WO2024032199A1 - 一种定位方法及装置 - Google Patents

一种定位方法及装置 Download PDF

Info

Publication number
WO2024032199A1
WO2024032199A1 PCT/CN2023/103458 CN2023103458W WO2024032199A1 WO 2024032199 A1 WO2024032199 A1 WO 2024032199A1 CN 2023103458 W CN2023103458 W CN 2023103458W WO 2024032199 A1 WO2024032199 A1 WO 2024032199A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
time
serving
information corresponding
reference points
Prior art date
Application number
PCT/CN2023/103458
Other languages
English (en)
French (fr)
Inventor
陈莹
张经纬
铁晓磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032199A1 publication Critical patent/WO2024032199A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/12Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are telecommunication base stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS

Definitions

  • the present application relates to the field of communication technology, and in particular, to a positioning method and device.
  • Traditional cellular network positioning is based on the terminal measuring the downlink reference signal, or the base station measuring the uplink reference signal, and reporting the measurement results to the positioning server, which determines the terminal location based on the measurement results and the base station location.
  • Cellular network positioning relies on multiple base stations for positioning. In satellite communication scenarios, multiple satellites are also needed for positioning. However, when positioning a terminal, there may not be multiple satellites covering the terminal, making it impossible to position the terminal device. . Moreover, synchronizing the terminal with multiple satellites will bring more complexity to the terminal. Therefore, the scenario of joint positioning by multiple satellites has great limitations.
  • This application provides a positioning method and device for positioning a terminal through a satellite.
  • the first aspect provides a positioning method.
  • the execution subject of the method can be a terminal device or a chip, chip system or circuit located in the terminal device.
  • the method can be implemented through the following steps: obtaining information on multiple satellite reference points; determining The time information corresponding to the serving satellite; the time information corresponding to multiple satellite reference points and the time information corresponding to the serving satellite are reported to the serving satellite.
  • the time information corresponding to the multiple satellite reference points is based on the time information corresponding to the serving satellite and multiple satellite references.
  • the point information is determined.
  • the time information corresponding to the satellite located at the satellite reference point can be determined through the information of the satellite reference point, without actually deploying the satellite at the satellite reference point.
  • Positioning the limitations of this application are small.
  • this application can reduce the positioning delay and improve the accuracy of positioning.
  • the terminal device can determine the duration of transmission between the satellite reference point and the terminal device based on the position information of the i-th satellite reference point and the position information of the serving satellite relative to the duration of transmission between the serving satellite and the terminal device.
  • the time difference between the durations, and the time information corresponding to the satellite reference point is determined based on the time difference and the time information corresponding to the satellite reference point.
  • the time information corresponding to the serving satellite is the time when the downlink signal of the serving satellite is received.
  • the time information corresponding to the i-th satellite reference point is the time difference ⁇ t1 between the transmission duration between the i-th satellite reference point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • the time information corresponding to the serving satellite is the frame number where the downlink signal of the serving satellite is located.
  • the time information corresponding to the i-th satellite reference point may be the frame number Wi where the downlink signal of the satellite reference point is located.
  • W 0 is the time information corresponding to the serving satellite
  • w is the number of frames corresponding to the time difference between the transmission duration between the i-th satellite reference point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • the time information corresponding to the i-th satellite reference point is the time difference between the transmission time between the i-th satellite reference point and the terminal device relative to the transmission time between the serving satellite and the terminal device.
  • the time information corresponding to the serving satellite is the time difference between the time when the downlink signal of the serving satellite is received and the time when the serving satellite sends the downlink signal.
  • the time information corresponding to the i-th satellite reference point may be the time difference ⁇ Ti between the time when the downlink signal of the satellite reference point is received and the time when the satellite reference point sends the downlink signal.
  • ⁇ T0 is the time information corresponding to the serving satellite.
  • ⁇ t1 is the time difference between the transmission time between the i-th satellite reference point and the terminal equipment relative to the transmission time between the serving satellite and the terminal equipment.
  • the time information corresponding to the i-th satellite reference point is the i-th satellite reference The time difference ⁇ t1 between the transmission duration between the point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • the time information corresponding to the serving satellite is the time difference between the time of receiving the downlink signal of the serving satellite and the time of sending the uplink signal to the serving satellite.
  • the time information corresponding to the i-th satellite reference point may be the time difference ⁇ i between the time of receiving the downlink signal of the satellite reference point and the time of sending the uplink signal to the satellite reference point.
  • ⁇ 0 is the time information corresponding to the serving satellite.
  • ⁇ t1 is the time difference between the transmission time between the i-th satellite reference point and the terminal equipment relative to the transmission time between the serving satellite and the terminal equipment.
  • the time information corresponding to the i-th satellite reference point is the time difference ⁇ t1 between the transmission duration between the i-th satellite reference point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • the time information corresponding to the serving satellite is the TA that sends the uplink signal to the serving satellite.
  • the time information corresponding to the i-th satellite reference point may be the TA that sends uplink signals to the satellite reference point (hereinafter referred to as TA i ).
  • TA 0 is the time information corresponding to the serving satellite.
  • ⁇ t1 is the time difference between the transmission time between the i-th satellite reference point and the terminal equipment relative to the transmission time between the serving satellite and the terminal equipment.
  • the time information corresponding to the i-th satellite reference point is the time difference ⁇ t1 between the transmission duration between the i-th satellite reference point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • determining the time information corresponding to the serving satellite includes: obtaining a public TA, which is used to represent the round-trip delay from the serving satellite to the uplink synchronization common point; and determining the time information corresponding to the serving satellite based on the public TA.
  • the information of multiple satellite reference points is position information.
  • the above design can construct multiple virtual satellites to position the terminal equipment through multiple locations, so there is no need to actually deploy satellites.
  • obtaining information on multiple satellite reference points includes: receiving position information on multiple satellite reference points from the serving satellite.
  • the position information of multiple satellite reference points is absolute coordinates, or the position information of multiple satellite reference points is relative coordinates relative to the serving satellite. Compared with sending ephemeris information, the above design can save signaling overhead.
  • the positions of multiple satellite reference points are located on the motion trajectories of the serving satellite and/or other satellites.
  • the information of multiple satellite reference points is the time points corresponding to the multiple satellite reference points.
  • the above method can determine the positions of multiple satellites based on time points and the movement trajectories of serving satellites (or other satellites). Multiple virtual satellites can be constructed through multiple satellite positions to position the terminal equipment, so there is no need to actually deploy satellites.
  • multiple time points are absolute times.
  • multiple time points are relative times.
  • the signaling overhead can be saved through the above method.
  • a positioning method is provided.
  • the execution subject of the method can be a satellite or a chip, chip system or circuit located in the satellite.
  • the method can be implemented through the following steps: receiving the time information corresponding to the serving satellite sent by the terminal device; The time information corresponding to multiple satellite reference points is determined based on the time information corresponding to the serving satellite and the information of multiple satellite reference points; based on the time information corresponding to the serving satellite and the information of multiple satellite reference points The time information corresponding to the point determines the location of the terminal device.
  • the time information corresponding to the satellite located at the satellite reference point can be determined through the information of the satellite reference point, without actually deploying the satellite at the satellite reference point.
  • Positioning the limitations of this application are small.
  • this application can reduce the positioning delay and improve the accuracy of positioning.
  • the terminal device can determine the duration of transmission between the satellite reference point and the terminal device based on the position information of the i-th satellite reference point and the position information of the serving satellite relative to the duration of transmission between the serving satellite and the terminal device.
  • the time difference between the durations, and the time information corresponding to the satellite reference point is determined based on the time difference and the time information corresponding to the satellite reference point.
  • the time information corresponding to the serving satellite is the time when the downlink signal of the serving satellite is received.
  • the time information corresponding to the i-th satellite reference point is the time difference ⁇ t1 between the transmission duration between the i-th satellite reference point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • the time information corresponding to the serving satellite is the frame number where the downlink signal of the serving satellite is located.
  • the time information corresponding to the i-th satellite reference point can be the frame number of the downlink signal of the satellite reference point.
  • W 0 is the time information corresponding to the serving satellite
  • w is the number of frames corresponding to the time difference between the transmission duration between the i-th satellite reference point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • the time information corresponding to the i-th satellite reference point is the time difference between the transmission time between the i-th satellite reference point and the terminal device relative to the transmission time between the serving satellite and the terminal device.
  • the time information corresponding to the serving satellite is the time difference between the time when the downlink signal of the serving satellite is received and the time when the serving satellite sends the downlink signal.
  • the time information corresponding to the i-th satellite reference point may be the time difference ⁇ Ti between the time when the downlink signal of the satellite reference point is received and the time when the satellite reference point sends the downlink signal.
  • ⁇ T0 is the time information corresponding to the serving satellite.
  • ⁇ t1 is the time difference between the transmission time between the i-th satellite reference point and the terminal equipment relative to the transmission time between the serving satellite and the terminal equipment.
  • the time information corresponding to the i-th satellite reference point is the time difference ⁇ t1 between the transmission duration between the i-th satellite reference point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • the time information corresponding to the serving satellite is the time difference between the time of receiving the downlink signal of the serving satellite and the time of sending the uplink signal to the serving satellite.
  • the time information corresponding to the i-th satellite reference point may be the time difference ⁇ i between the time of receiving the downlink signal of the satellite reference point and the time of sending the uplink signal to the satellite reference point.
  • ⁇ 0 is the time information corresponding to the serving satellite.
  • ⁇ t1 is the time difference between the transmission time between the i-th satellite reference point and the terminal equipment relative to the transmission time between the serving satellite and the terminal equipment.
  • the time information corresponding to the i-th satellite reference point is the time difference ⁇ t1 between the transmission duration between the i-th satellite reference point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • the time information corresponding to the serving satellite is the TA that sends the uplink signal to the serving satellite.
  • the time information corresponding to the i-th satellite reference point may be the TA that sends uplink signals to the satellite reference point (hereinafter referred to as TA i ).
  • TA 0 is the time information corresponding to the serving satellite.
  • ⁇ t1 is the time difference between the transmission time between the i-th satellite reference point and the terminal equipment relative to the transmission time between the serving satellite and the terminal equipment.
  • the time information corresponding to the i-th satellite reference point is the time difference ⁇ t1 between the transmission duration between the i-th satellite reference point and the terminal device relative to the transmission duration between the serving satellite and the terminal device.
  • the information of multiple satellite reference points is position information.
  • the above design can construct multiple virtual satellites to position the terminal equipment through multiple locations, so there is no need to actually deploy satellites.
  • the method further includes: sending location information of multiple satellite reference points to the terminal device.
  • the position information of multiple satellite reference points is absolute coordinates, or the position information of multiple satellite reference points is relative coordinates relative to the serving satellite. Compared with sending ephemeris information, the above design can save signaling overhead.
  • the positions of multiple satellite reference points are located on the motion trajectories of the serving satellite and/or other satellites.
  • the information of multiple satellite reference points is the time points corresponding to the multiple satellite reference points.
  • the above method can determine the positions of multiple satellites based on time points and the movement trajectories of serving satellites (or other satellites). Multiple virtual satellites can be constructed through multiple satellite positions to position the terminal equipment, so there is no need to actually deploy satellites.
  • multiple time points are absolute times.
  • multiple time points are relative times.
  • the signaling overhead can be saved through the above method.
  • the method before determining the position of the terminal device based on the time information corresponding to the serving satellite and the time information corresponding to the multiple satellite reference points, the method further includes: comparing the time of receiving the uplink reference signal sent by the terminal device to the serving satellite. The corresponding time information and the time information corresponding to multiple satellite reference points are corrected. In this way, the accuracy of terminal device positioning can be further improved.
  • this application also provides a communication device, where the device is a terminal device or a chip in the terminal device.
  • the communication device has the function of implementing any of the methods provided in the first aspect.
  • the communication device can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, the processor is configured to support the communication device to perform the corresponding functions of the terminal device in the method shown above.
  • the communications device may also include memory, which storage may be coupled to the processor, which holds program instructions and data necessary for the communications device.
  • the communication device further includes an interface circuit, which is used to support communication between the communication device and equipment such as serving satellites, such as the sending and receiving of data or signals.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the communication device includes corresponding functional modules, respectively used to implement the steps in the above method.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • Hardware or software includes one or more functions corresponding to the above module.
  • the structure of the communication device includes a processing unit (or processing unit) and a communication unit (or communication unit). These units can perform the corresponding functions in the above method examples. For details, see the method in the first aspect. Description, no details will be given here.
  • the present application also provides a communication device, where the device is a satellite or a chip in a satellite.
  • the communication device has the function of implementing any of the methods provided in the second aspect.
