的一个示例;
图7是本申请实施例提供的一种检测扫地机状态的装置的结构示意图。
图中:100-尘盒;101-磁力结构;102-磁力检测结构;103-单向阀;104-吸尘口;105-工作面。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
如图1和图2所示,本申请的实施例提供一种扫地机,包括:尘盒100,在所述尘盒100的工作面105设有吸尘口104;单向阀103,所述单向阀103的固定端与所述工作面105的外侧旋转连接,并罩设在所述吸尘口104的外部;还包括:
姿态检测结构,所述姿态检测结构设置在所述扫地机的外侧,所述姿态结构用于检测所述扫地机的机身姿态信息,并将所述机身姿态信息发送至控制器;
本申请的实施例,在尘盒100的工作面105的外侧设有连接结构,连接结构设置在吸尘口104的上方,并与单向阀103的固定端旋转连接;其中,连接结构可以基于连接轴实现。
本申请的实施例,姿态检测结构可以基于六轴传感器实现,其中,姿态检 测结构可以设置在扫地机的底部或者侧部,用于对扫地机的机身与水平面之间的机身夹角进行检测,并将检测到的机身夹角发送至控制器。
磁力结构101,所述磁力结构101设置在所述单向阀103的外侧;
磁力检测结构102,所述磁力检测结构102设置在所述工作面105的外侧;当所述单向阀103的自由端与所述工作面105的外侧贴合,则所述磁力检测结构102与所述磁力结构101处于相对状态;当所述单向阀103的所述自由端与所述工作面105的外侧不贴合,则在所述单向阀103的自由端与所述吸尘口104之间形成吸尘区,垃圾通过所述吸尘区从所述吸尘口104进入所述尘盒100的内部;所述磁力检测结构102用于对接收到的磁力进行检测,并将检测到的磁力值发送至所述扫地机的控制器;
本申请的实施例,磁力检测结构102可以基于霍尔传感器实现,其中,磁力结构101距离磁力检测结构102的距离越远,则磁力检测结构102检测到的磁力值也越小,因此,磁力值与吸尘夹角之间呈负相关的关系。
所述控制器用于根据所述机身姿态信息以及所述磁力值,确定所述尘盒100的集尘状态。
本申请的实施例,控制器设置在扫地机的内部,其中,控制器与磁力检测结构102以及姿态检测结构可以基于网络等通讯手段实现通信连接。
进一步地,控制器基于预设算法将获取到的磁力值转化为吸尘夹角,其中,预设算法为现有算法,本申请的实施例,对此不做具体的限定。
本申请的实施例,还包括风机,风机设置在扫地机的内部,风机的出风口与尘盒100连接,用于向尘盒100提供收集垃圾或灰尘的吸力,其中,风机的实时工作挡位越高,也即风机的实时输出动力越大,则向尘盒100提供收集垃圾的实时吸力值也越大。
本申请一可选的实施例,磁力结构101可以基于重量较轻,体积较小的磁铁实现,对于磁力结构101的具体安装位置,则可以根据实际需要进行选择,例如,磁力结构101可以安装在如图1和图2所示的位置,也可以安装在单向阀103的外侧的另一个边缘,或者安装在单向阀103的底部边缘等;
进一步地,无论磁力结构101安装在哪一个位置,对应地,将磁力检测结构102安装到工作面105的外侧与磁力结构101相对的位置,也即,当单向阀103的自由端与吸尘口104贴合的时候,磁力检测结构102与磁力结构101相对,用于实现磁力检测结构102对磁力进行精准检测,并在将磁力值发送至控制器之后,控制器可以根据获取到的磁力值,精准计算获得吸尘夹角。
本申请的实施例,控制器可以根据获取到的扫地机当前所处的姿态以及对应的吸尘夹角,精准检测尘盒100的集尘状态。
如图3所示,本申请的实施例还提供一种检测扫地机状态的方法,应用于上述如图1和图2所示的扫地机,包括:
步骤S301:判断扫地机的风机的状态;
本申请的实施例,当扫地机处于工作状态的时候,则风机处于开启状态,若扫地机处于非工作状态的时候,则风机处于关闭状态。而当风机处于开启状态的时候,则风机的出风口向尘盒100提供收集垃圾的吸力,形成一个负压,导致单向阀103的自由端离开吸尘口104,单向阀103的固定端与吸尘口104的表面之间形成吸尘夹角;因此,本申请的实施例,在尘盒100处于尘未满的状态时,吸尘夹角的大小与风机提供的吸力的大小呈正相关的关系,所以,本申请的实施例,在检测尘盒100的集尘状态的时候,需要首先检测风机是否开启,然后检测风机的挡位或者风机的吸力的大小,用于后续算法更精准地进行检测或者计算。
步骤S302:若所述风机处于开启状态,则基于姿态检测结构获取所述扫地机的机身姿态信息;
