WO2024093905A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024093905A1
WO2024093905A1 PCT/CN2023/127714 CN2023127714W WO2024093905A1 WO 2024093905 A1 WO2024093905 A1 WO 2024093905A1 CN 2023127714 W CN2023127714 W CN 2023127714W WO 2024093905 A1 WO2024093905 A1 WO 2024093905A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
location
information
reported
correct
Prior art date
Application number
PCT/CN2023/127714
Other languages
English (en)
French (fr)
Inventor
陆瑞
胡星星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093905A1 publication Critical patent/WO2024093905A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/63Location-dependent; Proximity-dependent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • NTN system can include satellite system. According to the satellite altitude, that is, the satellite orbit height, satellites can be divided into highly elliptical orbit (HEO) satellites, geosynchronous earth orbit (GEO) satellites, medium earth orbit (MEO) satellites and low earth orbit (LEO) satellites.
  • HEO highly elliptical orbit
  • GEO geosynchronous earth orbit
  • MEO medium earth orbit
  • LEO low earth orbit
  • NTN system can also include aerial network equipment such as high altitude platform (HAPS) communication system.
  • HAPS high altitude platform
  • Satellite networks can provide communication services for areas that are difficult to cover by ground networks, such as oceans, forests, deserts or remote areas; on the other hand, satellite networks can enhance the reliability of mobile communications, such as providing more stable communication services for users in high-speed mobile scenarios such as trains and airplanes; in addition, satellite networks can also provide more data transmission resources and support the connection of a larger number of terminal devices.
  • Verifying the location reported by the terminal device is a necessary step to ensure that the terminal device is connected to the correct core network and supports safety services.
  • one possible solution is to first locate the terminal device, and then verify the location reported by the terminal device based on the positioning result of the terminal device and the location reported by the terminal device to ensure that the location reported by the terminal device is accurate.
  • the network side needs to re-perform the positioning-verification process for the terminal device. The above process may cause a large delay and overhead in the location verification of the terminal device.
  • the present application provides a communication method and apparatus for reducing the location verification delay and overhead of a terminal device.
  • the present application provides a communication method, which can be applied to a first device, a processor, a chip or a functional module in the first device, etc.
  • the method may include: the first device obtains first information and second information, and verifies whether the location of the terminal device is correct according to the first information and the second information.
  • the first information is used to indicate the location verification result of the terminal device; the second information includes time advance information.
  • the position of the terminal device is verified by utilizing the previous terminal device position verification results and combining with the time advance information.
  • the first device verifies whether the location of the terminal device is correct based on the first information and the second information
  • the method may be: the first device determines that the location verification result of the terminal device indicated by the first information is that the location of the terminal device is correct; and then the first device verifies whether the location of the terminal device is correct based on the time advance information of the terminal device.
  • the first device verifies whether the position of the terminal device is correct based on the time advance information of the terminal device
  • the method may be: the first device determines the candidate position of the terminal device based on the time advance information; when the distance between the candidate position of the terminal device and the position of the terminal device is within a first distance range, the first device may determine that the position of the terminal device is correct.
  • the first device when the first device verifies that the location of the terminal device is correct, the first device sends third information to the second device, where the third information is used to indicate that the location of the terminal device is correct.
  • the first device when the first device verifies that the location of the terminal device is incorrect, the first device sends a request message to the third device, and the request message is used to request the third device to verify the location of the terminal device based on a first method, and the first method is different from the method of verifying whether the location of the terminal device is correct based on the first information and the second information.
  • the first device is an access network device
  • the access network device when the access network device verifies that the location of the terminal device is incorrect using the simplified solution of the present application, it can request the core network device to verify the location of the terminal device by other methods to accurately determine the location of the terminal device.
  • the first device verifies that the location of the terminal device is incorrect, the first device verifies the location of the terminal device based on a first method, and the first method is different from a method for verifying whether the location of the terminal device is correct based on the first information and the second information.
  • the first device is a core network device, when the core network device verifies that the location of the terminal device is incorrect using the simplified solution of the present application, the location of the terminal device can be verified by other methods to accurately determine the location of the terminal device.
  • the location of the terminal device is the navigation satellite system location of the terminal device.
  • the present application provides a communication method, which can be applied to a first device, a processor, a chip or a functional module in the first device, etc.
  • the method may include: after the first device obtains the first information, the position offset of the terminal device is determined according to the first information; then, the first device determines whether to verify the currently reported position of the terminal device according to the position offset of the terminal device.
  • the location verification of the terminal device is restarted only when the difference between the current reported location of the terminal device and the previous location is greater than or equal to the distance threshold. Therefore, in the scenario where the terminal device location changes within a small range, the number of terminal device location verifications can be effectively reduced, thereby reducing the location verification overhead of the terminal device.
  • the first device when the first device determines to verify the location currently reported by the terminal device, the first device sends a request message to the second device, and the request message is used to request the second device to verify the location currently reported by the terminal device; or, when the first device determines to verify the location currently reported by the terminal device, the first device verifies the location currently reported by the terminal device. In this way, the number of times the location of the terminal device is verified can be effectively reduced in scenarios where the location of the terminal device does not vary much, thereby reducing the location verification overhead of the terminal device.
  • the first information indicates that the position verification result of the terminal device is that the position reported by the terminal device is correct; the first information includes a first position, the first position is the position reported by the terminal device last time or the position of the terminal device located when verifying the position reported by the terminal device last time; the position offset of the terminal device is the offset between the position currently reported by the terminal device and the first position. In this way, if the previous verification result of the terminal device is credible, the first device can determine whether to re-verify the position of the terminal device based on the position offset of the terminal device.
  • the currently reported position of the terminal device and the last reported position of the terminal device are the navigation satellite system position of the terminal device.
  • the first device determines whether to verify the position currently reported by the terminal device according to the position offset of the terminal device, and the method may be: when the first device determines that the position offset of the terminal device is greater than or equal to the first distance threshold, it determines that the position currently reported by the terminal device needs to be verified; or, when the first device determines that the position offset of the terminal device is less than the first distance threshold, it determines that the position currently reported by the terminal device does not need to be verified.
  • the position verification of the terminal device is restarted only when the difference between the current position reported by the terminal device and the previous position is greater than or equal to the distance threshold. Therefore, in the scenario where the terminal device is approximately stationary, the number of terminal device position verifications can be effectively reduced, thereby reducing the terminal device position verification overhead.
  • the first device before the first device determines whether to verify the currently reported position of the terminal device based on the position offset of the terminal device, the first device also determines the first distance threshold to determine whether to verify the position of the terminal device in combination with the position offset of the terminal device.
  • the first device before the first device determines the position offset of the terminal device according to the first information, the first device obtains the position currently reported by the terminal device and determines that the distance between the position currently reported by the terminal device and the first longitude and latitude boundary line is greater than or equal to a second distance threshold. In this way, when the terminal device is not near the first longitude and latitude boundary line, the position verification is only performed on the terminal device with a significant change in position, thereby reducing the verification frequency and the verification overhead.
  • the present application further provides a communication device, which may be a first device, and has the function of implementing the method in the first aspect or each possible design example of the first aspect.
  • the function may be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, which can execute the above-mentioned
  • a transceiver unit and a processing unit, which can execute the above-mentioned
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory
  • the transceiver is used to send and receive messages or data, and to communicate and interact with other devices in the communication system
  • the processor is configured to support the communication device to perform the corresponding functions in the above-mentioned first aspect or each possible design example of the first aspect.
  • the memory is coupled to the processor, and stores the necessary program instructions and data for the communication device.
  • the present application further provides a communication device, which may be a first device, and has the function of implementing the method in the second aspect or each possible design example of the second aspect.
  • the function may be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, which can perform the corresponding functions in the above-mentioned second aspect or each possible design example of the second aspect. Please refer to the detailed description in the method example for details, which will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory
  • the transceiver is used to send and receive messages or data, and to communicate and interact with other devices in the communication system
  • the processor is configured to support the communication device to perform the corresponding functions in the above second aspect or each possible design example of the second aspect.
  • the memory is coupled to the processor, and stores the necessary program instructions and data for the communication device.
  • an embodiment of the present application provides a communication system, which may include the first device mentioned above, etc.
  • a computer-readable storage medium in an embodiment of the present application, and the computer-readable storage medium stores program instructions.
  • the program instructions When the program instructions are executed on a computer, the computer executes the method described in the first aspect of the embodiment of the present application and any possible design thereof, or the second aspect and any possible design thereof.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer.
  • the computer-readable medium may include a non-transient computer-readable medium, a random-access memory (RAM), a read-only memory (ROM), an electrically erasable programmable read-only memory (EEPROM), a CD-ROM or other optical disk storage, a disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of an instruction or data structure and can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM or other optical disk storage a CD-ROM or other optical disk storage
  • disk storage medium or other magnetic storage device or any other medium that can be used to carry or store the desired program code in the form of an instruction or data structure and can be accessed by a computer.
  • an embodiment of the present application provides a computer program product, including computer program codes or instructions.
  • the computer program codes or instructions are run on a computer, the method described in the above-mentioned first aspect or any possible design of the first aspect, or the above-mentioned second aspect or any possible design of the second aspect is executed.
  • the present application also provides a chip, including a processor, which is coupled to a memory and is used to read and execute program instructions stored in the memory so that the chip implements the method described in the above-mentioned first aspect or any possible design of the first aspect, or the above-mentioned second aspect or any possible design of the second aspect.
  • FIG1 is a schematic diagram of an NTN scenario provided by the present application.
  • FIG2 is a schematic diagram of another NTN scenario provided by the present application.
  • FIG3 is a schematic diagram of the structure of an access network device provided by the present application.
  • FIG4 is a flow chart of a communication method provided by the present application.
  • FIG5 is a flow chart of an example of a communication method provided by the present application.
  • FIG6 is a flowchart of an example of another communication method provided by the present application.
  • FIG7 is a flow chart of another communication method provided by the present application.
  • FIG8 is a schematic diagram of determining whether the position of a terminal device is verified based on a position offset provided by the present application
  • FIG9 is a flowchart of an example of another communication method provided by the present application.
  • FIG10 is a flowchart of an example of another communication method provided by the present application.
  • FIG11 is a schematic diagram of the structure of a communication device provided by the present application.
  • FIG12 is a structural diagram of a communication device provided in the present application.
  • the embodiment of the present application provides a communication method and device for reducing the location verification delay and overhead of a terminal device.
  • the method and device described in the present application are based on the same technical concept. Since the method and device solve the problem in a similar way, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • At least one means one or more, and more means two or more.
  • At least one of the following or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c can be single or plural.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • "/" means “or", for example, a/b means a or b.
  • NTN communication can include networking using drones, high altitude platforms (HAPS), satellites and other devices to provide data transmission, voice communication and other services for terminal devices.
  • HAPS high altitude platforms
  • the NTN system can also include other aerial network devices, which are not limited in the present application.
  • satellites can be divided into geostationary earth orbit (GEO) satellites, medium earth orbit (MEO) satellites and low earth orbit (LEO) satellites.
  • GEO is a synchronous earth satellite orbit. Satellites operating in this orbit are stationary relative to the ground. The orbital altitude of GEO is generally 35786km.
  • LEO and MEO are collectively referred to as non-geostationary orbit (NGSO). Satellites operating in this orbit move at high speed relative to the ground.
  • the orbital altitude of LEO is generally 160 ⁇ 2000km
  • the orbital altitude of MEO is generally 2000 ⁇ 35786km.
  • the satellite's beam moves with the satellite, it can be further divided into earth moving cells (earth moving cells) and geostationary cells (earth fixed cells).
  • earth moving cells the cell is moving relative to the ground, and the satellite's beam pointing follows the satellite's movement;
  • earth fixed cells the cell is fixed relative to the ground for a certain period of time, and the satellite antenna can use its beamforming capability to fix the beam pointing to a certain area on the ground for a certain period of time.
  • the working modes of NTN equipment may include: transparent mode and regenerative mode.
  • the architecture of NTN communication can be divided into the following two categories: one is the transparent forwarding architecture, in which the NTN equipment can be a relay or amplifier, and can perform RF filtering, amplification, etc., to regenerate the physical layer signal.
  • the NTN equipment can be responsible for layer 1 (L1) relay for physical layer forwarding, and the upper layer is invisible.
  • the second is the regenerative architecture, in which the NTN equipment has the processing function of the access network equipment.
  • the satellite in the regenerative working mode, can be divided into a regenerative satellite without an inter-satellite link, that is, there is no inter-satellite link (ISL) between satellites; or a regenerative satellite with an inter-satellite link, that is, there is an interface between satellites to directly exchange data, where the inter-satellite link is an Xn port; or a regenerative satellite with a distributed unit (DU) processing function of an access network device, in which the satellite acts as a DU.
  • ISL inter-satellite link
  • DU distributed unit
  • FIG1 shows a schematic diagram of an NTN scenario applicable to an embodiment of the present application, and the NTN scenario can be an application scenario of a transparent forwarding architecture.
