WO2023174148A1 - 一种定位方法及通信装置 - Google Patents

一种定位方法及通信装置 Download PDF

Info

Publication number
WO2023174148A1
WO2023174148A1 PCT/CN2023/080455 CN2023080455W WO2023174148A1 WO 2023174148 A1 WO2023174148 A1 WO 2023174148A1 CN 2023080455 W CN2023080455 W CN 2023080455W WO 2023174148 A1 WO2023174148 A1 WO 2023174148A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
terminal device
communication device
difference
network device
Prior art date
Application number
PCT/CN2023/080455
Other languages
English (en)
French (fr)
Inventor
陈莹
孔垂丽
汪宇
周悦
乔云飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210374283.0A external-priority patent/CN116801183A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023174148A1 publication Critical patent/WO2023174148A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a positioning method and a communication device.
  • Satellite communications have unique advantages over terrestrial communications, such as providing wider coverage; satellite base stations are not easily damaged by natural disasters or external forces. If satellite communications are introduced into the 5G communication system in the future, communication services can be provided for areas such as oceans and forests that cannot be covered by terrestrial communication networks; the reliability of the 5G communication system can be enhanced, such as ensuring that users on airplanes and trains receive better communications Service; it can provide more data transmission resources for 5G communication systems and increase the speed of the network. Therefore, supporting both ground communication and satellite communication is the future development direction of 5G communication systems, which will have greater benefits in terms of wide coverage, reliability, multiple connections, and high throughput.
  • satellite communication has been introduced into the 3GPP standard.
  • 5G communication in order to adapt to the characteristics of large delay and high mobility, timing, synchronization, HARQ and other technologies have been enhanced in the standard.
  • the network side can complete the positioning of the terminal equipment or complete the verification of the location reported by the terminal equipment, but the 3GPP satellite communication system does not yet have this function. Therefore, how to verify the location reported by communication satellites on terminal equipment and then position the terminal equipment will be a future research direction.
  • Embodiments of the present application provide a positioning method and a communication device, which are used to position a terminal device.
  • inventions of the present application provide a positioning method.
  • the method includes: a terminal device determines a first timing advance TA between a first moment and an access network device; the terminal device determines the first timing advance TA The corresponding first parameter is sent to the network device; the terminal device determines the second TA between the second moment and the access network device; the terminal device sends the second parameter corresponding to the second TA to the
  • the network device is configured to position the terminal device according to the first parameter and the second parameter, or to enable the network device to position the terminal device according to the first parameter and the second parameter. Sent to other network devices.
  • the terminal device sends the first parameter corresponding to the first TA at the first time and the second parameter corresponding to the second TA at the second time to the network device, so that the network device may be used to Other network devices used for positioning the terminal device can position the terminal device according to the first parameter and the second parameter.
  • This method can be applied to satellite communication scenarios to solve the positioning problem when the terminal device can only be covered by one satellite.
  • the trigger condition can be set by reporting the second parameter to the terminal device.
  • the accuracy of TA and corresponding parameters may Inconsistent, in order to improve the accuracy of TA reporting, the difference between the corresponding parameter and TA can also be reported, thereby improving positioning accuracy.
  • the difference between the second TA and the first TA is within a preset range.
  • corresponding trigger conditions are set for the terminal device to report the second parameter, so that the terminal device reports the first parameter and the second parameter that meet the preset conditions, so that the network device can report the second parameter according to the first parameter and the second parameter. and preset thresholds to determine a more accurate TA difference, thereby improving positioning accuracy.
  • the triggering condition may be configured by the network device, or may be pre-agreed in the protocol.
  • the difference between the second TA and the first TA and the difference between the second parameter and the first parameter are within a preset range.
  • corresponding trigger conditions are also set for the terminal device to report the second parameter, so that the terminal device reports the first parameter and the second parameter that meet the preset conditions, so that the network device can report the second parameter according to the first parameter and the second parameter. parameters and preset thresholds to determine a more accurate TA difference, thereby improving positioning accuracy.
  • the difference between the second time and the first time is within a preset range.
  • the difference between the first moment and the second moment is the movement time of the network device (satellite). Normally, if the movement time of the network device is within the preset range, then the difference between the corresponding second TA and the first TA is also within the required difference range, so that the network device or other devices can perform operations on the terminal device. position.
  • the method further includes: the terminal device sending a first difference value and a second difference value to the network device, where the first difference value and the first parameter The difference between the difference between the first TA and the first TA is within the preset range, and the difference between the second difference and the difference between the second parameter and the second TA is within the preset range, so that causing the network device to position the terminal device according to the first parameter, the first difference value, the second parameter and the second difference value, or causing the network device to position the terminal device
  • the first parameter, the first difference value, the second parameter and the second difference value are sent to other network devices; or the terminal device sends a TA difference value to the network device, and the first TA and the second difference value are The difference between the second TA difference and the TA difference is within a preset range, so that the network device determines the difference between the second TA and the TA difference according to the first parameter, the second parameter and the TA difference.
  • the terminal device performs positioning, or causes the network device to send the first parameter, the second difference value and the TA difference value to other network devices.
  • the terminal device sends the first difference value and the second difference value to the network device, which enables the network device to determine a more accurate TA, thereby positioning the terminal device more accurately.
  • TA is the deviation of the uplink and downlink subframes obtained by the terminal device based on measuring the uplink and downlink signals. For example, the terminal device measures the time difference between downlink subframe i and uplink subframe i, and uses the time difference as TA. In another possible implementation, the TA is determined by the terminal device based on the relative position between the network device and itself.
  • the present application provides a positioning method.
  • the method includes: a network device receiving a first parameter sent by a terminal device, where the first parameter is the distance between the terminal device and the access network device at the first moment.
  • the parameter corresponding to the first timing advance TA; the network device receives the second parameter sent by the terminal device, and the second parameter is the second TA between the terminal device and the access network device at the second moment.
  • the network device locates the terminal device according to the first parameter and the second parameter, or sends the first parameter and the second parameter to other network devices, so that The other network device locates the terminal device according to the first parameter and the second parameter, or causes the other network device to send the first parameter and the second parameter to a device for
  • the terminal device is a network device used for positioning.
  • the difference between the second TA and the first TA is a preset threshold.
  • the difference between the second TA and the first TA is equal to the difference between the second parameter and The difference of the first parameter is within a preset range.
  • the method further includes: the network device receiving a first difference value and a second difference value sent by the terminal device, the first difference value and the first parameter and The difference between the difference between the first TA and the second TA is within a preset range, and the difference between the second difference and the difference between the second parameter and the second TA is within the preset range;
  • the network device locates the terminal device according to the first parameter and the second parameter, including: the network device determines the first TA according to the first difference and the first parameter;
  • the network device determines the second TA based on the second difference and the second parameter; the network device locates the terminal device based on the first TA and the second TA; or,
  • the method further includes: the network device sending the first difference value and the second difference value to the other network device.
  • the method further includes: the network device receiving a TA difference sent by the terminal device, the difference between the first TA and the second TA, and the TA difference.
  • the difference in values is within a preset range; the network device locates the terminal device according to the first parameter and the second parameter, including: the network device locates the terminal device according to the first parameter, the second parameter
  • the terminal device is positioned using the two parameters and the TA difference value; or, the method further includes: the network device sending the TA difference value to the other network device.
  • this application provides a positioning method.
  • the method includes: a terminal device receiving a first public timing advance TA broadcast by a network device; and the terminal device sending a first public timing advance TA to the network device according to the first public TA.
  • a reference signal ; the terminal device receives the second public TA broadcast by the network device; the terminal device sends the second reference signal to the network device according to the second public TA, so that the network device according to the first reference
  • the terminal device is positioned based on the actual reception time of the signal, the time determined according to the first public TA, the actual reception time of the second reference signal, and the time determined according to the second public TA.
  • the terminal device sends a reference signal to the network device according to the public TA broadcast by the network device. Since there is a residual TA between the public TA broadcast by the network device and the TA actually required by the terminal device, the network device can use the residual TA at different times to , determine the distance difference between the terminal device and the network device at different times, and estimate the location information of the terminal device.
  • This method can be applied to satellite communication scenarios to solve the positioning problem when the terminal device can only be covered by one satellite.
  • the first common TA includes a first feeder TA and a first service link TA
  • the second common TA includes a second feeder TA and a second service link TA
  • the first public TA includes a first service link TA
  • the second public TA includes a second service link TA
  • this application provides a positioning method, which method includes: a network device broadcasts a first public timing advance TA; the network device receives a first reference signal sent by a terminal device according to the first public TA; the network The device broadcasts a second public TA; the network device receives a second reference signal sent by the terminal device according to the second public TA; the network device according to the actual reception time of the first reference signal, according to the first public The terminal device is positioned based on the time determined by the TA, the actual reception time of the second reference signal, and the time determined by the second public TA.
  • the first common TA includes a first feeder TA and a first service link TA
  • the second common TA includes a second feeder TA and a second service link TA
  • the first public TA includes a first service link TA
  • the second public TA includes a second service link TA
  • this application provides a positioning method.
  • the method includes: a terminal device sends a first message to a network device through a first beam; the terminal device sends a second message to the network device through a second beam, so as to The network device is configured to configure the terminal according to the direction of the beam for receiving the first message and the direction of the beam for receiving the second message. Ready for positioning.
  • the terminal device sends messages to the network device through different beams, so that the network device determines the orientation of the terminal device according to the direction of the received beam.
  • This method can be applied to satellite communication scenarios, especially GEO scenarios, to solve the problem that terminal equipment cannot be positioned based on TA because satellites are relatively stationary to the ground.
  • different configuration parameters can be configured for different beams, such as time-frequency resources, scrambling methods, polarization methods, public TA, etc., to facilitate the network device to determine the beam that receives the message sent by the terminal device.
  • the scrambling method adopted by the terminal equipment on the first beam is different from the scrambling method adopted on the second beam; or, the scrambling method adopted by the terminal equipment on the third beam
  • the time-frequency resource used to send the first message on one beam is different from the time-frequency resource used to send the second message on the second beam; or the polarity adopted by the terminal device on the first beam
  • the polarization method is different from the polarization method adopted on the second beam.
  • the method further includes: the terminal device receives a first common timing advance TA through the first beam; the terminal device receives a second common timing advance TA through the second beam, The second public TA is different from the first public TA; the terminal device sends a first message to the network device through a first beam, including: the terminal device transmits a first message through the first public TA according to the first public TA.
  • a beam sends a first message to the network device; the terminal device sends a second message to the network device through a second beam, including: the terminal device transmits a first message to the network device through the second beam according to the second public TA. Send a second message to the network device.
  • the present application provides a positioning method.
  • the method includes: a network device receiving a first message sent by a terminal device through a first beam; and the network device receiving a second message sent by the terminal device through a second beam. ;
  • the network device locates the terminal device according to the directions of the first beam and the second beam.
  • the descrambling method of the network device on the first beam is different from the descrambling method on the second beam; or, the descrambling method of the network device on the first beam is different.
  • the time-frequency resources for receiving the first message on the second beam are different from the time-frequency resources for receiving the second message on the second beam; the polarization method adopted by the network device on the first beam is different from that on the second beam.
  • the polarization method adopted on the second beam is different.
  • the method further includes: the network device sends a first common timing advance TA through the first beam; the network device sends a second common timing advance TA through the second beam, The second public TA is different from the second public TA; the network device receives the first message sent by the terminal device through the first beam, including: the network device receives the first message through the first public TA according to the first public TA.
  • the first beam receives the first message sent by the terminal device; the network device receives the second message sent by the terminal device through the second beam, including: the network device uses the second public TA according to the second public TA.
  • the second beam receives the second message sent by the terminal device.
  • embodiments of the present application provide a communication device, including: a processor, and a memory and a communication interface respectively coupled to the processor; the communication interface is used to communicate with other devices; the processor , used to run instructions or programs in the memory, and execute the first aspect and any possible implementation of the first aspect, the third aspect, and any possible implementation of the third aspect through the communication interface, or The fifth aspect and the positioning method of any possible implementation of the fifth aspect.
  • embodiments of the present application provide a communication device, including: a processor, and a memory and a communication interface respectively coupled to the processor; the communication interface is used to communicate with other devices; the processor , used to run instructions or programs in the memory, and execute the second aspect and any possible implementation of the second aspect, the fourth aspect, and any possible implementation of the fourth aspect through the communication interface, or The sixth aspect and the positioning method of any possible implementation of the sixth aspect.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium Computer readable instructions are stored in the computer, and when the computer readable instructions are run on the computer, the method described in the first to sixth aspects and any possible implementation manner is executed.
  • embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the methods described in the first to sixth aspects and any possible implementation manner to be executed.
  • Figure 1 is a schematic diagram of the UL-TOA algorithm provided by the embodiment of this application.
  • Figure 2 is a schematic diagram of the UL-TDOA algorithm provided by the embodiment of this application.
  • Figure 3 is a schematic diagram of the UL-AOA algorithm provided by the embodiment of this application.
  • Figures 4a, 4b, and 4c are schematic diagrams of application scenarios of satellite communications provided by embodiments of the present application.
  • Figure 5 is a schematic flow chart of a positioning method provided by an embodiment of the present application.
  • Figure 6 is a TA schematic diagram of the terminal device at different times provided by the embodiment of the present application.
  • Figure 7 is a schematic flow chart of another positioning method provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of reference signals sent by a terminal device at different times according to an embodiment of the present application.
  • Figure 9 is a schematic flowchart of another positioning method provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of different beam directions provided by the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Each base station separately measure the arrival time of the reference signal sent by the receiving terminal device, and calculate the distance between the base station and the terminal device based on the arrival time and the speed of light.
  • Each base station takes itself as the center of the circle and draws the distance between the base station and the terminal device. Circle, as shown in Figure 1. Then the position of the terminal device is estimated through positioning algorithms, such as trilateral positioning, least squares algorithm, etc.
  • the disadvantage of the UL-TOA method is that if the time between the base station and the terminal device is not synchronized, neither party knows the absolute time of signal transmission, which will cause calculation and positioning errors.
  • the distance difference between the terminal equipment and the two base stations is calculated by measuring the signal arrival time difference between the terminal equipment and the two base stations. From a mathematical point of view, the terminal equipment is located with these two base stations as the focus. , on the hyperbola with the distance difference between the terminal equipment and the two base stations as the fixed difference. The positions of the terminal equipment and multiple base stations are located on a hyperbola with the two base stations as the focus and the distance difference as the fixed difference. Based on the above principle, using three or more base stations around the terminal device, multiple hyperbolas can be obtained, and the intersection point of the hyperbolas can be the location of the terminal device, as shown in Figure 2.
  • the base station measures the angle of arrival according to the beam of the reference signal sent by the terminal equipment, such as ⁇ 1, - ⁇ 2, ⁇ 3, - ⁇ 4 in Figure 3, and then sends the measured angle of arrival to the network equipment used for positioning.
  • the network equipment determines the angle of arrival according to each The location of the base station, each The angle of arrival measured by each base station is used to position the terminal device.
  • the distance ratio between the terminal device and multiple base stations can be determined. Then, based on the location of each base station, the distance between the terminal device and multiple base stations Distance ratio to locate the terminal device.
  • the terminal device will compensate for the transmission delay, that is, determine the timing advance (TA), and determine the timing advance (TA).
  • the TA will be sent in advance.
  • the terminal equipment can report the determined TA to the satellite, since the terminal equipment reports the TA in time slot units, the granularity is relatively coarse. For example, the actual TA is 5.5ms, but the terminal equipment reports the TA in time slot units. When the subcarrier spacing is 15KHz, one time slot is 1ms, then the TA reported by the terminal device is 6 time slots. If the UI terminal device performs positioning based on the UL-TOA method or the UL-TDOA method based on the TA reported by the terminal device, the error will be large.
  • the base station When using the UL-AOA method for positioning, the base station needs to measure the angle of arrival based on the antenna array. Currently, most of the antennas used by satellites are parabolic antennas instead of antenna arrays. Therefore, the UL-AOA method is not suitable for satellite communication scenarios. Terminal device positioning.