具体的,所述基于姿态检测结构获取所述扫地机的机身姿态信息,包括:
获取所述扫地机的机身与水平面之间的机身夹角;
根据所述机身夹角,确定所述扫地机的姿态;其中,所述姿态包括第一姿态、第二姿态、第三姿态以及第四姿态;
当所述机身夹角=零,则所述扫地机处于所述第一姿态;
当所述机身夹角处于震荡变化状态,则所述扫地机处于所述第二姿态;其中,在震荡变化过程中,所述机身夹角在零的两侧上下震荡或在零处;
当所述机身夹角>零,则所述扫地机处于所述第三姿态;
当所述机身夹角<零,则所述扫地机处于所述第四姿态。
本申请的实施例,第一姿态可以为水平姿态,第二姿态可以为翻越障碍物姿态,第三姿态可以为上坡姿态,第四姿态可以为下坡姿态;
当扫地机处于水平姿态,则扫地机的机身与水平面之间的机身夹角为零;
如图4所示,当扫地机处于翻越障碍物姿态,则由于机身不稳定;因此,机身与水平面之间的机身夹角的大小也处于震荡变化状态中,具体的,机身夹角可能为正值、可能为负值、也可能为0,并且随着扫地机的机身的位置不断变化,机身夹角也在不断地变化。
当扫地机处于上坡姿态,则由于扫地机的机身的位置处于稳定的变化的过程中,则机身夹角也处于稳定变化状态,且在扫地机上坡的过程中,机身夹角不断变大,也即机身夹角的变化率>0。
当扫地机处于下坡姿态,则由于扫地机的机身的位置处于稳定的变化过程中,则机身夹角也处于稳定变化状态,且在扫地机下坡的过程中,机身夹角不 断减小,也即机身夹角的变化率<0。
本申请的实施例,在确定风机处于开启状态以后,首先基于姿态检测结构判断扫地机当前的姿态,并将当前的姿态应用至尘盒100的集尘状态的确定,可解决因扫地机的姿态的变化,而导致的对尘盒100的集尘状态产生误判的问题。
步骤S303:基于磁力检测结构102获取磁力值,并根据所述磁力值确定所述扫地机的尘盒100的吸尘口104的表面与单向阀103的固定端之间的吸尘夹角;其中,在所述单向阀103的外侧设有磁力结构101,在所述尘盒100的工作面105的外侧设有磁力检测结构102,所述磁力检测结构102用于对所述磁力结构101的所述磁力值进行检测;
具体的,所述基于磁力检测结构102获取磁力值,并根据所述磁力值确定所述扫地机的尘盒100的吸尘口104的表面与单向阀103的固定端之间的吸尘夹角,包括:
当所述单向阀103的自由端与所述工作面105的外侧贴合,则所述磁力检测结构102与所述磁力结构101处于相对状态,所述吸尘夹角等于零;或
当所述单向阀103的所述自由端与所述工作面105的外侧不贴合,则在所述单向阀103的自由端与所述吸尘口104之间形成吸尘区,所述吸尘夹角大于零,垃圾通过所述吸尘区从所述吸尘口104进入所述尘盒100的内部。
本申请的实施例,由于磁力结构101设置在单向阀103的外侧,且当单向阀103的自由端与工作面105的外侧贴合的时候,磁力结构101与磁力检测结构102的位置相对,但是,这个时候风机处于关闭状态,也没有形成吸尘区,无法对垃圾进行收集,因此,磁力检测结构102处于关闭状态,不对磁力进行检测;在风机处于开启状态以后,则受到风机的吸力形成的负压的影响,单向 阀103的自由端离开工作面105的外侧,此时,磁力检测结构102处于开启状态,也开始对获取到的磁力进行检测,并将检测到的磁力值以信号的形式发送至控制器。
步骤S304:根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态。
具体的,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态,包括:
当所述扫地机处于所述第一姿态,则将所述吸尘夹角与第一阈值进行比较;其中,所述第一阈值基于所述风机的实时吸力值确定;
若所述吸尘夹角≥所述第一阈值,则所述尘盒100的所述集尘状态为尘满;
或若所述吸尘夹角<所述第一阈值,则所述尘盒100的所述集尘状态为尘未满。
本申请的实施例,首先根据风机的实时吸力值,确定第一阈值;
其中,风机的实时吸力值与第一阈值之间具有如下对应关系:
当实时吸力值对应一级吸力的时候,则第一阈值为A;
当实时吸力值对应二级吸力的时候,则第一阈值为B;
当实时吸力值对应三级吸力的时候,则第一阈值为C;
当实时吸力值对应四级吸力的时候,则第一阈值为D;
其中,一级吸力<二级吸力<三级吸力<四级吸力;
对应地,A<B<C<D。
例如:当扫地机处于第一姿态,也即水平姿态,则吸尘夹角≥第一阈值的时候,尘盒100已经处于尘满状态,需要对尘盒100进行清理,且在风机关闭 之后,由于尘盒100已经尘满,导致垃圾灰尘等外溢,单向阀103仍然无法复位。