  • the terminal device can communicate with the 5G core network (CN) through the access network, and then connect to the data network (DN) through the 5G CN.
  • the satellite and the NTN gateway can be used as a relay device between the terminal device and the access network device or as a remote radio unit (RRU) of the access network device.
  • RRU remote radio unit
  • FIG2 shows another NTN scenario schematic diagram applicable to the embodiment of the present application, and the NTN scenario can be an application scenario of a regenerative architecture.
  • the satellite can be used as an access network device to form an access network with the NTN gateway, and communicate with the core network through the NTN gateway.
  • the satellite can also provide wireless access services for terminal devices.
  • FIG2 exemplarily shows a regenerative satellite architecture without an intersatellite link.
  • FIGs 1 and 2 only show one satellite and one NTN gateway. In actual use, an architecture of multiple satellites and/or multiple NTN gateways may be adopted as needed.
  • Each satellite may provide services to one or more terminal devices, each NTN gateway may correspond to one or more satellites, and each satellite may correspond to one or more NTN gateways, which is not specifically limited in the embodiments of the present application.
  • FIG. 1 and FIG. 2 are merely examples of NTN scenarios, and NTN scenarios may also include other specific scenarios, which are not limited in this application.
  • the devices involved in the embodiments of the present application include terminal devices, access network devices and core network devices. Among them:
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • terminal equipment can be a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • some examples of terminal equipment can be: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Access network equipment may refer to a radio access network (RAN) node (or device) that connects a terminal device to a wireless network, and may also be referred to as a base station.
  • RAN nodes may include: a gNB, a transmission reception point (TRP), an evolved Node B (eNB), a radio network controller (RNC), a Node B (NB), a base station controller (BSC), a base transceiver station (BTS), a home base station (e.g., home evolved Node B, or home Node B, HNB), a base band unit (BBU), or a wireless fidelity (Wifi) access point (AP).
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home evolved Node B, or home Node B, HNB
  • BBU base band unit
  • AP wireless fidelity
  • the access network device may include a centralized unit (CU) node, a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the RAN device including the CU node and the DU node splits the protocol layer of the gNB in the NR system, places the functions of some protocol layers in the CU for centralized control, and distributes the functions of the remaining part or all of the protocol layers in the DU, which is centrally controlled by the CU, as shown in FIG3.
  • the CU may be further divided into a control plane (CU-CP) and a user plane (CU-UP).
  • CU-CP control plane
  • CU-UP user plane
  • the CU-CP is responsible for the control plane functions, mainly including radio resource control (RRC) and the packet data convergence protocol (PDCP) (i.e., PDCP-C) corresponding to the control plane.
  • PDCP-C is mainly responsible for encryption and decryption, integrity protection, data transmission, etc. of the control plane data.
  • the CU-UP is responsible for the user plane functions, mainly including the service data adaptation protocol (SDAP) and the PDCP (i.e., PDCP-U) corresponding to the user plane.
  • SDAP is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • PDCP-U is mainly responsible for encryption and decryption, integrity protection, header compression, sequence number maintenance, data transmission, etc.
  • CU-CP and CU-UP are connected through the E1 interface.
  • CU-CP represents that the gNB is connected to the core network through the NG interface and is connected to the DU through the F1 interface control plane (i.e. F1-C).
  • CU-UP is connected to the DU through the F1 interface user plane (i.e. F1-U).
  • F1-C F1 interface control plane
  • F1-U F1 interface user plane
  • PDCP-C is also in CU-UP.
  • Core network equipment refers to equipment in the core network that provides service support for terminal equipment.
  • core network equipment are: access and mobility management function (AMF) entity, session management function (SMF) entity, user plane function (UPF) entity, etc., which are not listed here one by one.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the AMF entity can be responsible for access management and mobility management of terminal equipment
  • the SMF entity can be responsible for session management, such as user session establishment, etc.
  • the UPF entity can be a functional entity of the user plane, mainly responsible for connecting to the external network.
  • the entity in this application can also be referred to as a network element or a functional entity.
  • the AMF entity can also be referred to as an AMF network element or an AMF functional entity.
  • the SMF entity can also be referred to as an SMF network element or an SMF functional entity, etc.
  • single-satellite positioning algorithms are considered.
  • the principle of single-satellite positioning is: assuming that the terminal device is stationary, since the satellite moves at high speed relative to the ground, the distance between the terminal device and the same satellite at different times is measured to form an equivalent multi-satellite scenario.
  • the position of the terminal device can be determined by continuously measuring the round-trip time (RTT) at multiple times.
  • RTT round-trip time
  • the accuracy of the single-satellite positioning algorithm based on multiple measurements depends on the estimation accuracy of RTT and the measurement time interval of RTT. The longer the measurement time interval of RTT, the smaller the solution error and the higher the positioning accuracy. However, an excessively long measurement time interval will result in a longer verification delay. This causes the single-satellite positioning algorithm based on multiple measurements to experience a longer verification delay.
  • the network side After obtaining the positioning result, the network side will verify the location information of the reported terminal device. For terminal devices that fail the location verification, the core network side determines that the terminal device is untrustworthy, and then the core network side will trigger the terminal device to register. For terminal devices that pass the location verification, an optional solution for determining the trustworthiness of the terminal device is: if the location verification of the terminal device passes for multiple consecutive times, the terminal device is considered to be trustworthy. After determining that the terminal device is trustworthy, the core network side will mark the location of the terminal device as trustworthy. Thereafter, the core network device will send the trustworthy mark of the terminal device to the access network device.
  • the positioning process is time-consuming and has high overhead. Every time there is a new positioning request, for example, every time the terminal device reconnects to the network, the location reported by the terminal device must be re-verified, which may cause a large delay and overhead in the location confirmation of the terminal device.
  • the embodiment of the present application proposes a communication method to reduce the location verification delay and overhead of the terminal device.
  • the network side can determine that there is no need to realign the reported location for verification. Therefore, it is possible to determine whether the location verification needs to be re-performed based on the location change of the terminal device, so as to reduce the frequency of the terminal device location verification and save air interface overhead.
  • the operation performed by a certain device may also be performed by a processor, a chip or a chip system, or a functional module in the device, and the present application does not limit this.
  • the operation performed by the first device may also be performed by a processor, a chip or a chip system, or a functional module in the first device.
  • an embodiment of the present application provides a communication method, as shown in FIG4 , the specific process of the method may include:
  • Step 401 The first device obtains first information, where the first information is used to indicate a location verification result of the terminal device.
  • the first device may be an access network device, or may also be a core network device.
  • the access network device obtains the first information from the core network device.
  • the core network device may send the first information to the access network device when indicating to the access network device that the location verification result of the terminal device is that the location of the terminal device is correct.
  • the core network device may send the first information to the access network device when the terminal device re-accesses the network from an idle state or an inactive state (IDLE/IACTIVE).
  • the first device obtaining the first information may be that the core network device obtains and saves the first information.
  • Step 402 The first device obtains second information, where the second information includes timing advance information.
  • the first device when the first device is an access network device, the first device obtains the second information by: the access network device can obtain the time advance information reported by the terminal device, that is, the time advance information can be autonomously reported by the terminal device to the access network device; or, the access network device sends a message to the terminal device requesting the time advance information, and then receives the time advance information from the terminal device.
  • the method may be: the core network device instructs the access network device to obtain the timing advance information of the terminal device, the access network device obtains the timing advance information reported by the terminal device, and sends the obtained timing advance information to the core network device.
  • the manner in which the access network device obtains the timing advance information reported by the terminal device is not limited here, and optionally, the access network device may request the terminal device to report, or the terminal device may actively report, or other methods may be used.
  • the core network device instructs the access network device to obtain timing advance information of the terminal device, the access network device obtains the timing advance information including transmission delays of a feeder link and a service link, or the access network device obtains the timing advance information corresponding only to the service link.
  • the core network device when the core network device instructs the access network device to obtain the timing advance information of the terminal device, the core network device may instruct the access network device to obtain the timing advance information including the transmission delay of the feeder link and the service link, or may instruct the access network device to obtain the timing advance information corresponding to only the service link.
  • the link between the NTN device and the terminal device may be called a service link, and the link between the NTN device and the gateway device may be called a feeder link.
  • the time advance information of the feeder link transmission delay in the present application refers to a common time advance (Common TA).
  • the common time advance (Common TA) is determined based on the transmission delay between the non-terrestrial network device and the reference point.
  • the second information may also include a timestamp when the terminal device reports the timing advance information.
  • the timestamp may indicate the acquisition time or reporting time of the timing advance information.
  • the timestamp may be a coordinated universal time (UTC) time or an offset time from the reporting time.
  • UTC coordinated universal time
  • whether the reported timing advance information is valid can be determined based on the timestamp of the terminal device reporting the timing advance information. For example, if it is determined based on the timestamp that the time interval between the time when the timing advance information is acquired or reported and the time when the terminal device verifies the location is greater than a preset threshold, the timing advance information is considered unavailable and needs to be acquired again.
  • Step 403 The first device verifies whether the location of the terminal device is correct based on the first information and the second information.
  • Verifying whether the location of the terminal device is correct can also be described as verifying whether the location of the terminal device is valid. Or it can be described as verifying whether the location of the terminal device is credible, or it can be described as verifying whether the location verification result of the terminal device is passed, or there can be many other alternative descriptions, which are not limited in this application.
  • the first device may determine and verify whether the location of the terminal device is correct based on the first information and the second information by the following method: if the first device determines that the location verification result of the terminal device indicated by the first information is that the location of the terminal device is correct, then the first device verifies whether the location of the terminal device is correct based on the time advance information of the terminal device. That is to say, on the premise that the location verification result of the terminal device indicated by the first information is that the location of the terminal device is correct, the first device verifies whether the location of the terminal device is correct based on the time advance information of the terminal device.
  • the first device verifies whether the position of the terminal device is correct based on the time advance information of the terminal device.
  • the method may be as follows: the first device determines a candidate position of the terminal device based on the time advance information; when the distance between the candidate position of the terminal device and the position of the terminal device is within a first distance range, the first device may determine that the position of the terminal device is correct; otherwise, it may determine that the position of the terminal device is incorrect.
  • the first distance range may be 5-10 km.
  • the timing advance information may include at least two timing advances (TAs), and then the first device may determine the candidate position of the terminal device based on the at least two TAs.
  • TAs timing advances
  • the method by which the first device determines the candidate position of the terminal device based on at least two time advances may be as follows: the first device calculates the candidate position of the terminal device based on two time advances T1 and T2.
  • the first device calculates the transmission distance according to T1 and T2, that is, the distances D1 and D2 from the terminal device to the non-terrestrial network device.
  • c is the speed of light in a vacuum.
  • the first device calculates the distances M1 and M2 between the terminal device and the sub-satellite reference point.
  • H1 and H2 represent the height of the non-ground network device at the moment when the terminal device determines the two time advances T1 and T2.
  • x ⁇ 2 represents the square of x
  • sqrt() represents the square root function.
  • the first device can construct two circles with M1 and M2 as radii, using the sub-satellite reference point position of the satellite at the two time advances T1 and T2 as the center, and the intersection of the two circles can be used as the candidate position of the terminal device.
  • three time advances or more than three time advances may be used to determine the candidate position of the terminal device.
  • This example is only used as an example of a method for determining the candidate position of the terminal device based on at least two time advances, and the present application does not limit the specific method for determining the candidate position based on the time advance.
  • the first device may also obtain the location of the terminal device.
  • the access network device may request the location of the terminal device from the terminal device, and then the terminal device sends the location of the terminal device to the access network device.
  • the core network device instructs the access network device to request the location of the terminal device from the terminal device, and then the access network device sends the location of the terminal device to the core network device after obtaining the location of the terminal device from the terminal device.
  • the location of the terminal device may be a global navigation satellite system (GNSS) location of the terminal device, or may be a parameter containing the location information of the terminal device obtained by an access network device based on the navigation satellite system position mapping of the terminal device.
  • GNSS global navigation satellite system
  • the first device when the timing advance information includes a feeder link transmission delay, when the first device performs a location verification operation of the terminal device based on the timing advance information, it can first remove the feeder link transmission delay in the timing advance information to obtain the timing advance information corresponding to the service link, and then perform a corresponding operation based on the timing advance information corresponding to the service link.
  • Step 404 When the first device verifies that the location of the terminal device is correct, the first device sends third information to the second device, where the third information is used to indicate that the location of the terminal device is correct.
  • step 404 is an optional step, which is only shown as an example in FIG. 4 and is not intended to limit the present application.
  • the second device can be a device that requests verification of the location of the terminal device, such as AMF, terminal device, etc.
  • the first device when the first device is an access network device, when the first device verifies that the location of the terminal device is incorrect, the first device may send a request message to a third device, the request message being used to request the third device to verify the location of the terminal device based on a first method, the first method being different from a method for verifying whether the location of the terminal device is correct based on the first information and the second information.
  • the third device may be a core network device.