  • the communication device can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, the processor is configured to support the communication device to perform corresponding functions of serving the satellite in the method shown above.
  • the communications device may also include memory, which storage may be coupled to the processor, which holds program instructions and data necessary for the communications device.
  • the communication device further includes an interface circuit, which is used to support communication between the communication device and terminal equipment and other equipment, such as the sending and receiving of data or signals.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the communication device includes corresponding functional modules, respectively used to implement the steps in the above method.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • Hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a processing unit (or processing unit) and a communication unit (or communication unit). These units can perform the corresponding functions in the above method examples. For details, see the method in the second aspect. Description, no details will be given here.
  • a communication device including a processor and an interface circuit.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or to send signals from the processor.
  • the processor is used to implement the method in the first aspect and any possible design through logic circuits or executing code instructions.
  • a communication device including a processor and an interface circuit.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or to send signals from the processor.
  • the processor is used to implement the method in the aforementioned second aspect and any possible design through logic circuits or executing code instructions.
  • a computer-readable storage medium In a seventh aspect, a computer-readable storage medium is provided. Computer programs or instructions are stored in the computer-readable storage medium. When the computer program or instructions are executed by a processor, the first aspect or the second aspect and the above are realized. method in any possible design.
  • An eighth aspect provides a computer program product that stores instructions. When the instructions are executed by a processor, the method in the first aspect or the second aspect and any possible design is implemented.
  • a ninth aspect provides a chip system, which includes a processor and may also include a memory for implementing the method in the first aspect or the second aspect and any possible design.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • a tenth aspect provides a communication system, which includes the device (such as a terminal device) described in the first aspect and the device (such as a satellite) described in the second aspect.
  • Figure 1 is a schematic diagram of a positioning method based on uplink arrival time according to an embodiment of the present application
  • Figure 2 is a schematic diagram of a positioning method based on uplink angle of arrival according to an embodiment of the present application
  • Figure 3 is a schematic diagram of a positioning method based on reference signal received power according to an embodiment of the present application
  • Figure 4a is a schematic diagram of a satellite communication architecture according to an embodiment of the present application.
  • Figure 4b is a schematic diagram of a satellite communication architecture according to an embodiment of the present application.
  • Figure 4c is a schematic diagram of a satellite communication architecture according to an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a positioning method according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of a transmission duration according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Each base station separately measure the arrival time of the reference signal sent by the receiving terminal device, and calculate the distance between the base station and the terminal device based on the arrival time and the speed of light.
  • Each base station takes itself as the center of the circle and draws the distance between the base station and the terminal device. Circle, as shown in Figure 1. Then the position of the terminal device is estimated through positioning algorithms, such as trilateral positioning, least squares algorithm, etc.
  • the disadvantage of the UL-TOA method is that if the time between the base station and the terminal device is not synchronized, neither party knows the absolute time of signal transmission, which will cause calculation and positioning errors.
  • the distance difference between the terminal equipment and the two base stations is calculated by measuring the signal arrival time difference between the terminal equipment and the two base stations. From a mathematical point of view, the terminal equipment is located with these two base stations as the focus. , on the hyperbola with the distance difference between the terminal equipment and the two base stations as the fixed difference. The positions of the terminal equipment and multiple base stations are located on a hyperbola with the two base stations as the focus and the distance difference as the fixed difference. Based on the above principle, using three or more base stations around the terminal device, multiple hyperbolas can be obtained, and the intersection point of the hyperbolas can be the location of the terminal device, as shown in Figure 2.
  • the base station measures the arrival angle according to the beam of the reference signal sent by the terminal equipment, such as ⁇ 1 , - ⁇ 2 , ⁇ 3 , - ⁇ 4 in Figure 3, and then sends the measured arrival angle to the network equipment used for positioning, which is controlled by the network
  • the device locates the terminal device based on the location of each base station and the angle of arrival measured by each base station.
  • the distance ratio between the terminal device and multiple base stations can be determined. Then, based on the location of each base station, the distance between the terminal device and multiple base stations Distance ratio to locate the terminal device.
  • a possible positioning method based on a single satellite is that when the satellite moves to different positions, the terminal device reports TA information.
  • the TA information represents the round trip time (RTT) between the terminal device and the uplink synchronization point, such as the uplink If the synchronization point is on the satellite, the TA information represents the RTT from the terminal device to the satellite.
  • RTT round trip time
  • the network side can think that the movement of satellites to different locations is equivalent to multiple base stations at different locations. The network side determines the location of the terminal device based on the multiple TAs collected.
  • embodiments of the present application provide a positioning method that can be applied in satellite communication scenarios to meet the need for a single satellite to position a terminal device.
  • Figures 4a, 4b, and 4c exemplarily provide possible application architectures for satellite communications.
  • the positioning method provided by the embodiment of the present application can be applied to any network architecture in Figure 4a, Figure 4b, and Figure 4c.
  • the base station is deployed on the ground, the satellite is connected to the ground station through the air interface, and the ground station can be connected to the base station through wireless or wired links.
  • Terminal equipment on the ground accesses the mobile communication network through an air interface (the air interface can be various types of air interfaces, such as 5G air interface), and satellites serve as transmission nodes to forward information from the terminal equipment.
  • the air interface can be various types of air interfaces, such as 5G air interface
  • satellites serve as transmission nodes to forward information from the terminal equipment.
  • the base station is deployed on the satellite, and the satellite is connected to the ground station through the air interface, and the ground station can be connected to the core network through wireless or wired links.
  • the terminal equipment on the ground communicates with the satellite base station through the air interface to access the mobile communication network.
  • the satellite serves as the base station and is connected to the ground station through the air interface NG interface.
  • the ground station is connected to the core network through the NG interface.
  • the NG interface can be in wireless form or can be Wired form.
  • the architecture shown in Figure 4c has an additional communication scenario between satellite base stations. Specifically, satellite base stations can communicate with each other through the Xn interface.
  • terminal devices may include various types of terminal devices that support new air interfaces, such as mobile phones, tablet computers, vehicle-mounted terminal devices, wearable terminal devices, etc.
  • Terminal equipment can access the satellite network through the air interface and initiate calls, Internet access and other services.
  • Base stations are mainly used to provide wireless access services, schedule wireless resources to access terminal devices, and provide reliable wireless transmission protocols and data encryption protocols.
  • the core network is mainly used to provide user access control, mobility management, session management, user security authentication, accounting and other functions.
  • Core Network It is composed of multiple functional units and can be divided into functional entities on the control plane and data plane.
  • the Access and Mobility Management Function (AMF) entity is responsible for user access management, security authentication, and mobility management.
  • the User Plane Function (UPF) entity is responsible for managing user plane data transmission, traffic statistics and other functions.
  • the ground station is mainly responsible for forwarding signaling and business data between satellites and base stations, or between satellites and core networks.
  • Air interface represents the wireless link between the terminal device and the base station.
  • Xn interface Represents the interface between satellite base stations and is mainly used for signaling interactions such as handovers.
  • NG interface represents the interface between the base station and the core network, or the interface between the ground station and the core network, or the interface between the satellite base station and the ground station (in this case, the interface is a wireless link), which mainly interacts with the core network.
  • FIG. 5 is a schematic flow chart of a positioning method provided by an embodiment of the present application.
  • This positioning method can be applied to satellite communication scenarios, especially to non-geostationary earth orbit (NGEO) satellite communication scenarios, or it can also be applied to drone communication scenarios.
  • the drone communication scenario is similar to the satellite communication scenario.
  • the satellite communication scenario is used as an example below.
  • the positioning method may include the following steps:
  • the terminal device obtains information on multiple satellite reference points.
  • the information of multiple satellite reference points may be position information.
  • the serving satellite sends the position information of the multiple satellite reference points to the terminal device.
  • the position information of the multiple satellite reference points may be absolute coordinates, for example, coordinate points (x, y, z) in an absolute coordinate system, or the position information of the multiple satellite reference points may also be relative to the service
  • the relative coordinates of the satellite such as ( ⁇ x, ⁇ y, ⁇ z).
  • broadcasting position information of satellite reference points can save signaling overhead on the network side.
  • the positions of multiple satellite reference points may be located on the movement trajectories of the serving satellite and/or other satellites.
  • the positions of the multiple satellite reference points may also be independent of the motion trajectories of the serving satellite and/or other satellites.
  • the information of the multiple satellite reference points may be time information corresponding to the multiple satellite reference points.
  • the positions of the multiple satellite reference points may be located on the movement trajectories of the serving satellite and/or other satellites. Therefore, the terminal device and the serving satellite can determine the positions of the multiple satellite reference points based on the time information corresponding to the multiple satellite reference points and the movement trajectories of the serving satellite and/or other satellites.
  • the multiple time points may be absolute times, for example, the multiple time points may be 00.00.00, 00.00.01, 00.00.02, 00.00.03. Alternatively, multiple time points can also be relative times.
  • the time slot corresponding to the current location of the serving satellite is time slot 1.
  • the terminal device can report a time interval of 1 time slot, which is the first time among the multiple time points.
  • the time point is delayed (or advanced) by 1 time slot relative to the time slot corresponding to the current position of the serving satellite
  • the second time point is delayed (or advanced) by 1 time slot relative to the first time point
  • the third time point is delayed (or advanced) by 1 time slot relative to the first time point.
  • the point is delayed (or advanced) by 1 time slot relative to the second time point, and so on.
  • the time information corresponding to the multiple satellite reference points may be determined by the terminal device. Further, after the terminal device determines the time information corresponding to the multiple satellite reference points, it can also send it to the serving satellite, so that the serving satellite can determine the time information corresponding to the multiple satellite reference points and the movement trajectories of the serving satellite and/or other satellites. Determine the locations of the multiple satellite reference points.
  • the time information corresponding to the multiple satellite reference points may be indicated to the terminal device by the serving satellite.
  • the time information corresponding to the above multiple satellite reference points can be a past time point, or a future time point, or the time information corresponding to some satellite reference points can be a past time point, and the time information corresponding to another part of the satellite reference points can be for a future point in time.
  • the terminal device determines the time information corresponding to the serving satellite.
  • the terminal device may receive downlink signals from the serving satellite, and may also send uplink signals to the serving satellite.
  • the resources for transmitting uplink signals may be configured by the serving satellite.
  • the terminal device reports time information corresponding to multiple satellite reference points and time information corresponding to the serving satellite to the serving satellite.
  • the serving satellite receives time information corresponding to the serving satellite and time information corresponding to multiple satellite reference points from the terminal device.
  • the terminal device can be positioned by the service satellite, or the terminal device can be positioned by other network devices, such as base stations, transmission reception points (TRP), core network elements, etc.
  • the core network element can be a location management function (LMF) network element, a location server, etc.
  • LMF location management function
  • the serving satellite can forward the time information corresponding to the serving satellite and the time information corresponding to multiple satellite reference points to the network device.
  • this application takes the positioning of terminal equipment by service satellites as an example. line description.
  • the time information corresponding to the multiple satellite reference points is determined based on the time information corresponding to the serving satellite and the information of the multiple satellite reference points.
  • the terminal device can determine the time information corresponding to the serving satellite in the following way:
  • A1 obtain the public TA, which is used to characterize the round-trip delay from the serving satellite to the uplink synchronization common point.
  • the uplink synchronization common point can be a serving satellite or other network equipment, such as a ground base station.
  • the serving satellite can send the public TA to the terminal device.
  • A2 determine the time information corresponding to the serving satellite based on the public TA.
  • the terminal device can determine the time information corresponding to the satellite reference point in the following manner:
  • the transmission delay of satellite reference point i determines the time difference between the transmission time between the satellite reference point i and the terminal equipment relative to the transmission time between the serving satellite and the terminal equipment (hereinafter, the time difference between The time difference is called the transmission delay of satellite reference point i).
  • the terminal device can determine the time difference between the transmission time between the satellite reference point i and the terminal device and the transmission time between the serving satellite and the terminal device based on the position of the satellite reference point i and the position of the serving satellite as ⁇ t1, where, if the satellite If the distance of the reference point i relative to the terminal device is greater than the distance of the serving satellite relative to the terminal device, ⁇ t1 can be a positive number. If the distance of the satellite reference point i relative to the terminal device is smaller than the distance of the serving satellite relative to the terminal device, ⁇ t1 can is a negative number. If the distance of the satellite reference point i relative to the terminal device is the same as the distance of the serving satellite relative to the terminal device, ⁇ t1 can be 0.
  • B2 Determine the time information corresponding to the satellite reference point i based on the transmission delay of the satellite reference point i and the time information corresponding to the satellite reference point.
  • time information corresponding to the serving satellite introduces five examples of time information corresponding to the serving satellite. It should be understood that this is only an illustrative explanation.
  • Information that can represent the transmission duration or RTT from the serving satellite to the terminal device can be used as the time information corresponding to the serving satellite.
  • the time information corresponding to the serving satellite may be the time t 0 when the downlink signal of the serving satellite is received.