当吸尘夹角<第一阈值的时候,尘盒100处于尘未满的状态,不需要对尘盒100进行清理,且在风机关闭之后,由于尘盒100尘未满,单向阀103可以实现复位。
如图5所示,本申请一可选的实施例,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态,还包括:
当所述扫地机处于所述第二姿态,则获得所述吸尘夹角与所述第一阈值的第一差值;
若所述第一差值处于震荡变化状态;其中,在震荡变化过程中,所述第一差值在零的两侧上下震荡或在零处,则所述尘盒100的所述集尘状态为尘未满;
或若所述第一差值不处于震荡变化状态,且所述第一差值≥零,则所述尘盒100的所述集尘状态为尘满。
本申请的实施例,当扫地机处于翻越障碍姿态,则扫地机的机身处于震荡变化的状态,因此,扫地机的机身与水平面之间的机身夹角也处于震荡变化状态;所以,吸尘夹角的大小也处于震荡变化状态,为了便于确定尘盒100是否尘满;
本申请的实施例,控制器将实时获取的吸尘夹角与第一阈值进行比较,且第一阈值根据此时的风机的吸力的大小或者等级进行确定;
控制器在将吸尘夹角与第一阈值进行比较之后,获得第一差值;
其中,当第一差值处于震荡变化状态,也即第一差值可能是正值、负值或0,且第一差值在正值、负值或0之间不断地跳跃,则此时表明尘盒100的集 尘状态为尘未满;
当第一差值≥0,则表明虽然机身处于震荡变化状态,但是,由于尘盒100的灰尘垃圾等溢出,使得吸尘夹角不会小于第一阈值,也即,此时,尘盒100的集尘状态为尘满。
本申请一可选的实施例,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态,还包括:
当所述扫地机处于所述第三姿态,则所述磁力检测结构102停止对磁力进行检测,直至所述扫地机不再处于所述第三姿态。
本申请的实施例,当扫地机处于上坡姿态,吸尘夹角会变大,所以吸尘夹角与第一阈值的差值,在扫地机处于上坡姿态的时候,吸尘夹角与第一阈值的差值>0,但是,吸尘夹角与第一阈值在扫地机的差值,在扫地机处于上坡姿态,且在尘盒100处于尘满的状态的时候,也为正值,因此,当扫地机处于上坡姿态时,无法根据吸尘夹角与第一阈值之间的差值确定尘盒100是否尘满;
所以,当控制器确定扫地机处于上坡姿态之后,则不对尘盒100的集尘状态进行检测,但是,家庭等场景下,扫地机不可能一直处于平稳上坡姿态,只会短暂地处于平稳上坡姿态,例如,在10秒、20秒或30秒后,扫地机就会结束上坡姿态,并呈现其它姿态,所以当控制器确定扫地机处于上坡姿态之后,虽然不对尘盒100是否尘满进行检测,但是,不会导致尘盒100清理不及时的问题。
本申请一可选的实施例,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态,还包括:
当所述扫地机处于所述第四姿态,则获得所述吸尘夹角与所述第一阈值的第一差值;
若所述第一差值<零,则所述尘盒100的所述集尘状态为尘未满;
或若所述第一差值≥零,则所述尘盒100的所述集尘状态为尘满。
本申请的实施例,当控制器确定扫地机处于下坡姿态,则吸尘夹角会变小,当第一差值<0的时候,则可以确定尘盒100尘未满;
但是,当第一差值≥0,则表明尘盒100的灰尘会垃圾出现外溢,对单向阀103的复位产了阻力,因此,可以确定尘盒100尘满。
本申请的实施例,结合扫地机当前的姿态以及单向阀103的固定端与吸尘口104的表面之间的吸尘夹角的实时大小或吸尘夹角的实时变化率的大小,确定尘盒100的集尘状态,提高了尘盒100的集尘状态的判断的准确性;同时,不需要用户自己时常检测尘盒100是否尘满,也不需要用户刻意记住尘盒100的使用时间,还可以及时告知用户对尘盒100进行清理,防止病菌等滋生,提高了用户的满意度。
本申请一可选的实施例,在判断扫地机的风机的状态之后,还包括:
若所述风机处于关闭状态,则基于所述姿态检测结构获取所述扫地机的所述机身姿态信息;
若所述扫地机处于所述第一姿态,则获取所述磁力检测结构102检测到的磁力值,并根据所述磁力值确定所述吸尘夹角;
将所述吸尘夹角与零进行比较;
若所述吸尘夹角>零,则所述尘盒100的所述集尘状态为尘满;
若所述吸尘夹角=零,则所述尘盒100所述集尘状态为尘未满。