  • the RSRP method is not suitable for terminal device positioning in satellite communication scenarios.
  • embodiments of the present application provide a positioning method that can be applied in satellite communication scenarios to meet the need for positioning terminal devices in satellite communication scenarios.
  • Figures 4a, 4b, and 4c exemplarily provide possible application architectures for satellite communications.
  • the positioning method provided by the embodiment of the present application can be applied to any network architecture in Figure 4a, Figure 4b, and Figure 4c.
  • the base station is deployed on the ground, the satellite is connected to the ground station through the air interface, and the ground station can be connected to the base station through wireless or wired links.
  • Terminal equipment on the ground accesses the mobile communication network through an air interface (the air interface can be various types of air interfaces, such as 5G air interface), and satellites serve as transmission nodes to forward information from the terminal equipment.
  • the air interface can be various types of air interfaces, such as 5G air interface
  • satellites serve as transmission nodes to forward information from the terminal equipment.
  • the base station is deployed on the satellite, and the satellite is connected to the ground station through the air interface, and the ground station can be connected to the core network through wireless or wired links.
  • the terminal equipment on the ground communicates with the satellite base station through the air interface to access the mobile communication network.
  • the satellite serves as the base station and is connected to the ground station through the air interface NG interface.
  • the ground station is connected to the core network through the NG interface.
  • the NG interface can be in wireless form or can be Wired form.
  • the architecture shown in Figure 4c has an additional communication scenario between satellite base stations. Specifically, satellite base stations can communicate with each other through the Xn interface.
  • terminal devices may include various types of terminal devices that support new air interfaces, such as mobile phones, tablet computers, vehicle-mounted terminal devices, wearable terminal devices, etc.
  • Terminal equipment can access the satellite network through the air interface and initiate calls, Internet access and other services.
  • Base stations are mainly used to provide wireless access services, schedule wireless resources to access terminal devices, and provide reliable wireless Transport protocol and data encryption protocol, etc.
  • the core network is mainly used to provide user access control, mobility management, session management, user security authentication, accounting and other functions.
  • the core network is composed of multiple functional units, which can be divided into functional entities on the control plane and data plane.
  • the Access and Mobility Management Function (AMF) entity is responsible for user access management, security authentication, and mobility management.
  • the User Plane Function (UPF) entity is responsible for managing user plane data transmission, traffic statistics and other functions.
  • the ground station is mainly responsible for forwarding signaling and business data between satellites and base stations, or between satellites and core networks.
  • Air interface represents the wireless link between the terminal device and the base station.
  • Xn interface Represents the interface between satellite base stations and is mainly used for signaling interactions such as handovers.
  • NG interface represents the interface between the base station and the core network, or the interface between the ground station and the core network, or the interface between the satellite base station and the ground station (in this case, the interface is a wireless link), which mainly interacts with the core network.
  • FIG. 5 is a schematic flow chart of a positioning method provided by an embodiment of the present application.
  • This positioning method can be applied to satellite communication scenarios, especially to non-geostationary earth orbit (NGEO) satellite communication scenarios, or it can also be applied to drone communication scenarios.
  • the drone communication scenario is similar to the satellite communication scenario.
  • the satellite communication scenario is used as an example below.
  • the positioning method shown in Figure 5 uses the process of reporting TA by the terminal device in the satellite communication scenario to position the terminal device.
  • the positioning method may include the following steps:
  • Step 501 The terminal device determines the first TA between the terminal device and the access network device at the first time.
  • the access network equipment here can be the satellite as the base station shown in Figure 4b, Figure 4c, or it can be the one shown in Figure 4a Ground base station.
  • the satellite moves relative to the ground, so the distance between the terminal device and the satellite may be different at different times. Different distances will cause different transmission delays in communication between the terminal equipment and the satellite.
  • the terminal device determines the TA at the first moment, and in order to distinguish it from the TA at other moments, the TA at the first moment is called the first TA.
  • the method for the terminal device to determine the TA is not limited by the embodiments of this application, and any existing TA determination method may be referred to.
  • the terminal device determines the position of the satellite based on the position of the satellite (which can be calculated based on the ephemeris) and its own position (which can be based on the global navigation satellite system (GNSS)).
  • GNSS global navigation satellite system
  • TA includes not only the round-trip transmission delay between the terminal equipment and the satellite, but also the round-trip transmission delay between the satellite and the ground base station.
  • the transmission delay between the satellite and the ground base station is generally notified to the terminal equipment by the network equipment.
  • TA can include the round-trip transmission delay between the root terminal equipment and the satellite, the round-trip transmission delay between the satellite and the synchronization reference point, and the round-trip transmission delay between the satellite and the synchronization reference point.
  • the delay is generally notified to the terminal device by the network device (satellite).
  • the terminal device may measure the time difference between downlink subframe i and uplink subframe i, and use the time difference as TA.
  • Step 502 The terminal device sends the first parameter corresponding to the first TA to the network device.
  • the network equipment here may include but is not limited to the base station (gNB), access and mobility management function (AMF), location management function (LMF) in the 5G communication system, or The base station (eNB) or transmission point (transmission point) in the 4G communication system point, TP), transmission-reception point (transmission-reception point, TRP), ground station (gateway, GW), etc.
  • gNB base station
  • AMF access and mobility management function
  • LMF location management function
  • eNB or transmission point (transmission point) in the 4G communication system point, TP), transmission-reception point (transmission-reception point, TRP), ground station (gateway, GW), etc.
  • the network equipment can be a satellite, a ground station, a base station, or a device in the core network; when this method is applied to the network architecture shown in Figure 4b or Figure 4c
  • network equipment can be satellite base stations, ground stations, or equipment in the core network.
  • the terminal device sends the first parameter corresponding to the first TA to the network device, so that the network device or other device can locate the terminal device according to the first parameter. For example, the network device can determine the distance difference between the terminal device and the access network device at multiple times based on the parameters corresponding to the TA at multiple times, and then perform positioning based on the distance difference.
  • the unit of the first parameter may be a time slot.
  • a terminal device reports a TA, it usually reports in units of time slots. Then the terminal device determines the number of first time slots corresponding to the first TA, which is the first parameter. Assume that the first TA determined by the terminal device is 4.4ms. When the subcarrier spacing is 15KHz, one time slot is 1ms. Then 4.4ms corresponds to 5 time slots, that is, the first parameter is 5 time slots. In this way, when the terminal device reports the first parameter corresponding to the first TA, it can be transmitted based on the existing signaling format, with less modification to the existing communication standard.
  • the unit of the first parameter can also be milliseconds, microseconds, etc. If the unit of the first TA determined by the terminal device is the same as the unit of the reported first parameter, for example, the units are both milliseconds, then the determined first parameter is the first TA itself.
  • the first parameter may also be obtained by rounding the first TA. For example, if the first TA determined by the terminal device is 5.6ms, and 5.6ms is rounded up to 6ms, then the first parameter is 6ms.
  • the terminal device may also determine the first parameter corresponding to the first TA in other pre-agreed ways, which is not limited in the embodiments of the present application.
  • the terminal device may also send indication information indicating the first moment to the network device to facilitate the network device to determine the location information of the access network device at the first moment, thereby In subsequent operations, the terminal device is positioned based on the location information and the first parameter of the access network device at the first moment.
  • Step 503 The terminal device determines the second TA between the terminal device and the access network device at the second time.
  • the distance between the terminal device and the satellite at the second moment may be different from the distance between the terminal device and the satellite at the first moment.
  • the corresponding TA is also different.
  • the TA of the terminal device at time t1 is TA1
  • the TA at time t2 is TA2
  • the TA at time t3 is TA3
  • the TA at time t4 is TA4. If only based on the TA at the first time, only the distance between the terminal device and the satellite at the first time can be determined, but the position of the terminal device cannot be determined.
  • the terminal device also needs to determine the TA at the second time, so that Only by calculating the distance between the terminal device and the satellite at the second moment, or calculating the difference between the distance at the first moment and the distance at the second moment, can the location information of the terminal device be determined.
  • the TA determined at the second moment is called the second TA.
  • the way in which the terminal device determines the second TA at the second moment is the same as the way in which the terminal device determines the first TA at the first moment, and will not be described again here.
  • the interval between the first moment and the second moment can be made within a preset time range to ensure the positioning accuracy of the terminal device.
  • Step 504 The terminal device sends the second parameter corresponding to the second TA to the network device.
  • the terminal device sends the second parameter corresponding to the second TA to the network device, so that the network device or other device can locate the terminal device according to the first parameter and the second parameter.
  • the network device may use the first parameter and the second
  • the parameter determines the distance difference between the terminal device and the access network device at the first moment and the second moment, and then positioning is performed based on the distance difference.
  • the method for the terminal device to determine the second parameter based on the second TA is the same as the method for determining the first parameter based on the first TA. For example, the terminal device determines the first time slot corresponding to the first TA in step 502, and determines the second time slot corresponding to the second TA in step 504; or, the terminal device determines the first time slot corresponding to the first TA in step 502. The number of milliseconds. In step 504, the second number of milliseconds corresponding to the second TA is determined.
  • the terminal device when sending the second parameter to the network device, can also send indication information indicating the second time to the network device to facilitate the network device to determine the position information of the satellite at the second time, because the satellite is at high speed. During movement, its position at the first moment and at the second moment are different, so that in subsequent operations, the terminal device is positioned based on the position information and the second parameters of the satellite at the second moment.
  • the network device can perform step 505a, or the network device can also perform step 505b, as follows:
  • Step 505a The network device locates the terminal device according to the first parameter and the second parameter.
  • the terminal device can be positioned by the network device.
  • the network device may determine the first distance between the terminal device and the access network device at the first time based on the first parameter and the speed of light, and determine the first distance between the terminal device and the access network device at the second time based on the second parameter and the speed of light. Second distance.
  • the network device draws a circle with the position of the access network device at the first moment as the center of the circle and the first distance as the radius, and draws a circle with the position of the access network device at the second moment as the center of the circle and the second distance as the radius. Then the position of the terminal device is estimated through positioning algorithms, such as trilateral positioning, least squares algorithm, etc.
  • the network device may also determine, based on the first parameter and the second parameter, the difference between the distance between the terminal device and the access network device at the first moment and the distance between the terminal device and the access network device at the second moment, and then The location of the terminal device is estimated based on the location of the access network device at the first time, the location of the access network device at the second time, and the above distance difference.
  • Step 505b The network device sends the first parameter and the second parameter to other network devices.
  • the network device does not position the terminal device, but other network devices position the terminal device.
  • the network device when the network device is a satellite as a transmission node as shown in Figure 4a and does not assume the function of a base station, then the satellite can send the received first parameter and the second parameter to the ground base station, and the ground base station will perform the function according to the first parameters and second parameters to position the terminal device, or the ground base station can also send the first parameter and the second parameter to the network device for positioning, such as LMF, and the network device for positioning will use the first parameter and the second parameter to position the terminal device.
  • the second parameter locates the terminal device.
  • the satellite can also send the first parameter and the second parameter to the network used for positioning. equipment.
  • the network device when it sends the first parameter and the second parameter to other network devices, it can also send the position information of the satellite at the first moment and the position information of the satellite at the second moment to other network devices to facilitate other networks.
  • the device can position the terminal device based on the satellite's position at the first moment, the first parameter, the position at the second moment, and the second parameter.
  • other network devices can also calculate and obtain the positions of the satellite at the first moment and the second moment according to the ephemeris.
  • the unit of the first parameter and the second parameter can be a time slot.
  • This implementation method is based on the existing signaling format for transmission and requires less modification to the existing communication standard.
  • reporting in time slot units has a coarse granularity, making it difficult to accurately represent the corresponding TA. Therefore, in order to improve positioning accuracy, based on the above positioning method, the following four implementation methods are provided to enable the network device to obtain more accurate parameters for positioning.
  • the difference between the second TA and the first TA can be a preset threshold, that is, when the terminal device determines the current When the TA at the current moment reaches a preset difference value from the first TA at the first moment, the current moment is the second moment, and the terminal device sends the second parameter corresponding to the TA at the second moment to the network device. It should be understood that it is an ideal situation that the difference between the second TA and the first TA is exactly the preset threshold. In actual operation, it is sufficient that the difference between the second TA and the first TA is within the preset range.
  • a corresponding trigger condition is set for the terminal device to report the second parameter (that is, the TA at the current moment and the first TA at the first moment reach a preset difference), so that the terminal device reports a parameter that satisfies the preset condition.
  • the first parameter and the second parameter enable the network device to determine a more accurate TA difference based on the first parameter, the second parameter and the preset threshold, thereby improving positioning accuracy.
  • the trigger condition can be configured on the network side or agreed in the protocol.
  • the preset range is [0.5- ⁇ , 0.5+ ⁇ ] or [-0.5- ⁇ , -0.5+ ⁇ ] (unit ms), where ⁇ represents the allowable error value, and the sub-carrier spacing is 15KHz; the terminal equipment determines The TA at time t1 is 5.6ms, then the terminal device sends indication information for indicating 6 time slots to the network device; the terminal device continuously updates the TA value.
  • the terminal device determines that the TA reaches 6.1ms at time t2, due to 6.1ms If the difference from 5.6 ms is within the preset range, the terminal device sends the second parameter corresponding to TA at time t2 to the network device, that is, the indication information used to indicate 7 time slots.
  • the network device determines that the difference in TA between the terminal device at time t2 and time t1 is based on the predetermined threshold. 0.5ms, so as to position the terminal equipment based on the more accurate TA difference, or send the difference between t2 time, t1 time, and TA to the ground station, or you can directly forward the information sent by the terminal equipment to the ground station to Enables the ground station to send information to equipment used to locate the terminal equipment.
  • the terminal device determines that the TA at time t1 is 4.4ms, and the terminal device sends indication information indicating 5 time slots to the network device; the terminal device continues Update the TA value.
  • the terminal device sends indication information indicating 5 time slots to the network device.
  • the network device determines that the difference in TA between the terminal device at time t2 and time t1 is 0.5ms based on the predetermined threshold. From the implementation Positioning of terminal equipment.
  • Method 2 The difference between the TA at the current moment and the first TA can be called the TA difference, and the difference between the parameter corresponding to the TA at the current moment and the first parameter is called the parameter difference.
  • the terminal device determines the parameters at the current moment.
  • the difference between the difference value and the TA difference value is the preset threshold
  • the current moment is the second moment
  • the terminal device sends the second parameter corresponding to the TA at the second moment to the network device. It should be understood that it is an ideal situation that the difference between the parameter difference and the TA difference is exactly the preset threshold. In actual operation, it is sufficient that the difference between the parameter difference and the TA difference is within the preset range.
  • corresponding trigger conditions are also set for the terminal device to report the second parameter (that is, the difference between the parameter difference at the current moment and the TA difference is the preset threshold), but the trigger conditions are different from the first method.
  • the terminal device is caused to report the first parameter and the second parameter that meet the preset conditions, so that the network device can determine a more accurate TA difference based on the first parameter, the second parameter and the preset threshold, thereby improving positioning accuracy.
  • the trigger condition can be configured on the network side or agreed in the protocol.
  • the preset threshold is 1ms
  • the preset range is ⁇ 0.05ms
  • the subcarrier spacing is 15KHz
  • the terminal equipment determines that the TA at time t1 is 4.4ms, and the corresponding first parameter is 5 time slots, then the terminal equipment
  • the network device sends indication information indicating 5 time slots; the terminal device continuously updates the TA value.
  • the network device can determine the TA difference between time t2 and time t1 based on the parameter difference between time t2 and time t1, thereby positioning the terminal device.
  • Method 3 The difference between the second moment and the first moment is within the preset range.
  • the difference between the first moment and the second moment is the movement time of the network device (satellite). Normally, if the movement time of the network device is within the preset range, then the difference between the corresponding second TA and the first TA is also within the required difference range, so that the network device or other devices can perform operations on the terminal device. position.
  • corresponding trigger conditions are also set for the terminal device to report the second parameter (that is, the difference between the current time and the first time is within the preset range), so that the terminal device reports the first parameter that satisfies the preset conditions.