  • the time information corresponding to the satellite reference point i may be the time ti when the downlink signal of the satellite reference point is received.
  • Example 2 The time information corresponding to the serving satellite is the frame number W 0 where the downlink signal of the serving satellite is located.
  • the time information corresponding to the satellite reference point i may be the frame number Wi where the downlink signal of the satellite reference point is located.
  • Wi W 0 +w.
  • the time information corresponding to the serving satellite is the time difference ⁇ T0 between the time when the downlink signal of the serving satellite is received and the time when the serving satellite sends the downlink signal.
  • the time information corresponding to the satellite reference point i may be the time difference ⁇ Ti between the time when the downlink signal of the satellite reference point i is received and the time when the satellite reference point i sends the downlink signal.
  • the terminal device may determine the sending time of the downlink signal based on the downlink signal from the serving satellite, and determine the time difference ⁇ T0 based on the sending time and the receiving time of the downlink signal.
  • the time at which the satellite reference point i and the serving satellite send downlink signals can be the same or different.
  • the time information corresponding to the serving satellite is the time difference ⁇ 0 between the time of receiving the downlink signal of the serving satellite and the time of sending the uplink signal to the serving satellite; correspondingly, the time information corresponding to the satellite reference point i can be the time of receiving the satellite reference The time difference ⁇ i between the time of the downlink signal at point i and the time when the uplink signal is sent to the satellite reference point i.
  • the time information corresponding to the serving satellite is the TA that sends the uplink signal to the serving satellite (hereinafter referred to as TA 0 ).
  • the time information corresponding to the satellite reference point i may be the TA that sends an uplink signal to the satellite reference point i (hereinafter referred to as TA i ).
  • the TA that sends the uplink signal to the serving satellite and the TA that sends the uplink signal to the satellite reference point i can be an open-loop TA, where the open-loop TA can be understood as the terminal device based on the global navigation satellite system (global navigation satellite system). navigation satellite system, GNSS) and the TA calculated by the ephemeris, that is, the TA on the service link side.
  • global navigation satellite system global navigation satellite system
  • GNSS global navigation satellite system
  • the TA that sends the uplink signal to the serving satellite and the TA that sends the uplink signal to the satellite reference point i can be It is considered as the time difference between downlink subframe #m and uplink subframe #m.
  • This time difference can be measured by the terminal device.
  • the terminal device may determine the time difference between the downlink subframe #m and the uplink subframe #m by detecting the time of the downlink subframe #m and the time of transmitting the uplink subframe #m.
  • the terminal device can determine the downlink subframe #m and the uplink subframe #n by detecting the time of the downlink subframe #m, the time of sending the uplink subframe #n, and the time interval between the uplink subframe #m and the uplink subframe #n. The time difference between subframes #m.
  • the terminal device can determine the downlink subframe #m and the uplink subframe #m by detecting the time of the downlink subframe #k, the time of sending the uplink subframe #m, and the time interval between the downlink subframe #m and the downlink subframe #k.
  • the time difference of subframe #m are not less than 0 integers.
  • the TA that sends uplink signals to the serving satellite and the TA that sends uplink signals to the satellite reference point i may be the time difference between downlink subframe #m and uplink subframe #m, and the time difference detected by the network side The sum of the TA deviations.
  • the TA deviation can be a positive number or a negative number, and there is no specific limit here.
  • the method of determining the time difference between the downlink subframe #m and the uplink subframe #m can refer to the previous relevant descriptions, and the description will not be repeated here.
  • the time information corresponding to the serving satellite may be the information described in any one of the above Examples 1 to 5, and the time information corresponding to the satellite reference point i may be the transmission delay ⁇ t1 of the satellite reference point i.
  • the serving satellite determines the location of the terminal device based on the time information corresponding to the serving satellite and the time information corresponding to multiple satellite reference points.
  • Step S504 will be described below with reference to five examples of time information corresponding to the serving satellite.
  • the serving satellite can determine the unilateral delay between the serving satellite and the terminal device based on the sending time of the downlink signal and the receiving time of the downlink signal reported by the terminal device, that is, the receiving time of the downlink signal minus the downlink signal of sending time.
  • the serving satellite can determine the one-sided delay between the satellite reference point and the terminal equipment. Therefore, the serving satellite can determine the position of the terminal device based on the unilateral delay between the serving satellite and the terminal device and the unilateral delay between multiple satellite reference points and the terminal device.
  • the serving satellite can determine the unilateral delay between the serving satellite and the terminal device based on the frame number when the downlink signal is sent and the frame number when the downlink signal is reported by the terminal device.
  • the serving satellite can determine the one-sided delay between the satellite reference point and the terminal equipment. Therefore, the serving satellite can determine the position of the terminal device based on the unilateral delay between the serving satellite and the terminal device and the unilateral delay between multiple satellite reference points and the terminal device.
  • the serving satellite can determine the unilateral delay between the serving satellite and the terminal device based on the time difference between the time when the terminal device receives the downlink signal of the serving satellite and the time when the serving satellite sends the downlink signal.
  • the delay is the time difference.
  • the serving satellite can determine the one-sided delay between the satellite reference point and the terminal equipment. Therefore, the serving satellite can determine the position of the terminal device based on the unilateral delay between the serving satellite and the terminal device and the unilateral delay between multiple satellite reference points and the terminal device.
  • the serving satellite can determine the RTT between the satellite reference point and the terminal device. Therefore, the serving satellite can determine the location of the terminal device based on the RTT between the serving satellite and the terminal device and the RTT between multiple satellite reference points and the terminal device.
  • the serving satellite can determine the unilateral delay or RTT between the serving satellite and the terminal device based on the TA that sends the uplink signal to the serving satellite.
  • the serving satellite can determine the one-sided delay or RTT between the satellite reference point and the terminal equipment. Therefore, the serving satellite can determine the position of the terminal device based on the unilateral delay or RTT between the serving satellite and the terminal device, and the unilateral delay or RTT between multiple satellite reference points and the terminal device.
  • a possible embodiment is that before determining the position of the terminal device based on the time information corresponding to the serving satellite and the time information corresponding to multiple satellite reference points, the serving satellite may send the message sent by the receiving terminal device.
  • the time of the uplink reference signal is used to correct the time information corresponding to the serving satellite and the time information corresponding to multiple satellite reference points.
  • the TA estimated by the terminal device may be biased.
  • the above method compares the time information corresponding to the serving satellite and multiple satellites based on the time of the uplink reference signal sent by the terminal device. Correcting the time information corresponding to the reference point can improve the accuracy of terminal device positioning.
  • the serving satellite can send the time of receiving the uplink reference signal sent by the terminal device to the network device, and the network device can determine the time information corresponding to the serving satellite. And the time information corresponding to multiple satellite reference points is corrected.
  • the serving satellite may also send the corrected time information of the serving satellite and the corrected time information of multiple satellite reference points to the network device.
  • the embodiment of the present application provides a communication device.
  • the structure of the communication device can be as shown in Figure As shown in 7, it includes a communication unit 701 and a processing unit 702.
  • the communication device may be used to implement the method executed by the terminal device in the embodiment of FIG. 5 .
  • the device may be the terminal device itself, or may be a chip or chipset in the terminal device or a chip for Execute part of the related method functionality.
  • the processing unit 702 is used to obtain information on multiple satellite reference points; and determine time information corresponding to the serving satellite.
  • the communication unit 701 is configured to report the time information corresponding to the multiple satellite reference points and the time information corresponding to the serving satellite to the serving satellite.
  • the time information corresponding to the multiple satellite reference points is based on the serving satellite.
  • the corresponding time information and the information of the multiple satellite reference points are determined.
  • the time information corresponding to the serving satellite is the time when the downlink signal of the serving satellite is received
  • the time information corresponding to the serving satellite is the frame number where the downlink signal of the serving satellite is located;
  • the time information corresponding to the serving satellite is the time difference between the time when the downlink signal of the serving satellite is received and the time when the serving satellite sends the downlink signal;
  • the time information corresponding to the serving satellite is the time difference between the time of receiving the downlink signal of the serving satellite and the time of sending the uplink signal to the serving satellite;
  • the time information corresponding to the serving satellite is the timing advance TA for sending the uplink signal to the serving satellite.
  • the processing unit 702 when determining the time information corresponding to the serving satellite, is specifically configured to: obtain a public TA, which is used to characterize the round-trip delay from the serving satellite to the uplink synchronization common point; according to The public TA determines the time information corresponding to the serving satellite.
  • the information of the multiple satellite reference points is position information.
  • the processing unit 702 when acquiring the information of multiple satellite reference points, is specifically configured to: receive the position information of the multiple satellite reference points from the serving satellite through the communication unit 701.
  • the position information of the multiple satellite reference points is absolute coordinates, or the position information of the multiple satellite reference points is relative coordinates relative to the serving satellite.
  • the positions of the multiple satellite reference points are located on the movement trajectories of the serving satellite and/or other satellites.
  • the information about the multiple satellite reference points is the time points corresponding to the multiple satellite reference points.
  • the multiple time points are absolute times, or the multiple time points are relative times.
  • the communication device shown in Figure 7 can be used to implement the method performed by the serving satellite in the embodiment of Figure 5.
  • the device can be the serving satellite itself, or it can be a chip or chipset in the serving satellite. Or a part of the chip used to perform the relevant method functions.
  • the communication unit 701 is used to receive the time information corresponding to the serving satellite and the time information corresponding to multiple satellite reference points sent by the terminal device.
  • the time information corresponding to the multiple satellite reference points is the time corresponding to the serving satellite.
  • the processing unit 702 is configured to determine the location of the terminal device based on the time information corresponding to the serving satellite and the time information corresponding to the multiple satellite reference points.
  • the time information corresponding to the serving satellite is the time when the downlink signal of the serving satellite is received
  • the time information corresponding to the serving satellite is the frame number where the downlink signal of the serving satellite is located;
  • the time information corresponding to the serving satellite is the time difference between the time when the downlink signal of the serving satellite is received and the time when the serving satellite sends the downlink signal;
  • the time information corresponding to the serving satellite is the time difference between the time of receiving the downlink signal of the serving satellite and the time of sending the uplink signal to the serving satellite;
  • the time information corresponding to the serving satellite is the timing advance TA for sending the uplink signal to the serving satellite.
  • the information of the multiple satellite reference points is position information.
  • the communication unit 701 is also configured to send the location information of the multiple satellite reference points to the terminal device.
  • the position information of the multiple satellite reference points is absolute coordinates, or the position information of the multiple satellite reference points is relative coordinates relative to the serving satellite.
  • the positions of the multiple satellite reference points are located on the movement trajectories of the serving satellite and/or other satellites.
  • the information about the multiple satellite reference points is the time points corresponding to the multiple satellite reference points.
  • the multiple time points are absolute times, or the multiple time points are relative times.
  • the processing unit 702 is further configured to: before determining the position of the terminal device according to the time information corresponding to the serving satellite and the time information corresponding to the plurality of satellite reference points, receive the The time of the uplink reference signal sent by the device corrects the time information corresponding to the serving satellite and the time information corresponding to the multiple satellite reference points.
  • each functional module in each embodiment of the present application may be integrated into one processing unit. In the device, it can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It can be understood that, for the functions or implementation of each module in the embodiments of this application, further reference can be made to the relevant descriptions of the method embodiments.
  • the communication device may be as shown in Figure 8.
  • the device may be a communication device or a chip in the communication device.
  • the communication device may be a terminal device in the above embodiment or may be a terminal device in the above embodiment.
  • the device includes a processor 801 and a communication interface 802, and may also include a memory 803.
  • the processing unit 702 may be the processor 801.
  • the communication unit 701 may be a communication interface 802.
  • the processor 801 and the memory 803 can also be integrated together.
  • the processor 801 may be a CPU, a digital processing unit, or the like.
  • the communication interface 802 may be a transceiver, an interface circuit such as a transceiver circuit, or a transceiver chip, or the like.
  • the device also includes: a memory 803 for storing programs executed by the processor 801.
  • the memory 803 can be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), or a volatile memory (volatile memory), such as a random access memory (random access memory). -access memory, RAM).
  • Memory 803 is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the processor 801 is used to execute the program code stored in the memory 803, and is specifically used to execute the above-mentioned actions of the processing unit 702, which will not be described again in this application.
  • the communication interface 802 is specifically used to perform the above-mentioned actions of the communication unit 701, which will not be described again in this application.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 802, the processor 801 and the memory 803.
  • the memory 803, the processor 801 and the communication interface 802 are connected through a bus 804 in Figure 8.
  • the bus is represented by a thick line in Figure 8.
  • the connection methods between other components are only schematically explained. , is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • Embodiments of the present invention also provide a computer-readable storage medium for storing computer software instructions required to execute the above processor, which includes programs required to execute the above processor.
  • An embodiment of the present application also provides a communication system, including a communication device for realizing the function of the terminal device in the embodiment of FIG. 5 and a communication device for realizing the function of the service satellite in the embodiment of FIG. 5 .
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种定位方法及装置,用于实现通过一颗卫星对终端进行定位。该方法包括:获取多个卫星参考点的信息(S501);确定服务卫星对应的时间信息(S502);向服务卫星上报多个卫星参考点对应的时间信息以及服务卫星对应的时间信息(S503),根据服务卫星对应的时间信息和多个卫星参考点对应的时间信息确定终端设备位置(S504)。该方法不需要在该卫星参考点实际部署卫星,并且,相比于单个卫星移动到不同位置来对终端设备进行定位,该方法可以降低定位的时延,提升定位的准确性。