  • the first device when the first device is an access network device, when the first device verifies that the location of the terminal device is incorrect, the first device may also send a notification message to the core network device, and the notification message is used to request the core network to release the terminal device, that is, to release the context of the terminal device.
  • the first device when the first device is a core network device, when the first device verifies that the location of the terminal device is incorrect, the first device may verify the location of the terminal device based on a first method, which is different from a method for verifying whether the location of the terminal device is correct based on the first information and the second information.
  • the first method may be a commonly used multiple-cycle time (Multi-RTT) algorithm, a time difference of arrival (TDOA) algorithm, etc., which is not limited in this application.
  • Multi-RTT multiple-cycle time
  • TDOA time difference of arrival
  • the position of the terminal device is verified by utilizing the previous terminal device position verification results and combining with the time advance information.
  • the first device is RAN
  • the terminal device is UE
  • the core network device is CN.
  • the UE position has been verified before and the result is reliable.
  • the UE has a new GNSS position report
  • the RAN confirms the newly reported position of the UE.
  • the process of this example may include:
  • Step 501 CN sends first information to RAN, where the first information is used to indicate a location verification result of the UE.
  • the location verification result of the UE indicated by the first information is that the location of the UE is correct.
  • the CN may send the first information to the RAN when indicating to the RAN that the location verification result of the UE is that the location of the UE is correct.
  • the CN may send the first information to the RAN when the UE re-accesses the network from the IDLE/IACTIVE state.
  • Step 502 RAN sends TA request information to UE.
  • Step 503 The UE sends TA information to the RAN.
  • the UE may also send a timestamp of the reported TA information to the RAN.
  • the timestamp may be a UTC time or a time offset from the reporting time.
  • the TA information is included in the second information mentioned above.
  • the RAN requests the UE for TA information as an example, and optionally, the UE may also actively report the TA information to the RAN, which is not shown in detail here.
  • Step 504 The RAN sends information requesting the location of the UE to the UE.
  • Step 505 The UE sends the location of the UE to the RAN.
  • Step 506 The RAN verifies whether the location of the UE is correct according to the first information and the TA information. If it is correct, step 507 is executed; if it is incorrect, step 508-step 509 is executed.
  • Step 507 When the RAN verifies that the location of the UE is correct, the RAN sends third information to the second device, where the third information is used to indicate that the location of the UE is correct.
  • Step 508 When the RAN verifies that the location of the UE is incorrect, a request message is sent to the CN, where the request message is used to request the CN to verify the location of the UE based on the first method.
  • the description of the first method may refer to the description in the embodiment shown in FIG4 , and will not be repeated here.
  • Step 509 The CN verifies the location of the UE based on the first method.
  • the UE position is verified by combining the previous UE position verification result with the reported TA. There is no need to measure the transmission delay using a reference signal, which can reduce the air interface overhead. In addition, the UE does not need to be re-positioned during the verification process, thereby further reducing the air interface overhead and verification delay of the verification process.
  • the first device is CN
  • the terminal device is UE
  • the access network device is RAN.
  • the UE position has been verified before and the result is reliable.
  • the UE has a new GNSS position report
  • the CN confirms the newly reported position of the UE.
  • the process of this example may include:
  • Step 601 CN obtains saved first information, where the first information is used to indicate a location verification result of the UE.
  • the location verification result of the UE indicated by the first information is that the location of the UE is correct.
  • Step 602 The CN sends first indication information to the RAN, where the first indication information is used to instruct the RAN to obtain the TA information of the UE.
  • CN can instruct RAN to obtain TA information including feeder link transmission delay, or can also instruct RAN to obtain only TA information corresponding to service link.
  • Step 603 RAN obtains TA information reported by UE.
  • the present application does not limit the manner in which the RAN obtains the TA information reported by the UE.
  • the RAN may request the UE to report, or the UE may actively report, or other manners may be used.
  • Step 604 RAN sends the acquired TA information to CN.
  • Step 605 The CN sends second indication information to the RAN, where the second indication information is used to instruct the RAN to request the UE to report its location.
  • Step 606 The RAN sends information requesting the location of the UE to the UE.
  • Step 607 The UE sends the location of the UE to the RAN.
  • Step 608 RAN sends the location of UE to CN.
  • Step 609 The CN verifies whether the location of the UE is correct based on the first information and the TA information. If it is correct, the CN executes step 610; if it is incorrect, the CN executes step 611.
  • Step 610 When the CN verifies that the location of the UE is correct, the CN sends third information to the second device, where the third information is used to indicate that the location of the UE is correct.
  • Step 611 The CN verifies the location of the UE based on the first method.
  • the description of the first method may refer to the description in the embodiment shown in FIG4 , and will not be repeated here.
  • the UE position is verified by combining the previous UE position verification result with the reported TA. There is no need to measure the transmission delay using a reference signal, which can reduce the air interface overhead. In addition, there is no need to re-position the UE during the verification process, thereby further reducing the air interface overhead and verification delay of the verification process.
  • the above embodiment introduces a method for verifying the UE location by combining the previous UE location verification result and TA information to reduce verification overhead and delay.
  • the following introduces another communication method that can reduce verification overhead and delay by reducing the frequency of verifying the UE location.
  • FIG. 7 Another communication method provided in an embodiment of the present application is shown in FIG. 7 .
  • the specific process of the method may include:
  • Step 701 The first device obtains first information, where the first information is used to indicate a location verification result of the terminal device.
  • the first device may be an access network device, or may also be a core network device.
  • the method for the first device to obtain the first information can refer to the relevant description involved in the embodiment shown in FIG. 4 , which will not be repeated here.
  • the first information includes a first location, which is the location last reported by the terminal device or the location of the terminal device located when verifying the location last reported by the terminal device.
  • Step 702 The first device determines the position offset of the terminal device according to the first information.
  • the first device determines the position offset of the terminal device according to the first information, and the method may be: the first device determines the offset between the position currently reported by the terminal device and the first position as the position offset of the terminal device.
  • the position offset of the terminal device shown may be the offset between the position currently reported by the terminal device and the position last reported by the terminal device; or, the position offset of the terminal device shown may be the offset between the position currently reported by the terminal device and the position of the terminal device located when verifying the position last reported by the terminal device.
  • Delta_D represents the position offset of the terminal device
  • x1, y1, z1 represent the coordinate representation of the current reported position of the terminal device in the rectangular coordinate system
  • x0, y0, z0 represent the coordinate representation of the first position in the rectangular coordinate system
  • sqrt() represents the square root function
  • x ⁇ 2 represents the square of x.
  • the above method for determining the position offset is only an example, and the present application does not limit the specific method for calculating the position offset.
  • the location currently reported by the terminal device and the location last reported by the terminal device are the GNSS location of the terminal device.
  • the first device obtains the position currently reported by the terminal device; the first device determines that the distance between the position currently reported by the terminal device and the first longitude and latitude boundary line is greater than or equal to a second distance threshold.
  • the first device may directly determine that the position of the terminal device needs to be verified, and optionally, the first device may further directly execute step 704a or 704b.
  • the second distance threshold may be predefined or determined by the first device.
  • the second distance threshold may be 5-10 km.
  • the specific method for the first device to obtain the location currently reported by the terminal device can refer to the relevant description involved in the embodiment shown in Figure 4, which will not be repeated here.
  • Step 703 The first device determines whether to verify the location currently reported by the terminal device according to the location offset of the terminal device.
  • the first device determines whether to verify the location currently reported by the terminal device according to the location offset of the terminal device, and the method may be: when the first device determines that the location offset of the terminal device is greater than or equal to the first distance threshold, it determines that the location currently reported by the terminal device needs to be verified; or, when the first device determines that the location offset of the terminal device is less than the first distance threshold, it determines that the location currently reported by the terminal device does not need to be verified.
  • FIG8 shows a schematic diagram of determining whether the location of a terminal device is verified based on the location offset.
  • the first device may determine the first distance threshold, which is used to determine whether to perform position verification of the terminal device.
  • the core network may determine the first distance threshold by: configuring the first distance threshold by the first device.
  • the method for the access network device to determine the first distance threshold may be: the access network device obtains the first distance threshold from a core network device, and the first distance threshold is configured by the core network device.
  • the first distance threshold may also be configured by the access network.
  • the first distance threshold may be 5-10 km.
  • Step 704a When the first device determines to verify the location currently reported by the terminal device, the first device sends a request message to the second device, where the request message is used to request the second device to verify the location currently reported by the terminal device.
  • the first device is an access network device
  • the second device is a core network device.
  • Step 704b When the first device determines to verify the location currently reported by the terminal device, the first device verifies the location currently reported by the terminal device.
  • the first device is a core network device.
  • step 704a and step 704b are optional steps, which are only shown as examples in FIG. 7 and are not limited in this application.
  • the location verification of the terminal device is restarted only when the difference between the current reported location of the terminal device and the previous location is greater than or equal to the distance threshold. Therefore, in the scenario where the terminal device location changes within a small range, the number of terminal device location verifications can be effectively reduced, thereby reducing the overhead of terminal device location verification.
  • FIG. 7 Based on the embodiment shown in FIG. 7 , the method of the embodiment shown in FIG. 7 is described below through two specific examples shown in FIG. 9 and FIG. 10 .
  • the first device is CN
  • the terminal device is UE
  • the access network device is RAN.
  • the UE position has been verified before and the result is reliable. Subsequently, the UE has new GNSS position information reported.
  • the CN determines whether it is necessary to re-verify the UE reported position according to the UE position change.
  • the process of this example may include:
  • Step 901 CN obtains saved first information, where the first information is used to indicate a location verification result of the UE.
  • the location verification result of the UE indicated by the first information is that the location of the UE is correct.
  • Step 902 CN configures a first distance threshold, which is used to determine whether to perform location verification of the terminal device.
  • Step 903 The CN sends indication information to the RAN, where the indication information is used to instruct the RAN to request the UE to report its location.
  • Step 904 The RAN sends information to the UE requesting the UE to report its location.
  • Step 905 The UE reports the location of the UE to the RAN.
  • Step 906 RAN sends the location of UE to CN.
  • Step 907 The CN determines the position offset of the UE according to the first information and the position currently reported by the UE.
  • the first information includes a first position, where the first position is a position reported last by the UE or a position of the UE located when verifying the position reported last by the UE.
  • the UE's position offset may be the offset between the UE's currently reported position and the UE's last reported position; or, the UE's position offset may also be the offset between the UE's currently reported position and the UE's position located when verifying the UE's last reported position.
  • Step 908 The CN determines whether the position offset of the UE is greater than or equal to the first distance threshold. If so, step 909 is executed; otherwise, the determination is terminated.
  • Step 909 The CN verifies the location currently reported by the UE.
  • the UE location verification is restarted only when the difference between the location reported by the UE and the previous location is greater than the distance threshold. Therefore, in the scenario where the UE location change range is not large, the number of UE location verifications can be effectively reduced, thereby reducing the UE location verification overhead.
  • the first device is RAN
  • the terminal device is UE
  • the core network device is CN.
  • the UE position has been verified before and the result is reliable.
  • the RAN triggers the UE position verification.
  • the process of this example may include:
  • Step 1001 CN sends first information to RAN, where the first information is used to indicate a location verification result of the UE.
  • the location verification result of the UE indicated by the first information is that the location of the UE is correct.
  • the CN may send the first information to the RAN when indicating to the RAN that the location verification result of the UE is that the location of the UE is correct.
  • the CN may send the first information to the RAN when the UE re-accesses the network from the IDLE/IACTIVE state.
  • Step 1002 CN configures a first distance threshold, which is used to determine whether to perform location verification of the terminal device.
  • Step 1003 The CN sends the first distance threshold to the RAN.
  • Step 1004 The CN sends indication information to the RAN, where the indication information is used to instruct the RAN to request the UE to report its location.
  • Step 1005 The RAN sends information to the UE requesting the UE to report its location.
  • Step 1006 The UE reports the location of the UE to the RAN.
  • Step 1007 RAN sends the location of UE to CN.
  • Step 1008 The RAN determines whether the distance between the UE's currently reported position and the first longitude and latitude boundary line is greater than or equal to a second distance threshold. If so, execute steps 1009-1010; otherwise, execute steps 1011-1012.
  • Step 1009 The RAN determines the location offset of the UE according to the first information and the location currently reported by the UE.
  • the first information includes a first position, where the first position is a position reported last by the UE or a position of the UE located when verifying the position reported last by the UE.
  • the UE's position offset may be the offset between the UE's currently reported position and the UE's last reported position; or, the UE's position offset may also be the offset between the UE's currently reported position and the UE's position located when verifying the UE's last reported position.
  • Step 1010 The RAN determines whether the position offset of the UE is greater than or equal to a first distance threshold, and if so, executes step 1011, otherwise, the determination ends.
  • Step 1011 RAN sends a request message to CN, where the request message is used to request CN to verify the location currently reported by the terminal device.
  • Step 1012 The CN verifies the location currently reported by the UE.