本申请的实施例,当扫地机每次停止清扫或者回基站的时候,则风机会处于关闭状态,姿态检测结构此时检测扫地机是否处于水平姿态,若扫地机处于水平姿态,则继续对吸尘夹角进行检测;若吸尘夹角等于0,则表明尘盒100 尘未满,没有灰尘或者垃圾外溢,由于单向阀103自身的重力,单向阀103的自由端自动复位,与工作面105的外侧贴合,并罩设在吸尘口104的外部;若吸尘夹角≥0,则表明尘盒100尘满,灰尘或垃圾外溢,对单向阀103的自由端的复位造成了阻力,使得单向阀103的自由端无法因为单向阀103自身的重力自动复位,所以,可以确定尘盒100尘满。
本申请一可选的实施例,若检测到风机处于关闭状态,但是扫地机不处于水平姿态,则表明扫地机此时处于工作过程中,并继续检测风机是否处于开启状态,当检测到风机处于开启状态,则继续实时对扫地机的机身姿态以及尘盒100的集尘状态进行检测,并重复上述步骤;例如,风机可能短暂地出现了故障,导致风机在短时时间内被检测到处于关闭状态,但是扫地机仍然在运行;例如,风机处于上坡姿态或下坡姿态等。
本申请一可选的实施例,若检测到风机长时间处于关闭状态,但是,扫地机仍然在运行,例如,扫地机处于翻越障碍物姿态,则表明风机出现了故障,此时,控制器可以进行报警,通知工作人员对风机进行维修,或者控制器自动控制扫地机停止运行,等待工作人员对风机进行维修。
如图6所示,本申请的上述实施例,可以基于如下实现方式实现:
(1)控制器对风机的工作状态进行实时监测;
(2)当风机处于开启状态,则基于姿态检测结构获取所述扫地机的机身姿态信息,根据机身姿态信息获取机身夹角;
(3)判断机身夹角是否等于0,若是,则可以确定扫地机处于水平姿态;并基于磁力检测结构102获取磁力值,然后根据磁力值确定吸尘夹角;
将吸尘夹角与第一阈值进行比较,若吸尘夹角≥第一阈值,则可以确定尘盒100的集尘状态为尘满;若吸尘夹角<第一阈值,则可以确定尘盒100的集 尘状态为尘未满。
(4)若机身夹角不是一直等于0,则判断机身夹角是否处于震荡变化状态;若是,则可以确定扫地机处于翻越障碍物姿态,并基于磁力检测结构102获取磁力值,然后根据磁力值确定吸尘夹角;
将吸尘夹角与第一阈值进行比较,获得第一差值;若第一差值处于震荡变化状态,则可以确定尘盒100的集尘状态为尘未满;若第一差值≥0,则可以确定尘盒100的集尘状态为尘满。
(5)若机身夹角不是处于震荡变化状态,则判断机身夹角是否小于0,若是,则可以确定扫地机处于下坡姿态,并基于磁力检测结构102获取磁力值,然后根据磁力值确定吸尘夹角;
将吸尘夹角与第一阈值进行比较,获得第一差值;若第一差值<0,则可以确定尘盒100的集尘状态为尘未满;若第一差值≥0,则可以确定尘盒100的集尘状态为尘满。
(6)若机身夹角不小于0,则可以确定扫地机处于上坡姿态,则不对尘盒100的集尘状态进行检测。
(7)当风机处于关闭状态,则基于姿态检测结构获取所述扫地机的机身姿态信息,根据机身姿态信息获取机身夹角;
(8)判断机身夹角是否等于0,若是,则可以确定扫地机处于水平姿态;并基于磁力检测结构102获取磁力值,然后根据磁力值确定吸尘夹角;
将吸尘夹角与0比较,若吸尘夹角>0,则可以确定尘盒100的集尘状态为尘未满;若吸尘夹角=0,则可以确定尘盒100的集尘状态为尘未满。
若机身夹角不等于0,则继续判断风机是否处于开启状态,并重复上述步骤。
如图7所示,本申请的实施例还提供一种检测扫地机状态的装置700,包括:
判断模块701,配置为判断扫地机的风机的状态;
第一获取模块702,配置为若所述风机处于开启状态,则基于姿态检测结构获取所述扫地机的机身姿态信息;
第二获取模块703,配置为基于磁力检测结构102获取磁力值,并根据所述磁力值确定所述扫地机的尘盒100的吸尘口104的表面与单向阀103的固定端之间的吸尘夹角;其中,在所述单向阀103的外侧设有磁力结构101,在所述尘盒100的工作面105的外侧设有磁力检测结构102,所述磁力检测结构102用于对所述磁力结构101的所述磁力值进行检测;
确定模块704,配置为根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态。
可选的,所述基于姿态检测结构获取所述扫地机的机身姿态信息,包括:
获取所述扫地机的机身与水平面之间的机身夹角;
根据所述机身夹角,确定所述扫地机的姿态;其中,所述姿态包括第一姿态、第二姿态、第三姿态以及第四姿态;
当所述机身夹角=零,则所述扫地机处于所述第一姿态;
当所述机身夹角处于震荡变化状态,则所述扫地机处于所述第二姿态;其中,在震荡变化过程中,所述机身夹角在零的两侧上下震荡或在零处;