Description

一种定位方法及装置
相关申请的交叉引用
本申请要求在2022年08月09日提交中国专利局、申请号为202210958322.1、申请名称为“一种定位方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种定位方法及装置。
背景技术
传统的蜂窝网定位,基于终端对下行参考信号进行测量,或者基站对上行参考信号进行测量,并将测量结果上报给定位服务器,由定位服务器根据测量结果以及基站位置确定出终端位置。
蜂窝网定位是依赖于多个基站做定位,在卫星通信场景中也需要多个卫星进行定位,但是在对终端进行定位时,可能没有多个卫星覆盖到该终端,导致无法对终端设备进行定位。并且终端与多颗卫星做同步会给终端带来更多的复杂度,因此,多星联合做定位的场景有很大的局限性。
发明内容
本申请提供一种定位方法及装置,用于实现通过一颗卫星对终端进行定位。
第一方面,提供一种定位方法,该方法的执行主体可以是终端设备或者位于终端设备中的芯片、芯片系统或者电路,该方法可以通过以下步骤实现:获取多个卫星参考点的信息;确定服务卫星对应的时间信息;向服务卫星上报多个卫星参考点对应的时间信息以及服务卫星对应的时间信息,多个卫星参考点对应的时间信息为根据服务卫星对应的时间信息和多个卫星参考点的信息确定的。
本申请实施例中通过卫星参考点的信息可以确定位于该卫星参考点上的卫星对应的时间信息,而不需要在该卫星参考点实际部署卫星,相比于实际部署多个卫星对终端设备进行定位,本申请的局限性小。并且,相比于单个卫星移动到不同位置来对终端设备进行定位,本申请可以降低定位的时延,还可以提升定位的准确性。
一种可能的设计中,终端设备可以根据第i个卫星参考点的位置信息和服务卫星的位置信息确定该卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差,并根据该时间差和卫星参考点对应的时间信息确定该卫星参考点对应的时间信息。
一种可能的设计中,服务卫星对应的时间信息为接收服务卫星的下行信号的时刻。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为接收该卫星参考点的下行信号的时刻ti,其中,ti满足如下公式:ti=t0+Δt1,t0为服务卫星对应的时间信息,Δt1为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。或者,第i个卫星参考点对应的时间信息为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差Δt1。
一种可能的设计中,服务卫星对应的时间信息为服务卫星的下行信号所在的帧号。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为该卫星参考点的下行信号所在的帧号Wi。其中,Wi满足如下公式:Wi=W0+w。W0为服务卫星对应的时间信息,w为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差对应帧的数量。或者,第i个卫星参考点对应的时间信息为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。
一种可能的设计中,服务卫星对应的时间信息为接收服务卫星的下行信号的时间与服务卫星发送下行信号的时间之间的时间差。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为接收该卫星参考点的下行信号的时间与该卫星参考点发送下行信号的时间之间的时间差ΔTi。其中,ΔTi满足如下公式:ΔTi=ΔT0+Δt1。ΔT0为服务卫星对应的时间信息。Δt1为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。或者,第i个卫星参考点对应的时间信息为第i个卫星参考 点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差Δt1。
一种可能的设计中,服务卫星对应的时间信息为接收服务卫星的下行信号的时间与向服务卫星发送上行信号的时间之间的时间差。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为接收该卫星参考点的下行信号的时间与向该卫星参考点发送上行信号的时间之间的时间差Δi。其中,Δi满足如下公式:Δi=Δ0-2Δt1。Δ0为服务卫星对应的时间信息。Δt1为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。或者,第i个卫星参考点对应的时间信息为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差Δt1。
一种可能的设计中,服务卫星对应的时间信息为向服务卫星发送上行信号的TA。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为向该卫星参考点发送上行信号的TA(下面称为TAi)。其中,TAi满足如下公式:TAi=TA0-Δt1。TA0为服务卫星对应的时间信息。Δt1为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。或者,第i个卫星参考点对应的时间信息为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差Δt1。
一种可能的设计中,确定服务卫星对应的时间信息,包括:获取公共TA,公共TA用于表征服务卫星到上行同步公共点的往返时延;根据公共TA确定服务卫星对应的时间信息。
一种可能的设计中,多个卫星参考点的信息为位置信息。上述设计通过多个位置可以构造多个虚拟卫星对终端设备定位,从而不需要实际部署卫星。
一种可能的设计中,获取多个卫星参考点的信息,包括:接收来自服务卫星的多个卫星参考点的位置信息。
一种可能的设计中,多个卫星参考点的位置信息为绝对坐标,或者,多个卫星参考点的位置信息为相对于服务卫星的相对坐标。相比于发送星历信息,上述设计可以节省信令开销。
一种可能的设计中,多个卫星参考点的位置位于服务卫星和/或其他卫星的运动轨迹上。
一种可能的设计中,多个卫星参考点的信息为多个卫星参考点对应的时间点。上述方式通过时间点以及服务卫星(或者其他卫星)的运动轨迹可以确定多个卫星位置,通过多个卫星位置可以构造多个虚拟卫星对终端设备定位,从而不需要实际部署卫星。
一种可能的设计中,多个时间点为绝对时间。
一种可能的设计中,多个时间点为相对时间。通过上述方式可以节省信令开销。
第二方面,提供一种定位方法,该方法的执行主体可以是卫星或者位于卫星中的芯片、芯片系统或者电路,该方法可以通过以下步骤实现:接收终端设备发送的服务卫星对应的时间信息以及多个卫星参考点对应的时间信息,多个卫星参考点对应的时间信息为根据服务卫星对应的时间信息和多个卫星参考点的信息确定的;根据服务卫星对应的时间信息以及多个卫星参考点对应的时间信息确定终端设备的位置。
本申请实施例中通过卫星参考点的信息可以确定位于该卫星参考点上的卫星对应的时间信息,而不需要在该卫星参考点实际部署卫星,相比于实际部署多个卫星对终端设备进行定位,本申请的局限性小。并且,相比于单个卫星移动到不同位置来对终端设备进行定位,本申请可以降低定位的时延,还可以提升定位的准确性。
一种可能的设计中,终端设备可以根据第i个卫星参考点的位置信息和服务卫星的位置信息确定该卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差,并根据该时间差和卫星参考点对应的时间信息确定该卫星参考点对应的时间信息。
一种可能的设计中,服务卫星对应的时间信息为接收服务卫星的下行信号的时刻。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为接收该卫星参考点的下行信号的时刻ti,其中,ti满足如下公式:ti=t0+Δt1,t0为服务卫星对应的时间信息,Δt1为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。或者,第i个卫星参考点对应的时间信息为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差Δt1。
一种可能的设计中,服务卫星对应的时间信息为服务卫星的下行信号所在的帧号。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为该卫星参考点的下行信号所在的帧号 Wi。其中,Wi满足如下公式:Wi=W0+w。W0为服务卫星对应的时间信息,w为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差对应帧的数量。或者,第i个卫星参考点对应的时间信息为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。
一种可能的设计中,服务卫星对应的时间信息为接收服务卫星的下行信号的时间与服务卫星发送下行信号的时间之间的时间差。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为接收该卫星参考点的下行信号的时间与该卫星参考点发送下行信号的时间之间的时间差ΔTi。其中,ΔTi满足如下公式:ΔTi=ΔT0+Δt1。ΔT0为服务卫星对应的时间信息。Δt1为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。或者,第i个卫星参考点对应的时间信息为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差Δt1。
一种可能的设计中,服务卫星对应的时间信息为接收服务卫星的下行信号的时间与向服务卫星发送上行信号的时间之间的时间差。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为接收该卫星参考点的下行信号的时间与向该卫星参考点发送上行信号的时间之间的时间差Δi。其中,Δi满足如下公式:Δi=Δ0-2Δt1。Δ0为服务卫星对应的时间信息。Δt1为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。或者,第i个卫星参考点对应的时间信息为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差Δt1。
一种可能的设计中,服务卫星对应的时间信息为向服务卫星发送上行信号的TA。
一种可能的设计中,第i个卫星参考点对应的时间信息可以为向该卫星参考点发送上行信号的TA(下面称为TAi)。其中,TAi满足如下公式:TAi=TA0-Δt1。TA0为服务卫星对应的时间信息。Δt1为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差。或者,第i个卫星参考点对应的时间信息为第i个卫星参考点与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差Δt1。
一种可能的设计中,多个卫星参考点的信息为位置信息。上述设计通过多个位置可以构造多个虚拟卫星对终端设备定位,从而不需要实际部署卫星。
一种可能的设计中,该方法还包括:向终端设备发送多个卫星参考点的位置信息。
一种可能的设计中,多个卫星参考点的位置信息为绝对坐标,或者,多个卫星参考点的位置信息为相对于服务卫星的相对坐标。相比于发送星历信息,上述设计可以节省信令开销。
一种可能的设计中,多个卫星参考点的位置位于服务卫星和/或其他卫星的运动轨迹上。
一种可能的设计中,多个卫星参考点的信息为多个卫星参考点对应的时间点。上述方式通过时间点以及服务卫星(或者其他卫星)的运动轨迹可以确定多个卫星位置,通过多个卫星位置可以构造多个虚拟卫星对终端设备定位,从而不需要实际部署卫星。
一种可能的设计中,多个时间点为绝对时间。
一种可能的设计中,多个时间点为相对时间。通过上述方式可以节省信令开销。
一种可能的设计中,在根据服务卫星对应的时间信息以及多个卫星参考点对应的时间信息确定终端设备的位置之前,方法还包括:根据接收终端设备发送的上行参考信号的时间对服务卫星对应的时间信息以及多个卫星参考点对应的时间信息进行纠正。通过该方式可以进一步提升终端设备定位的准确性。
第三方面,本申请还提供一种通信装置,所述装置为终端设备或终端设备中的芯片。该通信装置具有实现上述第一方面提供的任一方法的功能。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