  • parameter and the second parameter thereby enabling the network device to perform high-precision positioning based on the first parameter, the second parameter and the preset range.
  • the trigger condition can be configured on the network side or agreed in the protocol.
  • Method 4 After reporting the first parameter corresponding to the first TA, the terminal device may also send the first difference between the first parameter and the first TA to the network device, for example, through a non-access layer (NAS) message.
  • the difference value is sent to the network device, so that the network device sends the first difference value to the network device used to locate the terminal device; after reporting the second parameter corresponding to the second TA, the terminal device can compare the second parameter with the first difference value.
  • the second difference between the two TAs is sent to the network device, for example, through a NAS message, so that the network device sends the second difference to the network device used to locate the terminal device.
  • NAS non-access layer
  • the terminal device reports the first parameter and the second parameter based on the existing signaling of reporting TA to the network device. This enables the network device to complete the positioning process for the terminal device regardless of whether the network device in steps 502 and 504 completes the positioning process. All can obtain the relevant parameters used to position the terminal device. However, due to security concerns, users may hope that network devices with low security will not parse relevant parameters. Therefore, the terminal device can separately send the first difference value and the second difference value that can be used for precise positioning, so that the network device does not parse them, but directly forwards them to the network device for positioning.
  • the terminal device After reporting the 6 time slots to the network device, the terminal device sends the 0.4ms difference information to the network device through the NAS message, so that the network The device sends it to the LMF, so that the LMF can determine the TA of the terminal device at time t1 and time t2, thereby positioning the terminal device.
  • the terminal device can also send the first difference value and the second difference value to the network device together, instead of sending them separately each time the difference value is determined.
  • the first difference reported by the terminal device is strictly equal to the difference between the first parameter and the first TA
  • the second difference is strictly equal to the difference between the second parameter and the second TA.
  • the first difference reported by the terminal device and the actual first difference only need to be within the preset range.
  • the preset range can be [-0.5, 0.5], or (-0.5, 0.5 ] or [-0.5, 0.5), unit ms;
  • the second difference reported by the terminal device and the actual second difference should also be within the preset range.
  • the terminal device can determine the first difference and the second difference with an accuracy of 0.01ms, but the accuracy of the difference when the terminal device sends information is only 0.1ms. Then the terminal device cannot determine the precise first difference and the second difference. The difference between the two is sent to the network device.
  • the terminal device can also report the first parameter and the corresponding first difference value to the network device.
  • the TA1 determined by the terminal device at time 1 is 6.5ms
  • parameter 1 is 7 time slots (corresponding to 7ms)
  • the difference is -0.3ms, then the terminal device can report parameter 2 and the second difference, that is, 6 time slots and -0.3ms.
  • the terminal device may be used to report the first parameter and the first difference value to the LFM, or may report the first parameter to the network device and the second parameter to the LMF.
  • the difference between the first TA and the second TA reported by the terminal device can be strictly equal to the actual TA difference; but in actual operation, the TA difference reported by the terminal device is different from the actual TA difference.
  • the value is within the preset range.
  • the first parameter and the second parameter reported by the terminal device are parameters used for positioning and need to meet the conditions in the above respective methods.
  • the parameters reported by the terminal device according to the existing process are only used to determine the TA. The above conditions do not need to be met.
  • the terminal device when the terminal device reports the first parameter and the second parameter, it may carry in the message sent Indication information to indicate that the parameters reported this time are parameters used for positioning.
  • the terminal device sends the first parameter corresponding to the first TA at the first time and the second parameter corresponding to the second TA at the second time to the network device, so that the network device may be used to Other network devices used for positioning the terminal device can position the terminal device according to the first parameter and the second parameter.
  • This method can be applied to satellite communication scenarios to solve the positioning problem when the terminal device can only be covered by one satellite.
  • the trigger condition can be set by reporting the second parameter to the terminal device.
  • the accuracy of TA and corresponding parameters may be inconsistent, in order to improve the accuracy of TA reporting, the difference between the corresponding parameters and TA can also be reported, thereby improving positioning accuracy.
  • the terminal device reports the first parameter at the first time and the second parameter at the second time as an example.
  • the terminal device can also report parameters corresponding to more times to improve the positioning accuracy of the terminal device.
  • the network device can locate the terminal device according to the parameters reported by the terminal device at four times, wherein the third parameter corresponding to the third TA at the third time and the fourth parameter corresponding to the fourth TA at the fourth time The parameter is determined in the same manner as the second parameter corresponding to the second TA at the second time.
  • Embodiments of the present application also provide a positioning method to solve the problem of terminal device positioning in a satellite communication scenario or a drone communication scenario. This method is especially suitable for NGEO satellite communication scenarios.
  • Step 701 The network device broadcasts the first public TA at the first moment.
  • the network equipment here may include but is not limited to the base station (gNB), access and mobility management function (AMF), location management function (LMF) in the 5G communication system, or The base station (eNB) in the 4G communication system, or the transmission point (TP), the transmission-reception point (TRP), the ground station (gateway, GW), etc.
  • gNB base station
  • AMF access and mobility management function
  • LMF location management function
  • eNB in the 4G communication system
  • TP transmission point
  • TRP transmission-reception point
  • GW ground station
  • satellites including satellite base stations or satellites serving as transmission points
  • ground stations can also be used as Figure 7.
  • the network equipment in the method shown in Figure 7, the base station on the ground can also be used as the network equipment in the method shown in Figure 7, and the equipment in the core network can also be used as the network equipment in the method shown in Figure 7.
  • Network equipment can broadcast a public TA to terminal equipment.
  • This public TA may not meet the needs of each terminal equipment to compensate for transmission delay, but it can help the terminal equipment complete the access process.
  • Step 702 The terminal device sends the first reference signal to the network device according to the first public TA.
  • the terminal device even if the terminal device has calculated the TA it actually requires, when performing positioning, the terminal device still sends a reference signal to the network device based on the first public TA broadcast by the network device. If the first public TA cannot meet the terminal equipment's need to compensate for the transmission delay, then the terminal equipment will calculate the time when the first reference signal sent by the first public TA actually arrives at the network device, that is, the time when the network device receives the first reference signal. , and the time when the network device expects to receive the first reference signal according to the first public TA will be different, and the difference may be called the residual TA. Specifically, the residual TA generated based on the first common TA transmitting the reference signal may be called the first residual TA.
  • Step 703 The network device broadcasts the second public TA at the second time.
  • the network equipment may frequently broadcast the public TA.
  • the second public TA broadcast by the network device at the second moment may be the same as the first public TA, or may be different.
  • Step 704 The terminal device sends a second reference signal to the network device according to the second public TA.
  • the terminal device when performing positioning, the terminal device does not consider the TA actually required by itself, but still sends the second reference signal to the network device based on the broadcasted second public TA. Specifically, the time when the second reference signal sent by the terminal device according to the second public TA actually arrives at the network device, that is, the time when the network device receives the second reference signal, is different from the time when the network device expects to receive the second reference signal according to the second public TA. The time will be different, and the difference is called the second residual TA.
  • Step 705 The network device determines the first residual TA based on the time when the first reference signal is received, determines the second residual TA based on the time when the second reference signal is received, and positions the terminal device based on the first residual TA and the second residual TA.
  • the network device determines the distance difference between the terminal device and the network device at the first moment and the distance between the terminal device and the network device at the second moment based on the first residual TA and the second residual TA, and then determines the distance difference between the terminal device and the network device at the first moment based on the first residual TA.
  • the location of the device, the location of the network device at the second moment, and the above distance difference are used to estimate the location of the terminal device.
  • the unit of the residual TA determined by the network device may be a time slot, ms, or other time unit.
  • the common TA broadcast by the network device may be the feeder TA and the service link common TA, or may only include the service link common TA.
  • the feed link is the communication link between the satellite and the ground station; the feed TA represents the TA during communication between the satellite and the ground station.
  • the service link is the communication link between the satellite and the terminal device; the service link public TA represents the TA during communication between the terminal device and the satellite.
  • the network device is a satellite base station, the public TA does not need to include the feeding TA, and the terminal device only needs to send the reference signal according to the service link public TA.
  • the network device can also send the first residual TA and the second residual TA to other devices that can be used for positioning, so that other devices can position the terminal device.
  • the terminal device sends a reference signal to the network device according to the public TA broadcast by the network device. Since there is a residual TA between the public TA broadcast by the network device and the TA actually required by the terminal device, the network device can use the residual TA at different times to , determine the distance difference between the terminal device and the network device at different times, and estimate the location information of the terminal device.
  • This method can be applied to satellite communication scenarios to solve the positioning problem when the terminal device can only be covered by one satellite.
  • the terminal device reports the first reference signal according to the first public TA, and reports the first reference signal according to the second public TA. Reporting the second reference signal is an example. In practical applications, the terminal equipment can also report reference signals based on more public TAs, so that the network equipment can determine more residual TAs, thereby improving the positioning accuracy of the terminal equipment.
  • the satellite base station can broadcast the first public TA at time t1, and the terminal sends SRS1 according to the first public TA; the satellite base station can broadcast the second public TA at time t2, and the terminal sends SRS2 according to the second public TA;
  • the satellite base station can broadcast the third public TA at time t3, and the terminal sends SRS3 according to the third public TA; the satellite base station can broadcast the fourth public TA at time t4, and the terminal sends SRS4 according to the fourth public TA; then the satellite base station can determine 4 residual TA, thereby positioning the terminal based on these four residual TAs, or sending the determined residual TA to the position measurement center, so that the position measurement center positions the terminal.
  • the TA In the geostationary earth orbit (GEO) satellite communication scenario, since the satellite is stationary relative to the earth, the TA will not change for the terminal equipment in the stationary state. For the terminal equipment in the moving state, the TA will not change. Said that the changes in TA are also very small and may not be enough to trigger the reporting process. Therefore, the above method of positioning terminal equipment based on TA corresponding parameters cannot be applied to GEO satellite communication scenarios.
  • GEO geostationary earth orbit
  • embodiments of the present application also provide a positioning method, which can be applied to satellite communication scenarios, which can be applied to geostationary earth orbit (GEO) satellite communication scenarios, and can also be applied to NGEO satellite communication scenarios.
  • This method locates the terminal device based on the direction of the beam.
  • BF beamforming
  • SINR signal to interference plus noise ratio
  • Step 901a The terminal device sends the first message to the network device through the first beam.
  • Step 901b The network device receives the first message through the second beam.
  • the network equipment here may include but is not limited to the base station (gNB), access and mobility management function (AMF), location management function (LMF) in the 5G communication system, or The base station (eNB) in the 4G communication system, or transmission point (TP), transmission-reception point (TRP), ground station (gateway, GW), etc.
  • gNB base station
  • AMF access and mobility management function
  • LMF location management function
  • eNB transmission point
  • TP transmission point
  • TRP transmission-reception point
  • GW ground station
  • satellites can serve as network equipment in the method shown in Figure 9, and other equipment on the ground can also It can be used as a network device in the method shown in Figure 9.
  • the network device is a device on the ground
  • the satellite reflects the information received through different beams, so that the network device on the ground receives it through different beams.
  • the first beam of the terminal device and the second beam of the network device can form a beam pair, that is, the message sent by the terminal device through the first beam can be received by the network device through the second beam, and the message sent by the network device through the second beam can be received by the terminal.
  • the device is able to pass the first beam end.
  • the first beam of the terminal device and the second beam of the network device may be called beam pair 1.
  • Step 902a The terminal device sends the second message to the network device through the third beam.
  • Step 902b The network device receives the second message through the fourth beam.
  • the third beam of the terminal device and the fourth beam of the network device can form a beam pair, that is, the message sent by the terminal device through the third beam can be received by the network device through the fourth beam, and the message sent by the network device through the fourth beam can be received by the terminal.
  • the device is capable of passing through the third beam.
  • the third beam of the terminal device and the fourth beam of the network device may be called beam pair 2.
  • Step 903 The network device locates the terminal device according to the directions of the second beam and the fourth beam.
  • the network device After receiving the message sent by the terminal device through the second beam and the fourth beam, the network device can determine that the terminal device is located within the range jointly covered by the second beam and the fourth beam, thereby positioning the terminal device.
  • different time-frequency resources can be allocated to messages transmitted on different beam pairs.
  • the network device can allocate different time-frequency resources to the reference signals transmitted on different beam pairs, and notify the terminal device of the allocated time-frequency resources.
  • beam a of the network device and beam a' of the terminal device can form beam pair A
  • beam b of the network device and beam b' of the terminal device can form beam pair B
  • the network device is the detection reference signal transmitted on beam pair A.
  • SRS sounding reference signaling
  • the network device can also configure different scrambling and descrambling methods for information transmitted on different beam pairs.
  • the network device configures adding and descrambling mode 1 for beam pair 1, and configures adding and descrambling mode 2 for beam pair 2; then when the terminal device sends a message to the network device through the beam in beam pair 1, it uses mode 1 for encryption.
  • Scrambling when sending a message to the network device through the beam in beam pair 2, method 2 is used for scrambling; when the network device receives the message, it can determine which beam the received message was received through based on the descrambling method.
  • different polarization methods can be configured for different beam pairs.
  • network equipment and terminal equipment use vertical polarization on beam pair 1 and horizontal polarization on beam pair 2.
  • the network device can also configure different public TAs for different beam pairs (which can be feeder TA+service link public TA, or only service link public TA).
  • the terminal device sends a message to the network device through different beams, it sends the corresponding public TA according to the beam it is located in, so that different residual TAs will be generated on different beam pairs; the network device can determine the received message based on the different residual TAs. via which beam the message was received.
  • the terminal device may perform the above step 901a after receiving the information sent by the network device through the second beam.
  • the first message sent by the terminal device may include the second beam. or contains the identification of beam pair 1; accordingly, the terminal device may perform the above step 902a after receiving the information sent by the network device through the fourth beam.
  • the second message sent by the terminal device may Contains the identification of the fourth beam, or the identification of beam pair 2.
  • the terminal device sends messages to the network device through different beams, so that the network device determines the orientation of the terminal device according to the direction of the received beam.
  • This method can be applied to satellite communication scenarios, especially GEO scenarios, to solve the problem that terminal equipment cannot be positioned based on TA because satellites are relatively stationary to the ground.
  • different configuration parameters can be configured for different beams, such as time-frequency resources, scrambling methods, polarization methods, public TA, etc., to facilitate the network device to determine the beam that receives the message sent by the terminal device.
  • the network device and the terminal device communicate through two pairs of beam pairs as an example.
  • a larger number of beam pairs can also be used to improve the positioning accuracy of the terminal device.
  • the network device configures public TA1 to the terminal device through beam 1, public TA2 to the terminal device through beam 2, and public TA2 to the terminal device through beam 2.
  • FIG 11 is a schematic diagram of a communication device provided according to an embodiment of the present application.
  • the communication device includes a processing module 1101 and a transceiver module 1102.
  • the processing module 1101 is used to implement data processing by the communication device.
  • the transceiver module 1102 is used to perform the information transceiver processing in the above method embodiment.
  • the processing module 1101 in the embodiment of the present application can be implemented by a processor or processor-related circuit components (or, referred to as processing circuits), and the transceiver module 1102 can be implemented by a receiver or receiver-related circuit components, a transmitter or a transmitter. Implementation of device-related circuit components.
  • the communication device may be a communication device, or may be a chip used in the communication device or other combined devices, components, etc. having the functions of the above communication device.
  • the processing module 1101 is used to determine the first timing advance TA between the first moment and the access network device; the transceiver module 1102 is used to send the first timing advance TA The first parameter corresponding to the TA is sent to the network device; the processing module 1101 is also used to determine the second TA between the second moment and the access network device; the transceiving module 1102 is also used to send the third parameter corresponding to the second TA.
  • the two parameters are sent to the network device so that the network device locates the terminal device according to the first parameter and the second parameter, or so that the network device combines the first parameter and the second parameter.
  • the second parameter is sent to other network devices.