当所述机身夹角>零,则所述扫地机处于所述第三姿态;
当所述机身夹角<零,则所述扫地机处于所述第四姿态。
可选的,所述基于磁力检测结构102获取磁力值,并根据所述磁力值确定所述扫地机的尘盒100的吸尘口104的表面与单向阀103的固定端之间的吸尘 夹角,包括:
当所述单向阀103的自由端与所述工作面105的外侧贴合,则所述磁力检测结构102与所述磁力结构101处于相对状态,所述吸尘夹角等于零;或
当所述单向阀103的所述自由端与所述工作面105的外侧不贴合,则在所述单向阀103的自由端与所述吸尘口104之间形成吸尘区,所述吸尘夹角大于零,垃圾通过所述吸尘区从所述吸尘口104进入所述尘盒100的内部。
可选的,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态,包括:
当所述扫地机处于所述第一姿态,则将所述吸尘夹角与第一阈值进行比较;其中,所述第一阈值基于所述风机的实时吸力值确定;
若所述吸尘夹角≥所述第一阈值,则所述尘盒100的所述集尘状态为尘
满;
或若所述吸尘夹角<所述第一阈值,则所述尘盒100的所述集尘状态为尘未满。
可选的,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态,还包括:
当所述扫地机处于所述第二姿态,则获得所述吸尘夹角与所述第一阈值的第一差值;
若所述第一差值处于震荡变化状态;其中,在震荡变化过程中,所述第一差值在零的两侧上下震荡或在零处,则所述尘盒100的所述集尘状态为尘未满;
或若所述第一差值不处于震荡变化状态,且所述第一差值≥零,则所述尘盒100的所述集尘状态为尘满。
可选的,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态,还包括:
当所述扫地机处于所述第三姿态,则所述磁力检测结构102停止对磁力进行检测,直至所述扫地机不再处于所述第三姿态。
可选的,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒100的集尘状态,还包括:
当所述扫地机处于所述第四姿态,则获得所述吸尘夹角与所述第一阈值的第一差值;
若所述第一差值<零,则所述尘盒100的所述集尘状态为尘未满;
或若所述第一差值≥零,则所述尘盒100的所述集尘状态为尘满。
可选的,在判断扫地机的风机的状态之后,还包括:
若所述风机处于关闭状态,则基于所述姿态检测结构获取所述扫地机的所述机身姿态信息;
若所述扫地机处于所述第一姿态,则获取所述磁力检测结构102检测到的磁力值,并根据所述磁力值确定所述吸尘夹角;
将所述吸尘夹角与零进行比较;
若所述吸尘夹角>零,则所述尘盒100的所述集尘状态为尘满;
若所述吸尘夹角=零,则所述尘盒100所述集尘状态为尘未满。
本申请的实施例还提供一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如上所述的方法。
另外,本申请实施例的装置的其他构成及作用对本领域的技术人员来说是已知的,为减少冗余,此处不做赘述。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,″计算机可读介质″可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示 例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒 介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种检测扫地机状态的方法,包括:
    判断扫地机的风机的状态;
    若所述风机处于开启状态,则基于姿态检测结构获取所述扫地机的机身姿态信息;
    基于磁力检测结构获取磁力值,并根据所述磁力值确定所述扫地机的尘盒的吸尘口的表面与单向阀的固定端之间的吸尘夹角;其中,在所述单向阀的外侧设有磁力结构,在所述尘盒的工作面的外侧设有磁力检测结构,所述磁力检测结构用于对所述磁力结构的所述磁力值进行检测;
    根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态。
  2. 根据权利要求1所述的方法,其中,所述基于姿态检测结构获取所述扫地机的机身姿态信息,包括:
    获取所述扫地机的机身与水平面之间的机身夹角;
    根据所述机身夹角,确定所述扫地机的姿态;其中,所述姿态包括第一姿态、第二姿态、第三姿态以及第四姿态;