一种可能的设计中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与服务卫星等设备之间的通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
一种可能的设计中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的 模块。
一种可能的设计中,通信装置的结构中包括处理单元(或处理单元)和通信单元(或通信单元),这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第四方面,本申请还提供一种通信装置,所述装置为卫星或卫星中的芯片。该通信装置具有实现上述第二方面提供的任一方法的功能。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
一种可能的设计中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中服务卫星的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与终端设备等设备之间的通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
一种可能的设计中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的设计中,通信装置的结构中包括处理单元(或处理单元)和通信单元(或通信单元),这些单元可以执行上述方法示例中相应功能,具体参见第二方面提供的方法中的描述,此处不做赘述。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面以及任意可能的设计中的方法。
第六方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面以及任意可能的设计中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,实现前述第一方面或第二方面以及任意可能的设计中的方法。
第八方面,提供了一种存储有指令的计算机程序产品,当该指令被处理器运行时,实现前述第一方面或第二方面以及任意可能的设计中的方法。
第九方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面或第二方面以及任意可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,提供一种通信系统,所述系统包括第一方面所述的装置(如终端设备)以及第二方面所述的装置(如卫星)。
上述第三方面至第十方面中任一方面的技术方案可以达到的技术效果,可以参照上述第一方面的技术方案可以达到的技术效果描述,重复之处不予赘述。
附图说明
图1为本申请实施例的一种基于上行到达时间的定位方法的示意图;
图2为本申请实施例的一种基于上行到达角的定位方法的示意图;
图3为本申请实施例的一种基于参考信号接收功率的定位方法的示意图;
图4a为本申请实施例的一种卫星通信的架构示意图;
图4b为本申请实施例的一种卫星通信的架构示意图;
图4c为本申请实施例的一种卫星通信的架构示意图;
图5为本申请实施例的一种定位方法的流程示意图;
图6为本申请实施例的一种传输时长示意图;
图7为本申请实施例的一种通信装置的结构示意图;
图8为本申请实施例的一种通信装置的结构示意图。
具体实施方式
地面通信网络对终端设备的定位方法有多种,例如,利用参考信号的延迟、延迟差、接收角度等以 实现对终端设备的定位。下面对几种常见的定位方法进行分别介绍:
-上行到达时间(up link time of arrival,UL-TOA)方法
多个基站分别测量接收终端设备发送的参考信号的到达时间,根据达到时间以及光速,计算基站与终端设备之间的距离,每个基站以自身为圆心、以基站与终端设备之间的距离画圆,如图1所示。然后通过定位算法,如三边定位算、最小二乘算法等,估算终端设备的位置。
-上行到达时间差(up link time difference of arrival,UL-TDOA)方法
UL-TOA方法的缺点在于,若基站与终端设备之间时间不同步,双方都不知道信号发送的绝对时间,则会造成计算和定位的误差。
而在UL-TDOA方法中,通过测量终端设备与两个基站的信号达到时间差,来计算终端设备到这两个基站的距离差,从数学的角度看,终端设备位于以这两个基站为焦点、以终端设备到这两个基站的距离差为定差的双曲线上。终端设备与多个、的位置位于以这两个基站为焦点、以其距离差为定差的双曲线上。基于上述原理,利用终端设备周围三个或三个以上的基站,即可得到多条双曲线,双曲线的交点可以就是终端设备的位置,如图2所示。
-上行到达角(up link angle of arrival,UL-AOA)方法
基站根据终端设备发送参考信号的波束测量到达角,如图3中的θ1、-θ2、θ3、-θ4,然后将测量得到的到达角发送给用于定位的网络设备,由网络设备根据每个基站的位置、每个基站测量得到的到达角,对终端设备进行定位。
-参考信号接收功率(reference signal receiving power,RSRP)方法
测量终端设备反射的参考信号被周围多个基站接收的功率大小,根据测量到的功率可以确定出终端设备与多个基站的距离比例,然后根据每个基站的位置、终端设备与多个基站的距离比例,对终端设备进行定位。
上述方法都依赖于多个基站接收终端设备发送的参考信号进行测量,但在卫星通信场景中,终端设备位于多个卫星覆盖区的场景较为少见,因此,多卫星联合对终端设备定位的局限性较大。
一种可能的基于单个卫星的定位方法为当卫星运动到不同位置的时候,终端设备上报TA信息,TA信息表示终端设备到上行同步点之间的往返时间(round trip time,RTT),例如上行同步点在卫星,则TA信息表示终端设备到卫星的RTT。网络侧可以认为卫星运动到不同位置等效于多个不同位置的基站,网络侧根据收集到的多个TA来判断终端设备的位置。
但是,根据单个卫星不同的位置做定位会引入延迟,为保证TA的差异性,整个服务时间内可以做的定位次数有限。并且,由于卫星位置的变化都在同一个轨道上,差异并不是很大,因此单个卫星定位的误差并没有多星定位的准确度高。因此,如何基于单个卫星对终端设备进行定位称为亟待解决的问题。
有鉴于此,本申请实施例提供一种能够应用于卫星通信场景下的定位方法,满足单个卫星对终端设备进行定位的需求。
图4a、图4b、图4c示例性的提供了卫星通信可能的应用架构。本申请实施例提供的定位方法,能够应用于图4a、图4b、图4c中任一网络架构中。
在图4a所示的架构中,基站部署在地面上,卫星通过空口与地面站相连,而地面站可以通过无线或有线链路与基站相连。地面的终端设备通过空口(该空口可以是各种类型的空口,例如5G空口)接入移动通信网络,卫星作为传输节点,对终端设备的信息进行转发。
在图4b所示的架构中,基站部署在卫星上,卫星通过空口与地面站相连,而地面站可以通过无线或有线链路与核心网相连。地面的终端设备通过空口与卫星基站通信,从而接入移动通信网络,卫星作为基站通过空口NG接口与地面站相连,地面站通过NG接口与核心网相连,该NG接口可以为无线形式也可以为有线形式。
在图4c所示的架构与图4b所示的架构相比,增加了卫星基站与卫星基站之间的通信场景,具体的,卫星基站与卫星基站之间可以通过Xn接口通信。
在图4a-图4c中,终端设备可以包括支持新空口的各种类型的终端设备,例如手机、平板电脑、车载终端设备、可穿戴终端设备等。终端设备可以通过空口接入卫星网络并发起呼叫,上网等业务。
基站主要用于提供无线接入服务、调度无线资源给接入的终端设备、提供可靠的无线传输协议和数据加密协议等。
核心网主要用于提供用户接入控制、移动性管理、会话管理、用户安全认证、计费等功能。核心网 有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理功能(AMF)实体用于负责用户接入管理,安全认证以及移动性管理等。用户面功能(UPF)实体用于负责管理用户面数据的传输,流量统计等功能。
地面站主要负责转发卫星与基站,或者卫星与核心网之间的信令和业务数据。
空口:表示终端设备与基站之间的无线链路。
Xn接口:表示卫星基站与卫星基站之间的接口,主要用于切换等信令交互。
NG接口:表示基站与核心网之间的接口,或者地面站与核心网之间的接口,或者卫星基站与地面站之间的接口(此时该接口为无线链路),主要交互核心网的NAS等信令,以及用户的业务数据。
参见图5,为本申请实施例提供的一种定位方法的流程示意图。该定位方法可以应用于卫星通信场景,尤其适用于非地球静止轨道(none-geostationary earth orbit,NGEO)卫星通信场景,或者,还可以适用于无人机通信场景。无人机通信场景与卫星通信场景类似,为了方便描述,下面均以卫星通信场景进行举例说明。
如图5所示,该定位方法可以包括以下步骤:
S501,终端设备获取多个卫星参考点的信息。
一种示例性说明中,多个卫星参考点的信息可以为位置信息。基于该示例性说明的一种可能实现方式为,服务卫星向终端设备发送该多个卫星参考点的位置信息。
其中,该多个卫星参考点的位置信息可以为绝对坐标,例如,绝对坐标系下的坐标点(x,y,z),或者,该多个卫星参考点的位置信息也可以为相对于服务卫星的相对坐标,例如(Δx,Δy,Δz)。相比于广播包括速度和坐标的星历,广播卫星参考点的位置信息可以节省网络侧的信令开销。
可选的,在上述示例性说明中,多个卫星参考点的位置可以位于服务卫星和/或其他卫星的运动轨迹上。或者,该多个卫星参考点的位置也可以与服务卫星和/或其他卫星的运动轨迹无关。
另一种示例性说明中,该多个卫星参考点的信息可以为多个卫星参考点对应的时间信息。
可选的,在该示例性说明中,该多个卫星参考点的位置可以位于服务卫星和/或其他卫星的运动轨迹上。从而终端设备以及服务卫星可以根据多个卫星参考点对应的时间信息以及服务卫星和/或其他卫星的运动轨迹确定该多个卫星参考点的位置。
其中,多个时间点可以为绝对时间,例如该多个时间点可以为00.00.00,00.00.01,00.00.02,00.00.03。或者,多个时间点也可以为相对时间,例如服务卫星当前所在位置对应的时隙为时隙1,终端设备可以上报时间间隔1个时隙,也就是该多个时间点中第一个时间点相对于服务卫星当前所在位置对应的时隙延后(或者提前)1个时隙,第二个时间点相对于第一个时间点延后(或者提前)1个时隙,第三个时间点相对于第二个时间点延后(或者提前)1个时隙,以此类推。
基于该示例性说明的一种可选方案,该多个卫星参考点对应的时间信息可以是终端设备确定的。进一步的,终端设备确定该多个卫星参考点对应的时间信息后还可以发送给服务卫星,从而服务卫星可以根据该多个卫星参考点对应的时间信息以及服务卫星和/或其他卫星的运动轨迹确定该多个卫星参考点的位置。
基于该示例性说明的另一种可选方案,该多个卫星参考点对应的时间信息可以是服务卫星指示给终端设备的。
上述多个卫星参考点对应的时间信息可以是过去的时间点,也可以是未来的时间点,也可以部分卫星参考点对应的时间信息是过去的时间点,另一部分卫星参考点对应的时间信息为未来的时间点。
S502,终端设备确定服务卫星对应的时间信息。
可选的,在步骤S502之前,终端设备可以接收来自服务卫星的下行信号,还可以向服务卫星发送上行信号。其中,发送上行信号的资源可以是服务卫星配置的。
S503,终端设备向服务卫星上报多个卫星参考点对应的时间信息以及服务卫星对应的时间信息。相应的,服务卫星接收来自终端设备的服务卫星对应的时间信息以及多个卫星参考点对应的时间信息。
本申请实施例中,可以由服务卫星对终端设备进行定位,或者,也可以由其他网络设备对终端设备进行定位,例如基站、传输接收点(transmission reception point,TRP)、核心网网元等等,举例说明,核心网网元可以为定位管理功能(location management function,LMF)网元、定位服务器等。
若由其他网络设备对终端设备进行定位,服务卫星可以将服务卫星对应的时间信息以及多个卫星参考点对应的时间信息转发给该网络设备。为了便于理解,本申请以服务卫星对终端设备进行定位为例进 行说明。
其中,多个卫星参考点对应的时间信息为根据服务卫星对应的时间信息和多个卫星参考点的信息确定的。
一种实现方式中,终端设备可以通过如下方式确定服务卫星对应的时间信息:
A1,获取公共TA,公共TA用于表征服务卫星到上行同步公共点的往返时延。
其中,上行同步公共点可以是服务卫星,也可以是其他网络设备,如地面基站等。
具体的,服务卫星可以向终端设备发送公共TA。
A2,根据公共TA确定服务卫星对应的时间信息。
一种实现方式中,以多个卫星参考点中第i个卫星参考点(下面称为卫星参考点i)为例,终端设备可以通过如下方式确定卫星参考点对应的时间信息:
B1,根据卫星参考点i的位置信息和服务卫星的位置信息确定该卫星参考点i与终端设备之间进行传输的时长相对于服务卫星与终端设备进行传输的时长之间的时间差(下面将该时间差称为卫星参考点i的传输延时)。
例如,终端设备可以根据卫星参考点i的位置和服务卫星的位置确定卫星参考点i与终端设备之间进行传输的时长与服务卫星与终端设备进行传输的时长的时间差为Δt1,其中,若卫星参考点i相对于终端设备的距离比服务卫星相对于终端设备的距离大,Δt1可以为正数,若卫星参考点i相对于终端设备的距离比服务卫星相对于终端设备的距离小,Δt1可以为负数,若卫星参考点i相对于终端设备的距离比服务卫星相对于终端设备的距离相同,Δt1可以为0。
B2,根据卫星参考点i的传输延时和卫星参考点对应的时间信息确定卫星参考点i对应的时间信息。
具体确定过程将在下文结合服务卫星对应的时间信息的示例进行说明。
下面介绍服务卫星对应的时间信息的五种示例,应理解,这里仅是示例性说明,只要可以表征服务卫星到终端设备的传输时长或者RTT的信息尽可以作为服务卫星对应的时间信息。
示例一:服务卫星对应的时间信息可以为接收服务卫星的下行信号的时刻t0。相应的,卫星参考点i对应的时间信息可以为接收该卫星参考点的下行信号的时刻ti
在示例中,ti可以满足ti=t0+Δt1。
在示例中可以假设卫星参考点i和服务卫星发送下行信号的时间相同。
示例二,服务卫星对应的时间信息为服务卫星的下行信号所在的帧号W0。相应的,卫星参考点i对应的时间信息可以为该卫星参考点的下行信号所在的帧号Wi
在示例中,假设Δt1对应w个帧,则Wi可以满足Wi=W0+w。
在示例中可以假设卫星参考点i和服务卫星发送下行信号的时间相同。
示例三,服务卫星对应的时间信息为接收服务卫星的下行信号的时间与服务卫星发送下行信号的时间之间的时间差ΔT0。相应的,卫星参考点i对应的时间信息可以为接收该卫星参考点i的下行信号的时间与该卫星参考点i发送下行信号的时间之间的时间差ΔTi。
在该示例中,终端设备可以根据来自服务卫星的下行信号确定该下行信号的发送时间,并根据该发送时间以及该下行信号的接收时间确定该时间差ΔT0。
在示例中,ΔTi可以满足ΔTi=ΔT0+Δt1。
在示例中卫星参考点i和服务卫星发送下行信号的时间可以相同,也可以不同。
示例四,服务卫星对应的时间信息为接收服务卫星的下行信号的时间与向服务卫星发送上行信号的时间之间的时间差Δ0;相应的,卫星参考点i对应的时间信息可以为接收该卫星参考点i的下行信号的时间与向该卫星参考点i发送上行信号的时间之间的时间差Δi。
在示例中,Δi可以满足Δi=Δ0-2Δt1。
示例五,服务卫星对应的时间信息为向服务卫星发送上行信号的TA(下面称为TA0)。相应的,卫星参考点i对应的时间信息可以为向该卫星参考点i发送上行信号的TA(下面称为TAi)。
在示例中,TAi可以满足TAi=TA0-Δt1。
一种示例性说明中,向服务卫星发送上行信号的TA和向该卫星参考点i发送上行信号的TA可以为开环TA,其中,开环TA可以理解为终端设备基于全球导航卫星系统(global navigation satellite system,GNSS)和星历计算出来的TA,即服务链路侧的TA。
另一种示例性说明中,向服务卫星发送上行信号的TA和向该卫星参考点i发送上行信号的TA可 以为下行子帧#m和上行子帧#m之间的时间差。该时间差可以由终端设备测量获得。例如,终端设备可以通过检测下行子帧#m的时间和发送上行子帧#m的时间确定下行子帧#m和上行子帧#m之间的时间差。又例如,终端设备可以通过检测下行子帧#m的时间、发送上行子帧#n的时间、以及上行子帧#m和上行子帧#n之间的时间间隔确定下行子帧#m和上行子帧#m之间的时间差。再例如,终端设备可以通过检测下行子帧#k的时间、发送上行子帧#m的时间、以及下行子帧#m和下行子帧#k之间的时间间隔确定下行子帧#m和上行子帧#m的时间差。其中,m、n、k均不小于0的整数。
再一种示例性说明中,向服务卫星发送上行信号的TA和向该卫星参考点i发送上行信号的TA可以为下行子帧#m和上行子帧#m之间的时间差,与网络侧检测到的TA偏差的和。其中,TA偏差可以是正数也可以是负数,这里不做具体限定。在该示例性说明中,下行子帧#m和上行子帧#m之间的时间差的确定方式可以参阅前文的相关描述,这里不再重复说明。
可选的,服务卫星对应的时间信息可以为上述示例一~示例五中任一项所述的信息,卫星参考点i对应的时间信息可以为卫星参考点i的传输延时Δt1。
S504,服务卫星根据服务卫星对应的时间信息以及多个卫星参考点对应的时间信息确定终端设备的位置。
下面结合服务卫星对应的时间信息的五种示例对步骤S504进行说明。
基于上述示例一,服务卫星可以根据下行信号的发送时间和终端设备上报的该下行信号的接收时间确定服务卫星和终端设备之间的单边延时,即该下行信号的接收时间减去下行信号的发送时间。同理,服务卫星可以确定卫星参考点与终端设备之间的单边延时。从而,服务卫星可以根据服务卫星和终端设备之间的单边延时、多个卫星参考点与终端设备之间的单边延时确定终端设备的位置。
基于上述示例二,服务卫星可以根据发送下行信号时所在的帧号和终端设备上报的下行信号时所在的帧号确定服务卫星和终端设备之间的单边延时。同理,服务卫星可以确定卫星参考点与终端设备之间的单边延时。从而,服务卫星可以根据服务卫星和终端设备之间的单边延时、多个卫星参考点与终端设备之间的单边延时确定终端设备的位置。
基于上述示例三,服务卫星可以根据终端设备上报的接收服务卫星的下行信号的时间与服务卫星发送下行信号的时间之间的时间差确定服务卫星和终端设备之间的单边延时,该单边延时即为该时间差。同理,服务卫星可以确定卫星参考点与终端设备之间的单边延时。从而,服务卫星可以根据服务卫星和终端设备之间的单边延时、多个卫星参考点与终端设备之间的单边延时确定终端设备的位置。
基于上述示例四,服务卫星可以根据下行信号的发送时间和上行信号的接收时间确定传输时长X1,并根据该传输时长X1和终端设备上报的时间差Δ0确定服务卫星与终端设备之间的RTT,其中,RTT=X1-Δ0。如图6所示。
同理,服务卫星可以确定卫星参考点与终端设备之间的RTT。从而,服务卫星可以根据服务卫星和终端设备之间的RTT、多个卫星参考点与终端设备之间的RTT确定终端设备的位置。
基于上述示例五,服务卫星可以根据向服务卫星发送上行信号的TA确定服务卫星和终端设备之间的单边延时或者RTT。同理,服务卫星可以确定卫星参考点与终端设备之间的单边延时或者RTT。从而,服务卫星可以根据服务卫星和终端设备之间的单边延时或者RTT、多个卫星参考点与终端设备之间的单边延时或者RTT确定终端设备的位置。
可选的,基于上述示例五,一种可能的实施例为,在根据服务卫星对应的时间信息以及多个卫星参考点对应的时间信息确定终端设备的位置之前,服务卫星可以根据接收终端设备发送的上行参考信号的时间对服务卫星对应的时间信息以及多个卫星参考点对应的时间信息进行纠正。
由于终端设备的GNSS和星历可能会有误差,因此终端设备估计的TA可能会有偏差,上述方式通过对根据接收终端设备发送的上行参考信号的时间对服务卫星对应的时间信息以及多个卫星参考点对应的时间信息进行纠正,可以提升终端设备定位的准确性。
一种可能的实施方式中,若由其他网络设备对终端设备进行定位,服务卫星可以将接收终端设备发送的上行参考信号的时间发送给该网络设备,由该网络设备对服务卫星对应的时间信息以及多个卫星参考点对应的时间信息进行纠正。
或者,服务卫星也可以将服务卫星纠正后的时间信息以及多个卫星参考点纠正后的时间信息发送给该网络设备。
基于与方法实施例的同一发明构思,本申请实施例提供一种通信装置,该通信装置的结构可以如图 7所示,包括通信单元701和处理单元702。
在一种实施方式中,通信装置具体可以用于实现图5的实施例中终端设备执行的方法,该装置可以是终端设备本身,也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,处理单元702,用于获取多个卫星参考点的信息;以及,确定服务卫星对应的时间信息。通信单元701,用于向所述服务卫星上报所述多个卫星参考点对应的时间信息以及所述服务卫星对应的时间信息,所述多个卫星参考点对应的时间信息为根据所述服务卫星对应的时间信息和所述多个卫星参考点的信息确定的。
示例性的,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时刻;
或者,所述服务卫星对应的时间信息为所述服务卫星的下行信号所在的帧号;
或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与所述服务卫星发送所述下行信号的时间之间的时间差;
或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与向所述服务卫星发送上行信号的时间之间的时间差;
或者,所述服务卫星对应的时间信息为向所述服务卫星发送上行信号的定时提前TA。
可选的,所述处理单元702,在确定服务卫星对应的时间信息时,具体用于:获取公共TA,所述公共TA用于表征所述服务卫星到上行同步公共点的往返时延;根据所述公共TA确定所述服务卫星对应的时间信息。
示例性的,所述多个卫星参考点的信息为位置信息。
可选的,所述处理单元702,在获取多个卫星参考点的信息时,具体用于:通过所述通信单元701接收来自所述服务卫星的所述多个卫星参考点的位置信息。
示例性的,所述多个卫星参考点的位置信息为绝对坐标,或者,所述多个卫星参考点的位置信息为相对于所述服务卫星的相对坐标。
示例性的,所述多个卫星参考点的位置位于所述服务卫星和/或其他卫星的运动轨迹上。
示例性的,所述多个卫星参考点的信息为所述多个卫星参考点对应的时间点。
示例性的,所述多个时间点为绝对时间,或者,所述多个时间点为相对时间。
在一种实施方式中,图7所示的通信装置具体可以用于实现图5的实施例中服务卫星执行的方法,该装置可以是服务卫星本身,也可以是服务卫星中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,通信单元701,用于接收终端设备发送的服务卫星对应的时间信息以及多个卫星参考点对应的时间信息,所述多个卫星参考点对应的时间信息为根据所述服务卫星对应的时间信息和所述多个卫星参考点的信息确定的;处理单元702,用于根据所述服务卫星对应的时间信息以及所述多个卫星参考点对应的时间信息确定所述终端设备的位置。
示例性的,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时刻;
或者,所述服务卫星对应的时间信息为所述服务卫星的下行信号所在的帧号;
或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与所述服务卫星发送所述下行信号的时间之间的时间差;
或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与向所述服务卫星发送上行信号的时间之间的时间差;
或者,所述服务卫星对应的时间信息为向所述服务卫星发送上行信号的定时提前TA。
示例性的,所述多个卫星参考点的信息为位置信息。
可选的,所述通信单元701,还用于:向所述终端设备发送所述多个卫星参考点的位置信息。
示例性的,所述多个卫星参考点的位置信息为绝对坐标,或者,所述多个卫星参考点的位置信息为相对于所述服务卫星的相对坐标。
示例性的,所述多个卫星参考点的位置位于所述服务卫星和/或其他卫星的运动轨迹上。
示例性的,所述多个卫星参考点的信息为所述多个卫星参考点对应的时间点。
示例性的,所述多个时间点为绝对时间,或者,所述多个时间点为相对时间。
可选的,所述处理单元702,还用于:在根据所述服务卫星对应的时间信息以及所述多个卫星参考点对应的时间信息确定所述终端设备的位置之前,根据接收所述终端设备发送的所述上行参考信号的时间对所述服务卫星对应的时间信息以及所述多个卫星参考点对应的时间信息进行纠正。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,通信装置可以如图8所示,该装置可以是通信设备或者通信设备中的芯片,其中该通信设备可以为上述实施例中的终端设备也可以是上述实施例中的网络设备。该装置包括处理器801和通信接口802,还可以包括存储器803。其中,处理单元702可以为处理器801。通信单元701可以为通信接口802。可选的,处理器801和存储器803也可以集成在一起。