  • each of the above modules can also be used to support other processes executed by the terminal device in the embodiment shown in Figure 5 and any of its implementations.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the transceiver module 1102 receives the first parameter sent by the terminal device.
  • the first parameter is the communication between the terminal device and the access network device at the first moment.
  • Parameters corresponding to the first timing advance TA receiving second parameters sent by the terminal device, where the second parameters are parameters corresponding to the second TA between the terminal device and the access network device at the second moment;
  • the processing module 1101 is used to locate the terminal device according to the first parameter and the second parameter, or the transceiver module 1102 sends the first parameter and the second parameter to other network devices, so that The other network device locates the terminal device according to the first time slot and the second time slot, or causes the other network device to send the first parameter and the second parameter to the user.
  • Network equipment for locating the terminal equipment is the communication between the terminal device and the access network device at the first moment.
  • Parameters corresponding to the first timing advance TA receiving second parameters sent by the terminal device, where the second parameters are parameters corresponding to the second TA between the terminal device and the access network device at the
  • each of the above modules can also be used to support other processes performed by the network device in the embodiment shown in Figure 5 and any implementation thereof.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the transceiver module 1102 is used to receive the first public timing advance TA broadcast by the network device, and under the control of the processing module 1101, sends the message to the first public timing advance TA according to the first public TA.
  • the network device sends a first reference signal; the transceiver module 1102 is also used to receive a second public TA broadcast by the network device, and send a second reference signal to the network device according to the second public TA under the control of the processing module 1101, So that the network device determines the time based on the actual receiving time of the first reference signal, the time determined based on the first public TA, the actual receiving time of the second reference signal, and the time determined based on the second public TA. time to locate the terminal device.
  • each of the above modules can also be used to support other processes executed by the terminal device in the embodiment shown in Figure 7 and any of its implementations.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the transceiver module 1102 is used to broadcast the first public setting Timing advance TA; receiving the first reference signal sent by the terminal device according to the first public TA; broadcasting the second public TA; receiving the second reference signal sent by the terminal device according to the second public TA; the processing module 1101 is used to According to the actual receiving time of the first reference signal, the time determined according to the first common TA, the actual receiving time of the second reference signal and the time determined according to the second common TA, the The terminal device is positioned.
  • each of the above modules can also be used to support other processes performed by the network device in the embodiment shown in Figure 7 and any implementation thereof.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the transceiver module 1102 sends the first message to the network device through the first beam under the control of the processing module 1101; and sends the second message to the network device through the second beam. message, so that the network device locates the terminal device according to the direction of the beam that receives the first message and the beam that receives the second message.
  • each of the above modules can also be used to support other processes executed by the terminal device in the embodiment shown in Figure 9 and any of its implementations.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the transceiver module 1102 is configured to receive the first message sent by the terminal device through the first beam; receive the second message sent by the terminal device through the second beam; and process Module 1101 is configured to position the terminal device according to the directions of the first beam and the second beam.
  • each of the above modules can also be used to support other processes performed by the network device in the embodiment shown in Figure 9 and any implementation thereof.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • an embodiment of the present application also provides a communication device, which includes a processor 1201 as shown in Figure 12, and a communication interface 1202 connected to the processor 1201.
  • the processor 1201 may be a general processor, a microprocessor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, or one or more integrated circuits used to control the execution of the program of this application, etc.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the communication interface 1202 uses any device such as a transceiver to communicate with other devices or communication networks, such as RAN.
  • the processor 1201 is used to call the communication interface 1202 to perform receiving and/or sending functions, and to perform the user plane function disaster recovery method as described in the previous possible implementation manner.
  • the communication device may also include a memory 1203 and a communication bus 1204.
  • the memory 1203 is used to store program instructions and/or data, so that the processor 1201 calls the instructions and/or data stored in the memory 1203 to implement the above functions of the processor 1201.
  • the memory 1203 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM) or can be used to carry or store the desired program code in the form of instructions or data structures and can be stored by the computer. any other medium, but not limited to this.
  • the memory 1203 may exist independently, such as an off-chip memory, and is connected to the processor 1201 through the communication bus 1204. Memory 1203 may also be integrated with processor 1201.
  • Communication bus 1204 may include a path that carries information between the above-mentioned components.
  • the communication device may be a terminal device in the above method embodiment, or may be a network device in the above method embodiment.
  • the processor 1201 is used to implement data processing operations of the communication device
  • the communication interface 1202 is used to implement receiving operations and sending operations of the communication device.
  • the processor 1201 is configured to execute through the communication interface 1202: determine the first timing advance TA between the first moment and the access network device; Send the first parameter corresponding to a TA to the network device; determine the second TA between the second moment and the access network device; send the second parameter corresponding to the second TA to the network device, so that The network device locates the terminal device according to the first parameter and the second parameter, or causes the network device to send the first parameter and the second parameter to other network devices.
  • each of the above modules can also be used to support other processes executed by the terminal device in the embodiment shown in Figure 5 and any of its implementations.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the processor 1201 is configured to execute through the communication interface 1202: receive the first parameter sent by the terminal device, where the first parameter is the value of the terminal device at the first moment.
  • the parameter corresponding to the first timing advance TA between the access network equipment receives the second parameter sent by the terminal equipment.
  • the second parameter is the timing advance between the terminal equipment and the access network equipment at the second moment.
  • Parameters corresponding to the second TA position the terminal device according to the first parameter and the second parameter, or send the first parameter and the second parameter to other network devices so that the The other network device locates the terminal device according to the first time slot and the second time slot, or causes the other network device to send the first parameter and the second parameter to the user.
  • each of the above modules can also be used to support other processes performed by the network device in the embodiment shown in Figure 5 and any implementation thereof.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the processor 1201 is configured to execute through the communication interface 1202: receive the first public timing advance TA broadcast by the network device, and send the message to the said first public timing advance TA according to the first public TA.