    当所述机身夹角=零,则所述扫地机处于所述第一姿态;
    当所述机身夹角处于震荡变化状态,则所述扫地机处于所述第二姿态;其中,在震荡变化过程中,所述机身夹角在零的两侧上下震荡或在零处;
    当所述机身夹角>零,则所述扫地机处于所述第三姿态;
    当所述机身夹角<零,则所述扫地机处于所述第四姿态。
  3. 根据权利要求1所述的方法,其中,所述基于磁力检测结构获取磁力值, 并根据所述磁力值确定所述扫地机的尘盒的吸尘口的表面与单向阀的固定端之间的吸尘夹角,包括:
    当所述单向阀的自由端与所述工作面的外侧贴合,则所述磁力检测结构与所述磁力结构处于相对状态,所述吸尘夹角等于零;或
    当所述单向阀的所述自由端与所述工作面的外侧不贴合,则在所述单向阀的自由端与所述吸尘口之间形成吸尘区,所述吸尘夹角大于零,垃圾通过所述吸尘区从所述吸尘口进入所述尘盒的内部。
  4. 根据权利要求2所述的方法,其中,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态,包括:
    当所述扫地机处于所述第一姿态,则将所述吸尘夹角与第一阈值进行比较;其中,所述第一阈值基于所述风机的实时吸力值确定;
    若所述吸尘夹角≥所述第一阈值,则所述尘盒的所述集尘状态为尘满;或若所述吸尘夹角<所述第一阈值,则所述尘盒的所述集尘状态为尘未满。
  5. 根据权利要求4所述的方法,其中,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态,还包括:
    当所述扫地机处于所述第二姿态,则获得所述吸尘夹角与所述第一阈值的第一差值;
    若所述第一差值处于震荡变化状态;其中,在震荡变化过程中,所述第一差值在零的两侧上下震荡或在零处,则所述尘盒的所述集尘状态为尘未满;
    或若所述第一差值不处于震荡变化状态,且所述第一差值≥零,则所述尘盒的所述集尘状态为尘满。
  6. 根据权利要求4所述的方法,其中,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态,还包括:
    当所述扫地机处于所述第三姿态,则所述磁力检测结构停止对磁力进行检测,直至所述扫地机不再处于所述第三姿态。
  7. 根据权利要求4所述的方法,其中,所述根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态,还包括:
    当所述扫地机处于所述第四姿态,则获得所述吸尘夹角与所述第一阈值的第一差值;
    若所述第一差值<零,则所述尘盒的所述集尘状态为尘未满;
    或若所述第一差值≥零,则所述尘盒的所述集尘状态为尘满。
  8. 根据权利要求4所述的方法,其中,在判断扫地机的风机的状态之后,还包括:
    若所述风机处于关闭状态,则基于所述姿态检测结构获取所述扫地机的所述机身姿态信息;
    若所述扫地机处于所述第一姿态,则获取所述磁力检测结构检测到的磁力值,并根据所述磁力值确定所述吸尘夹角;
    将所述吸尘夹角与零进行比较;
    若所述吸尘夹角>零,则所述尘盒的所述集尘状态为尘满;
    若所述吸尘夹角=零,则所述尘盒所述集尘状态为尘未满。
  9. 一种检测扫地机状态的装置,包括:
    判断模块,配置为判断扫地机的风机的状态;
    第一获取模块,配置为若所述风机处于开启状态,则基于姿态检测结构获取所述扫地机的机身姿态信息;
    第二获取模块,配置为基于磁力检测结构获取磁力值,并根据所述磁力值确定所述扫地机的尘盒的吸尘口的表面与单向阀的固定端的吸尘夹角;其中, 在所述单向阀的外侧设有磁力结构,在所述尘盒的工作面的外侧设有磁力检测结构,所述磁力检测结构用于对所述磁力结构的所述磁力值进行检测;
    确定模块,配置为根据所述扫地机的所述机身姿态信息以及所述吸尘夹角,确定所述尘盒的集尘状态。
  10. 一种扫地机,包括:尘盒,在所述尘盒的工作面设有吸尘口;单向阀,所述单向阀的固定端与所述工作面的外侧旋转连接,并罩设在所述吸尘口的外部;其特征在于,还包括:
    姿态检测结构,所述姿态检测结构设置在所述扫地机的外侧,所述姿态结构用于检测所述扫地机的机身姿态信息,并将所述机身姿态信息发送至控制器;
    磁力结构,所述磁力结构设置在所述单向阀的外侧;