处理器801,可以是一个CPU,或者为数字处理单元等等。通信接口802可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器803,用于存储处理器801执行的程序。存储器803可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器803是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。
处理器801用于执行存储器803存储的程序代码,具体用于执行上述处理单元702的动作,本申请在此不再赘述。通信接口802具体用于执行上述通信单元701的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口802、处理器801以及存储器803之间的具体连接介质。本申请实施例在图8中以存储器803、处理器801以及通信接口802之间通过总线804连接,总线在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本申请实施例还提供一种通信系统,包括用于实现图5的实施例中终端设备功能的通信装置和用于实现图5的实施例中服务卫星功能的通信装置。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种定位方法,其特征在于,所述方法包括:
    获取多个卫星参考点的信息;
    确定服务卫星对应的时间信息;
    向所述服务卫星上报所述多个卫星参考点对应的时间信息以及所述服务卫星对应的时间信息,所述多个卫星参考点对应的时间信息为根据所述服务卫星对应的时间信息和所述多个卫星参考点的信息确定的。
  2. 如权利要求1所述的方法,其特征在于,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时刻;
    或者,所述服务卫星对应的时间信息为所述服务卫星的下行信号所在的帧号;
    或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与所述服务卫星发送所述下行信号的时间之间的时间差;
    或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与向所述服务卫星发送上行信号的时间之间的时间差;
    或者,所述服务卫星对应的时间信息为向所述服务卫星发送上行信号的定时提前TA。
  3. 如权利要求1或2所述的方法,其特征在于,所述确定服务卫星对应的时间信息,包括:
    获取公共TA,所述公共TA用于表征所述服务卫星到上行同步公共点的往返时延;
    根据所述公共TA确定所述服务卫星对应的时间信息。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述多个卫星参考点的信息为位置信息。
  5. 如权利要求4所述的方法,其特征在于,所述获取多个卫星参考点的信息,包括:
    接收来自所述服务卫星的所述多个卫星参考点的位置信息。
  6. 如权利要求4或5所述的方法,其特征在于,所述多个卫星参考点的位置信息为绝对坐标,或者,所述多个卫星参考点的位置信息为相对于所述服务卫星的相对坐标。
  7. 如权利要求1-3任一项所述的方法,其特征在于,所述多个卫星参考点的位置位于所述服务卫星和/或其他卫星的运动轨迹上。
  8. 如权利要求7所述的方法,其特征在于,所述多个卫星参考点的信息为所述多个卫星参考点对应的时间点。
  9. 如权利要求8所述的方法,其特征在于,所述多个时间点为绝对时间,或者,所述多个时间点为相对时间。
  10. 一种定位方法,其特征在于,所述方法包括:
    接收终端设备发送的服务卫星对应的时间信息以及多个卫星参考点对应的时间信息,所述多个卫星参考点对应的时间信息为根据所述服务卫星对应的时间信息和所述多个卫星参考点的信息确定的;
    根据所述服务卫星对应的时间信息以及所述多个卫星参考点对应的时间信息确定所述终端设备的位置。
  11. 如权利要求10所述的方法,其特征在于,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时刻;
    或者,所述服务卫星对应的时间信息为所述服务卫星的下行信号所在的帧号;
    或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与所述服务卫星发送所述下行信号的时间之间的时间差;
    或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与向所述服务卫星发送上行信号的时间之间的时间差;
    或者,所述服务卫星对应的时间信息为向所述服务卫星发送上行信号的定时提前TA。
  12. 如权利要求10或11所述的方法,其特征在于,所述多个卫星参考点的信息为位置信息。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送所述多个卫星参考点的位置信息。
  14. 如权利要求12或13所述的方法,其特征在于,所述多个卫星参考点的位置信息为绝对坐标,或者,所述多个卫星参考点的位置信息为相对于所述服务卫星的相对坐标。
  15. 如权利要求10或11所述的方法,其特征在于,所述多个卫星参考点的位置位于所述服务卫星和/或其他卫星的运动轨迹上。
  16. 如权利要求15所述的方法,其特征在于,所述多个卫星参考点的信息为所述多个卫星参考点对应的时间点。
  17. 如权利要求16所述的方法,其特征在于,所述多个时间点为绝对时间,或者,所述多个时间点为相对时间。
  18. 如权利要求10-17任一项所述的方法,其特征在于,在根据所述服务卫星对应的时间信息以及所述多个卫星参考点对应的时间信息确定所述终端设备的位置之前,所述方法还包括:
    根据接收所述终端设备发送的所述上行参考信号的时间对所述服务卫星对应的时间信息以及所述多个卫星参考点对应的时间信息进行纠正。
  19. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于获取多个卫星参考点的信息;
    以及,确定服务卫星对应的时间信息;
    通信单元,用于向所述服务卫星上报所述多个卫星参考点对应的时间信息以及所述服务卫星对应的时间信息,所述多个卫星参考点对应的时间信息为根据所述服务卫星对应的时间信息和所述多个卫星参考点的信息确定的。
  20. 如权利要求19所述的装置,其特征在于,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时刻;
    或者,所述服务卫星对应的时间信息为所述服务卫星的下行信号所在的帧号;
    或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与所述服务卫星发送所述下行信号的时间之间的时间差;
    或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与向所述服务卫星发送上行信号的时间之间的时间差;
    或者,所述服务卫星对应的时间信息为向所述服务卫星发送上行信号的定时提前TA。
  21. 如权利要求19或20所述的装置,其特征在于,所述处理单元,在确定服务卫星对应的时间信息时,具体用于:
    获取公共TA,所述公共TA用于表征所述服务卫星到上行同步公共点的往返时延;
    根据所述公共TA确定所述服务卫星对应的时间信息。
  22. 如权利要求19-21任一项所述的装置,其特征在于,所述多个卫星参考点的信息为位置信息。
  23. 如权利要求22所述的装置,其特征在于,所述处理单元,在获取多个卫星参考点的信息时,具体用于:
    通过所述通信单元接收来自所述服务卫星的所述多个卫星参考点的位置信息。
  24. 如权利要求22或23所述的装置,其特征在于,所述多个卫星参考点的位置信息为绝对坐标,或者,所述多个卫星参考点的位置信息为相对于所述服务卫星的相对坐标。
  25. 如权利要求19-21任一项所述的装置,其特征在于,所述多个卫星参考点的位置位于所述服务卫星和/或其他卫星的运动轨迹上。
  26. 如权利要求25所述的装置,其特征在于,所述多个卫星参考点的信息为所述多个卫星参考点对应的时间点。
  27. 如权利要求26所述的装置,其特征在于,所述多个时间点为绝对时间,或者,所述多个时间点为相对时间。
  28. 一种通信装置,其特征在于,所述装置包括:
    通信单元,用于接收终端设备发送的服务卫星对应的时间信息以及多个卫星参考点对应的时间信息,所述多个卫星参考点对应的时间信息为根据所述服务卫星对应的时间信息和所述多个卫星参考点的信息确定的;
    处理单元,用于根据所述服务卫星对应的时间信息以及所述多个卫星参考点对应的时间信息确定所述终端设备的位置。
  29. 如权利要求28所述的装置,其特征在于,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时刻;
    或者,所述服务卫星对应的时间信息为所述服务卫星的下行信号所在的帧号;
    或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与所述服务卫星发送所述下行信号的时间之间的时间差;
    或者,所述服务卫星对应的时间信息为接收所述服务卫星的下行信号的时间与向所述服务卫星发送上行信号的时间之间的时间差;
    或者,所述服务卫星对应的时间信息为向所述服务卫星发送上行信号的定时提前TA。
  30. 如权利要求28或29所述的装置,其特征在于,所述多个卫星参考点的信息为位置信息。
  31. 如权利要求30所述的装置,其特征在于,所述通信单元,还用于:
    向所述终端设备发送所述多个卫星参考点的位置信息。
  32. 如权利要求30或31所述的装置,其特征在于,所述多个卫星参考点的位置信息为绝对坐标,或者,所述多个卫星参考点的位置信息为相对于所述服务卫星的相对坐标。
  33. 如权利要求28或29所述的装置,其特征在于,所述多个卫星参考点的位置位于所述服务卫星和/或其他卫星的运动轨迹上。
  34. 如权利要求33所述的装置,其特征在于,所述多个卫星参考点的信息为所述多个卫星参考点对应的时间点。
  35. 如权利要求34所述的装置,其特征在于,所述多个时间点为绝对时间,或者,所述多个时间点为相对时间。
  36. 如权利要求28-35任一项所述的装置,其特征在于,所述处理单元,还用于:
    在根据所述服务卫星对应的时间信息以及所述多个卫星参考点对应的时间信息确定所述终端设备的位置之前,根据接收所述终端设备发送的所述上行参考信号的时间对所述服务卫星对应的时间信息以及所述多个卫星参考点对应的时间信息进行纠正。
  37. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储程序指令,所述处理器在执行所述程序指令时使得如权利要求1~9任一项所述的方法被执行,或,如权利要求10~18任一项所述的方法被执行。
  38. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得如权利要求1~9任一项所述的方法被执行,或,如权利要求10~18任一项所述的方法被执行。
  39. 一种计算机程序产品,其特征在于,当所述计算机程序产品在设备上运行时,使得所述设备执行权利要求1~9任一项所述的方法或者权利要求10~18任一项所述的方法。
  40. 一种通信系统,其特征在于,所述系统包括如权利要求19-27任一项所述的装置以及权利要求28~36任一项所述的装置。
PCT/CN2023/103458 2022-08-09 2023-06-28 一种定位方法及装置 WO2024032199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210958322.1 2022-08-09
CN202210958322.1A CN117630972A (zh) 2022-08-09 2022-08-09 一种定位方法及装置