  • the network device sends a first reference signal; receives a second public TA broadcast by the network device, and sends a second reference signal to the network device according to the second public TA, so that the network device according to the first reference signal
  • the terminal device is positioned based on the actual reception time, the time determined according to the first public TA, the actual reception time of the second reference signal, and the time determined according to the second public TA.
  • each of the above modules can also be used to support other processes executed by the terminal device in the embodiment shown in Figure 7 and any of its implementations.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the processor 1201 is configured to perform through the communication interface 1202: broadcast the first public timing advance TA; receive the first public timing advance TA sent by the terminal device according to the first public TA. Reference signal; broadcasting the second public TA; receiving the second reference signal sent by the terminal device according to the second public TA; according to the actual reception time of the first reference signal, the time determined according to the first public TA, The terminal device is positioned based on the actual reception time of the second reference signal and the time determined according to the second public TA.
  • each of the above modules can also be used to support other processes performed by the network device in the embodiment shown in Figure 7 and any implementation thereof.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the processor 1201 is configured to execute through the communication interface 1202: send the first message to the network device through the first beam; send the first message to the network device through the second beam. Match 2 information, so that the network device locates the terminal device according to the direction of the beam that receives the first message and the beam that ends the second message.
  • each of the above modules can also be used to support other processes executed by the terminal device in the embodiment shown in Figure 9 and any of its implementations.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • the processor 1201 is configured to execute through the communication interface 1202: receive the first message sent by the terminal device through the first beam; receive the message sent by the terminal device through the second beam. The second message; position the terminal device according to the directions of the first beam and the second beam.
  • each of the above modules can also be used to support other processes performed by the network device in the embodiment shown in Figure 9 and any implementation thereof.
  • the beneficial effects can be referred to the previous description and will not be repeated here.
  • embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer-readable instructions.
  • Embodiments of the present application provide a computer program product containing instructions, which when run on a computer causes the above method embodiments to be executed.
  • Embodiments of the present application provide a computer-readable storage medium storing a computer program.
  • the computer program includes instructions for executing the above method embodiments.
  • Embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the above method embodiments.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种定位方法及通信装置。该方法中,终端设备确定第一时刻与接入网设备之间的第一TA,将第一TA对应的第一参数发送给网络设备;终端设备确定第二时刻与接入网设备之间的第二TA,将所述第二TA对应的第二参数发送给网络设备,网络设备根据第一参数和第二参数对终端设备进行定位,或者,网络设备将所述第一参数和第二参数发送给其他网络设备,以实现对终端设备进行定位。在该方法中,可以基于终端设备和一个网络设备之间的通信,实现对终端设备进行定位,使得该方法能够应用于卫星通信场景,解决终端设备仅能够被一个卫星所覆盖时的定位问题。

Description

一种定位方法及通信装置
相关申请的交叉引用
本申请要求在2022年03月14日提交中国专利局、申请号为202210249735.2、申请名称为“一种定位方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年04月11日提交中国专利局、申请号为202210374283.0、申请名称为“一种定位方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种定位方法及通信装置。
背景技术
卫星通信相比地面通信有其独有的优点,例如可以提供更广的覆盖范围;卫星基站不容易受到自然灾害或者外力的破坏。未来5G通信系统若引入卫星通信,可以实现为海洋、森林等一些地面通信网络不能覆盖的地区提供通信服务;可以增强5G通信系统的可靠性,例如确保飞机、火车上的用户获得更加优质的通信服务;可以为5G通信系统提供更多数据传输的资源,提升网络的速率。因此,同时支持与地面通信与卫星通信,是未来5G通信系统的发展方向,在广覆盖、可靠性、多连接、高吞吐等方面都有比较大的益处。
目前卫星通信已经引入3GPP标准中,作为5G通信的一个通信场景,标准中为了适配大延迟、高移动性的特点,分别对定时、同步、HARQ等技术做了增强。但是在现有的地面通信中,网络侧可以完成对终端设备的定位,或者完成终端设备上报位置的验证,而3GPP的卫星通信系统还没有该功能。因此,如何实现通信卫星对终端设备上报位置的验证,进而实现对终端设备的定位,将会是未来的研究方向。
发明内容
本申请实施例提供一种定位方法及通信装置,用于实现在对终端设备进行定位。
第一方面,本申请实施例提供一种定位方法,所述方法包括:终端设备确定第一时刻与接入网设备之间的第一定时提前量TA;所述终端设备将所述第一TA对应的第一参数发送给所述网络设备;终端设备确定第二时刻与所述接入网设备之间的第二TA;所述终端设备将所述第二TA对应的第二参数发送给所述网络设备,以使所述网络设备根据所述第一参数和所述第二参数对所述终端设备进行定位,或者,以使所述网络设备将所述第一参数和所述第二参数发送给其他网络设备。
在本申请上述实施例中,终端设备向网络设备发送第一时刻的第一TA所对应的第一参数,以及第二时刻的第二TA所对应的第二参数,使得网络设备或用于对终端设备进行定位的其他网络设备,能够根据第一参数、第二参数对终端设备进行定位。该方法能够应用于卫星通信场景,解决终端设备仅能够被一个卫星所覆盖时的定位问题。进一步的,可以通过对终端设备上报第二参数设置触发条件。此外,由于TA与对应的参数的精度可能 不一致,为了提高TA上报的精度,还可以将对应参数与TA的差值进行上报,从而提高定位精度。
在一种可能的实现方式中,所述第二TA与所述第一TA的差值在预设范围内。在上述方式中,为终端设备上报第二参数设置了相应的触发条件,以使终端设备上报满足预设条件的第一参数和第二参数,从而使得网络设备能够根据第一参数、第二参数以及预设阈值,确定出更加精确的TA差值,从而提高定位精度。其中,触发条件可以是由网络设备配置的,也可以是协议中预先约定的。
在一种可能的实现方式中,所述第二TA与所述第一TA的差值,与所述第二参数与所述第一参数的差值的差值在预设范围内。在上述方式中,同样为终端设备上报第二参数设置了相应的触发条件,以使终端设备上报满足预设条件的第一参数和第二参数,从而使得网络设备能够根据第一参数、第二参数以及预设阈值,确定出更加精确的TA差值,从而提高定位精度。
在一种可能的实现方式中,第二时刻与第一时刻的差值在预设范围内。第一时刻与第二时刻的差值,也就是网络设备(卫星)的运动时间。通常情况下,网络设备的运动时间在预设范围内,那么相应的第二TA与第一TA的差值也在所需的差值范围内,从而使得网络设备或其他设备能够对终端设备进行定位。
在一种可能的实现方式中,所述方法还包括:所述终端设备向所述网络设备发送第一差值和所述第二差值,所述第一差值、与所述第一参数与所述第一TA的差值的差值在预设范围内,所述第二差值、与所述第二参数与所述第二TA的差值的差值在预设范围内,以使所述网络设备根据所述第一参数、所述第一差值、所述第二参数和所述第二差值对所述终端设备进行定位,或者,以使所述网络设备将所述第一参数、所述第一差值、第二参数和所述第二差值发送给其他网络设备;或者,所述终端设备向所述网络设备发送TA差值,所述第一TA与所述第二TA的差值,与所述TA差值的差值在预设范围内,以使所述网络设备根据所述第一参数、所述第二参数和所述TA差值对所述终端设备进行定位,或者,以使所述网络设备将所述第一参数、所述第二差值和所述TA差值发送给其他网络设备。终端设备将第一差值和第二差值发送给网络设备,能够使得网络设备确定出更加精确的TA,从而对终端设备进行更加精准的定位。
在一种可能的实现方式中,TA是终端设备基于测量上下行信号得到的上下行子帧的偏差。例如,终端设备测量下行子帧i和上行子帧i的时间差,并将该时间差作为TA。在另一种可能的实现方式中,TA是终端设备根据网络设备和自身的相对位置确定出的。
第二方面,本申请提供一种定位方法,所述方法包括:网络设备接收终端设备发送的第一参数,所述第一参数为所述终端设备在第一时刻与接入网设备之间的第一定时提前量TA对应的参数;所述网络设备接收所述终端设备发送的第二参数,所述第二参数为所述终端设备在第二时刻与接入网设备之间的第二TA对应的参数;所述网络设备根据所述第一参数和所述第二参数对所述终端设备进行定位,或者,将所述第一参数和所述第二参数发送至其他网络设备,以使所述其他网络设备根据所述第一参数和所述第二参数对所述终端设备进行定位,或者以使所述其他网络设备将所述第一参数和所述第二参数发送给用于对所述终端设备进行定位的网络设备。
在一种可能的实现方式中,所述第二TA与所述第一TA的差值为预设阈值。
在一种可能的实现方式中,所述第二TA与所述第一TA的差值,与所述第二参数与 所述第一参数的差值的差值在预设范围内。
在一种可能的实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的第一差值和第二差值,所述第一差值、与所述第一参数与所述第一TA的差值的差值在预设范围内,所述第二差值、与所述第二参数与所述第二TA的差值的差值在预设范围内;所述网络设备根据所述第一参数和所述第二参数对所述终端设备进行定位,包括:所述网络设备根据所述第一差值和所述第一参数确定所述第一TA;所述网络设备根据所述第二差值和所述第二参数确定所述第二TA;所述网络设备根据所述第一TA和所述第二TA对所述终端设备进行定位;或者,所述方法还包括:所述网络设备将所述第一差值和所述第二差值发送给所述其他网络设备。
在一种可能的实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的TA差值,所述第一TA与所述第二TA的差值,与所述TA差值的差值在预设范围内;所述网络设备根据所述第一参数和所述第二参数对所述终端设备进行定位,包括:所述网络设备根据所述第一参数、所述第二参数和所述TA差值对所述终端设备进行定位;或者,所述方法还包括:所述网络设备将所述TA差值发送给所述其他网络设备。
第三方面,本申请提供一种定位方法,所述方法包括:终端设备接收网络设备广播的第一公共定时提前量TA;所述终端设备根据所述第一公共TA向所述网络设备发送第一参考信号;终端设备接收网络设备广播的第二公共TA;所述终端设备根据所述第二公共TA向所述网络设备发送第二参考信号,以使所述网络设备根据所述第一参考信号的实际接收时间、根据所述第一公共TA确定出的时间、所述第二参考信号的实际接收时间以及根据所述第二公共TA确定出的时间对所述终端设备进行定位。
在上述实施例中,终端设备根据网络设备广播的公共TA向网络设备发送参考信号,由于网络设备广播的公共TA与终端设备实际所需的TA存在残留TA,网络设备可以根据不同时刻的残留TA,确定出终端设备在不同时刻到网络设备的距离差,估计出终端设备的位置信息。该方法能够应用于卫星通信场景,解决终端设备仅能够被一个卫星所覆盖时的定位问题。
在一种可能的实现方式中,所述第一公共TA包括第一馈电TA和第一服务链路TA,所述第二公共TA包括第二馈电TA和第二服务链路TA;或者,所述第一公共TA包括第一服务链路TA,所述第二公共TA包括第二服务链路TA。
第四方面,本申请提供一种定位方法,所述方法包括:网络设备广播第一公共定时提前量TA;所述网络设备接收终端设备根据所述第一公共TA发送的第一参考信号;网络设备广播第二公共TA;所述网络设备接收终端设备根据所述第二公共TA发送的第二参考信号;所述网络设备根据所述第一参考信号的实际接收时间、根据所述第一公共TA确定出的时间、所述第二参考信号的实际接收时间以及根据所述第二公共TA确定出的时间,对所述终端设备进行定位。
在一种可能的实现方式中,所述第一公共TA包括第一馈电TA和第一服务链路TA,所述第二公共TA包括第二馈电TA和第二服务链路TA;或者,所述第一公共TA包括第一服务链路TA,所述第二公共TA包括第二服务链路TA。
第五方面,本申请提供一种定位方法,所述方法包括:终端设备通过第一波束向网络设备发送第一消息;所述终端设备通过第二波束向所述网络设备发送第二消息,以使所述网络设备根据接收所述第一消息的波束和接收所述第二消息的波束的指向对所述终端设 备进行定位。
在上述实施例中,终端设备通过不同的波束向网络设备发送消息,使得网络设备根据接收波束的指向确定终端设备的方位。该方法能够应用于卫星通信场景,尤其适用于GEO场景,解决由于卫星相对地面静止使得无法根据TA对终端设备进行定位的问题。进一步的,可以为不同的波束配置不同的配置参数,如时频资源、加解扰方式、极化方式、公共TA等,以方便网络设备确定接收终端设备发送消息的波束。
在一种可能的实现方式中,所述终端设备在所述第一波束上采用的加扰方式与在所述第二波束上采用的加扰方式不同;或者,所述终端设备在所述第一波束上发送所述第一消息的时频资源,与在所述第二波束上发送所述第二消息的时频资源不同;或者,所述终端设备在所述第一波束上采用的极化方式与在所述第二波束上采用的极化方式不同。
在一种可能的实现方式中,所述方法还包括:所述终端设备通过所述第一波束接收第一公共定时提前量TA;所述终端设备通过所述第二波束接收第二公共TA,所述第二公共TA与所述第一公共TA不相同;所述终端设备通过第一波束向网络设备发送第一消息,包括:所述终端设备根据所述第一公共TA,通过所述第一波束向所述网络设备发送第一消息;所述终端设备通过第二波束向所述网络设备发送第二消息,包括:所述终端设备根据所述第二公共TA,通过所述第二波束向所述网络设备发送第二消息。
第六方面,本申请提供一种定位方法,所述方法包括:网络设备通过第一波束接收终端设备发送的第一消息;所述网络设备通过第二波束接收所述终端设备发送的第二消息;所述网络设备根据所述第一波束和所述第二波束的指向对所述终端设备进行定位。
在一种可能的实现方式中,所述网络设备在所述第一波束上的解扰方式与在所述第二波束上的解扰方式不同;或者,所述网络设备在所述第一波束上接收所述第一消息的时频资源,与在所述第二波束上接收所述第二消息的时频资源不同;所述网络设备在所述第一波束上采用的极化方式与在所述第二波束上采用的极化方式不同。
在一种可能的实现方式中,所述方法还包括:所述网络设备通过所述第一波束发送第一公共定时提前量TA;所述网络设备通过所述第二波束发送第二公共TA,所述第二公共TA与所述第二公共TA不相同;所述网络设备通过第一波束接收终端设备发送的第一消息,包括:所述网络设备根据所述第一公共TA,通过所述第一波束接收所述终端设备发送的第一消息;所述网络设备通过第二波束接收所述终端设备发送的第二消息,包括:所述网络设备根据所述第二公共TA,通过所述第二波束接收所述终端设备发送的第二消息。
第七方面,本申请实施例提供一种通信装置,包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口,用于与其他设备进行通信;所述处理器,用于运行所述存储器内的指令或程序,通过所述通信接口执行如第一方面以及第一方面的任意一种可能实现方式、第三方面以及第三方面的任意一种可能实现方式或者第五方面以及第五方面的任意一种可能实现方式的定位方法。