  • CN when the UE is near the first longitude and latitude boundary line, CN promptly verifies the UE location to ensure that the UE can access the correct core network; when the UE is not near the first longitude and latitude boundary line, CN only verifies the location of UEs with obvious changes in location, thereby reducing the verification frequency and verification overhead.
  • the first device can also reduce the verification overhead by the following method.
  • the first device can determine a first distance between the terminal device and the NTN device according to the candidate position of the terminal device, and the NTN device covers the terminal device; the first device determines a second distance according to the timing advance; the first device determines whether to Re-verify the location of the terminal device.
  • the first device determines the first distance between the terminal device and the NTN device according to the location of the terminal device.
  • the method may be: the first device determines the first distance between the terminal device and the NTN device according to the location of the terminal device and the location of the NTN device.
  • the first device determines whether to re-verify the location of the terminal device based on the first distance and the second distance, and the method may be: when the first device determines that the distance difference between the first distance and the second distance is less than or equal to a third distance threshold, it is determined not to re-verify the location of the terminal device; or, when the first device determines that the distance difference between the first distance and the second distance is greater than the third distance threshold, it is determined to re-verify the location of the terminal device.
  • the third distance threshold may be 5-10km.
  • the first device when the first device is an access network device, when the first device determines to re-verify the location of the terminal device, the first device requests the core network device to verify the location of the terminal device.
  • the first device is a core network device, when the first device determines to re-verify the location of the terminal device, the first device verifies the location of the terminal device.
  • the embodiments of the present application further provide a communication device, as shown in FIG11 , the communication device 1100 may include a transceiver unit 1101 and a processing unit 1102.
  • the transceiver unit 1101 is used for the communication device 1100 to receive information (message or data) or send information (message or data), and the processing unit 1102 is used to control and manage the actions of the communication device 1100.
  • the processing unit 1102 may also control the steps performed by the transceiver unit 1101.
  • the communication device 1100 may specifically be the first device in the above embodiment, a processor in the first device, or a chip, or a chip system, or a functional module, etc.
  • the communication device 1100 when used to implement the function of the first device in the embodiments described in Figures 4 to 6 above, it may specifically include: the processing unit 1102 is used to obtain first information, the first information is used to indicate the location verification result of the terminal device; obtain second information, the second information includes time advance information; and verify whether the location of the terminal device is correct based on the first information and the second information.
  • the processing unit 1102 determines whether the location of the terminal device is correct based on the first information and the second information, it can be used to: determine that the location verification result of the terminal device indicated by the first information is that the location of the terminal device is correct; and verify whether the location of the terminal device is correct based on the time advance information of the terminal device.
  • the processing unit 1102 can be used to: determine a candidate position of the terminal device based on the time advance information; when the distance between the candidate position of the terminal device and the position of the terminal device is within a first distance range, determine that the position of the terminal device is correct.
  • the transceiver unit 1101 is used to send third information to the second device when the processing unit 1102 verifies that the location of the terminal device is correct, and the third information is used to indicate that the location of the terminal device is correct.
  • the transceiver unit 1101 is used to: when the processing unit 1102 verifies that the location of the terminal device is incorrect, send a request message to a third device, and the request message is used to request the third device to verify the location of the terminal device based on a first method, and the first method is different from the method of verifying whether the location of the terminal device is correct based on the first information and the second information.
  • the processing unit 1102 is also used to: when the location of the terminal device is verified to be incorrect, verify the location of the terminal device based on a first method, and the first method is different from a method for verifying whether the location of the terminal device is correct based on the first information and the second information.
  • the location of the terminal device is a navigation satellite system location of the terminal device.
  • the communication device 1100 when used to implement the function of the first device in the embodiments described in Figures 7, 9-10 above, it may specifically include: the processing unit 1102 is used to obtain first information, and the first information is used to indicate the location verification result of the terminal device; determine the location offset of the terminal device according to the first information; determine whether to verify the currently reported location of the terminal device according to the location offset of the terminal device.
  • the transceiver unit 1101 is used to send a request message to a second device when the processing unit 1102 determines to verify the currently reported position of the terminal device, and the request message is used to request the second device to verify the currently reported position of the terminal device; or, the processing unit 1102 is also used to: when determining to verify the currently reported position of the terminal device, verify the currently reported position of the terminal device.
  • the first information indicates that the position verification result of the terminal device is that the position reported by the terminal device is correct; the first information includes a first position, the first position is the position reported by the terminal device last time or the position of the terminal device located when verifying the position reported by the terminal device last time; the position offset of the terminal device is the position of the terminal device The offset between the currently reported position of the device and the first position.
  • the location currently reported by the terminal device and the location last reported by the terminal device are the navigation satellite system location of the terminal device.
  • the processing unit 1102 determines whether to verify the currently reported position of the terminal device based on the position offset of the terminal device, it can be used to: when it is determined that the position offset of the terminal device is greater than or equal to a first distance threshold, determine that the currently reported position of the terminal device needs to be verified; or, when it is determined that the position offset of the terminal device is less than the first distance threshold, determine that the currently reported position of the terminal device does not need to be verified.
  • the processing unit 1102 is further used to: determine the first distance threshold before determining whether to verify the currently reported position of the terminal device according to the position offset of the terminal device.
  • the processing unit 1102 is also used to: obtain the currently reported position of the terminal device before determining the position offset of the terminal device based on the first information; determine that the distance between the currently reported position of the terminal device and the first longitude and latitude boundary line is greater than or equal to a second distance threshold.