Publications (1)

Publication Number Publication Date
WO2024032199A1 true WO2024032199A1 (zh) 2024-02-15

Family

ID=89850630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103458 WO2024032199A1 (zh) 2022-08-09 2023-06-28 一种定位方法及装置

Country Status (2)

Country Link
CN (1) CN117630972A (zh)
WO (1) WO2024032199A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080100507A1 (en) * 2006-10-27 2008-05-01 Jari Syrjarinne Providing and using messages comprising location information
CN111342925A (zh) * 2020-02-10 2020-06-26 北京国电高科科技有限公司 一种通信同步方法、装置及设备
CN113589337A (zh) * 2021-08-16 2021-11-02 重庆两江卫星移动通信有限公司 一种通导一体低轨卫星单星定位方法及系统
CN114666889A (zh) * 2020-12-23 2022-06-24 大唐移动通信设备有限公司 一种定位方法、装置、设备和可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080100507A1 (en) * 2006-10-27 2008-05-01 Jari Syrjarinne Providing and using messages comprising location information
CN111342925A (zh) * 2020-02-10 2020-06-26 北京国电高科科技有限公司 一种通信同步方法、装置及设备
CN114666889A (zh) * 2020-12-23 2022-06-24 大唐移动通信设备有限公司 一种定位方法、装置、设备和可读存储介质
CN113589337A (zh) * 2021-08-16 2021-11-02 重庆两江卫星移动通信有限公司 一种通导一体低轨卫星单星定位方法及系统

Also Published As

Publication number Publication date
CN117630972A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
EP2727392B1 (en) Distributed positioning mechanism for wireless communication devices
EP3832913A1 (en) Time synchronization method and device
WO2023125257A1 (zh) 时钟信息校验方法、装置及系统
WO2017070909A1 (zh) 移动网络中的定位方法、基站和移动终端
WO2016165353A1 (zh) 时间调整的方法及装置
WO2021004233A1 (zh) 卫星通信方法、装置、终端设备、卫星及可读存储介质
US20240049159A1 (en) Positioning method, device, apparatus and readable storage medium
WO2019228221A1 (zh) 时钟同步方法、装置、终端设备、芯片及可读存储介质
CN113302507A (zh) 利用射束信息进行定位的方法和装置
US10649062B2 (en) Terminal positioning method and apparatus
US20240064688A1 (en) Method and apparatus for positioning terminal, device, and medium
WO2021129648A1 (zh) 一种上行同步方法、终端、以及基站
WO2024032199A1 (zh) 一种定位方法及装置
EP4044627A1 (en) Network access method and apparatus for terminal, electronic device and storage medium
WO2021243617A1 (zh) 完好性配置方法及相关装置
CN111586833A (zh) 一种定位方法、装置、终端、基站及管理功能实体
CN115551067A (zh) 时间同步方法、装置、设备及存储介质
US20240107474A1 (en) Rx-tx time difference generation, measurement and reporting with neighboring base stations
WO2021159262A1 (zh) 定时提前量的阈值调整方法及装置
JP2008134947A (ja) ネットワーク時空情報配信システム,ネットワーク時空情報配信装置,時空情報を受信する端末装置,およびネットワーク時空情報配信方法
WO2024093905A1 (zh) 一种通信方法及装置
WO2023070449A1 (zh) 信息传输方法、相关设备及介质
WO2016065548A1 (zh) 时间同步方法、装置及通信系统
WO2014063617A1 (zh) 电离层延迟修正参数的配置方法、装置及系统
US12004105B2 (en) Time synchronization method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851426

Country of ref document: EP

Kind code of ref document: A1