第八方面,本申请实施例提供一种通信装置,包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口,用于与其他设备进行通信;所述处理器,用于运行所述存储器内的指令或程序,通过所述通信接口执行如第二方面以及第二方面的任意一种可能实现方式、第四方面以及第四方面的任意一种可能实现方式或者第六方面以及第六方面的任意一种可能实现方式的定位方法。
第九方面,本申请实施例中提供一种计算机可读存储介质,所述计算机可读存储介质 中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得如第一至第六方面以及任一种可能实现方式所述的方法被执行。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得如第一至第六方面及任一种可能的实现方式所述的方法被执行。
附图说明
图1为本申请实施例提供的UL-TOA算法示意图;
图2为本申请实施例提供的UL-TDOA算法示意图;
图3为本申请实施例提供的UL-AOA算法示意图;
图4a、图4b、图4c为本申请实施例提供的卫星通信的应用场景示意图;
图5为本申请实施例提供的一种定位方法的流程示意图;
图6为本申请实施例提供的不同时刻下终端设备的TA示意图;
图7为本申请实施例提供的另一种定位方法的流程示意图;
图8为本申请实施例提供的不同时刻下终端设备发送参考信号示意图;
图9为本申请实施例提供的又一种定位方法的流程示意图;
图10为本申请实施例提供的不同波束指向示意图;
图11为本申请实施例提供的一种通信装置结构示意图;
图12为本申请实施例提供的另一种通信装置结构示意图。
具体实施方式
地面通信网络对终端设备的定位方法有多种,例如,利用参考信号的延迟、延迟差、接收角度等以实现对终端设备的定位。下面对几种常见的定位方法进行分别介绍:
-上行到达时间(up link time of arrival,UL-TOA)方法
多个基站分别测量接收终端设备发送的参考信号的到达时间,根据达到时间以及光速,计算基站与终端设备之间的距离,每个基站以自身为圆心、以基站与终端设备之间的距离画圆,如图1所示。然后通过定位算法,如三边定位算、最小二乘算法等,估算终端设备的位置。
-上行到达时间差(up link time difference of arrival,UL-TDOA)方法
UL-TOA方法的缺点在于,若基站与终端设备之间时间不同步,双方都不知道信号发送的绝对时间,则会造成计算和定位的误差。
而在UL-TDOA方法中,通过测量终端设备与两个基站的信号达到时间差,来计算终端设备到这两个基站的距离差,从数学的角度看,终端设备位于以这两个基站为焦点、以终端设备到这两个基站的距离差为定差的双曲线上。终端设备与多个、的位置位于以这两个基站为焦点、以其距离差为定差的双曲线上。基于上述原理,利用终端设备周围三个或三个以上的基站,即可得到多条双曲线,双曲线的交点可以就是终端设备的位置,如图2所示。
-上行到达角(up link angle of arrival,UL-AOA)方法
基站根据终端设备发送参考信号的波束测量到达角,如图3中的θ1、-θ2、θ3、-θ4,然后将测量得到的到达角发送给用于定位的网络设备,由网络设备根据每个基站的位置、每 个基站测量得到的到达角,对终端设备进行定位。
-参考信号接收功率(reference signal receiving power,RSRP)方法
测量终端设备反射的参考信号被周围多个基站接收的功率大小,根据测量到的功率可以确定出终端设备与多个基站的距离比例,然后根据每个基站的位置、终端设备与多个基站的距离比例,对终端设备进行定位。
然而,在卫星通信场景中,终端设备与卫星的距离非常远,导致传输时延较大,终端设备会对传输延时进行补偿,即确定定时提前量(timing advance,TA),并根据确定出的TA提前发送。虽然终端设备可以向卫星上报确定出的TA,但由于终端设备在上报TA时以时隙为单位,粒度较粗,例如,实际的TA为5.5ms,但终端设备上报以时隙为单位,在子载波间隔为15KHz的情况下1个时隙为1ms,那么终端设备上报的TA为6个时隙。若根据终端设备上报的TA基于UL-TOA方法或UL-TDOA方法UI终端设备进行定位,则误差较大。
而采用UL-AOA方法进行定位时,基站需要基于天线阵列测量到达角,而目前卫星所使用的天线大多为抛物面天线,而非天线阵列,因此,UL-AOA方法也不适用于卫星通信场景下的终端设备定位。
由于终端设备与卫星的距离非常远,使得RSRP的差异非常小,检测的模糊度较大,因此,RSRP方法也不适用于卫星通信场景下的终端设备定位。
此外,上述方法都依赖于多个基站接收终端设备发送的参考信号进行测量,但在卫星通信场景中,终端设备位于多个卫星覆盖区的场景较为少见,因此,多卫星联合对终端设备定位的局限性较大。
由此可见,地面常见的终端设备定位方法,均无法直接应用于卫星通信的场景中。有鉴于此,本申请实施例提供一种能够应用于卫星通信场景下的定位方法,满足卫星通信场景下对终端设备进行定位的需求。
图4a、图4b、图4c示例性的提供了卫星通信可能的应用架构。本申请实施例提供的定位方法,能够应用于图4a、图4b、图4c中任一网络架构中。
在图4a所示的架构中,基站部署在地面上,卫星通过空口与地面站相连,而地面站可以通过无线或有线链路与基站相连。地面的终端设备通过空口(该空口可以是各种类型的空口,例如5G空口)接入移动通信网络,卫星作为传输节点,对终端设备的信息进行转发。
在图4b所示的架构中,基站部署在卫星上,卫星通过空口与地面站相连,而地面站可以通过无线或有线链路与核心网相连。地面的终端设备通过空口与卫星基站通信,从而接入移动通信网络,卫星作为基站通过空口NG接口与地面站相连,地面站通过NG接口与核心网相连,该NG接口可以为无线形式也可以为有线形式。
在图4c所示的架构与图4b所示的架构相比,增加了卫星基站与卫星基站之间的通信场景,具体的,卫星基站与卫星基站之间可以通过Xn接口通信。
在图4a-图4c中,终端设备可以包括支持新空口的各种类型的终端设备,例如手机、平板电脑、车载终端设备、可穿戴终端设备等。终端设备可以通过空口接入卫星网络并发起呼叫,上网等业务。
基站主要用于提供无线接入服务、调度无线资源给接入的终端设备、提供可靠的无线 传输协议和数据加密协议等。
核心网主要用于提供用户接入控制、移动性管理、会话管理、用户安全认证、计费等功能。核心网有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理功能(AMF)实体用于负责用户接入管理,安全认证以及移动性管理等。用户面功能(UPF)实体用于负责管理用户面数据的传输,流量统计等功能。
地面站主要负责转发卫星与基站,或者卫星与核心网之间的信令和业务数据。
空口:表示终端设备与基站之间的无线链路。
Xn接口:表示卫星基站与卫星基站之间的接口,主要用于切换等信令交互。
NG接口:表示基站与核心网之间的接口,或者地面站与核心网之间的接口,或者卫星基站与地面站之间的接口(此时该接口为无线链路),主要交互核心网的NAS等信令,以及用户的业务数据。
参见图5,为本申请实施例提供的一种定位方法的流程示意图。该定位方法可以应用于卫星通信场景,尤其适用于非地球静止轨道(none-geostationary earth orbit,NGEO)卫星通信场景,或者,还可以适用于无人机通信场景。无人机通信场景与卫星通信场景类似,为了方便描述,下面均以卫星通信场景进行举例说明。
在NGEO卫星通信场景中,由于卫星相对于地面运动,因此,终端设备与卫星之间的距离在不断变化,由于距离在不断变化,终端设备与卫星之间的传输时延也在不断变化,终端设备可以随着距离的变化对TA进行调整,从而补偿传输时延。图5所示的定位方法,就是利用卫星通信场景下终端设备上报TA的流程,对终端设备进行定位。
如图5所示,该定位方法可以包括以下步骤:
步骤501、终端设备确定第一时刻与接入网设备之间的第一TA。
当该方法应用于图4a、图4b或图4c所示的网络架构时,这里的接入网设备可以是图4b、图4c中所示的作为基站的卫星,也可以是图4a所示的地面基站。
在NGEO场景中,卫星相对于地面运动,因此,在不同时刻终端设备与卫星之间的距离可能不同。而不同的距离,就会使得终端设备与卫星之间通信的传输时延有所不同。终端设备确定第一时刻的TA,为了与其他时刻的TA相区别,将第一时刻的TA称为第一TA。
终端设备确定TA的方法,本申请实施例并不限定,可以参见已有的任一种TA确定方法。例如,当卫星作为基站,且上行同步参考点在基站上,那么终端设备根据卫星的位置(可以根据星历计算获得)和自身的位置(可以基于全球导航卫星系统(global navigation satellite system,GNSS)获取)来确定终端设备与卫星之间的往返传输时延。当卫星作为传输节点时,基站在地面上,且上行同步参考点在基站上,TA不仅包括终端设备与卫星之间的往返传输时延,还包括卫星与地面基站之间的往返传输时延,卫星与地面基站之间的传输时延一般由网络设备通知给终端设备。当卫星作为基站但同步参考点不在基站时,TA可以包括根终端设备与卫星之间的往返传输时延,以及卫星与同步参考点之间的往返传输时延,卫星与同步参考点之间的时延一般由网络设备(卫星)通知给终端设备。又例如,终端设备可以测量下行子帧i和上行子帧i的时间差,并将该时间差作为TA。
步骤502、终端设备将第一TA对应的第一参数发送给网络设备。
这里的网络设备可以包括但不限于5G通信系统中的基站(gNB)、接入与移动性管理功能网元(access and mobility management function,AMF)、位置管理功能(location management function,LMF),或者4G通信系统中的基站(eNB),或者传输点(transmission  point,TP)、传输接收点(transmission-reception point,TRP)、地面站(gateway,GW)等。
当该方法应用于图4a所示的网络架构时,网络设备可以为卫星,可以是地面站,可以基站,还可以是核心网中的设备;当该方法应用于图4b或图4c所示的网络架构时,网络设备可以为卫星基站、可以为地面站,还可以是核心网中的设备。
终端设备将第一TA对应的第一参数发送给网络设备,以使网络设备或其他设备能够根据第一参数对终端设备进行定位。例如,网络设备可以根据多个时刻下TA对应的参数确定多个时刻下终端设备到接入网设备之间的距离差,进而根据距离差进行定位。
终端设备在上报第一参数时,可以有多种上报方式。
在一种可能的实现方式中,第一参数的单位可以是时隙。目前终端设备在上报TA时,通常以时隙为单位进行上报,那么终端设备确定第一TA所对应的第一时隙数量,即为第一参数。假设终端设备确定出的第一TA为4.4ms,在子载波间隔为15KHz时,1个时隙为1ms,那么4.4ms对应5个时隙,即第一参数为5个时隙。在这种方式中,终端设备上报第一TA对应的第一参数时,可以基于已有的信令格式进行传输,对现有通信标准修改较少。
在另一种可能的实现方式中,第一参数的单位也可以毫秒、微秒等。若终端设备确定出的第一TA的单位与上报的第一参数的单位相同,例如单位都是毫秒,那么确定出的第一参数就是第一TA本身。第一参数也可以是对第一TA取整后得到的,例如,若终端设备确定出的第一TA为5.6ms,对5.6ms进行向上取整为6ms,那么第一参数即为6ms。
或者,终端设备也可以按照预先约定的其他方式确定第一TA对应的第一参数,本申请实施例对此不做限定。
可选的,终端设备在向网络设备发送第一参数时,还可以将用于指示第一时刻的指示信息发送给网络设备,以方便网络设备确定第一时刻接入网设备的位置信息,从而在后续操作中根据第一时刻接入网设备的位置信息和第一参数,对终端设备进行定位。
步骤503、终端设备确定第二时刻与接入网设备之间的第二TA。
在图4a、图4b或图4c所示的场景中,由于卫星相对于地面运动,那么在第二时刻终端设备到卫星之间的距离,与第一时刻终端设备到卫星之间的距离可能不同,相应的TA也不同。例如,如图6所示,终端设备在t1时刻的TA为TA1,在t2时刻的TA为TA2,在t3时刻的TA为TA3,在t4时刻的TA为TA4。若仅根据第一时刻下的TA,仅能够确定出第一时刻终端设备到卫星之间的距离,但无法确定出终端设备的位置,因此,还需要终端设备确定出第二时刻的TA,从而计算第二时刻终端设备到卫星之间的距离,或者计算出第一时刻下的距离与第二时刻下距离差值,才能够确定出终端设备的位置信息。为了便于区别,将第二时刻确定出的TA称为第二TA。
终端设备在第二时刻确定第二TA的方式,与终端设备在第一时刻确定第一TA的方式相同,此处不再赘述。
当终端设备处于移动状态时,若第一时刻与第二时刻间隔较长,那么由于终端设备位置的移动会导致终端设备位移较大,因此第二时刻与第一时刻的间隔不宜过大。可选的,可以令第二时刻与第一时刻的间隔在预设时间范围内,以确保终端设备的定位精度。
步骤504、终端设备将第二TA对应的第二参数发送给网络设备。
终端设备将第二TA对应的第二参数发送给网络设备,以使网络设备或其他设备能够根据第一参数和第二参数对终端设备进行定位。例如,网络设备可以根据第一参数和第二 参数确定在第一时刻和第二时刻下终端设备到接入网设备之间的距离差,进而根据距离差进行定位。
终端设备根据第二TA确定第二参数的方法,与根据第一TA确定第一参数的方法相同。例如,终端设备在步骤502中确定第一TA对应的第一时隙,在步骤504中确定第二TA对应的第二时隙;或者,终端设备在步骤502中确定第一TA对应的第一毫秒数,在步骤504中确定第二TA对应的第二毫秒数。
可选的,终端设备在向网络设备发送第二参数时,还可以将用于指示第二时刻的指示信息发送给网络设备,以方便网络设备确定第二时刻卫星的位置信息,因为卫星在高速运动中,其在第一时刻和在第二时刻所处的位置并不相同,从而在后续操作中根据第二时刻卫星的位置信息和第二参数,对终端设备进行定位。
终端设备在将第一参数和第二参数发送给网络设备之后,网络设备可以执行步骤505a,或者,网络设备也可以执行步骤505b,具体如下:
步骤505a、网络设备根据第一参数和第二参数对终端设备进行定位。
在该实现方式中,可以由该网络设备对终端设备进行定位。
例如,网络设备可以根据第一参数和光速确定第一时刻终端设备到接入网设备之间的第一距离,并根据第二参数和光速确定第二时刻终端设备到接入网设备之间的第二距离。网络设备以接入网设备在第一时刻所处位置为圆心、以第一距离为半径画圆,以接入网设备在第二时刻所处位置为圆心、以第二距离为半径画圆,然后通过定位算法,如三边定位算、最小二乘算法等,估算终端设备的位置。
又例如,网络设备也可以根据第一参数和第二参数,确定第一时刻终端设备到接入网设备之间的距离与第二时刻终端设备到接入网设备之间的距离差值,然后根据第一时刻接入网设备的位置、第二时刻接入网设备的位置以及上述距离差值,估计终端设备的位置。
步骤505b、网络设备将第一参数和第二参数发送给其他网络设备。
在该实现方式中,该网络设备不对终端设备进行定位,而是由其他网络设备对终端设备进行定位。例如,当网络设备为图4a中所示的作为传输节点的卫星时,不承担基站的功能,那么卫星可以将接收到的第一参数和第二参数发送给地面基站,由地面基站根据第一参数和第二参数对终端设备进行定位,或者,地面基站也可以将第一参数和第二参数发送给用于定位的网络设备,如LMF,由用于定位的网络设备根据第一参数和第二参数对终端设备进行定位。又例如,卫星作为基站,但基站并不执行对终端设备定位的操作,而是由其他网络设备对终端设备进行定位,那么卫星也可以将第一参数和第二参数发送给用于定位的网络设备。
可选的,网络设备在将第一参数和第二参数发送给其他网络设备时,还可以将第一时刻卫星的位置信息和第二时刻卫星的位置信息发送给其他网络设备,以便于其他网络设备能够根据卫星第一时刻的位置、第一参数、第二时刻的位置、第二参数对终端设备进行定位。或者,也可以由其他网络设备根据星历计算获得卫星在第一时刻、第二时刻的位置。
如前所述,第一参数和第二参数的单位可以时隙,该实现方式基于已有的信令格式进行传输,对现有通信标准修改较少。但是,以时隙为单位上报,粒度较粗,难以精确表示相应的TA。因此,为了提高定位精度,基于上述定位方法,提供了以下四种实现方式以使网络设备获取到更加精确的用于定位的参数。
方式一、可以令第二TA与第一TA的差值为预设阈值,即,终端设备在确定当前时 刻的TA与第一时刻的第一TA达到预设差值时,则该当前时刻即为第二时刻,终端设备向网络设备发送与第二时刻的TA对应的第二参数。应当理解,第二TA与第一TA的差值恰好为预设阈值为理想情况,在实际操作过程中,第二TA与第一TA的差值在预设范围内即可。
在上述方式中,为终端设备上报第二参数设置了相应的触发条件(也就是当前时刻的TA与第一时刻的第一TA达到预设差值),以使终端设备上报满足预设条件的第一参数和第二参数,从而使得网络设备能够根据第一参数、第二参数以及预设阈值,确定出更加精确的TA差值,从而提高定位精度。该触发条件可以是网络侧配置的,也可以是协议中约定的。
例如,假设预设范围为[0.5-δ,0.5+δ]或者[-0.5-δ,-0.5+δ](单位ms),其中δ表示允许的误差值,子载波间隔为15KHz;终端设备确定在t1时刻的TA为5.6ms,则终端设备向网络设备发送用于指示6个时隙的指示信息;终端设备不断更新TA值,当终端设备确定TA在t2时刻达到6.1ms时,由于6.1ms与5.6ms的差值在预设范围内,则终端设备向网络设备发送t2时刻TA所对应的第二参数,即用于指示7个时隙的指示信息。此时,虽然网络设备两次接收到的指示信息分别指示6个时隙和7个时隙,但网络设备根据预先预定的预设阈值,确定终端设备在t2时刻与t1时刻TA的差值为0.5ms,从而根据较为准确的TA的差值对终端设备进行定位,或者将t2时刻、t1时刻、TA的差值发送给地面站,或者也可以直接将终端设备发送信息转发给地面站,以使地面站将信息发送给用于对终端设备进行定位的设备。
又例如,假设预设阈值为0.5ms,子载波间隔为15KHz;终端设备确定在t1时刻的TA为4.4ms,则终端设备向网络设备发送用于指示5个时隙的指示信息;终端设备不断更新TA值,当终端设备确定TA在t2时刻达到4.4+0.5=4.9ms时,则终端设备向网络设备发送用于指示5个时隙的指示信息。此时,虽然网络设备两次接收到的指示信息均指示5个时隙,但网络设备根据预先预定的预设阈值,确定终端设备在t2时刻与t1时刻TA的差值为0.5ms,从实现对终端设备的定位。
方式二、可以将当前时刻的TA与第一TA的差值称为TA差值,将当前时刻TA对应的参数与第一参数的差值称为参数差值,终端设备在确定当前时刻的参数差值与TA差值的差值为预设阈值时,则该当前时刻即为第二时刻,终端设备向网络设备发送与第二时刻的TA对应的第二参数。应当理解,参数差值与TA差值的差值恰好为预设阈值为理想情况,在实际操作过程中,参数差值与TA差值的差值在预设范围内即可。
在上述方式中,同样为终端设备上报第二参数设置了相应的触发条件(也就是当前时刻的参数差值与TA差值的差值为预设阈值),但触发条件与方式一不同,以使终端设备上报满足预设条件的第一参数和第二参数,从而使得网络设备能够根据第一参数、第二参数以及预设阈值,确定出更加精确的TA差值,从而提高定位精度。该触发条件可以是网络侧配置的,也可以是协议中约定的。
例如,假设预设阈值为1ms,预设范围为±0.05ms,子载波间隔为15KHz;终端设备确定在t1时刻的TA为4.4ms,对应的第一参数为5个时隙,则终端设备向网络设备发送用于指示5个时隙的指示信息;终端设备不断更新TA值,当终端设备确定在t2时刻TA达到5.42ms时,其对应的参数为6个时隙;TA差值为5.42-4.4=1.02ms,参数差值为1个时隙等于1ms,TA差值与参数差值的差值为0.02ms,在预设范围内,则终端设备向网络 设备发送第二参数,即用于指示6个时隙的指示信息。此时,网络设备可以根据t2时刻与t1时刻的参数差值,确定t2时刻与t1时刻的TA差值,从而实现对终端设备的定位。
方式三,第二时刻与第一时刻的差值在预设范围内。第一时刻与第二时刻的差值,也就是网络设备(卫星)的运动时间。通常情况下,网络设备的运动时间在预设范围内,那么相应的第二TA与第一TA的差值也在所需的差值范围内,从而使得网络设备或其他设备能够对终端设备进行定位。
在上述方式中,同样为终端设备上报第二参数设置了相应的触发条件(也就是当前时刻与第一时刻的差值在预设范围内),以使终端设备上报满足预设条件的第一参数和第二参数,从而使得网络设备能够根据第一参数、第二参数以及预设范围,进行高精度定位。该触发条件可以是网络侧配置的,也可以是协议中约定的。
方式四、终端设备在上报第一TA对应的第一参数后,还可以将第一参数与第一TA的第一差值发送给网络设备,例如通过非接入层(NAS)消息将第一差值发送给网络设备,以使网络设备将第一差值发送至用于对终端设备进行定位的网络设备;终端设备在上报第二TA对应的第二参数后,可以将第二参数与第二TA的第二差值发送给网络设备,例如通过NAS消息将第二差值发送给网络设备,以使网络设备将第二差值发送至用于对终端设备进行定位的网络设备。
终端设备基于已有的、向网络设备上报TA的信令上报第一参数和第二参数,这就使得无论是否由步骤502、步骤504中的网络设备完成对终端设备的定位流程,该网络设备都能够获取到用于对终端设备进行定位的相关参数。然而,出于安全问题的考虑,用户可能希望安全性不高的网络设备不去解析相关参数。因此,终端设备可以将能够用于进行精确定位的第一差值、第二差值单独发送,以使网络设备不对其进行解析,而直接将其转发至用于进行定位的网络设备。