    磁力检测结构,所述磁力检测结构设置在所述工作面的外侧;当所述单向阀的自由端与所述工作面的外侧贴合,则所述磁力检测结构与所述磁力结构处于相对状态;当所述单向阀的所述自由端与所述工作面的外侧不贴合,则在所述单向阀的自由端与所述吸尘口之间形成吸尘区,垃圾通过所述吸尘区从所述吸尘口进入所述尘盒的内部;所述磁力检测结构用于对接收到的磁力进行检测,并将检测到的磁力值发送至所述扫地机的控制器;
    所述控制器用于根据所述机身姿态信息以及所述磁力值,确定所述尘盒的集尘状态。
  11. 一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如权利要求1至8中任意一项所述的方法。
PCT/CN2023/112343 2022-08-10 2023-08-10 检测扫地机状态的方法、装置、扫地机及存储介质 WO2024032733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210954054.6A CN115349776B (zh) 2022-08-10 2022-08-10 检测扫地机状态的方法、装置、扫地机及存储介质
CN202210954054.6 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024032733A1 true WO2024032733A1 (zh) 2024-02-15

Family

ID=84001494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112343 WO2024032733A1 (zh) 2022-08-10 2023-08-10 检测扫地机状态的方法、装置、扫地机及存储介质

Country Status (2)

Country Link
CN (1) CN115349776B (zh)
WO (1) WO2024032733A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115349776B (zh) * 2022-08-10 2024-05-03 成都市联洲国际技术有限公司 检测扫地机状态的方法、装置、扫地机及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080092324A1 (en) * 2006-10-18 2008-04-24 Guten Electronics Industrial Co., Ltd. Dust-collecting auxiliary device for vacuum cleaner
CN111466831A (zh) * 2019-01-23 2020-07-31 北京奇虎科技有限公司 扫地机器人尘盒状态检测方法、装置、尘盒和扫地机器人
CN112630463A (zh) * 2020-12-11 2021-04-09 美智纵横科技有限责任公司 检测扫地机尘盒尘满的方法、装置、扫地机及存储介质
CN215424421U (zh) * 2021-03-17 2022-01-07 东莞市协创数据技术有限公司 尘盒组件与扫地机器人
CN217040020U (zh) * 2022-03-07 2022-07-26 上海阿科伯特机器人有限公司 用于对接清洁机器人的基站
CN115349776A (zh) * 2022-08-10 2022-11-18 成都市联洲国际技术有限公司 检测扫地机状态的方法、装置、扫地机及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI273919B (en) * 2004-02-26 2007-02-21 Benq Corp Method for detecting the cleanliness of a filter
CN101779937A (zh) * 2009-01-19 2010-07-21 乐金电子(天津)电器有限公司 真空吸尘器的指示器
CN108594692A (zh) * 2017-12-18 2018-09-28 深圳市奇虎智能科技有限公司 一种清洁设备控制方法、装置、计算机设备和存储介质
CN108709677A (zh) * 2018-04-13 2018-10-26 北京汽车集团有限公司 风力传感器及车辆
CN112294191B (zh) * 2019-08-01 2022-05-06 尚科宁家(中国)科技有限公司 一种扫地机尘盒滤网的脏堵检测方法及扫地机