  • each functional unit in the embodiments of the present application may be integrated into a processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) or a processor (processor) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program code.
  • the embodiments of the present application further provide a communication device, as shown in FIG12, the communication device 1200 may include a transceiver 1201 and a processor 1202.
  • the communication device 1200 may further include a memory 1203.
  • the memory 1203 may be disposed inside the communication device 1200 or outside the communication device 1200.
  • the processor 1202 may control the transceiver 1201 to receive and send information, messages or data, etc.
  • the processor 1202 may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and a NP.
  • the processor 1202 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the transceiver 1201, the processor 1202 and the memory 1203 are interconnected.
  • the transceiver 1201, the processor 1202 and the memory 1203 are interconnected via a bus 1204;
  • the bus 1204 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus may be divided into an address bus, a data bus, a control bus and the like.
  • FIG12 is represented by only one thick line, but it does not mean that there is only one bus or one type of bus.
  • the memory 1203 is used to store programs, etc.
  • the program may include a program code, and the program code includes a computer operation instruction.
  • the memory 1203 may include a RAM, and may also include a non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 1202 executes the application stored in the memory 1203 to implement the above functions, thereby realizing the functions of the communication device 1200.
  • the communication device 1200 may be the first device in the above embodiment.
  • the transceiver 1201 can implement the transceiver operation performed by the first device in the embodiments shown in Figures 4 to 6; the processor 1202 can implement other operations except the transceiver operation performed by the first device in the embodiments shown in Figures 4 to 6.
  • the processor 1202 can implement other operations except the transceiver operation performed by the first device in the embodiments shown in Figures 4 to 6.
  • the communication device 1200 implements the function of the first device in the embodiments shown in FIG. 7, FIG. 9-FIG. 10
  • the transceiver 1201 can implement the transceiver operation performed by the first device in the embodiments shown in FIG. 7, FIG. 9-FIG. 10; the processor 1202 can implement other operations except the transceiver operation performed by the first device in the embodiments shown in FIG. 7, FIG. 9-FIG. 10.
  • the processor 1202 can implement other operations except the transceiver operation performed by the first device in the embodiments shown in FIG. 7, FIG. 9-FIG. 10.
  • an embodiment of the present application provides a communication system, which may include the terminal device and the first device involved in the above embodiments.
  • An embodiment of the present application further provides a computer-readable storage medium, wherein the computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • An embodiment of the present application further provides a computer program product, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • An embodiment of the present application also provides a chip, including a processor, wherein the processor is coupled to a memory and is used to call a program in the memory so that the chip implements the communication method provided by the above method embodiment.
  • An embodiment of the present application also provides a chip, which is coupled to a memory and is used to implement the communication method provided in the above method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以减少终端设备的位置验证时延和开销。第一设备获得用于指示终端设备的位置验证结果的第一信息,以及获得包括时间提前量信息的第二信息;第一设备根据第一信息和第二信息验证终端设备上报的位置是否为正确。利用之前的终端设备的位置验证结果,以及结合时间提前量信息对终端设备的位置进行验证,不需要利用参考信号对传输时延进行测量,可以减少空口开销;此外,在验证过程中不需要重新对终端设备进行定位,因此可以进一步的减少验证过程的空口开销及验证时延。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年11月03日提交中国专利局、申请号为202211371992.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
非地面网络(non-terrestrial network,NTN)中借助于非地面网络设备而实现的通信称为非地面通信。NTN系统可以包括卫星系统。按照卫星高度,即卫星轨位高度,可以将卫星分为高椭圆轨道(highly elliptical orbit,HEO)卫星、对地静止轨道(geosynchronous earth orbit,GEO)卫星、中地球轨道(medium earth orbit,MEO)卫星和低地球轨道(low earth orbit,LEO)卫星。此外,NTN系统还可以包括高空平台(high altitude platform station,HAPS)通信系统等空中网络设备。NTN具有覆盖范围广、通信距离远、可靠性高、灵活性大、吞吐高等优点,不受地理环境、气候条件和自然灾害的影响,已经被广泛应用于各种领域。将NTN通信引入到移动网络通信,例如第五代(5th-Generation,5G)通信,可以提高用户体验。一方面,卫星网络可以为地面网络难以覆盖的区域,如海洋、森林、沙漠或偏远地区等提供通信服务;另一方面,卫星网络可以增强移动通信的可靠性,如为火车、飞机等高速移动场景下的用户提供更稳定的通信服务;此外,卫星网络还可以提供更多的数据传输资源,支持更多数量的终端设备的连接。
对终端设备上报的位置进行验证是保证终端设备接入正确的核心网以及支持安规服务的必要步骤。目前,在对终端设备上报的位置进行验证时,一种可能的方案是先对终端设备进行定位,基于终端设备的定位结果和终端设备上报的位置进行验证,以确保终端设备上报的位置准确。根据上述方法,当每次有新的终端设备位置验证需求时,网络侧需要重新对终端设备进行定位-验证流程,上述过程可能会造成终端设备的位置验证时延和开销较大。
发明内容
本申请提供一种通信方法及装置,用以减少终端设备的位置验证时延和开销。
第一方面,本申请提供了一种通信方法,该方法可以应用于第一设备,第一设备中的处理器、芯片或一个功能模块等,该方法可以包括:第一设备获得第一信息和第二信息,并根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确。其中,所述第一信息用于指示终端设备的位置验证结果;所述第二信息包括时间提前量信息。
通过上述方法,利用之前的终端设备的位置验证结果,以及结合时间提前量信息对终端设备的位置进行验证,不需要利用参考信号对传输时延进行测量,可以减少空口开销;此外,在验证过程中不需要重新对终端设备进行定位,因此可以进一步的减少验证过程的空口开销及验证时延。
在一个可能的设计中,所述第一设备根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确,方法可以为:所述第一设备确定所述第一信息指示的所述终端设备的位置验证结果为所述终端设备的位置为正确的;进而所述第一设备根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确。这样在终端设备之前的验证结果可信的情况下,第一设备可以简化终端设备的验证方式,即根据时间提前量信息验证即可,从而可以减少验证时延和空口开销。
在一个可能的设计中,所述第一设备根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确,方法可以为:所述第一设备根据所述时间提前量信息确定所述终端设备的候选位置;当所述终端设备的候选位置和所述终端设备的位置的距离在第一距离范围内时,则所述第一设备可以确定所述终端设备的位置为正确。上述实现方式比较简单,可以简化终端设备的位置验证流程,从而可以减少验证时延和开销。
在一个可能的设计中,当所述第一设备验证所述终端设备的位置为正确,所述第一设备向第二设备发送第三信息,所述第三信息用于指示所述终端设备的位置为正确。
在一个可能的设计中,当所述第一设备验证所述终端设备的位置为不正确,所述第一设备向第三设备发送请求信息,所述请求信息用于请求所述第三设备基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。这样在第一设备为接入网设备的情况下,在接入网设备采用本申请的简化方案验证终端设备的位置不正确时,可以请求核心网设备通过其它方法验证终端设备位置,以准确确定终端设备的位置。
在一个可能的设计中,当所述第一设备验证所述终端设备的位置为不正确,所述第一设备基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。这样在第一设备为核心网设备的情况下,在核心网设备采用本申请的简化方案验证终端设备的位置不正确时,可以通过其它方法验证终端设备位置,以准确确定终端设备的位置。
在一个可能的设计中,所述终端设备的位置为所述终端设备的导航卫星系统位置。
第二方面,本申请提供了一种通信方法,该方法可以应用于第一设备,第一设备中的处理器、芯片或一个功能模块等,该方法可以包括:第一设备获得第一信息后,根据所述第一信息确定所述终端设备的位置偏移量;然后,所述第一设备根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置。
通过上述方法,当终端设备当前上报的位置与之前的位置差距大于或等于距离阈值时才重新启动终端设备的位置验证,因此在终端设备位置变化范围不大的场景下可以有效减少对终端设备位置验证次数,从而降低终端设备的位置验证开销。
在一个可能的设计中,当所述第一设备确定验证所述终端设备当前上报的位置,所述第一设备向第二设备发送请求信息,所述请求信息用于请求所述第二设备验证所述终端设备当前上报的位置;或者,当所述第一设备确定验证所述终端设备当前上报的位置,所述第一设备验证所述终端设备当前上报的位置。这样可以实现在终端设备位置变化范围不大的场景下可以有效减少对终端设备位置验证次数,从而降低终端设备的位置验证开销。
在一个可能的设计中,若所述第一信息指示所述终端设备的位置验证结果为所述终端设备上报的位置为正确的;所述第一信息包括第一位置,所述第一位置为所述终端设备上次上报的位置或验证所述终端设备上次上报的位置时所定位的所述终端设备的位置;所述终端设备的位置偏移量为所述终端设备当前上报的位置和所述第一位置之间的偏移量。这样,在终端设备之前的验证结果可信的情况下,第一设备可以基于终端设备的位置偏移量确定是否要重新验证终端设备的位置。
在一个可能的设计中,所述终端设备当前上报的位置和所述终端设备上次上报的位置为所述终端设备的导航卫星系统位置。
在一个可能的设计中,所述第一设备根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置,方法可以为:所述第一设备确定所述终端设备的位置偏移量大于或者等于第一距离阈值时,则确定需要验证所述终端设备当前上报的位置;或者,所述第一设备确定所述终端设备的位置偏移量小于所述第一距离阈值时,则确定不需要验证所述终端设备当前上报的位置。这样,当终端设备当前上报的位置与之前的位置差距大于或等于距离阈值时才重新启动终端设备的位置验证,因此在终端设备近似静止的场景下可以有效减少终端设备位置验证次数,从而降低终端设备的位置验证开销。
在一个可能的设计中,在所述第一设备根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置之前,所述第一设备还确定所述第一距离阈值,以便于结合终端设备的位置偏移量来确定是否要验证终端设备的位置。
在一个可能的设计中,在所述第一设备根据所述第一信息确定所述终端设备的位置偏移量之前,所述第一设备获得所述终端设备当前上报的位置,并确定所述终端设备当前上报的位置与第一经纬度边界线的距离大于或等于第二距离阈值。这样可以实现当终端设备不在第一经纬度边界线附近时,只对位置有明显变化的终端设备进行位置验证,降低验证频率,减少验证开销。
第三方面,本申请还提供了一种通信装置,所述通信装置可以是第一设备,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第 一方面或第一方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发消息或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第四方面,本申请还提供了一种通信装置,所述通信装置可以是第一设备,该通信装置具有实现上述第二方面或第二方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发消息或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第五方面,本申请实施例提供了一种通信系统,可以包括上述提及的第一设备等。
第六方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计中,或第二方面及其任一可能的设计中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第七方面,本申请实施例提供一种计算机程序产品,包括计算机程序代码或指令的,当计算机程序代码或指令在计算机上运行时,使得上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中所述的方法被执行。
第八方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中所述的方法。