例如,假设子载波间隔为15KHz,终端设备确定在t1时刻的TA为4.4ms,对应的第一参数为5个时隙,第一差值为5-4.4=0.6ms,终端设备在将5个时隙上报为网络设备后,通过NAS消息将0.6ms的差值信息发送给网络设备,以使网络设备将其发送至LMF;终端设备确定在t2时刻的TA为5.6ms,对应的第二参数为6个时隙,第一差值为6-5.6=0.4ms,终端设备在将6个时隙上报为网络设备后,通过NAS消息将0.4ms的差值信息发送给网络设备,以使网络设备将其发送至LMF,使得LMF能够确定出终端设备在t1时刻、t2时刻的TA,从而实现对终端设备的定位。
可选的,终端设备也可以将第一差值和第二差值一同发送至网络设备,而不必每次确定出差值后单独发送。
应当理解,在理想情况下,终端设备上报的第一差值严格等于第一参数与第一TA的差值、第二差值严格等于第二参数与第二TA的差值。但在实际操作中,终端设备上报的第一差值,与实际的第一差值,在预设范围内即可,例如预设范围可以为[-0.5,0.5],或(-0.5,0.5]或[-0.5,0.5),单位ms;终端设备上报的第二差值,与实际的第二差值,也在预设范围内即可。例如,终端设备确定第一差值、第二差值的精度能够达到0.01ms,但终端设备发送信息时对差值的精度仅为0.1ms,那么终端设备无法将精确的第一差值、第二差值发送给网络设备。
此外,终端设备还可以向网络设备上报第一参数和对应的第一差值。例如,终端设备在时刻1确定出的TA1为6.5ms,参数1为7个时隙(对应7ms),第一差值为7-6.5=0.5ms, 那么终端设备可以上报参数1和第一差值,即7个时隙和0.5ms;终端设备在时刻2确定出的TA2=6.3ms,第二参数为6个时隙(对应6ms),第二差值为-0.3ms,那么终端设备可以上报参数2和第二差值,即6个时隙和-0.3ms。
可选的,终端设备可用于将第一参数和第一差值上报给LFM,或者,可以将第一参数上报给网络设备,将第二参数上报给LMF。
方式五、终端设备可以将第一TA与第二TA的差值发送给网络设备。例如,假设子载波间隔为15KHz,终端设备确定在t1时刻的第一TA为4.4ms,对应的第一参数为5个时隙;在t2时刻的第二TA为5.6ms,对应的第二参数为6个时隙;则第一TA与第二TA的差值为4.4ms-5.6ms=-1.2ms。终端设备除了将第一参数、第二参数发送给网络设备,还可以将第一TA与第二TA的差值-1.2ms(或者第二TA与第一TA的差值1.2ms)发送给网络设备。网络设备能够根据t2时刻与t1时刻的TA差值对终端设备进行定位。
应当理解,在理想情况下,终端设备上报的第一TA与第二TA的差值能够严格等于实际的TA差值;但在实际操作中,终端设备上报的TA差值,与实际的TA差值在预设范围内即可。
在方式一至方式五中,终端设备上报的第一参数、第二参数为用于定位的参数,需要满足上述各自方式中的条件,但终端设备依照已有流程上报的仅用于确定TA的参数并不需要满足上述条件。可选的,为了将本申请实施例中上报的用于定位的参数与仅用于确定TA的参数进行区别,终端设备在上报第一参数和第二参数时,可以在发送的消息中携带有指示信息,以指示此次上报的参数为用于定位的参数。
在本申请上述实施例中,终端设备向网络设备发送第一时刻的第一TA所对应的第一参数,以及第二时刻的第二TA所对应的第二参数,使得网络设备或用于对终端设备进行定位的其他网络设备,能够根据第一参数、第二参数对终端设备进行定位。该方法能够应用于卫星通信场景,解决终端设备仅能够被一个卫星所覆盖时的定位问题。进一步的,可以通过对终端设备上报第二参数设置触发条件。此外,由于TA与对应的参数的精度可能不一致,为了提高TA上报的精度,还可以将对应参数与TA的差值进行上报,从而提高定位精度。
上述实施例中,以终端设备上报第一时刻的第一参数和第二时刻的第二参数进行举例说明。而在实际应用时,终端设备还可以上报更多时刻所对应的参数,以提高对终端设备的定位精度。例如,网络设备可以根据终端设备上报的4个时刻下的参数对终端设备进行定位,其中,第三时刻的第三TA所对应的第三参数、第四时刻的第四TA所对应的第四参数的确定方式,与第二时刻的第二TA所对应的第二参数确定方式相同。
本申请实施例还提供了一种定位方法,以解决卫星通信场景中或者无人机通信场景中终端设备定位的问题。该方法尤其适用于NGEO卫星通信场景。
该定位方法的流程示意图可以如图7所示,包括以下步骤:
步骤701、网络设备在第一时刻广播第一公共TA。
这里的网络设备可以包括但不限于5G通信系统中的基站(gNB)、接入与移动性管理功能网元(access and mobility management function,AMF)、位置管理功能(location management function,LMF),或者4G通信系统中的基站(eNB),或者传输点(transmission point,TP)、传输接收点(transmission-reception point,TRP)、地面站(gateway,GW)等。
当该方法应用于图4a、图4b或图4c所示的网络架构时,卫星(包括卫星基站或作为传输点的卫星)可以作为图7所示方法中的网络设备,地面站也可以作为图7所示方法中的网络设备,地面的基站也可以作为图7所示方法中的网络设备,核心网中的设备也可以作为图7所示方法中的网络设备。
网络设备可以向终端设备广播公共TA,该公共TA未必能满足每个终端设备对补偿传输延时的需求,但能够帮助终端设备完成接入流程。
步骤702、终端设备根据第一公共TA向网络设备发送第一参考信号。
在本申请实施例中,即使终端设备已经计算出其实际所需的TA,但终端设备在进行定位时,仍根据网络设备广播的第一公共TA向网络设备发送参考信号。若第一公共TA不能满足该终端设备对补偿传输时延的需求,那么终端设备根据第一公共TA发送的第一参考信号实际到达网络设备的时间,即网络设备接收到第一参考信号的时间,与网络设备根据第一公共TA期望收到第一参考信号的时间会有所不同,其差值可以称为残留TA。具体的,根据第一公共TA发送参考信号产生的残留TA,可以称为第一残留TA。
步骤703、网络设备在第二时刻广播第二公共TA。
为了便于新接入的终端设备完成接入流程,网络设备可能会频繁广播公共TA。网络设备在第二时刻广播的第二公共TA可以与第一公共TA相同,也可以不同。
步骤704、终端设备根据第二公共TA向网络设备发送第二参考信号。
如前所述,终端设备在进行定位时,不考虑自身实际所需的TA,仍根据广播的第二公共TA向网络设备发送第二参考信号。具体的,终端设备根据第二公共TA发送的第二参考信号实际到达网络设备的时间,即网络设备接收到第二参考信号的时间,与网络设备根据第二公共TA期望收到第二参考信号的时间会有所不同,其差值称为第二残留TA。
步骤705、网络设备根据接收第一参考信号的时间确定第一残留TA,根据接收第二参考信号的时间确定第二残留TA,根据第一残留TA和第二残留TA对终端设备进行定位。
例如,网络设备根据第一残留TA和第二残留TA,确定第一时刻终端设备到网络设备之间的距离与第二时刻终端设备到网络设备之间的距离差值,然后根据第一时刻网络设备的位置、第二时刻网络设备的位置以及上述距离差值,估计终端设备的位置。
其中,网络设备确定出的残留TA的单位可以是时隙,也可以是ms或者其他时间单位。
网络设备广播的公共TA可以是馈电TA和服务链路公共TA,或者,也可以仅包括服务链路公共TA。馈电链路,即为卫星与地面站之间的通信链路;馈电TA则表示卫星与地面站之间通信时的TA。服务链路,即为卫星与终端设备之间的通信链路;服务链路公共TA则表示终端设备与卫星之间通信时的TA。当网络设备为卫星基站时,公共TA中可以不包括馈电TA,终端设备仅根据服务链路公共TA发送参考信号即可。
可选的,网络设备也可以将第一残留TA和第二残留TA发送给其他能够用于定位的设备,以使其他设备对终端设备进行定位。
在上述实施例中,终端设备根据网络设备广播的公共TA向网络设备发送参考信号,由于网络设备广播的公共TA与终端设备实际所需的TA存在残留TA,网络设备可以根据不同时刻的残留TA,确定出终端设备在不同时刻到网络设备的距离差,估计出终端设备的位置信息。该方法能够应用于卫星通信场景,解决终端设备仅能够被一个卫星所覆盖时的定位问题。
上述实施例中,以终端设备根据第一公共TA上报第一参考信号、根据第二公共TA 上报第二参考信号为例。而在实际应用时,终端设备还可以根据更多的公共TA上报参考信号,以使网络设备确定更多的残留TA,从而提高对终端设备的定位精度。例如,如图8所示,卫星基站可以在t1时刻广播第一公共TA,终端根据第一公共TA发送SRS1;卫星基站可以在t2时刻广播第二公共TA,终端根据第二公共TA发送SRS2;卫星基站可以在t3时刻广播第三公共TA,终端根据第三公共TA发送SRS3;卫星基站可以在t4时刻广播第四公共TA,终端根据第四公共TA发送SRS4;那么卫星基站就能够确定出4个残留TA,从而根据这4个残留TA对终端进行定位,或者,将确定出的残留TA发送至位置测量中心,以使位置测量中心对终端定位。
在对地静止轨道(geostationary earth orbit,GEO)卫星通信场景中,由于卫星相对地球是静止的,那么对于处于静止状态的终端设备来说,TA不会发生变化,对于处于运动状态的终端设备来说,TA的变化也非常小,可能不足以触发上报流程。因此,上述基于TA对应参数对终端设备进行定位的方法,无法适用于GEO卫星通信场景。
因此,本申请实施例还提供了一种定位方法,可以应用于卫星通信场景,可以适用于对地静止轨道(geostationary earth orbit,GEO)卫星通信场景,也可以应用于NGEO卫星通信场景中。该方法基于波束的指向对终端设备进行定位。
载波频率较高时,使得其发射的无线信号在空间传播过程中会经历较为严重的衰落,甚至在接收端难以检测出该无线信号。为此,可以采用波束赋形(beamforming,BF)技术来获得具有良好方向性的波束,以提高在发射方向上的功率,改善接收端的信干噪比(signal to interference plus noise ratio,SINR)。发送端和接收端使用较窄的波束通信时,只有当用于发送和接收的波束在指向上对准时才会获得更好的通信质量,对准的两个波束可以称之为波束对。卫星可以通过不同指向的波束,与不同方位的终端设备进行通信;终端设备也可以通过不同指向的波束,与不同方位的收发节点(如卫星)进行通信。
基于上述技术,定位方法的流程示意图可以如图9所示,包括以下步骤:
步骤901a、终端设备通过第一波束向网络设备发送第一消息。
步骤901b、网络设备通过第二波束接收第一消息。
这里的网络设备可以包括但不限于5G通信系统中的基站(gNB)、接入与移动性管理功能网元(access and mobility management function,AMF)、位置管理功能(location management function,LMF),或者4G通信系统中的基站(eNB),或者传输点(transmission point,TP)、传输接收点(transmission-reception point,TRP)、地面站(gateway,GW)等。
当该方法应用于图4a、图4b或图4c所示的网络架构时,卫星(包括卫星基站或作为传输点的卫星)可以作为图9所示方法中的网络设备,地面上的其他设备也可以作为图9所示方法中的网络设备。当网络设备为地面上的设备时,卫星对通过不同波束接收到的信息进行反射,使得地面上的网络设备通过不同波束接收。
终端设备的第一波束与网络设备的第二波束能够形成波束对,即,终端设备通过第一波束发送的消息,网络设备能够通过第二波束接收,网络设备通过第二波束发送的消息,终端设备能够通过第一波束结束。为了便于区分,可以将终端设备的第一波束与网络设备的第二波束称为波束对1。
步骤902a、终端设备通过第三波束向网络设备发送第二消息。
步骤902b、网络设备通过第四波束接收第二消息。
为了保证通信质量,不同指向的波束所覆盖的空间范围会存在重叠部分,这就使得网络设备与终端设备既可以通过波束对1进行通信,也可以通过波束对2进行通信。
终端设备的第三波束与网络设备的第四波束能够形成波束对,即,终端设备通过第三波束发送的消息,网络设备能够通过第四波束接收,网络设备通过第四波束发送的消息,终端设备能够通过第三波束结束。为了便于区分,可以将终端设备的第三波束与网络设备的第四波束称为波束对2。
步骤903、网络设备根据第二波束和第四波束的指向对终端设备进行定位。
网络设备在通过第二波束和第四波束接收到终端设备发送的消息之后,可以确定终端设备位于第二波束和第四波束共同覆盖的范围内,从而实现对终端设备的定位。
为了更加便于网络设备识别接收到的信息是通过哪个波束接收的,可以为不同波束对上传输的消息分配不同的时频资源。具体的,网络设备可以为不同波束对上传输的参考信号,分配不同的时频资源,并将分配的时频资源通知给终端设备。例如,网络设备的波束a与终端设备的波束a’能够形成波束对A,网络设备的波束b与终端设备的波束b’能够形成波束对B;网络设备为波束对A上传输的探测参考信号(sounding reference signaling,SRS)分配时频资源1,为波束对B上传输的SRS分配时频资源2,那么网络设备在接收到SRS时,即可根据接收SRS的时频资源,确定是通过哪个波束接收的。
或者,网络设备也可以为不同波束对上传输信息的配置不同的加扰、解扰方式。网络设备为波束对1配置加、解扰方式1,为波束对2配置加、解扰方式2;那么终端设备在通过波束对1中的波束向网络设备发送消息时,则采用方式1进行加扰,在通过波束对2中的波束向网络设备发送消息时,则采用方式2进行加扰;网络设备在接收消息,可以根据解扰方式确定接收到的消息是通过哪个波束接收的。
又或者,还可以为不同波束对配置不同的极化方式。例如,网络设备和终端设备在波束对1上采用垂直极化方式,在波束对2上采用水平极化方式。
再或者,网络设备还可以为不同波束对配置不同的公共TA(可以是馈电TA+服务链路公共TA,也可以仅为服务链路公共TA)。终端设备在通过不同波束向网络设备发送消息时,根据其所在波束对对应的公共TA进行发送,使得不同波束对上会产生不同的残留TA;网络设备则可以根据不同的残留TA,确定接收到的消息是通过哪个波束接收的。
在另一种可能的实现方式中,终端设备可以在接收到网络设备通过第二波束发送的信息后,在执行上述步骤901a,此时,终端设备发送的第一消息中可以包含有第二波束的标识,或者包含有波束对1的标识;相应的,终端设备可以在接收到网络设备通过第四波束发送的信息后,在执行上述步骤902a,此时,终端设备发送的第二消息中可以包含有第四波束的标识,或者包含有波束对2的标识。
在上述实施例中,终端设备通过不同的波束向网络设备发送消息,使得网络设备根据接收波束的指向确定终端设备的方位。该方法能够应用于卫星通信场景,尤其适用于GEO场景,解决由于卫星相对地面静止使得无法根据TA对终端设备进行定位的问题。进一步的,可以为不同的波束配置不同的配置参数,如时频资源、加解扰方式、极化方式、公共TA等,以方便网络设备确定接收终端设备发送消息的波束。
上述实施例中,以网络设备和终端设备通过两对波束对进行通信为例,而在实际应用时,还可以采用更多数量的波束对,以提高对终端设备的定位精度。例如,如图10所示,网络设备通过波束1向终端设备配置公共TA1、通过波束2向终端设备配置公共TA2、通 过波束3向终端设备配置公共TA3,由于终端设备位于这3个波束共同覆盖区域内,故终端设备也可以相应地通过3个波束向网络设备发送参考信号,那么网络设备在通过波束1、波束2、波束3均接收到终端设备发送的参考信号后,则能够确定终端设备位于这3个波束共同覆盖区域内,从而实现了对终端设备更加精确的定位。
图11为根据本申请实施例提供的一种通信装置的示意图。通信装置包括处理模块1101、收发模块1102。处理模块1101用于实现通信装置对数据的处理。收发模块1102用于执行上述方法实施例中的信息收发处理。应理解,本申请实施例中的处理模块1101可以由处理器或处理器相关电路组件(或者,称为处理电路)实现,收发模块1102可以由接收器或接收器相关电路组件、发送器或发送器相关电路组件实现。
示例性地,通信装置可以是通信装置设备,也可以是应用于通信装置设备中的芯片或者其他具有上述通信装置设备功能的组合器件、部件等。
当该通信装置为终端设备实现图5所示实施例时,处理模块1101用于确定第一时刻与接入网设备之间的第一定时提前量TA;收发模块1102用于将所述第一TA对应的第一参数发送给网络设备;处理模块1101还用于确定第二时刻与所述接入网设备之间的第二TA;收发模块1102还用于将所述第二TA对应的第二参数发送给所述网络设备,以使所述网络设备根据所述第一参数和所述第二参数对所述终端设备进行定位,或者,以使所述网络设备将所述第一参数和所述第二参数发送给其他网络设备。
此外,上述各个模块还可以用于支持图5所示实施例及其任一实现方式中终端设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为网络设备实现图5所示实施例时,收发模块1102接收终端设备发送的第一参数,所述第一参数为所述终端设备在第一时刻与接入网设备之间的第一定时提前量TA对应的参数,接收所述终端设备发送的第二参数,所述第二参数为所述终端设备在第二时刻与接入网设备之间的第二TA对应的参数;处理模块1101用于根据所述第一参数和所述第二参数对所述终端设备进行定位,或者,收发模块1102将所述第一参数和所述第二参数发送至其他网络设备,以使所述其他网络设备根据所述第一时隙和所述第二时隙对所述终端设备进行定位,或者以使所述其他网络设备将所述第一参数和所述第二参数发送给用于对所述终端设备进行定位的网络设备。
此外,上述各个模块还可以用于支持图5所示实施例及其任一实现方式中网络设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为终端设备实现图7所示实施例时,收发模块1102用于接收网络设备广播的第一公共定时提前量TA,在处理模块1101的控制下根据所述第一公共TA向所述网络设备发送第一参考信号;收发模块1102还用于接收网络设备广播的第二公共TA,在处理模块1101的控制下根据所述第二公共TA向所述网络设备发送第二参考信号,以使所述网络设备根据所述第一参考信号的实际接收时间、根据所述第一公共TA确定出的时间、所述第二参考信号的实际接收时间以及根据所述第二公共TA确定出的时间对所述终端设备进行定位。
此外,上述各个模块还可以用于支持图7所示实施例及其任一实现方式中终端设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为网络设备实现图7所示实施例时,收发模块1102用于广播第一公共定 时提前量TA;接收终端设备根据所述第一公共TA发送的第一参考信号;广播第二公共TA;接收终端设备根据所述第二公共TA发送的第二参考信号;处理模块1101用于根据所述第一参考信号的实际接收时间、根据所述第一公共TA确定出的时间、所述第二参考信号的实际接收时间以及根据所述第二公共TA确定出的时间,对所述终端设备进行定位。
此外,上述各个模块还可以用于支持图7所示实施例及其任一实现方式中网络设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为终端设备实现图9所示实施例时,收发模块1102在处理模块1101的控制下通过第一波束向网络设备发送第一消息;通过第二波束向所述网络设备发送第二消息,以使所述网络设备根据接收所述第一消息的波束和接收所述第二消息的波束的指向对所述终端设备进行定位。
此外,上述各个模块还可以用于支持图9所示实施例及其任一实现方式中终端设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为网络设备实现图9所示实施例时,收发模块1102用于通过第一波束接收终端设备发送的第一消息;通过第二波束接收所述终端设备发送的第二消息;处理模块1101用于根据所述第一波束和所述第二波束的指向对所述终端设备进行定位。
此外,上述各个模块还可以用于支持图9所示实施例及其任一实现方式中网络设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
基于相同的技术构思,本申请实施例还提供一种通信装置,该通信装置包括如图12所示的处理器1201,以及与处理器1201连接的通信接口1202。
处理器1201可以是通用处理器,微处理器,特定集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件,分立门或者晶体管逻辑器件,或一个或多个用于控制本申请方案程序执行的集成电路等。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
通信接口1202,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如RAN等。
在本申请实施例中,处理器1201用于调用通信接口1202执行接收和/或发送的功能,并执行如前任一种可能实现方式所述的用户面功能容灾方法。
进一步的,该通信装置还可以包括存储器1203以及通信总线1204。
存储器1203,用于存储程序指令和/或数据,以使处理器1201调用存储器1203中存储的指令和/或数据,实现处理器1201的上述功能。存储器1203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1203可以是独立存在,例如片外存储器,通过通信总线1204与处理器1201相连接。存储器1203也可以和处理器1201集成在一起。