CN114680729A (zh) * 2020-12-30 2022-07-01 江苏美的清洁电器股份有限公司 吸尘器堵塞检测方法、吸尘器和可读存储介质
CN215457656U (zh) * 2021-03-15 2022-01-11 安徽协创物联网技术有限公司 用于扫地机器人的尘盒组件和扫地机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080092324A1 (en) * 2006-10-18 2008-04-24 Guten Electronics Industrial Co., Ltd. Dust-collecting auxiliary device for vacuum cleaner
CN111466831A (zh) * 2019-01-23 2020-07-31 北京奇虎科技有限公司 扫地机器人尘盒状态检测方法、装置、尘盒和扫地机器人
CN112630463A (zh) * 2020-12-11 2021-04-09 美智纵横科技有限责任公司 检测扫地机尘盒尘满的方法、装置、扫地机及存储介质
CN215424421U (zh) * 2021-03-17 2022-01-07 东莞市协创数据技术有限公司 尘盒组件与扫地机器人
CN217040020U (zh) * 2022-03-07 2022-07-26 上海阿科伯特机器人有限公司 用于对接清洁机器人的基站
CN115349776A (zh) * 2022-08-10 2022-11-18 成都市联洲国际技术有限公司 检测扫地机状态的方法、装置、扫地机及存储介质

Also Published As

Publication number Publication date
CN115349776B (zh) 2024-05-03
CN115349776A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2024032733A1 (zh) 检测扫地机状态的方法、装置、扫地机及存储介质
US10244916B2 (en) Cleaning robot and method of cleaning thereof
CN207755209U (zh) 智能清洁机器人
CN111657785B (zh) 抽吸物收集站、相关的系统以及用于此的方法
WO2021036072A1 (zh) 清洁机器人及其控制方法
CN109917488A (zh) 扫地机器人地毯检测方法及设备
JP6815197B2 (ja) 自走式装置およびその制御方法
CN108351646A (zh) 自走式电子设备
CN112155486A (zh) 扫地机器人的控制方法和控制装置
CN106093520A (zh) 扫地机器人的尘满检测系统及方法
CN109124473A (zh) 一种基于螺旋式行走的清洁机器人的清扫控制方法及芯片
CN109363581A (zh) 一种清洁机器人的吸尘控制方法、芯片及清洁机器人
CN107485333B (zh) 接近性自启动吸尘器及控制吸尘器自启动吸尘的方法
WO2024114421A1 (zh) 一种清洁机的清洁控制方法及其清洁机
CN112006613B (zh) 扫地机器人的尘盒清洁控制方法、装置及存储介质
CN114451831B (zh) 清洁机器人清理垃圾的处理方法、存储介质及清洁机器人
CN110856632A (zh) 一种集尘设备的信息处理方法、系统及存储介质
CN113558540A (zh) 回收装置、清洁机器人以及清洁系统
CN110151058A (zh) 智能家居扫地机器人
CN109662652A (zh) 一种清洁机器人自动计算垃圾量的方法
CN108319270B (zh) 一种基于历史数据分析的自动吸尘机器人最优路径规划方法
CN208412854U (zh) 移动垃圾桶
CN211633146U (zh) 一种垃圾收集装置和扫地机器人充电桩
CN209595660U (zh) 一种扫地机器人
CN219835569U (zh) 一种污水箱及清洁设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851953

Country of ref document: EP

Kind code of ref document: A1