上述第三方面至第八方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案,或者第二方面或第二方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种NTN场景示意图;
图2为本申请提供的另一种NTN场景示意图;
图3为本申请提供的一种接入网设备的结构示意图;
图4为本申请提供的一种通信方法的流程图;
图5为本申请提供的一种通信方法的示例的流程图;
图6为本申请提供的另一种通信方法的示例的流程图;
图7为本申请提供的另一种通信方法的流程图;
图8为本申请提供的一种基于位置偏移量判断终端设备的位置是否验证的示意图;
图9为本申请提供的另一种通信方法的示例的流程图;
图10为本申请提供的另一种通信方法的示例的流程图;
图11为本申请提供的一种通信装置的结构示意图;
图12为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以减少终端设备的位置验证时延和开销。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。“以下至少一项”或其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b,或c中的至少一项,可以表示:a,b,c,a和b,a和c,b和c,或,a和b和c,其中,a,b,c可以是单个,也可以是多个。
本申请的描述中“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。“/”表示“或”,例如a/b表示a或b。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
本申请实施例提供的通信方法可以应用于NTN通信场景,NTN通信可以包括利用无人机、高空平台(high altitude platform station,HAPS)、卫星等设备进行组网,为终端设备提供数据传输、语音通信等服务。此外,NTN系统还可以包括其他空中网络设备,本申请对此不作限定。
按照卫星高度,即卫星的轨道高度,可以将卫星分为对地静止轨道(geostationary earth orbit,GEO)卫星、中地球轨(medium earth orbit,MEO)卫星和低地球轨(low-earth orbit,LEO)卫星。GEO为同步地球卫星轨道,运行在此轨道上的卫星相对地面是静止的,GEO的轨道高度一般为35786km。LEO和MEO统称为非静止轨道(non-geostationary orbit,NGSO),运行在此类轨道上的卫星相对地面高速移动,其中,LEO的轨道高度一般为160~2000km,MEO的轨道高度一般为2000~35786km。针对NGSO,根据卫星的波束是否随卫星移动,可以进一步分为对地移动小区(earth moving cell)和对地静止小区(earth fixed cell)。对于earth moving cell,小区相对地面是移动的,卫星的波束指向跟随卫星移动;对于earth fixed cell,在一定时间内小区相对地面是固定的,卫星天线可以利用其波束赋形能力将在一定时间内将波束指向固定在地面的某一片区域。
在NTN通信中,NTN设备的工作模式可包括:透传模式(transparent)和再生(regenerative)模式。根据NTN设备的工作模式NTN通信的架构可以分为以下两类:一是透明转发(transparent)架构,在该架构中NTN设备可以为中继(relay)或者放大器,可以做射频过滤、放大等,将物理层信号重新生成,NTN设备可以负责层1(L1)中继,用于进行物理层转发,且高层不可见。二是再生(regenerative)架构,在该架构中,NTN设备具有接入网设备的处理功能。示例性的,卫星在再生工作模式下又可以分为不具有星间链路的再生卫星,即卫星间没有星间链路(inter-satellite link,ISL);或者,具有星间链路的再生卫星,即卫星间有接口可以直接交互数据,其中,星间链路为Xn口;或者,具有接入网设备的分布式单元(distributed unit,DU)处理功能的再生卫星,该场景下卫星作为DU。
示例性的,图1示出了本申请实施例适用的一种NTN场景示意图,该NTN场景可以是透明转发架构的应用场景。在图1所示的场景中,终端设备可以通过接入网与5G核心网(core network,CN)进行通信,进而可通过5G CN连接至数据网络(data network,DN)。卫星和NTN网关(gateway)可作为终端设备和接入网设备之间的中继设备或者作为接入网设备的射频拉远单元(remote radio unit,RRU)。
示例性的,图2示出了本申请实施例适用的另一种NTN场景示意图,该NTN场景可以是一种再生架构的应用场景。在图2所示场景中,卫星可作为接入网设备,与NTN网关组成接入网,并通过NTN网关与核心网进行通信。另外,卫星还可为终端装置提供无线接入服务。其中,图2示例性示出了不具有星间链路的再生卫星架构。
需要说明的是,图1和图2仅示出了一个卫星以及一个NTN网关,在实际使用中,可根据需要采取多个卫星和/或多个NTN网关的架构。其中,每个卫星可向一个或多个终端设备提供服务,每个NTN网关可对应于一个或多个卫星,每个卫星可对应于一个或多个NTN网关,本申请实施例不予具体限定。
需要说明的是,图1和图2仅是NTN场景的示例,NTN场景还可以包括其他具体场景,本申请对此不作限定。
本申请实施例涉及的设备包括终端设备、接入网设备和核心网设备。其中:
终端设备又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,终端设备可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例可以为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
接入网设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例可以为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。
另外,在一种网络结构中,接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将NR系统中gNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU,如图3所示。更进一步,CU还可以划分为控制面(CU-CP)和用户面(CU-UP)。其中CU-CP负责控制面功能,主要包含无线资源控制(radio resource control,RRC)和控制面对应的包数据汇聚协议(packet data convergence protocol,PDCP)(即PDCP-C)。PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含服务数据适配协议(service data adaptation protocol,SDAP)和用户面对应的PDCP(即PDCP-U)。其中SDAP主要负责将核心网的数据进行处理并将流(flow)映射到承载。PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等。其中CU-CP和CU-UP通过E1接口连接。CU-CP代表gNB通过NG接口和核心网连接,通过F1接口控制面(即F1-C)和DU连接。CU-UP通过F1接口用户面(即F1-U)和DU连接。当然还有一种可能的实现是PDCP-C也在CU-UP。
核心网设备是指为终端设备提供业务支持的核心网中的设备。目前,一些核心网设备的举例为:接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体、用户面功能(user plane function,UPF)实体等等,此处不一一列举。其中,所述AMF实体可以负责终端设备的接入管理和移动性管理;所述SMF实体可以负责会话管理,如用户的会话建立等;所述UPF实体可以是用户面的功能实体,主要负责连接外部网络。需要说明的是,本申请中实体也可以称为网元或功能实体,例如,AMF实体也可以称为AMF网元或AMF功能实体,又例如,SMF实体也可以称为SMF网元或SMF功能实体等。
目前,NTN场景中对终端设备定位时,考虑通过单星定位算法实现,单星定位的原理是:假设终端设备静止,由于卫星相对地面高速移动,测量终端设备与同一卫星在不同时刻距离,形成等效的多星场景。例如,连续测量多个时刻的循环时间(round-trip time,RTT)可以确定终端设备的位置。基于多次测量的单星定位算法精度依赖于RTT的估计精度以及RTT的测量时间间隔,RTT的测量时间间隔越长,解算误差越小,定位精度越高。然而,过长的测量时间间隔会导致较长的验证时延。导致基于多次测量的单星定位算法经历较长的验证时延。
得到定位结果后网络侧会对上报的终端设备的位置信息进行验证。对于位置验证失败的终端设备,核心网侧判断该终端设备不可信,此后核心网侧会触发终端设备去注册。对于位置验证通过的终端设备,一种可选的判断该终端设备的可信的方案是:如果连续多次该终端设备的位置验证都通过,则认为该终端设备可信。判断终端设备为可信之后核心网侧会标记该终端设备的位置为可信。此后,核心网设备会将终端设备可信的标记发送给接入网设备。
如上述所述在对终端设备上报的位置进行验证时,一种可能的方案是先对终端设备进行定位,再利用终端设备的定位结果对终端设备上报的位置进行验证,以确保终端设备上报的位置准确。而定位过程耗时长,开销大,当每次有新的定位请求,例如,当终端设备每次重新接入网络时,要重新对终端设备上报的位置进行验证,可能会造成终端设备的位置确认时延和开销较大。
基于此,本申请实施例提出一种通信方法,以减少终端设备的位置验证时延和开销。此外,对于位置变化较小的终端设备,即使有新的位置验证请求,网络侧也可以判断不用重新对齐上报的位置进行验证。因此,可以根据终端设备的位置变化情况判断是否需要重新进行位置验证,以降低终端设备位置验证的频率,节省空口开销。
需要说明的是,在本申请实施例的介绍中,以某某设备执行的操作也可以由该设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等执行,本申请不作限定。例如,由第一设备执行的操作,也可以由第一设备中处理器,或者是芯片或芯片系统,或者是一个功能模块等执行。
基于以上描述,本申请实施例提供的一种通信方法,参阅图4所示,该方法的具体流程可以包括:
步骤401:第一设备获得第一信息,所述第一信息用于指示终端设备的位置验证结果。
可选的,所述第一设备可以为接入网设备,或者也可以为核心网设备。
当所述第一设备为接入网设备时,所述接入网设备从核心网设备获得所述第一信息。例如,所述核心网设备可以在向所述接入网设备指示所述终端设备的位置验证结果为所述终端设备的位置为正确时,向所述接入网设备发送所示第一信息。又例如,所述核心网设备可以在所述终端设备从空闲态或非激活态(IDLE/IACTIVE)重新接入网络时,向所述接入网设备发送所述第一信息。
当所述第一设备为核心网设备时,所述第一设备获得所述第一信息可以是所述核心网设备获得保存的所述第一信息。
步骤402:所述第一设备获得第二信息,所述第二信息包括时间提前量信息。
在一种可选的实施方式中,当所述第一设备为接入网设备时,所述第一设备获得所述第二信息,方法可以为:所述接入网设备可以获得终端设备上报的时间提前量信息,也即该时间提前量信息可以为终端设备自主上报给接入网设备的;或者,所述接入网设备向所述终端设备发送请求所述时间提前量信息的消息后,从所述终端设备接收所述时间提前量信息。
在另一种可选的实施方式中,当所述第一设备为核心网设备时,方法可以为:所述核心网设备指示接入网设备获取所述终端设备的时间提前量信息,接入网设备获取终端设备上报的时间提前量信息,并将获取的时间提前量信息发送给所述核心网设备。在这里不对接入网设备获取终端设备上报的时间提前量信息的方式进行限定,可选的,可以是接入网设备请求终端设备上报,或者是终端设备主动上报,或者还可以是其他方法。
示例性的,所述核心网设备指示所述接入网设备获取所述终端设备的时间提前量信息,所述接入网设备获取包含馈电链路(feeder link)及服务链路(service link)传输时延的时间提前量信息,或者接入网设备获取仅包含服务链路(service link)对应的时间提前量信息。
示例性的,所述核心网设备指示所述接入网设备获取所述终端设备的时间提前量信息时,可以指示所述接入网设备获取包含馈电链路(feeder link)及服务链路(service link)传输时延的时间提前量信息,或者也可以指示所述接入网设备获取仅包含服务链路(service link)对应的时间提前量信息。其中,NTN设备与终端设备间的链路可以称作服务链路,NTN设备与网关设备间的链路可以称作馈电链路。
可选的,本申请中馈电链路(feeder link)传输时延的时间提前量信息指的是共同时间提前量(Common TA)。所述共同时间提前量(Common TA)根据非地面网络设备到参考点之间的传输时延确定。
可选的,所述第二信息还可以包括终端设备上报所述时间提前量信息的时间戳,例如,所述时间戳可以指示时间提前量信息的获取时刻或者是上报时刻。该时间戳可以是协调世界时(coordinated universal time,UTC)时间或者是距离上报时刻的偏移时间。
可选的,根据终端设备上报所述时间提前量信息的时间戳可以判断上报时间提前量信息是否有效。例如,如果根据该时间戳判断所述时间提前量信息获取或上报时刻已经距终端设备位置验证时刻的时间间隔大于预设门限,则认为该时间提前量信息不可用,需要重新获取。
步骤403:所述第一设备根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确。
其中,验证所述终端设备的位置是否为正确,也可以描述为验证所述终端设备的位置是否为有效, 或者也可以描述为验证所述终端设备的位置是否为可信,或者也可以描述为验证所述终端设备的位置验证结果是否为通过,或者还可以有其它多种替换描述,本申请对此不作限定。
在一种可选的实施方式中,所述第一设备可以通过如下方法根据所述第一信息和所述第二信息判断验证所述终端设备的位置是否为正确:所述第一设备确定所述第一信息指示的所述终端设备的位置验证结果为所述终端设备的位置为正确的,则所述第一设备根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确。也就是说,在所述第一信息指示的所述终端设备的位置验证结果为所述终端设备的位置为正确的前提下,所述第一设备根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确。
示例性的,所述第一设备根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确,方法可以如下:所述第一设备根据所述时间提前量信息确定所述终端设备的候选位置;当所述终端设备的候选位置和所述终端设备的位置的距离在第一距离范围内时,则所述第一设备可以确定所述终端设备的位置为正确,否则可以确定所述终端设备的位置为不正确。
一种示例中,所述第一距离范围可以为5-10km。
可选的,所述时间提前量信息可以包括至少两个时间提前量(timing advance,TA),进而所述第一设备可以根据所述至少两个TA确定所述终端设备的候选位置。
示例性的,所述第一设备根据至少两个时间提前量确定所述终端设备的候选位置的方法可以如下:所述第一设备根据两个时间提前量T1和T2计算所述终端设备的候选位置。
具体的,首先,所述第一设备根据T1和T2计算传输距离,即终端设备到非地面网络设备的距离D1和D2,可选的,D1和D2可以通过如下方式计算:
D1=T1*c/2;
D2=T2*c/2;
其中,c表示光速在真空中的传播速度。
然后,所述第一设备计算终端设备距离星下卫星参考点的距离M1和M2,可选的,M1和M2可以通过如下方式计算:
M1=sqrt(D1^2-H1^2);
M2=sqrt(D2^2-H2^2);
其中,H1和H2表示在终端设备确定两个时间提前量T1和T2的时刻非地面网络设备的高度。x^2表示x的平方,sqrt()表示开平方函数。
最后,所述第一设备分别以测量两个时间提前量T1和T2时刻卫星的星下参考点位置为圆心,以M1和M2为半径可以构造两个圆,两个圆的交点即可作为所述终端设备的候选位置。
同样的,也可以采用三个时间提前量或者三个以上时间提前量确定所述终端设备的候选位置。
该示例仅作为根据至少两个时间提前量确定所述终端设备的候选位置的方法的一个示例,本申请不对具体的根据时间提前量确定候选位置方法做限定。
在一种可能的方式中,在步骤403之前,所述第一设备还可以获得所述终端设备的位置。例如,当所述第一设备为接入网设备时,所述接入网设备可以向终端设备请求所述终端设备的位置,后续所述终端设备向所述接入网设备发送所述终端设备的位置。又例如,当所述第一设备为核心网设备时,所述核心网设备指示接入网设备向终端设备请求所述终端设备的位置,进而所述接入网设备从所述终端设备请求获得所述终端设备的位置后,向所述核心网设备发送所述终端设备的位置。
示例性的,所述终端设备的位置可以为所述终端设备的导航卫星系统(global navigation satellite system,GNSS)位置,也可以是接入网设备根据所述终端设备的导航卫星系统位置映射得到的包含所述终端设备位置信息的参数。
可选的,当时间提前量信息中包含了馈电链路(feeder link)传输时延时,第一设备在基于时间提前量信息执行所述终端设备的位置验证操作时,可以先将时间提前量信息中的馈电链路(feeder link)传输时延去除得到服务链路(service link)对应的时间提前量信息,然后基于服务链路(service link)对应的时间提前量信息执行相应操作。
步骤404:当所述第一设备验证所述终端设备的位置为正确,所述第一设备向第二设备发送第三信息,所述第三信息用于指示所述终端设备的位置为正确。
其中,步骤404为可选的步骤,图4中仅示例性示出,不作为对本申请的限定。
其中,所述第二设备可以为请求验证所述终端设备的位置的设备,例如AMF、终端设备等。
在一种示例中,当所述第一设备为接入网设备时,当所述第一设备验证所述终端设备的位置为不正确,所述第一设备可以向第三设备发送请求信息,所述请求信息用于请求所述第三设备基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。其中,所述第三设备可以为核心网设备。
在该示例中,所述第一设备为接入网设备时,当所述第一设备验证所述终端设备的位置为不正确,所述第一设备还可以向核心网设备发送通知信息,所述通知信息用于请求核心网释放所述终端设备,也即释放终端设备的上下文。
在又一种示例中,当所述第一设备为核心网设备时,当所述第一设备验证所述终端设备的位置为不正确,所述第一设备可以基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。
可选的,所述第一方法可以是常用的多个循环时间(Multi-RTT)算法、到达时间差(time difference of arrival,TDOA)算法等,本申请对此不作限定。
通过上述方法,利用之前的终端设备的位置验证结果,以及结合时间提前量信息对终端设备的位置进行验证,不需要利用参考信号对传输时延进行测量,可以减少空口开销;此外,在验证过程中不需要重新对终端设备进行定位,因此可以进一步的减少验证过程的空口开销及验证时延。
基于图4所示的实施例,下面通过图5和图6所示的两个具体的示例对图4所示的实施例的方法进行说明。