通信总线1204可包括一通路,在上述组件之间传送信息。
示例性的,通信装置可以为上述方法实施例中的终端设备,也可以是上述方法实施例中的网络设备。
其中,处理器1201用于实现通信装置的数据处理操作,通信接口1202用于实现通信装置的接收操作和发送操作。
当该通信装置为终端设备实现图5所示实施例时,处理器1201用于通过通信接口1202执行:确定第一时刻与接入网设备之间的第一定时提前量TA;将所述第一TA对应的第一参数发送给网络设备;确定第二时刻与所述接入网设备之间的第二TA;将所述第二TA对应的第二参数发送给所述网络设备,以使所述网络设备根据所述第一参数和所述第二参数对所述终端设备进行定位,或者,以使所述网络设备将所述第一参数和所述第二参数发送给其他网络设备。
此外,上述各个模块还可以用于支持图5所示实施例及其任一实现方式中终端设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为网络设备实现图5所示实施例时,处理器1201用于通过通信接口1202执行:接收终端设备发送的第一参数,所述第一参数为所述终端设备在第一时刻与接入网设备之间的第一定时提前量TA对应的参数,接收所述终端设备发送的二参数,所述第二参数为所述终端设备在第二时刻与接入网设备之间的第二TA对应的参数;根据所述第一参数和所述第二参数对所述终端设备进行定位,或者,将所述第一参数和所述第二参数发送至其他网络设备,以使所述其他网络设备根据所述第一时隙和所述第二时隙对所述终端设备进行定位,或者以使所述其他网络设备将所述第一参数和所述第二参数发送给用于对所述终端设备进行定位的网络设备。
此外,上述各个模块还可以用于支持图5所示实施例及其任一实现方式中网络设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为终端设备实现图7所示实施例时,处理器1201用于通过通信接口1202执行:接收网络设备广播的第一公共定时提前量TA,根据所述第一公共TA向所述网络设备发送第一参考信号;接收网络设备广播的第二公共TA,根据所述第二公共TA向所述网络设备发送第二参考信号,以使所述网络设备根据所述第一参考信号的实际接收时间、根据所述第一公共TA确定出的时间、所述第二参考信号的实际接收时间以及根据所述第二公共TA确定出的时间对所述终端设备进行定位。
此外,上述各个模块还可以用于支持图7所示实施例及其任一实现方式中终端设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为网络设备实现图7所示实施例时,处理器1201用于通过通信接口1202执行:广播第一公共定时提前量TA;接收终端设备根据所述第一公共TA发送的第一参考信号;广播第二公共TA;接收终端设备根据所述第二公共TA发送的第二参考信号;根据所述第一参考信号的实际接收时间、根据所述第一公共TA确定出的时间、所述第二参考信号的实际接收时间以及根据所述第二公共TA确定出的时间,对所述终端设备进行定位。
此外,上述各个模块还可以用于支持图7所示实施例及其任一实现方式中网络设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为终端设备实现图9所示实施例时,处理器1201用于通过通信接口1202执行:通过第一波束向网络设备发送第一消息;通过第二波束向所述网络设备发送第二消 息,以使所述网络设备根据接收所述第一消息的波束和结束所述第二消息的波束的指向对所述终端设备进行定位。
此外,上述各个模块还可以用于支持图9所示实施例及其任一实现方式中终端设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为网络设备实现图9所示实施例时,处理器1201用于通过通信接口1202执行:通过第一波束接收终端设备发送的第一消息;通过第二波束接收所述终端设备发送的第二消息;根据所述第一波束和所述第二波束的指向对所述终端设备进行定位。
此外,上述各个模块还可以用于支持图9所示实施例及其任一实现方式中网络设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
基于相同的技术构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得如前所述任一种可能的实现方式所述的定位方法被执行。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述方法实施例被执行。
本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种定位方法,其特征在于,所述方法包括:
    第一通信装置确定第一时刻与接入网设备之间的第一定时提前量TA;
    所述第一通信装置将所述第一TA对应的第一参数发送给网络设备;
    所述第一通信装置确定第二时刻与所述接入网设备之间的第二TA;
    所述第一通信装置将所述第二TA对应的第二参数发送给所述网络设备,以使所述网络设备根据所述第一参数和所述第二参数对所述第一通信装置进行定位,或者,以使所述网络设备将所述第一参数和所述第二参数发送给其他网络设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第二TA与所述第一TA的差值在预设范围内。
  3. 根据权利要求1所述的方法,其特征在于,所述第二TA与所述第一TA的差值,与所述第二参数与所述第一参数的差值的差值在预设范围内。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述网络设备发送第一差值和第二差值,所述第一差值、与所述第一参数与所述第一TA的差值的差值在预设范围内,所述第二差值、与所述第二参数与所述第二TA的差值的差值在预设范围内,以使所述网络设备根据所述第一参数、所述第一差值、所述第二参数和所述第二差值对所述第一通信装置进行定位,或者,以使所述网络设备将所述第一参数、所述第一差值、第二参数和所述第二差值发送给其他网络设备;或者,
    所述第一通信装置向所述网络设备发送TA差值,所述第一TA与所述第二TA的差值,与所述TA差值的差值在预设范围内,以使所述网络设备根据所述第一参数、所述第二参数和所述TA差值对所述第一通信装置进行定位,或者,以使所述网络设备将所述第一参数、所述第二差值和所述TA差值发送给其他网络设备。
  5. 一种定位方法,其特征在于,所述方法包括:
    第二通信装置接收终端设备发送的第一参数,所述第一参数为所述终端设备在第一时刻与接入网设备之间的第一定时提前量TA对应的参数;
    所述第二通信装置接收所述终端设备发送的第二参数,所述第二参数为所述终端设备在第二时刻与接入网设备之间的第二TA对应的参数;
    所述第二通信装置根据所述第一参数和所述第二参数对所述终端设备进行定位,或者,将所述第一参数和所述第二参数发送至其他网络设备,以使所述其他网络设备根据所述第一参数和所述第二参数对所述终端设备进行定位,或者以使所述其他网络设备将所述第一参数和所述第二参数发送给用于对所述终端设备进行定位的网络设备。
  6. 根据权利要求5所述的方法,其特征在于,所述第二TA与所述第一TA的差值为预设阈值。
  7. 根据权利要求5所述的方法,其特征在于,所述第二TA与所述第一TA的差值,与所述第二参数与所述第一参数的差值的差值在预设范围内。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收所述终端设备发送的第一差值和第二差值,所述第一差值、与所述第一参数与所述第一TA的差值的差值在预设范围内,所述第二差值、与所述第二参 数与所述第二TA的差值的差值在预设范围内;
    所述第二通信装置根据所述第一参数和所述第二参数对所述终端设备进行定位,包括:
    所述第二通信装置根据所述第一差值和所述第一参数确定所述第一TA;所述第二通信装置根据所述第二差值和所述第二参数确定所述第二TA;所述第二通信装置根据所述第一TA和所述第二TA对所述终端设备进行定位;或者
    所述方法还包括:所述第二通信装置将所述第一差值和所述第二差值发送给所述其他网络设备。
  9. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收所述终端设备发送的TA差值,所述第一TA与所述第二TA的差值,与所述TA差值的差值在预设范围内;
    所述第二通信装置根据所述第一参数和所述第二参数对所述终端设备进行定位,包括:
    所述第二通信装置根据所述第一参数、所述第二参数和所述TA差值对所述终端设备进行定位;或者
    所述方法还包括:所述第二通信装置将所述TA差值发送给所述其他网络设备。
  10. 一种定位方法,其特征在于,所述方法包括:
    第一通信装置接收网络设备广播的第一公共定时提前量TA;
    所述第一通信装置根据所述第一公共TA向所述网络设备发送第一参考信号;
    所述第一通信装置接收网络设备广播的第二公共TA;
    所述第一通信装置根据所述第二公共TA向所述网络设备发送第二参考信号,以使所述网络设备根据所述第一参考信号的实际接收时间、根据所述第一公共TA确定出的时间、所述第二参考信号的实际接收时间以及根据所述第二公共TA确定出的时间对所述第一通信装置进行定位。
  11. 根据权利要求10所述的方法,其特征在于,所述第一公共TA包括第一馈电TA和第一服务链路TA,所述第二公共TA包括第二馈电TA和第二服务链路TA;或者
    所述第一公共TA包括第一服务链路TA,所述第二公共TA包括第二服务链路TA。
  12. 一种定位方法,其特征在于,所述方法包括:
    第二通信装置广播第一公共定时提前量TA;
    所述第二通信装置接收终端设备根据所述第一公共TA发送的第一参考信号;
    第二通信装置广播第二公共TA;
    所述第二通信装置接收终端设备根据所述第二公共TA发送的第二参考信号;
    所述第二通信装置根据所述第一参考信号的实际接收时间、根据所述第一公共TA确定出的时间、所述第二参考信号的实际接收时间以及根据所述第二公共TA确定出的时间,对所述终端设备进行定位。
  13. 根据权利要求12所述的方法,其特征在于,所述第一公共TA包括第一馈电TA和第一服务链路TA,所述第二公共TA包括第二馈电TA和第二服务链路TA;或者
    所述第一公共TA包括第一服务链路TA,所述第二公共TA包括第二服务链路TA。
  14. 一种定位方法,其特征在于,所述方法包括:
    第一通信装置通过第一波束向网络设备发送第一消息;
    所述第一通信装置通过第二波束向所述网络设备发送第二消息,以使所述网络设备根据接收所述第一消息的第一波束和接收所述第二消息的波束的指向对所述第一通信装置 进行定位。
  15. 根据权利要求14所述的方法,其特征在于,所述第一通信装置在所述第一波束上采用的加扰方式与在所述第二波束上采用的加扰方式不同;或者
    所述第一通信装置在所述第一波束上发送所述第一消息的时频资源,与在所述第二波束上发送所述第二消息的时频资源不同;或者
    所述第一通信装置在所述第一波束上采用的极化方式与在所述第二波束上采用的极化方式不同。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置通过所述第一波束接收第一公共定时提前量TA;
    所述第一通信装置通过所述第二波束接收第二公共TA,所述第二公共TA与所述第一公共TA不相同;
    所述第一通信装置通过第一波束向接入网设备发送第一消息,包括:
    所述第一通信装置根据所述第一公共TA,通过所述第一波束向所述接入网设备发送第一消息;
    所述第一通信装置通过第二波束向所述接入网设备发送第二消息,包括:
    所述第一通信装置根据所述第二公共TA,通过所述第二波束向所述接入网设备发送第二消息。
  17. 一种定位方法,其特征在于,所述方法包括:
    第二通信装置通过第一波束接收终端设备发送的第一消息;
    所述第二通信装置通过第二波束接收所述终端设备发送的第二消息;
    所述第二通信装置根据所述第一波束和所述第二波束的指向对所述终端设备进行定位。
  18. 根据权利要求17所述的方法,其特征在于,所述第二通信装置在所述第一波束上的解扰方式与在所述第二波束上的解扰方式不同;或者
    所述第二通信装置在所述第一波束上接收所述第一消息的时频资源,与在所述第二波束上接收所述第二消息的时频资源不同;
    所述第二通信装置在所述第一波束上采用的极化方式与在所述第二波束上采用的极化方式不同。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置通过所述第一波束发送第一公共定时提前量TA;
    所述第二通信装置通过所述第二波束发送第二公共TA,所述第二公共TA与所述第二公共TA不相同;
    所述第二通信装置通过第一波束接收终端设备发送的第一消息,包括:
    所述第二通信装置根据所述第一公共TA,通过所述第一波束接收所述终端设备发送的第一消息;
    所述第二通信装置通过第二波束接收所述终端设备发送的第二消息,包括:
    所述第二通信装置根据所述第二公共TA,通过所述第二波束接收所述终端设备发送的第二消息。
  20. 一种通信装置,其特征在于,所述通信装置包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口,用于与其他设备进行通信;所述处理器,用于 运行所述存储器内的指令或程序,通过所述通信接口执行如权利要求1-19中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-19任一项所述的方法。
  22. 一种通信系统,其特征在于,包括终端设备和网络设备,其中所述终端设备用于执行如权利要求1-4、10、11、14-16中任一项所述的方法,所述网络设备用于执行如权利要求5-9、12、13、17-19中任一项所述的方法。
PCT/CN2023/080455 2022-03-14 2023-03-09 一种定位方法及通信装置 WO2023174148A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210249735.2 2022-03-14
CN202210249735 2022-03-14
CN202210374283.0 2022-04-11
CN202210374283.0A CN116801183A (zh) 2022-03-14 2022-04-11 一种定位方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023174148A1 true WO2023174148A1 (zh) 2023-09-21

Family

ID=88022210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080455 WO2023174148A1 (zh) 2022-03-14 2023-03-09 一种定位方法及通信装置

Country Status (1)

Country Link
WO (1) WO2023174148A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261303A1 (en) * 2016-10-31 2019-08-22 Huawei Technologies Co., Ltd. Positioning Method, Positioning Apparatus, And Access Point AP
CN110958630A (zh) * 2018-09-26 2020-04-03 电信科学技术研究院有限公司 一种测量方法及设备
CN112369086A (zh) * 2018-07-06 2021-02-12 日本电气株式会社 用于基于波束信息定位的方法、设备和计算机可读介质
CN113115428A (zh) * 2020-01-10 2021-07-13 大唐移动通信设备有限公司 一种上行同步调整方法及装置
CN114175715A (zh) * 2021-11-05 2022-03-11 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261303A1 (en) * 2016-10-31 2019-08-22 Huawei Technologies Co., Ltd. Positioning Method, Positioning Apparatus, And Access Point AP
CN112369086A (zh) * 2018-07-06 2021-02-12 日本电气株式会社 用于基于波束信息定位的方法、设备和计算机可读介质
CN110958630A (zh) * 2018-09-26 2020-04-03 电信科学技术研究院有限公司 一种测量方法及设备
CN113115428A (zh) * 2020-01-10 2021-07-13 大唐移动通信设备有限公司 一种上行同步调整方法及装置
CN114175715A (zh) * 2021-11-05 2022-03-11 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Similar Documents

Publication Publication Date Title
US11483791B2 (en) System and method for network positioning of devices in a beamformed communications system
US11363643B2 (en) Random access procedures for satellite communications
US20220271818A1 (en) Non-Line-of-Sight Path Detection for User Equipment Positioning in Wireless Networks
US11096129B2 (en) Method and signaling for optimized cell switch in earth fixed cells NTN configuration
JP7297879B2 (ja) マルチビーム動作をサポートする基地局を有する無線ネットワークにおけるユーザ機器の測位推定
US11800375B2 (en) Beam training method, related apparatus, and system
US20220386200A1 (en) Network resource configuration method and apparatus
CN114765733A (zh) 应用于非地面通信网络中的定位的方法和通信装置
WO2021203366A1 (zh) 位置确定方法及装置
US20230194649A1 (en) Configuration And Reporting in a Non-Terretrial Network
WO2023115058A2 (en) Adaptive phase-changing devices for active coordination sets
WO2022228003A1 (zh) 波束切换的方法和装置
US10649062B2 (en) Terminal positioning method and apparatus
WO2023174148A1 (zh) 一种定位方法及通信装置
WO2023169131A1 (zh) 一种定位方法、装置及计算机可读存储介质
JPH10209941A (ja) 衛星通信システムおよび方法
WO2021012118A1 (zh) 通信方法、装置、设备、系统及存储介质
CN111586833A (zh) 一种定位方法、装置、终端、基站及管理功能实体
CN116801183A (zh) 一种定位方法及通信装置
US20220217608A1 (en) Timing-based user equipment mobility for transparent satellites
US11855746B2 (en) Inter-satellite link aided UE positioning in non-terrestrial network
US12004116B2 (en) System and method for network positioning of devices in a beamformed communications system
WO2024093905A1 (zh) 一种通信方法及装置
WO2023044712A1 (zh) 通信方法及装置
US20240031012A1 (en) Wireless communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769654

Country of ref document: EP

Kind code of ref document: A1