图5示出的通信方法的示例中,以第一设备为RAN,终端设备为UE,核心网设备为CN为例说明。在该示例中,UE位置之前已经经过验证且结果为可信,后续该UE有新的GNSS位置上报,RAN对UE新上报的位置进行确认。具体的,该示例的流程可以包括:
步骤501:CN向RAN发送第一信息,所述第一信息用于指示UE的位置验证结果。
在该示例中,第一信息指示的UE的位置验证结果为所述UE的位置为正确的。
可选的,所述CN可以在向所述RAN指示所述UE的位置验证结果为所述UE的位置为正确时,向所述RAN发送所示第一信息。或者,所述CN可以在所述UE从IDLE/IACTIVE态重新接入网络时,向所述RAN发送所述第一信息。
步骤502:RAN向UE发送请求TA的信息。
步骤503:UE向RAN发送TA信息。
可选的,UE还可以向RAN发送所上报TA信息的时间戳,可选的,时间戳可以是UTC时间或者是距离上报时刻的时间偏移。
该TA信息包含于上述涉及的第二信息中。
需要说明的是,这里以RAN请求向UE请求TA信息为例说明,可选的,UE也可以主动向RAN上报TA信息,这里不再详细示出。
步骤504:RAN向UE发送请求UE的位置的信息。
步骤505:UE向RAN发送UE的位置。
需要说明的是,上述步骤502-503和步骤504-505的先后顺序不限定。
步骤506:RAN根据第一信息和TA信息验证所述UE的位置是否为正确,若正确则执行步骤507,若不正确则执行步骤508-步骤509。
具体实现方法可以参见上述图4所示的实施例中涉及的描述,此处不再详述。
步骤507:当RAN验证UE的位置为正确,RAN向第二设备发送第三信息,第三信息用于指示UE的位置为正确。
步骤508:当RAN验证UE的位置为不正确,向CN发送请求信息,所述请求信息用于请求所述CN基于第一方法验证所述UE的位置。
其中,所述第一方法的描述可以参考图4所示的实施例中的描述,此处不再赘述。
步骤509:CN基于第一方法验证所述UE的位置。
上述示例,利用之前的UE位置验证结果结合上报的TA对UE位置进行验证,不需要利用参考信号对传输时延进行测量,可以减少空口开销;此外,在验证过程中不需要重新对UE进行定位,因此可以进一步的减少验证过程的空口开销及验证时延。
图6示出的通信方法的示例中,以第一设备为CN,终端设备为UE,接入网设备为RAN为例说明。在该示例中,UE位置之前已经经过验证且结果为可信,后续该UE有新的GNSS位置上报,CN对UE新上报的位置进行确认。具体的,该示例的流程可以包括:
步骤601:CN获得保存的第一信息,所述第一信息用于指示UE的位置验证结果。
在该示例中,第一信息指示的UE的位置验证结果为所述UE的位置为正确的。
步骤602:CN向RAN发送第一指示信息,所述第一指示信息用于指示RAN获取UE的TA信息。
可选的,CN可以指示RAN获取包含feeder link传输时延的TA信息,或者也可以指示RAN仅获取service link对应的TA信息。
步骤603:RAN获取UE上报的TA信息。
可选的,RAN获取UE上报的TA信息的方式本申请不作限定。例如,可以是RAN请求UE上报,或者是UE主动上报,或者还可以是其他方式。
步骤604:RAN将获取的TA信息发送给CN。
步骤605:CN向RAN发送第二指示信息,所述第二指示信息用于指示RAN请求UE上报位置。
步骤606:RAN向UE发送请求UE的位置的信息。
步骤607:UE向RAN发送UE的位置。
步骤608:RAN向CN发送UE的位置。
需要说明的是,上述步骤602-604和步骤605-608的先后顺序不限定。
步骤609:CN根据第一信息和TA信息验证所述UE的位置是否为正确,若正确则执行步骤610,若不正确则执行步骤611。
具体实现方法可以参见上述图4所示的实施例中涉及的描述,此处不再详述。
步骤610:当CN验证UE的位置为正确,CN向第二设备发送第三信息,第三信息用于指示UE的位置为正确。
步骤611:CN基于第一方法验证所述UE的位置。
其中,所述第一方法的描述可以参考图4所示的实施例中的描述,此处不再赘述。
上述示例,利用之前的UE位置验证结果结合上报的TA对UE位置进行验证,不需要利用参考信号对传输时延进行测量,可以减少空口开销;此外,在验证过程中不需要重新对UE进行定位,因此可以进一步的减少验证过程的空口开销及验证时延。
上述实施例介绍了结合之前的UE位置验证结果和TA信息对UE位置验证的方法,以降低验证开销和时延。下面介绍另一种通信方法,可以通过减少对UE位置的验证频率来降低验证开销和时延。
基于以上描述,本申请实施例提供的另一种通信方法,参阅图7所示,该方法的具体流程可以包括:
步骤701:第一设备获得第一信息,所述第一信息用于指示终端设备的位置验证结果。
可选的,所述第一设备可以是接入网设备,或者也可以是核心网设备。
具体的,第一设备获得第一信息的方法可以参见图4所示的实施例中涉及的相关描述,此处不再赘述。
可选的,所述第一信息包括第一位置,所述第一位置为所述终端设备上次上报的位置或验证所述终端设备上次上报的位置时所定位的所述终端设备的位置。
步骤702:所述第一设备根据所述第一信息确定所述终端设备的位置偏移量。
若所述第一信息指示所述终端设备的位置验证结果为所述终端设备上报的位置为正确的,则所述第一设备根据所述第一信息确定所述终端设备的位置偏移量,方法可以为:所述第一设备确定所述终端设备当前上报的位置和所述第一位置之间的偏移量为所述终端设备的位置偏移量。也就是说,所示终端设备的位置偏移量可以是所述终端设备当前上报的位置和所述终端设备上次上报的位置之间的偏移量;或者,所示终端设备的位置偏移量可以是所述终端设备当前上报的位置和验证所述终端设备上次上报的位置时所定位的所述终端设备的位置之间的偏移量。
示例性的,所述终端设备的位置偏移量Delta_D可以通过如下方式计算:
Delta_D=sqrt((x1-x0)^2+(y1-y0)^2(z1-z0)^2);
其中,Delta_D表示终端设备的位置偏移量,x1,y1,z1表示所述终端设备当前上报的位置在直角坐标系中的坐标表示;x0,y0,z0表示第一位置在直角坐标系中的坐标表示;sqrt()表示开平方函数,x^2表示x的平方。
上述确定位置偏移量的方法仅作为示例,本申请不对计算位置偏移量的具体方式做限定。
示例性的,所述终端设备当前上报的位置和所述终端设备上次上报的位置为所述终端设备的GNSS位置。
可选的,在所述第一设备根据所述第一信息确定所述终端设备的位置偏移量之前,所述第一设备获得所述终端设备当前上报的位置;所述第一设备确定所述终端设备当前上报的位置与第一经纬度边界线的距离大于或等于第二距离阈值。可选的,当所述第一设备确定所述终端设备当前上报的位置与第一经纬度边界线的距离小于第二距离阈值时,第一设备可以直接确定需要验证所述终端设备的位置,可选的,第一设备可以进而直接执行步骤704a或704b。
示例性的,所述第二距离阈值可以是预定义的,也可以是第一设备确定的。
例如,第二距离阈值可以为5-10km。
具体的,所述第一设备获得所述终端设备当前上报的位置的具体方法可以参见图4所示的实施例中涉及的相关描述,此处不再赘述。
步骤703:所述第一设备根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置。
在一种可选的实施方式中,所述第一设备根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置,方法可以为:所述第一设备确定所述终端设备的位置偏移量大于或者等于第一距离阈值时,则确定需要验证所述终端设备当前上报的位置;或者,所述第一设备确定所述终端设备的位置偏移量小于所述第一距离阈值时,则确定不需要验证所述终端设备当前上报的位置。例如,图8示出的基于位置偏移量判断终端设备的位置是否验证的示意图。
示例性的,在所述第一设备根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置之前,所述第一设备可以确定所述第一距离阈值,所述第一距离阈值用于判断是否要进行终端设备的位置验证。
一种可选的实施方式中,当所述第一设备为核心网设备时,所述核心网确定所述第一距离阈值可以为:所述第一设备配置所述第一距离阈值。
在另一种可选的实施方式中,当所述第一设备为接入网设备时,所述接入网设备确定所述第一距离阈值方法可以为:所述接入网设备从核心网设备获取所述第一距离阈值,所述第一距离阈值为所述核心网设备配置的。或者,可选的,所述第一距离阈值也可以是接入网配置的。
可选的,所述第一距离阈值可以为5-10km。
步骤704a:当所述第一设备确定验证所述终端设备当前上报的位置,所述第一设备向第二设备发送请求信息,所述请求信息用于请求所述第二设备验证所述终端设备当前上报的位置。
在该步骤704a中,所述第一设备为接入网设备,所述第二设备为核心网设备。
步骤704b:当所述第一设备确定验证所述终端设备当前上报的位置,所述第一设备验证所述终端设备当前上报的位置。
在该步骤704b中,所述第一设备为核心网设备。
需要说明的是,步骤704a和步骤704b为可选的步骤,图7中仅示例性示出,本申请不作限定。
通过上述通信方法,当终端设备当前上报的位置与之前的位置差距大于或等于距离阈值时才重新启动终端设备的位置验证,因此在终端设备位置变化范围不大的场景下可以有效减少对终端设备位置验证次数,从而降低对终端设备的位置验证的开销。
基于图7所示的实施例,下面通过图9和图10所示的两个具体的示例对图7所示的实施例的方法进行说明。
图9示出的通信方法的示例中,以第一设备为CN,终端设备为UE,接入网设备为RAN为例说明。在该示例中,UE位置之前已经经过验证且结果为可信,后续该UE有新的GNSS位置信息上报,CN根据UE位置变化判断是否需要重新对UE上报位置进行验证。具体的,该示例的流程可以包括:
步骤901:CN获得保存的第一信息,所述第一信息用于指示UE的位置验证结果。
在该示例中,第一信息指示的UE的位置验证结果为所述UE的位置为正确的。
步骤902:CN配置第一距离阈值,第一距离阈值用于判断是否要进行终端设备的位置验证。
步骤903:CN向RAN发送指示信息,所述指示信息用于指示RAN请求UE上报位置。
步骤904:RAN向UE发送请求UE上报位置的信息。
步骤905:UE向RAN上报UE的位置。
步骤906:RAN向CN发送UE的位置。
步骤907:CN根据第一信息和UE当前上报的位置确定UE的位置偏移量。
所述第一信息包括第一位置,所述第一位置为所述UE上次上报的位置或验证所述UE上次上报的位置时所定位的所述UE的位置。
可选的,UE的位置偏移量可以是UE当前上报的位置与UE上次上报的位置之间的偏移量;或者,UE的位置偏移量也可以是UE当前上报的位置与验证所述UE上次上报的位置时所定位的所述UE的位置之间的偏移量。
步骤908:CN判断所述UE的位置偏移量是否大于或者等于第一距离阈值,若是则执行步骤909,否则结束判断。
步骤909:CN验证所述UE当前上报的位置。
通过该示例,当UE上报的位置与之前的位置差距大于距离阈值时才重新启动UE的位置验证,因此在UE位置变化范围不大的场景下可以有效减少对UE位置验证次数,从而降低UE位置验证开销。
图10示出的通信方法的示例中,以第一设备为RAN,终端设备为UE,核心网设备为CN为例说明。在该示例中,UE位置之前已经经过验证且结果为可信,当UE移动到第一经纬度边界线附近或者UE位置变化明显时RAN触发UE位置验证。具体的,该示例的流程可以包括:
步骤1001:CN向RAN发送第一信息,所述第一信息用于指示UE的位置验证结果。
在该示例中,第一信息指示的UE的位置验证结果为所述UE的位置为正确的。
可选的,所述CN可以在向所述RAN指示所述UE的位置验证结果为所述UE的位置为正确时,向所述RAN发送所示第一信息。或者,所述CN可以在所述UE从IDLE/IACTIVE态重新接入网络时,向所述RAN发送所述第一信息。
步骤1002:CN配置第一距离阈值,第一距离阈值用于判断是否要进行终端设备的位置验证。
步骤1003:CN向RAN发送所述第一距离阈值。
步骤1004:CN向RAN发送指示信息,所述指示信息用于指示RAN请求UE上报位置。
步骤1005:RAN向UE发送请求UE上报位置的信息。
步骤1006:UE向RAN上报UE的位置。
步骤1007:RAN向CN发送UE的位置。
步骤1008:RAN确定UE当前上报的位置与第一经纬度边界线的距离是否大于或等于第二距离阈值,若是,则执行步骤1009-步骤1010,否则执行步骤1011-步骤1012。
步骤1009:RAN根据第一信息和UE当前上报的位置确定UE的位置偏移量。
所述第一信息包括第一位置,所述第一位置为所述UE上次上报的位置或验证所述UE上次上报的位置时所定位的所述UE的位置。
可选的,UE的位置偏移量可以是UE当前上报的位置与UE上次上报的位置之间的偏移量;或者,UE的位置偏移量也可以是UE当前上报的位置与验证所述UE上次上报的位置时所定位的所述UE的位置之间的偏移量。
步骤1010:RAN判断所述UE的位置偏移量是否大于或者等于第一距离阈值,若是则执行步骤1011,否则结束判断。
步骤1011:RAN向CN发送请求信息,所述请求信息用于请求CN验证所述终端设备当前上报的位置。
步骤1012:CN验证所述UE当前上报的位置。
通过该示例,当UE位于第一经纬度边界线附近时,CN及时进行UE位置验证,确保UE能够接入正确的核心网;当UE不在第一经纬度边界线附近时,CN只对位置有明显变化的UE进行位置验证,降低验证频率,减少验证开销。
上述介绍的方法仅是示例,此外还可以有多种其他方法来降低终端设备的验证开销。例如,第一设备还可以通过如下方法来减少验证开销。
具体的,所述第一设备在根据所述时间提前量信息确定所述终端设备的候选位置后,可以根据终端设备的候选位置确定所述终端设备与NTN设备的第一距离,所述NTN设备覆盖所述终端设备;所述第一设备根据所述时间提前量确定第二距离;所述第一设备根据所述第一距离和所述第二距离确定是否 重新进行所述终端设备的位置验证。
示例性的,所述第一设备根据所述终端设备的位置确定所述终端设备与所述NTN设备的所述第一距离,方法可以为:所述第一设备根据所述终端设备的位置和所述NTN设备的位置确定所述终端设备与所述NTN设备的所述第一距离。
可选的,所述第一设备根据所述第一距离和所述第二距离确定是否重新进行所述终端设备的位置验证,方法可以为:所述第一设备确定所述第一距离和所述第二距离的距离差小于或等于第三距离阈值时,则确定不重新进行所述终端设备的位置验证;或者,所述第一设备确定所述第一距离和所述第二距离的距离差大于所述第三距离阈值时,则确定重新进行所述终端设备的位置验证。例如,第三距离阈值可以为5-10km。
同理,当所述第一设备为接入网设备时,在第一设备确定重新进行所述终端设备的位置验证,则第一设备请求核心网设备验证所述终端设备的位置。当所述第一设备为核心网设备时,在第一设备确定重新进行所述终端设备的位置验证,则第一设备验证所述终端设备的位置。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图11所示,通信装置1100可以包括收发单元1101和处理单元1102。其中,所述收发单元1101用于所述通信装置1100接收信息(消息或数据)或发送信息(消息或数据),所述处理单元1102用于对所述通信装置1100的动作进行控制管理。所述处理单元1102还可以控制所述收发单元1101执行的步骤。
示例性地,该通信装置1100具体可以是上述实施例中的第一设备、所述第一设备中的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述通信装置1100用于实现上述图4-图6所述的实施例中第一设备的功能时,具体可以包括:处理单元1102用于获得第一信息,所述第一信息用于指示终端设备的位置验证结果;获得第二信息,所述第二信息包括时间提前量信息;以及根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确。
在一种可选的实施方式中,所述处理单元1102在根据所述第一信息和所述第二信息判断验证所述终端设备的位置是否为正确时,可以用于:确定所述第一信息指示的所述终端设备的位置验证结果为所述终端设备的位置为正确的;根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确。
示例性的,所述处理单元1102在根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确时,可以用于:根据所述时间提前量信息确定所述终端设备的候选位置;当所述终端设备的候选位置和所述终端设备的位置的距离在第一距离范围内时,则确定所述终端设备的位置为正确。
一种示例中,收发单元1101用于当所述处理单元1102验证所述终端设备的位置为正确,向第二设备发送第三信息,所述第三信息用于指示所述终端设备的位置为正确。
又一种示例中,所述收发单元1101用于:当所述处理单元1102验证所述终端设备的位置为不正确,向第三设备发送请求信息,所述请求信息用于请求所述第三设备基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。
另一种示例中,所述处理单元1102还用于:当验证所述终端设备的位置为不正确,基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。
可选的,所述终端设备的位置为所述终端设备的导航卫星系统位置。
在另一个实施例中,所述通信装置1100用于实现上述图7、图9-图10所述的实施例中第一设备的功能时,具体可以包括:处理单元1102用于获得第一信息,所述第一信息用于指示终端设备的位置验证结果;根据所述第一信息确定所述终端设备的位置偏移量;根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置。
可选的,所述收发单元1101用于当所述处理单元1102确定验证所述终端设备当前上报的位置,向第二设备发送请求信息,所述请求信息用于请求所述第二设备验证所述终端设备当前上报的位置;或者,所述处理单元1102还用于:当确定验证所述终端设备当前上报的位置,验证所述终端设备当前上报的位置。
在一种可选的实施方式中,若所述第一信息指示所述终端设备的位置验证结果为所述终端设备上报的位置为正确的;所述第一信息包括第一位置,所述第一位置为所述终端设备上次上报的位置或验证所述终端设备上次上报的位置时所定位的所述终端设备的位置;所述终端设备的位置偏移量为所述终端设 备当前上报的位置和所述第一位置之间的偏移量。
可选的,所述终端设备当前上报的位置和所述终端设备上次上报的位置为所述终端设备的导航卫星系统位置。
一种可能的方式中,所述处理单元1102在根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置时,可以用于:确定所述终端设备的位置偏移量大于或者等于第一距离阈值时,则确定需要验证所述终端设备当前上报的位置;或者,确定所述终端设备的位置偏移量小于所述第一距离阈值时,则确定不需要验证所述终端设备当前上报的位置。
示例性的,所述处理单元1102还用于:在根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置之前,确定所述第一距离阈值。
一种可选的实施方式中,所述处理单元1102还用于:在根据所述第一信息确定所述终端设备的位置偏移量之前,获得所述终端设备当前上报的位置;确定所述终端设备当前上报的位置与第一经纬度边界线的距离大于或等于第二距离阈值。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图12所示,通信装置1200可以包括收发器1201和处理器1202。可选的,所述通信装置1200中还可以包括存储器1203。其中,所述存储器1203可以设置于所述通信装置1200内部,还可以设置于所述通信装置1200外部。其中,所述处理器1202可以控制所述收发器1201接收和发送信息、消息或数据等。
具体地,所述处理器1202可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1202还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器1201、所述处理器1202和所述存储器1203之间相互连接。可选的,所述收发器1201、所述处理器1202和所述存储器1203通过总线1204相互连接;所述总线1204可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器1203,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1203可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器1202执行所述存储器1203所存放的应用程序,实现上述功能,从而实现通信装置1200的功能。
示例性地,该通信装置1200可以是上述实施例中的第一设备。
在一个实施例中,所述通信装置1200在实现图4-图6所示的实施例中第一设备的功能时,收发器1201可以实现图4-图6所示的实施例中的由第一设备执行的收发操作;处理器1202可以实现图4-图6所示的实施例中由第一设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图4-图6所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述通信装置1200在实现图7、图9-图10所示的实施例中第一设备的功能时, 收发器1201可以实现图7、图9-图10所示的实施例中的由第一设备执行的收发操作;处理器1202可以实现图7、图9-图10所示的实施例中由第一设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图7、图9-图10所示的实施例中的相关描述,此处不再详细介绍。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的终端设备和第一设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    第一设备获得第一信息,所述第一信息用于指示终端设备的位置验证结果;
    所述第一设备获得第二信息,所述第二信息包括时间提前量信息;
    所述第一设备根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确。
  2. 如权利要求1所述的方法,其特征在于,所述第一设备根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确,包括:
    所述第一设备确定所述第一信息指示的所述终端设备的位置验证结果为所述终端设备的位置为正确的;
    所述第一设备根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确。
  3. 如权利要求2所述的方法,其特征在于,所述第一设备根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确,包括:
    所述第一设备根据所述时间提前量信息确定所述终端设备的候选位置;
    当所述终端设备的候选位置和所述终端设备的位置的距离在第一距离范围内时,则所述第一设备确定所述终端设备的位置为正确。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一设备验证所述终端设备的位置为正确,所述第一设备向第二设备发送第三信息,所述第三信息用于指示所述终端设备的位置为正确。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一设备验证所述终端设备的位置为不正确,所述第一设备向第三设备发送请求信息,所述请求信息用于请求所述第三设备基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。
  6. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一设备验证所述终端设备的位置为不正确,所述第一设备基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述终端设备的位置为所述终端设备的导航卫星系统位置。
  8. 一种通信方法,其特征在于,包括:
    第一设备获得第一信息,所述第一信息用于指示终端设备的位置验证结果;
    所述第一设备根据所述第一信息确定所述终端设备的位置偏移量;
    所述第一设备根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    当所述第一设备确定验证所述终端设备当前上报的位置,所述第一设备向第二设备发送请求信息,所述请求信息用于请求所述第二设备验证所述终端设备当前上报的位置;或者
    当所述第一设备确定验证所述终端设备当前上报的位置,所述第一设备验证所述终端设备当前上报的位置。
  10. 如权利要求8或9所述的方法,其特征在于,所述方法还包括:
    若所述第一信息指示所述终端设备的位置验证结果为所述终端设备上报的位置为正确的;
    所述第一信息包括第一位置,所述第一位置为所述终端设备上次上报的位置或验证所述终端设备上次上报的位置时所定位的所述终端设备的位置;
    所述终端设备的位置偏移量为所述终端设备当前上报的位置和所述第一位置之间的偏移量。
  11. 如权利要求10所述的方法,其特征在于,所述终端设备当前上报的位置和所述终端设备上次上报的位置为所述终端设备的导航卫星系统位置。
  12. 如权利要求8-11任一项所述的方法,其特征在于,所述第一设备根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置,包括:
    所述第一设备确定所述终端设备的位置偏移量大于或者等于第一距离阈值时,则确定需要验证所述终端设备当前上报的位置;或者
    所述第一设备确定所述终端设备的位置偏移量小于所述第一距离阈值时,则确定不需要验证所述终端设备当前上报的位置。
  13. 如权利要求12所述的方法,其特征在于,在所述第一设备根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置之前,所述方法还包括:
    所述第一设备确定所述第一距离阈值。
  14. 如权利要求8-13任一项所述的方法,其特征在于,在所述第一设备根据所述第一信息确定所述终端设备的位置偏移量之前,所述方法还包括:
    所述第一设备获得所述终端设备当前上报的位置;
    所述第一设备确定所述终端设备当前上报的位置与第一经纬度边界线的距离大于或等于第二距离阈值。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于获得第一信息,所述第一信息用于指示终端设备的位置验证结果;
    获得第二信息,所述第二信息包括时间提前量信息;
    根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确。
  16. 如权利要求15所述的装置,其特征在于,所述处理单元在根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确时,用于:
    确定所述第一信息指示的所述终端设备的位置验证结果为所述终端设备的位置为正确的;
    根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确。
  17. 如权利要求16所述的装置,其特征在于,所述处理单元在根据所述终端设备的时间提前量信息验证所述终端设备的位置是否为正确时,用于:
    根据所述时间提前量信息确定所述终端设备的候选位置;
    当所述终端设备的候选位置和所述终端设备的位置的距离在第一距离范围内时,则确定所述终端设备的位置为正确。
  18. 如权利要求15-17任一项所述的装置,其特征在于,还包括:收发单元,用于当所述处理单元验证所述终端设备的位置为正确,向第二设备发送第三信息,所述第三信息用于指示所述终端设备的位置为正确。
  19. 如权利要求15-18任一项所述的装置,其特征在于,还包括收发单元,用于:
    当所述处理单元验证所述终端设备的位置为不正确,向第三设备发送请求信息,所述请求信息用于请求所述第三设备基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。
  20. 如权利要求15-18任一项所述的装置,其特征在于,所述处理单元还用于:
    当验证所述终端设备的位置为不正确,基于第一方法验证所述终端设备的位置,所述第一方法与根据所述第一信息和所述第二信息验证所述终端设备的位置是否为正确的方法不同。
  21. 如权利要求15-20任一项所述的装置,其特征在于,所述终端设备的位置为所述终端设备的导航卫星系统位置。
  22. 一种通信装置,其特征在于,包括:
    处理单元,用于获得第一信息,所述第一信息用于指示终端设备的位置验证结果;
    根据所述第一信息确定所述终端设备的位置偏移量;
    根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置。
  23. 如权利要求22所述的装置,其特征在于,还包括:
    收发单元,用于当所述处理单元确定验证所述终端设备当前上报的位置,向第二设备发送请求信息,所述请求信息用于请求所述第二设备验证所述终端设备当前上报的位置;或者
    所述处理单元还用于:当确定验证所述终端设备当前上报的位置,验证所述终端设备当前上报的位置。
  24. 如权利要求22或23所述的装置,其特征在于,若所述第一信息指示所述终端设备的位置验证结果为所述终端设备上报的位置为正确的;
    所述第一信息包括第一位置,所述第一位置为所述终端设备上次上报的位置或验证所述终端设备上次上报的位置时所定位的所述终端设备的位置;
    所述终端设备的位置偏移量为所述终端设备当前上报的位置和所述第一位置之间的偏移量。
  25. 如权利要求24所述的装置,其特征在于,所述终端设备当前上报的位置和所述终端设备上次上报的位置为所述终端设备的导航卫星系统位置。
  26. 如权利要求22-25任一项所述的装置,其特征在于,所述处理单元在根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置时,用于:
    确定所述终端设备的位置偏移量大于或者等于第一距离阈值时,则确定需要验证所述终端设备当前上报的位置;或者
    确定所述终端设备的位置偏移量小于所述第一距离阈值时,则确定不需要验证所述终端设备当前上报的位置。
  27. 如权利要求26所述的装置,其特征在于,所述处理单元还用于:
    在根据所述终端设备的位置偏移量确定是否验证所述终端设备当前上报的位置之前,确定所述第一距离阈值。
  28. 如权利要求22-27任一项所述的装置,其特征在于,所述处理单元还用于:
    在根据所述第一信息确定所述终端设备的位置偏移量之前,获得所述终端设备当前上报的位置;
    确定所述终端设备当前上报的位置与第一经纬度边界线的距离大于或等于第二距离阈值。
  29. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器用于接收和发送消息;
    所述处理器与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求1-7任一项所述的方法。
  30. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器,用于接收和发送消息;
    所述处理器,与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求8-14任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时以执行如权利要求1-7中任一项所述的方法,或者执行如权利要求8-14中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得如权利要求1-7中任一项所述的方法,或如权利要求8-14中任一项所述的方法被执行。
  33. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-7中任一项所述的方法,或者实现如述权利要求8-14中任一项所述的方法。
PCT/CN2023/127714 2022-11-03 2023-10-30 一种通信方法及装置 WO2024093905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211371992.XA CN117997405A (zh) 2022-11-03 2022-11-03 一种通信方法及装置
CN202211371992.X 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024093905A1 true WO2024093905A1 (zh) 2024-05-10

Family

ID=90896026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127714 WO2024093905A1 (zh) 2022-11-03 2023-10-30 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117997405A (zh)
WO (1) WO2024093905A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170075178A (ko) * 2015-12-23 2017-07-03 성신여자대학교 산학협력단 애드혹 네트워크의 QoS를 위한 인접 위치 검증 장치, 이를 위한 방법 및 이 방법이 기록된 컴퓨터로 판독 가능한 기록매체
CN107801146A (zh) * 2017-05-17 2018-03-13 胡志成 一种信息安全控制方法
CN111346371A (zh) * 2020-03-02 2020-06-30 腾讯科技(深圳)有限公司 一种信息处理方法、装置及计算机可读存储介质
CN114402655A (zh) * 2021-12-17 2022-04-26 北京小米移动软件有限公司 一种位置信息的确定方法及其装置
CN114731487A (zh) * 2022-02-21 2022-07-08 北京小米移动软件有限公司 一种位置信息的确定方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170075178A (ko) * 2015-12-23 2017-07-03 성신여자대학교 산학협력단 애드혹 네트워크의 QoS를 위한 인접 위치 검증 장치, 이를 위한 방법 및 이 방법이 기록된 컴퓨터로 판독 가능한 기록매체
CN107801146A (zh) * 2017-05-17 2018-03-13 胡志成 一种信息安全控制方法
CN111346371A (zh) * 2020-03-02 2020-06-30 腾讯科技(深圳)有限公司 一种信息处理方法、装置及计算机可读存储介质
CN114402655A (zh) * 2021-12-17 2022-04-26 北京小米移动软件有限公司 一种位置信息的确定方法及其装置
CN114731487A (zh) * 2022-02-21 2022-07-08 北京小米移动软件有限公司 一种位置信息的确定方法及其装置

Also Published As

Publication number Publication date
CN117997405A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11876602B2 (en) Communication method, apparatus, and system based on satellite network
US20220217607A1 (en) Handover method and apparatus in satellite communications
US20230092144A1 (en) Dynamic Geographical Spectrum Sharing
TWI293691B (en) Method and system for determining the speed and distance of a mobile unit
US20210345285A1 (en) Method and Device for User Equipment Positioning
WO2021032267A1 (en) Non-line-of-sight path detection for user equipment positioning in wireless networks
WO2021004233A1 (zh) 卫星通信方法、装置、终端设备、卫星及可读存储介质
US10649062B2 (en) Terminal positioning method and apparatus
WO2020222122A1 (en) Uplink positioning methods and apparatuses for non-terrestrial networks
EP3716497A1 (en) Electronic device and method for wireless communication system, and storage medium
EP4311320A1 (en) Information transmission method, terminal device, and network device
JPH11154897A (ja) ドップラーシフトによって使用者端末の位置を補償する衛星通信システムおよび方法
WO2024093905A1 (zh) 一种通信方法及装置
WO2021012118A1 (zh) 通信方法、装置、设备、系统及存储介质
CN115002901B (zh) 差分定位方法、服务器、基站、终端、设备及存储介质
CN112596086A (zh) 一种用于低轨通信卫星移动终端的定位方法、装置及系统
WO2024032199A1 (zh) 一种定位方法及装置
WO2023102717A1 (zh) 通信方法及通信装置
WO2023070449A1 (zh) 信息传输方法、相关设备及介质
EP4209798A1 (en) Secure location of wireless devices using leo satellite assistance
WO2023174148A1 (zh) 一种定位方法及通信装置
WO2024114638A1 (zh) 一种定位的方法和装置
WO2023065171A1 (zh) 数据传输处理方法、装置、设备及存储介质
WO2022205456A1 (zh) Ntn中的测量间隔的时间确定方法、装置及设备
WO2024000229A1 (zh) 通信方法及通信装置